COMP/CS 605: Introduction to Parallel
Computing

Lecture : Shared Memory Programming using
PThreads

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Presented: 04/04/17
Updated: 04/03/17

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17

Table of Contents

© PThreads
© Shared Memory Programming with PThreads
o Shared Memory Systems
@ Threads and Processes
o Basic Pthreads Program: Hello World
o POSIX Threads API
@ Matrix-Vector Multiplication with Pthreads
© Pthreads: Controlling Access and Synchronization
o Critical Sections

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
PThreads

Introduction to Shared Memory Programming using PThreads.

Mary Th

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17

Shared Memory Programming with PThreads
Shared Memory Systems

Shared Memory System

Best candidates: routine1 routine2 final routine

@ can be organized
into discrete, routine1 final routine
independent tasks
which can execute
concurrently

@ routines can be

interchanged,
interleaved and/or

overlapped in real .
time

time

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 0 Mary Thomas
Shared Memory Programming with PThreads

Threads and Processes

Shared Memory System

private I thread
thread

thread
private

il

private

d

private
thread

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 40 Mary Thomas
Shared Memory Programming with PThreads
Threads and Processes

What is a Process?

A process is an instance of a running (or suspended) program.

Can be "muti-threaded,” created by OS, requires a fair amount of
" overhead”

Process ID, process group ID, user ID, and group ID, Environment
program instructions, registers, stack, heap, signals, libraries

working directory, file descriptors

Inter-process communication tools (such as message queues, pipes,
semaphores, or shared memory).

Ref: http://www.bottomupcs.com/elements_of_a_process.html

http://www.bottomupcs.com/elements_of_a_process.html

COMP/CS 605 ecture Presented: 04/04/17 Updated: 04/03/17 40 Mary Thomas
Shared Memory Programming with PThreads
Threads and Processes

What is a Thread?

o Threads are analogous to a light-weight process.

@ Shared memory program: single process may have multiple threads
of control.

o Independent stream of instructions, run inside processes

@ Programs/procedures: runs independently from main program (e.g.
multiple functions running concurrently)

e Example: main program (a.out) that contains a number of
procedures that can be scheduled to run simultaneously and/or
independently

o Thread models:

o Manager/worker: a single thread, manager assigns work to other
threads (workers).

o Pipeline: task is broken into series of subops; each handled in series,
but concurrently by another thread.

o Peer: After the main thread (manager) creates other threads, it
participates in the work.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 0 Mary Thomas
Shared Memory Programming with PThreads

Threads and Processes

User Address Space
User Address Space
Thread 2 | routine2() varl —|
stack routinel varl() || stack var2
var2() var3
Thread 1 | routinel() varl —f
text main() var2
routinel () stack
routine2()
main()
data arrayh text routinel ()
arrayB routine2()
heap
arrayh
data arrayB
heap
T
T ———

UNIX PROCESS THREADS WITHIN A UNIX PROCESS

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 40 Mary Thomas
Shared Memory Programming with PThreads
Threads and Processes

POSIX Threads

Portable Operating System Interface
IEEE's POSIX Threads Model (Pthreads):

o programming models for threads in a UNIX platform
o Pthreads are included in the international standards ISO/IEC9945-1

A standard for Unix-like operating systems.

(]

A library that can be linked with C programs.

Specifies an application programming interface (API) for
multi-threaded programming.

The Pthreads API is only available on POSIXR systems such as:
Linux, MacOS X, Solaris, HPUX,

COMP/CS 605 ture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Shared Memory Programming with PThreads
Basic Pthreads Program: Hello World

Phreads: Hello World

[frame=single,rulecolor=\color{blue}
/* File: pth_hello.c
Purpose:
Illustrate basic use of pthreads: create some threads,
each of which prints a message.
Input: none
Output: message from each thread
Compile: gcc -g -Wall -o pth_hello pth_hello.c -lpthread
Usage: ./pth_hello <thread_count>
IPP: Section 4.2 (p. 153 and ff.)

thread_handles = malloc (thread_count*sizeof (pthread_t))
for (thread = 0; thread < thread_count; thread++)
pthread_create(&thread_handles[thread], NULL,
Hello, (void*) thread);

printf("Hello from the main thread\n");

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

XX X X %X X X %

*/
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

free(thread_handles);
return 0;
} /x main */

const int MAX_THDS = 64;

/
id *Hell id* rank.
/* Global variable: accessible to all threads */ o ° o(vo1. rank) { .
int throad conat: /* Use long in case of a 64-bit system */
- ; long my_rank = (long) rank
void Usage(char* prog_name); . N . -
void *Hello(void+ ramk); /+ Thread function */ printf ("Hello from thread %1d of %d\n",
my_rank, thread_count);

/ / return NULL;
int main(int argc, char* argv[]l) { } /% Hello */’

/* Use long in case of a 64-bit system */

long thread; / /

pthread_t* thread_handles; void Usage(chars prog name) {

fprintf(stderr, "usage: %s <number of threads>\n", pr¢g_name)
fprintf(stderr, "0 < number of threads <= %d\n", MAX_THREADS)
exit(0);

} /% Usage */

/* Get number of threads from command line */

if (argc !'= 2) Usage(argv[0]);

thread_count = strtol(argv[i], NULL, 10);

if (thread_count<= 0 || thread_count>MAX_THDS)
Usage (argv[0]);

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Shared Memory Programming with PThreads
Basic Pthreads Program: Hello World

Compiling and running a Pthreads program

o Pthreads is a standard C library
o Compile like standard C code:

’ [gidget] % gcc -g -Wall -o pth_hello pth_hello.c -lpthrea#

[gidget] % ./pth_hello 1
Hello from the main thread
Hello from thread 0 of 1

[gidget:dev/ipp.ch4/hello] mthomas’, ./pth_hello 4
Hello from thread 0 of 4

Hello from thread 2 of 4

Hello from thread 1 of 4

Hello from the main thread

Hello from thread 3 of 4

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 2/40 Mary Thomas
Shared Memory Programming with PThreads
Basic Pthreads Program: Hello World

Running a Pthreads program on tuckoo

[mthomas®@tuckoo ch4] gcc -g -Wall -o pth_hello pth_hello.c -Ipthread

[mthomas@tuckoo ch4] ./pth_hello 8

Hello from thread 0 of 8
Hello from thread 1 of 8
Hello from thread 2 of 8
Hello from thread 3 of 8
Hello from thread 4 of 8
Hello from thread 5 of 8
Hello from thread 6 of 8

Hello from the main thread
Hello from thread 7 of 8

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads
Basic Pthreads Program: Hello World

Mary Thomas

Warning about global variables

o All threads have access to the same global, shared memory
@ Threads also have their own private data

@ Limit use of global variables to situations where they are really
needed:

o Shared variables.

@ Programmers are responsible for synchronizing access (protecting)
globally shared data.

o Can introduce subtle and confusing bugs

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Shared Memory Programming with PThreads
POSIX Threads API

POSIX Threads API: Four Main Groups

@ Thread management: Routines that work directly on threads -
creating, detaching, joining, etc.

o Mutexes: Routines that deal with synchronization, called a " mutex”,
which is an abbreviation for " mutual exclusion”.

@ Condition variables: Routines that address communications between
threads that share a mutex. Includes functions to create, destroy,
wait and signal based upon specified variable values.

o Synchronization: Routines that manage read/write locks and
barriers.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Shared Memory Programming with PThreads
POSIX Threads API

Starting Threads: pthread _create()

@ Processes in MPI are usually started by a script.

@ In Pthreads the threads are started by the program executable.

pthread.h One object for

\ each thread.

pthread t

-~

int pthread_create (
pthread_t* thread_p /*out*x/ ,
const pthread_attr_t* attr_p /*inx/
void* (*start_routine) (void) /*inx/
void* arg_p /*inx/ ,) ;

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Shared Memory Programming with PThreads

POSIX Threads API

pthread_t objects

= Opaque

= The actual data that they store is system-
specific.

= Their data members aren’ t directly
accessible to user code.

= However, the Pthreads standard guarantees
that a pthread_t object does store enough
information to uniquely identify the thread
with which it’ s associated.

COMP/CS 605

Lecture

Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads
POSIX Threads API

|_A closer look (1)

int pthread_create (
/ ‘*pthread t* thread_p /* out */,

‘ | const pthread_attr_t* attr_p /*in */,
‘ ‘.I void* (*start_routine) (void) /* in*/,
I‘. void* arg_p /*in*/);

|\

- We won' t be using, so we just pass NULL
1
1

Allocate before calling

COMP/CS 605: Lecture Presented: 04/04/17
Shared Memory Programming with PThreads
POSIX Threads API

Updated: 04/03/17

|_A closer look (2)

int pthread_create (

pthread_t* thread_p /* out */,

const pthread_attr_t* attr_p /*in */,

* void* (*start_routine) (void) /*in */,
/-* void* arg_p /" in*/);
1

Pointer to the argument that should

be passed to the function starf_routine.
‘The function that the thread is to run.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads

POSIX Threads API

Function started by pthread_create

= Prototype:
void* thread_function (void* args p);

= Void* can be cast to any pointer type in C.

= So args_p can point to a list containing one or
more values needed by thread_function.

= Similarly, the return value of thread_function can
point to a list of one or more values.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Shared Memory Programming with PThreads

POSIX Threads API

Thread 0

i

Main

R

o

Thread 1

Main thread forks and joins two threads

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads

POSIX Threads API

Stopping the Threads

= We call the function pthread_join once for
each thread.

= A single call to pthread_join will wait for the
thread associated with the pthread_t object
to complete.

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas

Shared Memory Programming with PThreads
POSIX Threads API

Master
Thread

pthread create()] =——————# pthread join() —

Worker
Thread

DOWORK —— pthread exit()

Worker
Thread

Source: https://computing.llnl.gov/tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/

Mary Thomas

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17

Shared Memory Programming with PThreads
Matrix-Vector Multiplication with Pthreads

Matrix-Vector Multiplication with Pthreads

Definition: Let A be an [mx n] matrix, and x be a be an [nx1],
then y will be a vector with the dimensions [m x 1].

Then yi = ZT:l jtXy = aj1X1 + ajpXo + -+ - + am_l,lbm_l
ago ... Aoj .- A0,n—1 X0 [»
ajg ... aij-..:.. ain—1 . xI = yj.
am1.0 - Amotj e Amotn1 Xn L Y
oo ao1 | ---| aon-1 Yo
d10 an || aie-1 1
dig il |-t | dina1 -)'i:ai}xﬂ"'ﬂilxrl"'"'ai.n—lxn—l

Ym—1

Am—1.0 | dm—1.1 | -** | dm—1.n—1

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Shared Memory Programming with PThreads
Matrix-Vector Multiplication with Pthreads

Serial Pseudo-code

/% For each row of A */
for (i = 0; 1 < m; i++) {
y[i] = 0.0;
/x For each element of the row and each element of x =/
for (3 = 0; 3 < n; j++4)
y[i] += A[L][3]* x[3]:

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads
Matrix-Vector Multiplication with Pthreads

Using 3 Pthreads, 6 elements

Components
Thread of y

0 |yl(0], y(1]
y[2], y(3] \
y[41, yI5]

1| —

thread O

0: § < n: j++)

general case

y[l] = 0.0;
(3 = 0: jJ < n: Jj++)
yli]l += A[1][3]*x[]]:

A[OI[3]* =x[3]:

Thomas

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads

Mary Thomas

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

/* File:
pth_mat_vect.c

*

*

*

*

* Compile: gcc -g -Wall -o pth_mat_vect pth_mat_vect.c -lpthread

* Usage:

* pth_mat_vect <thread_count>

*

* IPP: Section 4.3 (pp. 159 and ff.). Also Section 4.10 (pp. 191)
*/

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

/* Global variables */
int thread_count;
int m, n;

doublex A;

double* x;

doublex y;

/* Serial functions */

void Usage(char* prog_name);

void Read_matrix(char* prompt, double A[], int m, int n);
void Read_vector(char* prompt, double x[], int n);

void Print_matrix(char* title, double A[], int m, int n);
void Print_vector(charx title, double y[l, double m);

/* Parallel function */
void *Pth_mat_vect(voidx rank);

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 / Mary Thomas
Shared Memory Programming with PThreads

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

int main(int argc, charx argv[]) {
long thread;
pthread_t* thread_handles;

if (argc != 2) Usage(argv([0]);
thread_count = atoi(argv[1]l);
thread_handles = malloc(thread_count*sizeof (pthread_t));

printf ("Enter m and n\n"); scanf ("%d%d", &m, &n);
A = malloc(m*n*sizeof (double)) ;

x = malloc(n*sizeof (double));
y = malloc(m*sizeof (double));

Read_matrix("Enter the matrix", A, m, n); Print_matrix("We read", A, m, n);
Read_vector ("Enter the vector", x, n); Print_vector("We read", x, n);

for (thread = 0; thread < thread_count; thread++)
pthread_create(&thread_handles[thread], NULL, Pth_mat_vect, (void*) thread);

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

Print_vector("The product is", y, m);

free(A); free(x); free(y);
return 0;

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads

Mary Thomas

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

/
* Function: Usage
* Purpose: print a message showing what the command line should
* be, and terminate
* In arg : prog_name
*/

void Usage (char* prog_name) {
fprintf(stderr, "usage: %s <thread_count>\n", prog_name);
exit(0);

} /* Usage */

/
* Function: Read_matrix
* Purpose: Read in the matrix
* In args: prompt, m, n
* Out arg: A
*/
void Read_matrix(char* prompt, double A[], int m, int n) {
int i, §;

printf("%s\n", prompt);
for (i = 0; i < mj i++)
for (j = 0; j < n; j++)
scanf ("%1f", &A[i*n+j1);
} /* Read_matrix */

/
* Function: Read_vector
* Purpose: Read in the vector x
* In arg: prompt, n
* Out arg: x
*/
void Read_vector(char* prompt, double x[], int n) {
int

printf ("%s\n", prompt);
for (i = 0: i < n: i++)

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads

Mary Thomas

Matrix-Vector Multiplication with Pthreads

Pthreads matrix-vector multiplication

/
* Function: Pth_mat_vect
* Purpose: Multiply an mxn matrix by an nxl column vector
* In arg: rank
* Global in vars: A, x, m, n, thread_count
* Global out var: y

*/
void *Pth_mat_vect(void* rank) {
long my_rank = (long) rank;
int i, j;
int local_m = m/thread_count;
int my_first_row = my_rank*local_m;
int my_last_row = (my_rank+1)xlocal_m - 1;

for (i = my_first_row; i <= my_last_row; i++) {
ylil = 0.0;
for (j = 0; j < mn; j++)
y[il += Alixn+j]*x[j];

return NULL;
} /* Pth_mat_vect */

/

* Function: Print_matrix

* Purpose: Print the matrix
* In args: title, A, m, n
*/

void Print_matrix(char* title, double A[], int m, int n) {
int i, j;

\n", title);
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++)
printf("%4.1f ", Alixn + j1);
printf("\n");

COMP/CS 605 ture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads
Matrix-Vector Multiplication with Pthreads

Compiling and Running Pth_Mat_Vec on tuckoo

Mary Thomas

8 o h ch4] % gcc -g -Wall -o pth_mat_vect pth_mat_vect.c -lpthread
[mt: hy ch4] mth % ./pth_mat_vect 4

Enter m and n

44

Enter the matrix

1234

5678

9 10 11 12
1234

We read
1.0 2.0
5.0 6.0

[

3.0 4.
7.0 8.
11.0 12.
3.0 4.

ocooo

1.0 2.0
Enter the vector
9763
We read

9.0 7.0 6.0 3.0
The product is
53.0 153.0 253.0 53.0

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Shared Memory Programming with PThreads
Matrix-Vector Multiplication with Pthreads

Matrix Mult Example

@ More Straightforward because of shared memory

o Code only reads shared arrays (A, x), so no contention associated
with shared updates of same memory location

@ No thread communication

@ Small jobs, small memory

Next we’'ll look at what happens when multiple threads
need to update same memory location

Mary Thomas

COMP/CS 605 e Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Pthreads: Controlling Access and Synchronization
Critical Sections

Critical Sections

@ Matrix-vector multiplication was straightforward to code:

o Shared-memory locations were accessed in a simple manner.
o After initialization, all of the variables but y are read only.
o After initialization, shared variables not changed.

o Threads make changes to y: but elements are owned by a thread.

@ There are no attempts by multiple threads to modify the same
element.

@ What happens if this is not the case? What happens when multiple
threads update a single memory location?

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Pthreads: Controlling Access and Synchronization
Critical Sections

Estimating 7 using n terms of A Maclaurin series:
Serial Code

L1 Lo

double factor = 1.0;

double sum = 0.0;

for (i = 0; i < n; i+4+, factor = —factor) {
sum += factor/(2xi+1);

}

pi = 4.0xsum;

See: https://www.math.hmc.edu/funfacts/ffiles/30001.1-3.shtml

https://www.math.hmc.edu/funfacts/ffiles/30001.1-3.shtml

COMP/CS 605 cture Presented: 04/04/17 Updated
Pthreads: Controlling Access and Synchronization
Critical Sections

Mary Thomas

POSIX Threads: Pacheco pthd pi.c

First attempt:

o Parallelize similar to the way we did matrix-vector multiplication:
o Divide iterates in the for loop and make sum a shared variable.

* Function: Thread_sum, Purpose: Add in the terms computed by the thread running this
* In arg: rank

* Ret val: ignored

* Globals in: n, thread_count

* Global in/out: sum

*/

void* Thread_sum(void* rank) {
long my_rank = (long) ramk;
double factor;
long long i, my_n = n/thread_count, my_first_i = my_n*my_rank, my_last_i = my_first_i + my_n;

if (my_first_i % 2 == 0)
factor = 1.0;

else
factor = -1.0;

for (i = my_first_i; i < my_last_i; i++, factor = -factor)
sum += factor/(2xi+1);

return NULL;
} /* Thread_sum */

COMP/CS 605: L Presented: 04/04/17 Updated: 04/03/17 Mary Thomas

Pthreads: Controlling Access and Synchronization

Critical Sections

Program run with 2 threads, dual core processor

n
10° 1° | 10 10°
n 3.14159 | 3.141593 | 3.1415927 | 3.14159265
| Thread || 3.14158 | 3.141592 | 3.1415926 | 3.14159264
2 Threads || 3.14158 | 3.141480 | 3.1413692 | 3.14164686

o For two threads, as n 1 accuracy of 7 1

o But, as # threads 1 accuracy of 7 |

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Pthreads: Controlling Access and Synchronization
Critical Sections

This Leads to Possible Race Condition

| Tine | Thread 0 | Thread | |
I | Started by main thread
2 || Call Compute () Started by main thread
3 || Assigny =1 Call Compute()
4 | Putx=0and y=1 into registers | Assigny = 2
5 || AddOand | Put x=0 and y=2 into registers
6 || Store I in memory location x | Add 0 and 2
1 Store 2 in memory location x

Fundamental problem with Pthreads: when multiple threads try to
access/update the same resource, the result can be unpredictable.

COMP/CS 605 ture Presented: 04/04/17 Updated: 04/03 Mary Thomas
Pthreads: Controlling Access and Synchronization
Critical Sections

POSIX Threads: Pacheco

/* File: pth_pi.c
* Purpose: Try to estimate pi using the formula:
* pi=4x[1-1/3+1/6-1/7T+1/9-. . .1
*
* Compile: gcc -g -Wall -o pth_pi pth_pi.c -lm -lpthread
* Run: ./pth_pi <number of threads> <n>
* n is the number of terms of the series to use.
* n should be evenly divisible by the number of threads
* Input: none
* Qutput: Estimate of pi as computed by multiple threads, estimate
* as computed by one thread, and 4xarctan(1).
* Notes:
* 1. The radius of convergence for the series is only 1. So the series converges quite slowly.
* 2. This version will not get right answer bcs all threads are trying to update sum!!!!
* Function needs a critical section to control update.
* IPP: Section 4.4 (pp. 162 and ff.)

*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <pthread.h>

const int MAX_THREADS = 1024;

long thread_count;
long long n;
double sum;

void* Thread_sum(void* rank);

/* Only executed by main thread */
void Get_args(int argc, char* argv[]l);
void Usage(char* prog_name);

double Serial_pi(long long n);

COMP/CS 605 ture Presented: 04/04/17 Updated: 04/03/17 Mary Thomas
Pthreads: Controlling Access and Synchronization
Critical Sections

POSIX Threads: Pacheco pthd_pi.c (2)

int main(int argc, char* argv[]) {

long thread; /#* Use long in case of a 64-bit system */
pthread_t* thread_handles;
double sersum;

double piref=3.14159265358979323846264;

/* Get number of threads from command line */
Get_args(argc, argv);

thread_handles = (pthread_t*) malloc (thread_count*sizeof (pthread_t));
sum = 0.0;

for (thread = 0; thread < thread_count; thread++)
pthread_create(&thread_handles[thread], NULL,
Thread_sum, (void#)thread);

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

sum = 4.0%sum;
printf ("With n = %11d terms,\n", n);
printf (" Reference value for pi =
printf(" Pthread estimate of pi
printf(" Pthread error for pi
sersum = Serial_pi(n);

printf (" Single thread est
printf(" Single Thd err for pi

piref);
sum) ;
fabs(piref - sum));

15f\n", sersum);
15f\n", fabs(piref - sersum));

free(thread_handles) ;
return 0;
free(thread_handles);
return 0;

} /* main */

COMP/CS 605: Lecture Presented: 04/04/17 Updated: 04/03/17
Pthreads: Controlling Access and Synchronization

Mary Thomas

Critical Sections

POSIX Threads: Pacheco pthd_pi.c (3)

* Function: Thread_sum, Purpose: Add in the terms computed by the thread running this
* In arg: rank

* Ret val: ignored

* Globals in: n, thread_count

* Global in/out: sum

*/

void* Thread_sum(void* rank) {
long my_rank = (long) rank;
double factor;
long long i, my_n = n/thread_count, my_first_i = my_n*my_rank, my_last_i = my_first_i + my_n;

if (my_first_i % 2 == 0)
factor = 1.0;

else
factor = -1.0;

for (i = my_first_i; i < my_last_i; i++, factor = -factor)
sum += factor/(2*i+1);

return NULL;
} /% Thread_sum */

/

* Function: Serial_pi, Purpose: Estimate pi using 1 thread
* In arg: n

* Return val: Estimate of pi using n terms of Maclaurin series

*/

double Serial_pi(long long n) {
double sum = 0.0, factor = 1.0;
long long ij;

for (i = 0; i < n; i++, factor = -factor)
sum += factor/(2*i+1);

return 4.0sum;
} /* Serial_pi */

COMP/CS 605: Lecture Presented: 04/04/17

Pthreads: Controlling Access and Synchronization

Updated: 04/03/17

Mary Thomas

Critical Sections

[mthomas@tuckoo ch4]$./pth_pi 100 1000
[With n = 1000 terms,
Reference value for pi = 3.141592653589793
Pthread estimate of pi = 3.140592653839794
Pthread error for pi = 0.000999999749999
Single thread est = 3.140592653839794
Single Thd err for pi = 0.000999999749999

[mthomas@tuckoo ch4]$./pth_pi 100 10000
With n = 10000 terms,
Reference value for pi = 3.141592653589793
Pthread estimate of pi = 3.141492653590034
Pthread error for pi = 0.000099999999759
Single thread est = 3.141492653590034
Single Thd err for pi = 0.000099999999759

[mthomas@tuckoo ch4]$./pth_pi 100 100000
With n = 100000 terms,
Reference value for pi = 3.141592653589793
Pthread estimate of pi = 3.142916601214706
Pthread error for pi = 0.001323947624913
Single thread est = 3.141582653589720
Single Thd err for pi = 0.000010000000073

>>>>>5>>

error increasing

[mthomas@tuckoo ch4]$./pth_pi 100 1000000
With n = 1000000 terms,
Reference value for pi = 3.141592653589793
Pthread estimate of pi = 3.004711135456170
Pthread error for pi = 0.136881518133623
Single thread est = 3.141591653589774
Single Thd err for pi = 0.000001000000019

mthomas@tuckoo ch4]$./pth_pi 100 10000000
With n = 10000000 terms,
Reference value for pi = 3.141592653589793
Pthread estimate of pi = -0.028399192093270
Pthread error for pi = 3.169991845683063
Single thread est = 3.141592553589792
Single Thd err for pi = 0.000000100000002

	PThreads
	Shared Memory Programming with PThreads
	Shared Memory Systems
	Threads and Processes
	Basic Pthreads Program: Hello World
	POSIX¨ Threads API
	Matrix-Vector Multiplication with Pthreads

	Pthreads: Controlling Access and Synchronization
	Critical Sections

