
COMP/CS 605: Introduction to Parallel
Computing

Lecture : Shared Memory Programming using
PThreads

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Presented: 04/04/17
Updated: 04/03/17

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 2/40 Mary Thomas

Table of Contents

1 PThreads
2 Shared Memory Programming with PThreads

Shared Memory Systems
Threads and Processes
Basic Pthreads Program: Hello World
POSIX Threads API
Matrix-Vector Multiplication with Pthreads

3 Pthreads: Controlling Access and Synchronization
Critical Sections

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 3/40 Mary Thomas

PThreads

Introduction to Shared Memory Programming using PThreads.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 4/40 Mary Thomas

Shared Memory Programming with PThreads

Shared Memory Systems

Shared Memory System

Best candidates:

can be organized
into discrete,
independent tasks
which can execute
concurrently

routines can be
interchanged,
interleaved and/or
overlapped in real
time

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 5/40 Mary Thomas

Shared Memory Programming with PThreads

Threads and Processes

Shared Memory System

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 6/40 Mary Thomas

Shared Memory Programming with PThreads

Threads and Processes

What is a Process?

A process is an instance of a running (or suspended) program.

Can be ”muti-threaded,” created by OS, requires a fair amount of
”overhead”

Process ID, process group ID, user ID, and group ID, Environment

program instructions, registers, stack, heap, signals, libraries

working directory, file descriptors

Inter-process communication tools (such as message queues, pipes,
semaphores, or shared memory).

Ref: http://www.bottomupcs.com/elements_of_a_process.html

http://www.bottomupcs.com/elements_of_a_process.html

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 7/40 Mary Thomas

Shared Memory Programming with PThreads

Threads and Processes

What is a Thread?

Threads are analogous to a light-weight process.

Shared memory program: single process may have multiple threads
of control.

Independent stream of instructions, run inside processes

Programs/procedures: runs independently from main program (e.g.
multiple functions running concurrently)

Example: main program (a.out) that contains a number of
procedures that can be scheduled to run simultaneously and/or
independently

Thread models:

Manager/worker: a single thread, manager assigns work to other
threads (workers).
Pipeline: task is broken into series of subops; each handled in series,
but concurrently by another thread.
Peer: After the main thread (manager) creates other threads, it
participates in the work.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 8/40 Mary Thomas

Shared Memory Programming with PThreads

Threads and Processes

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 9/40 Mary Thomas

Shared Memory Programming with PThreads

Threads and Processes

POSIX Threads

Portable Operating System Interface

IEEE’s POSIX Threads Model (Pthreads):

programming models for threads in a UNIX platform
Pthreads are included in the international standards ISO/IEC9945-1

A standard for Unix-like operating systems.

A library that can be linked with C programs.

Specifies an application programming interface (API) for
multi-threaded programming.

The Pthreads API is only available on POSIXR systems such as:
Linux, MacOS X, Solaris, HPUX,

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 10/40 Mary Thomas

Shared Memory Programming with PThreads

Basic Pthreads Program: Hello World

Phreads: Hello World

[frame=single,rulecolor=\color{blue}]

/* File: pth_hello.c

* Purpose:

* Illustrate basic use of pthreads: create some threads,

* each of which prints a message.

* Input: none

* Output: message from each thread

* Compile: gcc -g -Wall -o pth_hello pth_hello.c -lpthread

* Usage: ./pth_hello <thread_count>

* IPP: Section 4.2 (p. 153 and ff.)

*/

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

const int MAX_THDS = 64;

/* Global variable: accessible to all threads */

int thread_count;

void Usage(char* prog_name);

void *Hello(void* rank); /* Thread function */

/*--*/

int main(int argc, char* argv[]) {

/* Use long in case of a 64-bit system */

long thread;

pthread_t* thread_handles;

/* Get number of threads from command line */

if (argc != 2) Usage(argv[0]);

thread_count = strtol(argv[1], NULL, 10);

if (thread_count<= 0 || thread_count>MAX_THDS)

Usage(argv[0]);

thread_handles = malloc (thread_count*sizeof(pthread_t));

for (thread = 0; thread < thread_count; thread++)

pthread_create(&thread_handles[thread], NULL,

Hello, (void*) thread);

printf("Hello from the main thread\n");

for (thread = 0; thread < thread_count; thread++)

pthread_join(thread_handles[thread], NULL);

free(thread_handles);

return 0;

} /* main */

/*--*/

void *Hello(void* rank) {

/* Use long in case of a 64-bit system */

long my_rank = (long) rank;

printf("Hello from thread %ld of %d\n",

my_rank, thread_count);

return NULL;

} /* Hello */

/*--*/

void Usage(char* prog_name) {

fprintf(stderr, "usage: %s <number of threads>\n", prog_name);

fprintf(stderr, "0 < number of threads <= %d\n", MAX_THREADS);

exit(0);

} /* Usage */

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 11/40 Mary Thomas

Shared Memory Programming with PThreads

Basic Pthreads Program: Hello World

Compiling and running a Pthreads program

Pthreads is a standard C library
Compile like standard C code:

[gidget] % gcc -g -Wall -o pth_hello pth_hello.c -lpthread

[gidget] % ./pth_hello 1

Hello from the main thread

Hello from thread 0 of 1

[gidget:dev/ipp.ch4/hello] mthomas% ./pth_hello 4

Hello from thread 0 of 4

Hello from thread 2 of 4

Hello from thread 1 of 4

Hello from the main thread

Hello from thread 3 of 4

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 12/40 Mary Thomas

Shared Memory Programming with PThreads

Basic Pthreads Program: Hello World

Running a Pthreads program on tuckoo

[mthomas@tuckoo ch4] gcc -g -Wall -o pth hello pth hello.c -lpthread

[mthomas@tuckoo ch4] ./pth_hello 8

Hello from thread 0 of 8

Hello from thread 1 of 8

Hello from thread 2 of 8

Hello from thread 3 of 8

Hello from thread 4 of 8

Hello from thread 5 of 8

Hello from thread 6 of 8

Hello from the main thread

Hello from thread 7 of 8

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 13/40 Mary Thomas

Shared Memory Programming with PThreads

Basic Pthreads Program: Hello World

Warning about global variables

All threads have access to the same global, shared memory

Threads also have their own private data

Limit use of global variables to situations where they are really
needed:

Shared variables.

Programmers are responsible for synchronizing access (protecting)
globally shared data.

Can introduce subtle and confusing bugs

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 14/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

POSIX Threads API: Four Main Groups

Thread management: Routines that work directly on threads -
creating, detaching, joining, etc.

Mutexes: Routines that deal with synchronization, called a ”mutex”,
which is an abbreviation for ”mutual exclusion”.

Condition variables: Routines that address communications between
threads that share a mutex. Includes functions to create, destroy,
wait and signal based upon specified variable values.

Synchronization: Routines that manage read/write locks and
barriers.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 15/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

Starting Threads: pthread create()

Processes in MPI are usually started by a script.

In Pthreads the threads are started by the program executable.

int pthread_create (
pthread_t* thread_p /*out*/ ,
const pthread_attr_t* attr_p /*in*/ ,
void* (*start_routine) (void) /*in*/ ,
void* arg_p /*in*/ ,) ;

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 16/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 17/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 18/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 19/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 20/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

Main thread forks and joins two threads

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 21/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 22/40 Mary Thomas

Shared Memory Programming with PThreads

POSIX Threads API

Source: https://computing.llnl.gov/tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 23/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Matrix-Vector Multiplication with Pthreads

Definition: Let A be an [mx n] matrix, and x be a be an [n x 1],
then y will be a vector with the dimensions [mx 1].

Then yj =
∑m

t=1 aitxt = ai1x1 + ai2x2 + · · ·+ am−1,1bm−1
a00 ... a0j ... a0,n−1

...
ai0 ... aij ... ai,n−1

...
am−1,0 ... am−1,j ... am−1,n−1

 •

x0

...
xi

...
xn

 =

y0
...
yj

...
ym−1

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 24/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Serial Pseudo-code

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 25/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Using 3 Pthreads, 6 elements

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 26/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

/* File:

* pth_mat_vect.c

*

* *

* Compile: gcc -g -Wall -o pth_mat_vect pth_mat_vect.c -lpthread

* Usage:

* pth_mat_vect <thread_count>

*

* IPP: Section 4.3 (pp. 159 and ff.). Also Section 4.10 (pp. 191)

*/

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

/* Global variables */

int thread_count;

int m, n;

double* A;

double* x;

double* y;

/* Serial functions */

void Usage(char* prog_name);

void Read_matrix(char* prompt, double A[], int m, int n);

void Read_vector(char* prompt, double x[], int n);

void Print_matrix(char* title, double A[], int m, int n);

void Print_vector(char* title, double y[], double m);

/* Parallel function */

void *Pth_mat_vect(void* rank);

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 27/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

int main(int argc, char* argv[]) {

long thread;

pthread_t* thread_handles;

if (argc != 2) Usage(argv[0]);

thread_count = atoi(argv[1]);

thread_handles = malloc(thread_count*sizeof(pthread_t));

printf("Enter m and n\n"); scanf("%d%d", &m, &n);

A = malloc(m*n*sizeof(double));

x = malloc(n*sizeof(double));

y = malloc(m*sizeof(double));

Read_matrix("Enter the matrix", A, m, n); Print_matrix("We read", A, m, n);

Read_vector("Enter the vector", x, n); Print_vector("We read", x, n);

for (thread = 0; thread < thread_count; thread++)

pthread_create(&thread_handles[thread], NULL, Pth_mat_vect, (void*) thread);

for (thread = 0; thread < thread_count; thread++)

pthread_join(thread_handles[thread], NULL);

Print_vector("The product is", y, m);

free(A); free(x); free(y);

return 0;

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 28/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

/*--

* Function: Usage

* Purpose: print a message showing what the command line should

* be, and terminate

* In arg : prog_name

*/

void Usage (char* prog_name) {

fprintf(stderr, "usage: %s <thread_count>\n", prog_name);

exit(0);

} /* Usage */

/*--

* Function: Read_matrix

* Purpose: Read in the matrix

* In args: prompt, m, n

* Out arg: A

*/

void Read_matrix(char* prompt, double A[], int m, int n) {

int i, j;

printf("%s\n", prompt);

for (i = 0; i < m; i++)

for (j = 0; j < n; j++)

scanf("%lf", &A[i*n+j]);

} /* Read_matrix */

/*--

* Function: Read_vector

* Purpose: Read in the vector x

* In arg: prompt, n

* Out arg: x

*/

void Read_vector(char* prompt, double x[], int n) {

int i;

printf("%s\n", prompt);

for (i = 0; i < n; i++)

scanf("%lf", &x[i]);

} /* Read_vector */

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 29/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

/*--

* Function: Pth_mat_vect

* Purpose: Multiply an mxn matrix by an nx1 column vector

* In arg: rank

* Global in vars: A, x, m, n, thread_count

* Global out var: y

*/

void *Pth_mat_vect(void* rank) {

long my_rank = (long) rank;

int i, j;

int local_m = m/thread_count;

int my_first_row = my_rank*local_m;

int my_last_row = (my_rank+1)*local_m - 1;

for (i = my_first_row; i <= my_last_row; i++) {

y[i] = 0.0;

for (j = 0; j < n; j++)

y[i] += A[i*n+j]*x[j];

}

return NULL;

} /* Pth_mat_vect */

/*--

* Function: Print_matrix

* Purpose: Print the matrix

* In args: title, A, m, n

*/

void Print_matrix(char* title, double A[], int m, int n) {

int i, j;

printf("%s\n", title);

for (i = 0; i < m; i++) {

for (j = 0; j < n; j++)

printf("%4.1f ", A[i*n + j]);

printf("\n");

}

} /* Print_matrix */

/*--

* Function: Print_vector

* Purpose: Print a vector

* In args: title, y, m

*/

void Print_vector(char* title, double y[], double m) {

int i;

printf("%s\n", title);

for (i = 0; i < m; i++)

printf("%4.1f ", y[i]);

printf("\n");

} /* Print_vector */

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 30/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Compiling and Running Pth Mat Vec on tuckoo

[mthomas@tuckoo pacheco/ch4] mthomas% gcc -g -Wall -o pth_mat_vect pth_mat_vect.c -lpthread

[mthomas@tuckoo pacheco/ch4] mthomas% ./pth_mat_vect 4

Enter m and n

4 4

Enter the matrix

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

We read

1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0

9.0 10.0 11.0 12.0

1.0 2.0 3.0 4.0

Enter the vector

9 7 6 3

We read

9.0 7.0 6.0 3.0

The product is

53.0 153.0 253.0 53.0

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 31/40 Mary Thomas

Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Matrix Mult Example

More Straightforward because of shared memory

Code only reads shared arrays (A, x), so no contention associated
with shared updates of same memory location

No thread communication

Small jobs, small memory

Next we’ll look at what happens when multiple threads
need to update same memory location

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 32/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

Critical Sections

Matrix-vector multiplication was straightforward to code:

Shared-memory locations were accessed in a simple manner.
After initialization, all of the variables but y are read only.
After initialization, shared variables not changed.

Threads make changes to y : but elements are owned by a thread.

There are no attempts by multiple threads to modify the same
element.

What happens if this is not the case? What happens when multiple
threads update a single memory location?

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 33/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

Estimating π using n terms of A Maclaurin series:
Serial Code

See: https://www.math.hmc.edu/funfacts/ffiles/30001.1-3.shtml

https://www.math.hmc.edu/funfacts/ffiles/30001.1-3.shtml

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 34/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

POSIX Threads: Pacheco pthd pi.c

First attempt:

Parallelize similar to the way we did matrix-vector multiplication:

Divide iterates in the for loop and make sum a shared variable.

*--

* Function: Thread_sum, Purpose: Add in the terms computed by the thread running this

* In arg: rank

* Ret val: ignored

* Globals in: n, thread_count

* Global in/out: sum

*/

void* Thread_sum(void* rank) {

long my_rank = (long) rank;

double factor;

long long i, my_n = n/thread_count, my_first_i = my_n*my_rank, my_last_i = my_first_i + my_n;

if (my_first_i % 2 == 0)

factor = 1.0;

else

factor = -1.0;

for (i = my_first_i; i < my_last_i; i++, factor = -factor)

sum += factor/(2*i+1);

return NULL;

} /* Thread_sum */

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 35/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

Program run with 2 threads, dual core processor

For two threads, as n ↑ accuracy of π ↑
But, as # threads ↑ accuracy of π ↓

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 36/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

This Leads to Possible Race Condition

Fundamental problem with Pthreads: when multiple threads try to
access/update the same resource, the result can be unpredictable.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 37/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

POSIX Threads: Pacheco pthd pi.c (1)

/* File: pth_pi.c

* Purpose: Try to estimate pi using the formula:

* pi = 4*[1 - 1/3 + 1/5 - 1/7 + 1/9 - . . .]

*

* Compile: gcc -g -Wall -o pth_pi pth_pi.c -lm -lpthread

* Run: ./pth_pi <number of threads> <n>

* n is the number of terms of the series to use.

* n should be evenly divisible by the number of threads

* Input: none

* Output: Estimate of pi as computed by multiple threads, estimate

* as computed by one thread, and 4*arctan(1).

* Notes:

* 1. The radius of convergence for the series is only 1. So the series converges quite slowly.

* 2. This version will not get right answer bcs all threads are trying to update sum!!!!

* Function needs a critical section to control update.

* IPP: Section 4.4 (pp. 162 and ff.)

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <pthread.h>

const int MAX_THREADS = 1024;

long thread_count;

long long n;

double sum;

void* Thread_sum(void* rank);

/* Only executed by main thread */

void Get_args(int argc, char* argv[]);

void Usage(char* prog_name);

double Serial_pi(long long n);

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 38/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

POSIX Threads: Pacheco pthd pi.c (2)

int main(int argc, char* argv[]) {

long thread; /* Use long in case of a 64-bit system */

pthread_t* thread_handles;

double sersum;

double piref=3.14159265358979323846264;

/* Get number of threads from command line */

Get_args(argc, argv);

thread_handles = (pthread_t*) malloc (thread_count*sizeof(pthread_t));

sum = 0.0;

for (thread = 0; thread < thread_count; thread++)

pthread_create(&thread_handles[thread], NULL,

Thread_sum, (void*)thread);

for (thread = 0; thread < thread_count; thread++)

pthread_join(thread_handles[thread], NULL);

sum = 4.0*sum;

printf("With n = %lld terms,\n", n);

printf(" Reference value for pi = %.15f\n", piref);

printf(" Pthread estimate of pi = %.15f\n", sum);

printf(" Pthread error for pi = %.15f\n", fabs(piref - sum));

sersum = Serial_pi(n);

printf(" Single thread est = %.15f\n", sersum);

printf(" Single Thd err for pi = %.15f\n", fabs(piref - sersum));

free(thread_handles);

return 0;

free(thread_handles);

return 0;

} /* main */

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 39/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

POSIX Threads: Pacheco pthd pi.c (3)
*--

* Function: Thread_sum, Purpose: Add in the terms computed by the thread running this

* In arg: rank

* Ret val: ignored

* Globals in: n, thread_count

* Global in/out: sum

*/

void* Thread_sum(void* rank) {

long my_rank = (long) rank;

double factor;

long long i, my_n = n/thread_count, my_first_i = my_n*my_rank, my_last_i = my_first_i + my_n;

if (my_first_i % 2 == 0)

factor = 1.0;

else

factor = -1.0;

for (i = my_first_i; i < my_last_i; i++, factor = -factor)

sum += factor/(2*i+1);

return NULL;

} /* Thread_sum */

/*--

* Function: Serial_pi, Purpose: Estimate pi using 1 thread

* In arg: n

* Return val: Estimate of pi using n terms of Maclaurin series

*/

double Serial_pi(long long n) {

double sum = 0.0, factor = 1.0;

long long i;

for (i = 0; i < n; i++, factor = -factor)

sum += factor/(2*i+1);

return 4.0*sum;

} /* Serial_pi */

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 40/40 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

[mthomas@tuckoo ch4]$./pth_pi 100 1000

[With n = 1000 terms,

Reference value for pi = 3.141592653589793

Pthread estimate of pi = 3.140592653839794

Pthread error for pi = 0.000999999749999

Single thread est = 3.140592653839794

Single Thd err for pi = 0.000999999749999

[mthomas@tuckoo ch4]$./pth_pi 100 10000

With n = 10000 terms,

Reference value for pi = 3.141592653589793

Pthread estimate of pi = 3.141492653590034

Pthread error for pi = 0.000099999999759

Single thread est = 3.141492653590034

Single Thd err for pi = 0.000099999999759

[mthomas@tuckoo ch4]$./pth_pi 100 100000

With n = 100000 terms,

Reference value for pi = 3.141592653589793

Pthread estimate of pi = 3.142916601214706

Pthread error for pi = 0.001323947624913 ----------------------->>>>>>>> error increasing

Single thread est = 3.141582653589720

Single Thd err for pi = 0.000010000000073

[mthomas@tuckoo ch4]$./pth_pi 100 1000000

With n = 1000000 terms,

Reference value for pi = 3.141592653589793

Pthread estimate of pi = 3.004711135456170

Pthread error for pi = 0.136881518133623

Single thread est = 3.141591653589774

Single Thd err for pi = 0.000001000000019

mthomas@tuckoo ch4]$./pth_pi 100 10000000

With n = 10000000 terms,

Reference value for pi = 3.141592653589793

Pthread estimate of pi = -0.028399192093270

Pthread error for pi = 3.169991845683063

Single thread est = 3.141592553589792

Single Thd err for pi = 0.000000100000002

	PThreads
	Shared Memory Programming with PThreads
	Shared Memory Systems
	Threads and Processes
	Basic Pthreads Program: Hello World
	POSIX¨ Threads API
	Matrix-Vector Multiplication with Pthreads

	Pthreads: Controlling Access and Synchronization
	Critical Sections

