COMP/CS 605: Introduction to Parallel

Computing
Lecture : Controlling Access & Synchronization

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Presented: 04/06/17
Updated: 04/03/17

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17

Table of Contents

@ Controlling Access & Synchronization
o Busy-Waiting
o Mutexes
o Pthreads: Producer/Consumer, Synchronization, Semaphores
@ PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17
Controlling Access & Synchronization
Busy-Waiting

Mary Thomas

Busy-Waiting

o A thread repeatedly tests a condition
y = Compute(ny_rank);
while (flag != my_rank);
X=X+,

flag+t; flag initalized to 0 by main thread

@ Thread 1 cannot enter critical section until Thread 0 has finished.

o Beware of optimizing compilers:

They can optimize code and rearrange order of code affecting
busy-wait cycle.

COMP/CS 605: Lecture Presented 06/17 Upda 04/03/17 5 Mary Thomas
Controlling Access & Synchronization
Busy-Waiting

Pthreads: global sum with busy-waiting

1
2 * Function: Thread_sum
3 * Purpose: Add in the terms computed by the thread running this
4 * In arg: rank
5 * Ret val: ignored
6 * Globals in: n, thread_count
7 * Global in/out: sum
8 */
9 void* Thread_sum(voidx rank) {
10 long my_rank = (long) rank;
11 double factor;
12 long long ij;
13 long long my_n = n/thread_count;
14 long long my_first_i = my_n*my_rank;
15 long long my_last_i = my_first_i + my_n;
16
17 if (my_first_i % 2 == 0)
18 factor = 1.0;
19 else
20 factor = -1.0;
21
22 for (i = my_first_i; i < my_last_i; i++, factor = -factor) {
23 while (flag != my_rank);
24 sum += factor/(2xi+1);
25 flag = (flag+1) % thread_count;
26 ¥
27 return NULL;
28 } /* Thread_sum */

Thread 1 spins until Thread 0 finishes - could waste resources.
Add in logic for last thread to reset flag

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization

Busy-Waiting

1 [tuckoo] mthomasy, ./pth_pi_busyl 8 100000

2 With n = 100000 terms,

3 Multi-threaded estimate of pi = 3.141582653589717
4 Elapsed time = 1.306486e-02 seconds

5 Single-threaded estimate of pi = 3.141582653589720
6 Elapsed time = 4.179478e-04 seconds

7 Math library estimate of pi = 3.141592653589793
8

1 [tuckoo] mthomas? ./pth_pi_busyl 8 10000000

2 With n = 10000000 terms,

3 Multi-threaded estimate of pi = 3.141592553589788
4 Elapsed time = 9.265280e-01 seconds

5 Single-threaded estimate of pi = 3.1415925563589792
6 Elapsed time = 4.049492e-02 seconds

7 Math library estimate of pi = 3.141592653589793
8

Note: Serial version is faster than threaded version!

COMP/CS 605: Lecture Presented d 04/03/17 5 Mary Thomas
Controlling Access & Synchronization

© 00N U AW

Busy-Waiting

Pthreads: Controlling Access to Shared Variable

* Function: Thread_sum

* Purpose: Add in the terms computed by the thread running this
* In arg: rank

* Ret val: ignored

* Globals in: n, thread_count

* Global in/out: sum

void* Thread_sum(void* rank) {
long my_rank = (long) rank;
double factor;
long long i;
long long my_n = n/thread_count;
long long my_first_i = my_n*my_rank;
long long my_last_i = my_first_i + my_n;

if (my_first_i % 2 == 0)
factor = 1.0;

else
factor = -1.0;

for (i = my_first_i; i < my_last_i; i++, factor = -factor)
my_sum += factor/(2xi+1);

while (flag != my_rank);
sum += my_sum;
flag = (flag+l) 7% thread_count;

return NULL;
} /% Thread_sum */

Define local sum, then update global sum in a critical section after
loop

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 / Mary Thomas
Controlling Access & Synchronization

Busy-Waiting

Output after using local sum var; moving critical section to after loop.

1 [mthomas@tuckoo ch4l$./pth_pi_busy2 8 1000000

2 With n = 1000000 terms,

3 Multi-threaded estimate of pi = 3.141591653589728
4 Elapsed time = 1.039195e-02 seconds

5 Single-threaded estimate of pi = 3.141591653589774
6 Elapsed time = 1.185608e-02 seconds

7 Math library estimate of pi = 3.141592653589793
8

1

2 [mthomas@tuckoo ch4]$./pth_pi_busy2 8 10000000

3 With n = 10000000 terms,

4 Multi-threaded estimate of pi = 3.1415925563589832
5 Elapsed time = 3.278208e-02 seconds

6 Single-threaded estimate of pi = 3.141592553589792
7 Elapsed time = 1.130030e-01 seconds

8 Math library estimate of pi = 3.141592653589793

Note: Serial and threaded timings are closer

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 8/45 Mary Thomas
Controlling Access & Synchronization
Mutexes

Mutexes

o A thread that is busy-waiting may continually use the CPU
accomplishing nothing.

o Mutex (mutual exclusion) is a special type of variable that can be
used to restrict access to a critical section to a single thread at a
time.

@ Used to guarantee that one thread "excluded” all other threads
while it executes the critical section.

@ The Pthreads standard includes a special type for mutexes:
pthread_mutex_t .

int pthread_mutex_init (
pthread _mutex_t mutex_p /[x out x /
pthread_mutexattr_t « attr_p / % out * /);

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 45 Mary Thomas
Controlling Access & Synchronization
Mutexes

Mutexes

@ When a thread is finished executing the code in a critical section, it
should call

Int pthread_nutex_unlock(pthread_mutex_t+ mutex_p /= infout +/),

o calling thread waits until no other thread is in critical section
o steps:

declare global mutex variable

have main thread init variable

use pthread_mutex_lock work use pthread_mutex_unlock pair
this is a blocking call

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 /4! Mary Thomas
Controlling Access & Synchronization

Mutexes

main defines global mutex variable, inits and destroys

pthread_mutex_t mutex; /*declare global mutex variable */

int main(int argc, char* argv[]) {
long thread; /* Use long in case of a 64-bit system */
pthread_t* thread_handles;
double start, finish, elapsed;

/* Get number of threads from command line */
Get_args(argc, argv);
thread_handles = (pthread_t*) malloc (thread_count*sizeof (pthread_t));

/ /

pthread_mutex_init (&mutex, NULL);

sum = 0.0;
GET_TIME(start);
for (thread = 0; thread < thread_count; thread++)

pthread_create (&thread_handles [thread], NULL,Thread_sum, (void#)thread);

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

GET_TIME(finish);

elapsed = finish - start;

sum = 4.0%sum;

GET_TIME(start); sum = Serial_pi(n); GET_TIME(finish)
elapsed = finish - start;

/ /
pthread_mutex_destroy (dmutex) ;

free(thread_handles) ;
return 0; } /* end main */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization

Mutexes

function computes local my_sum, then uses mutex_lock for control

void* Thread_sum(void* rank) {
long my_rank = (long) rank;
double factor;
long long ij;
long long my_n = n/thread_count;
long long my_first_i = my_n*my_rank;
long long my_last_i = my_first_i + my_n;
double my_sum = 0.0;

if (my_first_i % 2 == 0)

factor = 1.0;
else

factor = -1.0;

for (i = my_first_i; i < my_last_i; i++, factor = -factor) {
my_sum += factor/(2xi+1);

¥

pthread_mutex_lock (&mutex) ;

sum += my_sum;

pthread_mutex_unlock(&mutex) ;

return NULL;
} /% Thread_sum */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17

Controlling Access & Synchronization

Mutexes

| Threads || Busy-Wait | Mutex |

1 2.90 2.90

2 1.45 1.45 Tserial thread_count
4 0.73 0.73 Tharallel

g 0.38 0.38

6 0.50 0.38

3 0.80 0.40

64 3.56 0.38

Run-times (in seconds) of programs using n = 108
terms on a system with two four-core processors.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas

Controlling Access & Synchronization
Mutexes

Thread runtimes

=0 Busy-Wait

Run-Time
~

==\ utex

#Pthreads

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas

Controlling Access & Synchronization

Mutexes

A few observations

(]

Results on OS X are similar to text. What would happen on tuckoo?

The order in which threads execute is random

(4]

This is effectively a barrier, so you expect mutex performance to
degrade (Nthreads > Ncores)

if T-Ls= ~ threadcount then you have Speedup

Tparallel

(]

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17
Controlling Access & Synchronization

Mary T

Mutexes

Thread
Time || flag 0 1 2 3 4
] 0 crit sect | busy wait susp susp susp
| 1 terminate | crit sect susp busy wait susp
2 2 —_— terminate susp busy wait | busy wait
? 2 — crit sect susp busy wait

Possible sequence of events with busy-waiting
and more threads than cores.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Thomas
Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

Producer-Consumer Model, Synchronization and
Semaphores

@ Busy-waiting enforces the order in which threads access a critical
section.

@ Using mutexes, the order is left to chance and the system.
@ There are applications where we need to control the order threads
access the critical section.

o Trade-off between safety (mutex) and control (busy-wait) and
performance.

COMP/CS 605 ecture Presented: 04/06/17 Updated: 04/03/17 1 Mary Thomas
Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

Global sum function that uses a mutex.

/% n and product_matrix are shared and initialized by the main thread =/
/% product_matrix is initialized to be the identity matrix */
voids Thread_work(veids rank) {

long ny_rank = (long) rank;

matriz_t my_mat = Allocate_matrix(n);

Generate_matrix(my_mat);

pthread_mutex_lock(&nutex);

Multiply_matrix(product_mat, my_mat);

pthread_mutex_unlock(&nutex);

Free_matrix(&my_mat):

return NULL;
} /% Thread_work =/

Problem: Matrix-Matrix multiplication is not commutative.

COMP/CS 605 cture Presented: 04/06/17 Upda 04/03/17 1 Mary Thomas
Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

First attempt at sending messages using Pthreads

/% messages has type cha It’s allocated in main. =/

/% Each entry is set to NULL in main. */
void xSend_msg(veid* rank) {
long my_rank = (long) rank:
long dest = (my_rank + 1) % thread_count:
long source = (my_rank + thread_count — 1) % thread_count:

charx my_msg = malloc(MSG_MAXx*sizeof (char)):

sprintf(my_msg, "Hello to %$1d from %1d"., dest, my_rank):

messages[dest] = my_msg:
if (messages|[my_rank] != NULL)
printf("Thread %1d > %s\n"., my_rank, messages|[my_rank]);
else
printf("Thread %$1d > No message from %$1d\n", my_rank, source);

return NULL:
} /% Send_-msg =

[Psource] — [Pmyrank] — [Pdestination]

COMP/CS 605: Lecture Presented 06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

pth_msg.c

/* File: pth_nsg.c

*

* Purpose: Illustrate a synchronization problem with pthreads: create
* some threads, each of which creates and prints a message.
*

* Input: none

* Output: message from each thread

*

* Compile: gcc -g -Wall -o pth_msg pth_msg.c -lpthread

* Usage: pth_msg <thread_count>

*

* IPP: Section 4.7 (pp. 172 and f£f.)

*/

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

const int MAX_THREADS = 1024;
const int MSG_MAX = 100;

/* Global variables: accessible to all threads */
int thread_count;
char** messages;

void Usage(char* prog_name);
void *Send_msg(void* rank); /* Thread function %/

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 2 5 Mary Thomas
Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

pth_msg.c

/ /
int main(int argc, char* argv[]) {

long thread;

pthread_t* thread_handles;

if (argc != 2) Usage(argv[0]);
thread_count = strtol(argv([1i], NULL, 10);
if (thread_count <= 0 || thread_count > MAX_THREADS) Usage(argv[0]);

thread_handles = (pthread_t*) malloc (thread_count*sizeof (pthread_t));
messages = (char**) malloc(thread_count*sizeof (charx));
for (thread = 0; thread < thread_count; thread++)

messages [thread] = NULL;

for (thread = 0; thread < thread_count; thread++)
pthread_create (¥thread_handles[thread], (pthread_attr_t#*) NULL,
Send_msg, (void#*) thread);

for (thread = 0; thread < thread_count; thread++) {
pthread_join(thread_handles[thread], NULL);

for (thread = 0; thread < thread_count; thread++)
free(messages [thread]) ;
free(messages) ;

free(thread_handles) ;
return 0;
} /% main ¥/

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

pth_msg.c

/

* Function: Usage

* Purpose: Print command line for function and terminate
* In arg: prog_name

*/

void Usage(char* prog_name) {

fprintf (stderr, "usage: %s <number of threads>\n", prog_name);
exit(0);
} /* Usage */

/

* Function: Send_msg

* Purpose: Create a message and ‘‘send’’ it by copying it
* into the global messages array. Receive a message
* and print it.

* In arg: rank

* Global in: thread_count

* Global in/out: messages

* Return val: Ignored

* Note: The my_msg buffer is freed in main

*/

void *Send_msg(void* rank) {
long my_rank = (long) rank;
long dest = (my_rank + 1) % thread_count;
long source = (my_rank + thread_count - 1) % thread_count;
char* my_msg = (char*) malloc(MSG_MAX*sizeof (char));

sprintf (my_msg, "Hello to %1d from %1d", dest, my_rank);
messages[dest] = my_msg;

NULL)
s\n", my_rank, messages[my_rank]);

if (messages[my_rank] !
printf("Thread %1d >
else
printf("Thread %1d > No message from %ld\n", my_rank, source);

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 / Mary Thomas
Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Sending Messages Using Pthreads: mutex does not control when
messages are sent so some get lost.

[gidget:intro-par-pgming-pacheco/ipp-source/ch4] mthomas’ ./pth_msg 4
Thread 0 > No message from 3
Thread 1 > Hello to 1 from O
Thread 3 > No message from 2
Thread 2 > Hello to 2 from 1
[gidget:intro-par-pgming-pacheco/ipp-source/ch4] mthomas’ ./pth_msg 10

Thread 0 > No message from 9
Thread 3 > No message from 2
Thread 2 > No message from 1
Thread 1 > Hello to 1 from 0
Thread 5 > No message from 4
Thread 4 > Hello to 4 from 3
Thread 6 > Hello to 6 from 5
Thread 7 > Hello to 7 from 6
Thread 9 > No message from 8
Thread 8 > Hello to 8 from 7

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas

Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

Possible Solutions

o Try busy-wait, but we will waste cpu time.
while (messages [my _rank] == NULL)
printf (" Thread %d > %s", my_rank, messages [my_rank])
@ There is no MPI style send/recv pairs
o Find way to notify destination thread, not easy to do with mutexes
messages [dest] = my_msg;
Notify thread [Pgest] to enter block

Await notification from thread [Psource]
printf (" Thread %d > %s", my_rank, messages [my_rank])

@ Solution: Semaphores

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

What is a semaphore?

Ask.com:

semaphore

Noun:

A system of sending messages by holding the arms or two flags or poles
positions according to an alphabetic code.

Verb:

Send (a message) by semaphore or by signals resembling semaphore.
Synonyms:

noun. traffic light - traffic lights - signal

verb. signal

Wikepedia:

In computer science, a semaphore is a variable or abstract data
type that provides a simple but useful abstraction for controlling
access by multiple multiple processes to a common resource in

a parallel programming environment.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17
Controlling Access & Synchronization

Mary Thomas

Pthreads: Producer/Consumer, Synchronization, Semaphores

Possible Solutions
@ unsigned int
@ binary semaphore = 0,1 == locked,unlocked

o usage:

init semaphore to 1 (unlocked)

before critical block, thread places call to sem_wait

if semaphore > 1, decrement semaphore and enter critical block
when done, call sem_post, which increments semaphore for next
thread

©000

(]

semaphores have no ownership: any thread can modify them

(4]

semaphores are not part of Pthreads, so need to include
semaphore.h

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas

Controlling Access & Synchronization
Pthreads: Producer/Consumer, Synchronization, Semaphores

Syntax of the various semaphore functions

_— Semaphores are not part of Pthreads;

#include <semaphore.h> you need to add this.

int sem_init(

sem_t semaphore_p Fx out =/,
int shared Je in x/
unsigned initial_val F+ in x=/);

int sem_destroy(sem_t* semaphore_p /% in/out */);
int sem_post(sem_t=* semaphore_p /% in/out */);
int sem_wait(sem_t= semaphore_p /% in/out x/);

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 / Mary Thomas
Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Send_msg using semaphore

/
* Function: Send_msg
* Purpose: Create a message and ‘‘send’’ it by copying it
* into the global messages array. Receive a message
* and print it.
* In arg: rank
* Global in: thread_count
* Global in/out: messages, semaphores
* Return val: Ignored
* Note: The my_msg buffer is freed in main
*/

void *Send_msg(void* rank) {
long my_rank = (long) rank;
long dest = (my_rank + 1) \% thread_count;
charx my_msg = (charx) malloc(MSG_MAX*sizeof (char));

sprintf (my_msg, "Hello to \%ld from \%1d", dest, my_rank);
messages [dest] = my_msg;
sem_post (semaphores [dest]); /x "Unlock" the semaphore of dest */

sem_vait (&semaphores[my_rank]); /* Wait for our semaphore to be unlocked */
printf("Thread \%1d > \%s\n", my_rank, messages[my_rank]);

return NULL;
} /# Send_msg */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 / Mary Thomas
Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Send_msg output on tuckoo using PBS node

[mthomas@tuckoo chd]$ cat pth_msg_sem.063124
Thread 1 > Hello to 1 from 0

Thread 2 > Hello to 2 from 1

Thread 5 > Hello to 5 from 4

Thread 3 > Hello to 3 from 2

Thread 4 > Hello to 4 from 3

Thread 6 > Hello to 6 from 5

Thread 7 > Hello to 7 from 6

Thread 8 > Hello to 8 from 7

Thread 9 > Hello to 9 from 8

Thread 10 > Hello to 10 from 9
Thread 11 > Hello to 11 from 10
Thread 12 > Hello to 12 from 11
Thread 13 > Hello to 13 from 12
Thread 14 > Hello to 14 from 13
Thread 15 > Hello to 15 from 14
Thread 16 > Hello to 16 from 15
Thread 17 > Hello to 17 from 16
Thread 18 > Hello to 18 from 17
Thread 19 > Hello to 19 from 18
Thread 20 > Hello to 20 from 19
Thread 21 > Hello to 21 from 20
Thread 22 > Hello to 22 from 21
Thread 23 > Hello to 23 from 22
Thread 24 > Hello to 24 from 23
Thread 25 > Hello to 25 from 24
Thread 26 > Hello to 26 from 25
Thread 27 > Hello to 27 from 26
Thread 28 > Hello to 28 from 27
Thread 29 > Hello to 29 from 28

Thread 0 > Hello to O from 29

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Send_msg output on OS Mountain Lion

[gidget] mthomas\’ ./pth_msg_sem 30

Thread 0 > (null)

Thread 2 > (null)

Thread 1 > Hello to 1 from 0
Thread 3 > Hello to 3 from 2
Thread 4 > Hello to 4 from 3
Thread 5 > Hello to 5 from 4
Thread 6 > Hello to 6 from 5
Thread 7 > Hello to 7 from 6
Thread 8 > Hello to 8 from 7

Thread 11 > Hello to 11 from 10
Thread 10 > (null)
Thread 9 > Hello to 9 from 8

Thread 12 > Hello to 12 from 11
Thread 13 > Hello to 13 from 12
Thread 14 > Hello to 14 from 13
Thread 15 > Hello to 15 from 14
Thread 16 > Hello to 16 from 15
Thread 17 > Hello to 17 from 16
Thread 19 > (null)

Thread 18 > Hello to 18 from 17
Thread 20 > Hello to 20 from 19
Thread 21 > Hello to 21 from 20
Thread 22 > Hello to 22 from 21
Thread 23 > Hello to 23 from 22
Thread 24 > Hello to 24 from 23
Thread 25 > Hello to 25 from 24
Thread 26 > Hello to 26 from 25
Thread 27 > Hello to 27 from 26
Thread 28 > Hello to 28 from 27
Thread 29 > Hello to 29 from 28

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization
PThreads - Barriers and Condition Variables

Barriers and Condition Variables

Synchronizing the threads to make sure that they all are at the same
point in a program is called a barrier.

@ No thread can cross the barrier until all the threads have reached it.
o Barriers are used for timing, debugging, and synchronization of the
threads

Used to make sure that they are all at the same point in a program

Not part of the Pthreads standard, so have to build customized
barrier

COMP/CS 605

Lecture

Presented: 04/06/17 Updated: 04/03/17

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Mary Thomas

Using barriers to time the slowest thread

/+ Shared =/
double elapsed_time;

/x Private */
double my_start., my_finish, my_elapsed;

Synchronize threads;
Store current time in my_start;
/% Execute timed code */

Store current time in my_finish;

my_elapsed = my_finish — my_start;

elapsed = Maximum of my_elapsed values:

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 32/45 Mary Thomas
Controlling Access & Synchronization
PThreads - Barriers and Condition Variables

Using barriers for debugging

point in program we want to reach;

barrier;

if (ny_rank = 0) {
printf("All threads reached this point\n");
fflush(stdout);

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17
Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Busy-waiting and a Mutex

= Implementing a barrier using busy-waiting
and a mutex is straightforward.

= We use a shared counter protected by the
mutex.

= When the counter indicates that every
thread has entered the critical section,
threads can leave the critical section.

XXX

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17
Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Busy-waiting and a Mutex

/% Shared and initialized by the main thread =/

int counter. /x [nitialize to 0 %/ «<———
int thread_count;)
pthread_mutex_t barrier_mutex: We need one counter

variable for each
instance of the barrier,
voidx Thread_work(. . .) { otherwise problems
c g are likely to occur.
/% Barrier x/
pthread_mutex_lock(&barrier_mutex);
counter++;

pthread_mutex_unlock(&barrier_mutex);
while (counter < thread_count);

PE’s could still end up spinning. Issue with global mutex counter:
not all threads will see its value, could result in hung processes.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 5 Mary Thomas

Controlling Access & Synchronization
PThreads - Barriers and Condition Variables

Implementing a barrier with semaphores

/% Shared variables +/

Int co r; fe Initialize 1o 0 »/
sem_t count_sem; /e Initialize to | =/
sem_t barrier_sem; /% [Initialize 1o 0 =/

vold+ Thread_work (...) {

/% Barrier x/
sem_wait(&coun
If (counter
counter = 0
sem_post(&c
for (3 = 0;

ad_count —1; j++)

}oelse |
counter++;
_post(&e
sem_wait(&b

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Condition Variables

= A condition variable is a data object that
allows a thread to suspend execution until
a certain event or condition occurs.

= When the event or condition occurs

another thread can signal the thread to
“wake up.”

= A condition variable is always associated
with a mutex.

COMP/CS 605: Lecture Presented: 04/06/17 dated: 04/03/17
Controlling Access & Synchronization

Mary Thomas

PThreads - Barriers and Condition Variables

Condition Variables

lock mutex;
if condition has occurred
signal thread(s);
else |
unlock the mutex and block;
/* when thread is unblocked, mutex is relocked =x/

ock mutex;

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Send_msg output on OS Mountain Lion

API:
pthread_cond_init (condition,attr) -- dynamically initialize condition variables
pthread_cond_destroy (condition) -- destroy condition variables

pthread_condattr_init (attr)
pthread_condattr_destroy (attr)

pthread_mutex_lock (mutex) -- used by a thread to acquire a lock on the specified mutex variable
pthread_mutex_trylock (mutex)
pthread_mutex_unlock (mutex)

pthread_cond_wait (condition,mutex) -- blocks the calling thread until the specified condition is signalled
pthread_cond_signal (condition) -- signal (or wake up) another thread which is waiting on the condition variable.
pthread_cond_broadcast (condition) -- use instead of pthread_cond_signal() if more than one thread is waiting

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17
Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Implementing a barrier with condition variables

/% Shared =/
int counter = 0;
hread_mutex_t mutex;

thread_cond_t cond_var;

void*x Thread_work(. . .) {

/+ Barrier =/
tex_lock(&mutex);

o
o

read_count) {

cast(&cond_var);

}

_cond_wait(&cond_var, &mutex) != 0);
}
pthread tex_unlock(&mutex);

COMP/CS 605: Lecture

Presented: 04/06/17 Updated: 04/03/17

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Mary Thomas

Comparing three barrier methods

pthreads |pth_cond_bar |pth_sem_bar |pth_busy bar
2 4.87E-04 2.36E-04 4.66E-04
4 2.24E-03 3.14E-04 2.15E-03
8 1.21E-02 4.95E-04 3.88E-02
32 2.65E-02 2.53E-03 8.22E+00
64 6.03E-02 5.12E-03 2.60E+01
128 1.10E-01 9.60E-03 4.12E+01
256 2.20E-01 1.79E-02 8.04E+01
512 4.67E-01 3.18E-02 1.49E+02

/Users/mthom

Teaching-Material / Topics/Pthreads/pach-ch4-imgs/Slide0

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 3 Mary Thomas

Controlling Access & Synchronization
PThreads - Barriers and Condition Variables

Comparing three barrier methods

Run-time vs Number of Pthreads

1.00E+03
1.00E+02 =™ .

1.00E+01 [~

1.00E+00 [
s=(==Condition

1.00E-01
==semph

Time (seconds)
4

1.00E-02

§
{
1.00E-03 ﬁ

1.00E-04

Busy

0 100 200 300 400 500 600
Pthreads

COMP/CS 605

Lecture Presented: 04/06/17 Updated: 04/03/17

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Mary Thomas

Implementing a barrier with condition variables

/+ Shared =/

int counter = 0;
ead_mutex_t mutex;

ead_cond_t cond_var;

void* Thread work(. . .) {

/+ Barrier =/

k(&mutex):

ead_count) {
broadcast(&cond_var);

cond_wait(&cond_var, &mutex) != 0);

ex_unlock(&mutex);

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 Mary Thomas
Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

PThread Condition Barrier Code Example

int thread_count;
int barrier_thread_count = 0;
pthread_mutex_t barrier_mutex;
pthread_cond_t ok_to_proceed;

void Usage(charx prog_name);
void *Thread_work(void* rank);

/ /
int main(int argc, char* argv[]l) {

long thread;

pthread_t* thread_handles;

double start, finish;

if (arge != 2)
Usage (argv[01);
thread_count = strtol(argv[1]l, NULL, 10);

thread_handles = malloc (thread_count*sizeof (pthread_t));
pthread_mutex_init(&barrier_mutex, NULL);
pthread_cond_init (&ok_to_proceed, NULL);

GET_TIME(start);
for (thread = thread < thread_count; thread++)
pthread_create (&thread_handles[thread], NULL,
Thread_work, (void#) thread);

for (thread = 0; thread < thread_count; thread++) {
pthread_join(thread_handles [thread], NULL)

¥
GET_TIME(finish);
printf("Elapsed time = %e seconds\n", finish - start);
pthread_mutex_destroy(&barrier_mutex);
pthread_cond_destroy(&ok_to_proceed) ;
free(thread_handles);
return 0;

} /x main */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 45 Mary Thomas
Controlling Access & Synchronization
PThreads - Barriers and Condition Variables

PThread Condition Barrier Code Example

void *Thread_work(void* rank) {
ifdef DEBUG

long my_rank = (long) ramk;
endif

int i

for (i = 0; i < BARRIER_COUNT; i++) {
pthread_mutex_lock(&barrier_mutex) ;
barrier_thread_count++;
if (barrier_thread_count
barrier_thread_count
ifdef DEBUG
printf ("Thread %1d > Signalling other threads in barrier %d\n",
my_rank, i);

thread_count) {

fflush(stdout);
endif
pthread_cond_broadcast (&ok_to_proceed) ;
} else {
// Wait unlocks mutex and puts thread to sleep.
// Put wait in while loop in case some other

// event awakens thread.
while (pthread_cond_wait(&ok_to_proceed,

gbarrier_mutex) != 0);
// Mutex is relocked at this point.
ifdef DEBUG
printf("Thread %1d > Awakened in barrier %d\n", my_rank, i);
fflush(stdout);
endif
}
pthread_mutex_unlock(&barrier_mutex);
ifdef DEBUG

if (my_rank == 0) {
printf("All threads completed barrier %d\n", i);
fflush(stdout) ;
}
endif

COMP/CS 605

Lecture

Controlling Access & Synchronization

Presented: 04/06/17

Updated: 04/03/17

Mary Thomas

PThreads - Barriers and Condition Variables

pthd_cond_bar.c output
arrival time into/out of barrier is non-deterministic

ipp.ch4/crit-sect] ./pth_cond bar 4
Thread 3 > Signalling other threads
Thread 0 > Awakened in barrier O
All threads completed barrier O
Thread 1 Awakened in barrier 0O
Thread Awakened in barrier 0O
Thread Signalling other threads
Thread Avakened in barrier 1
Thread Awakened in barrier 1
Thread 0 Awakened in barrier 1
All threads completed barrier 1
Thread 0 > Signalling other threads
All threads completed barrier 2
Thread 2 > Awakened in barrier 2
Thread 1 > Awakened in barrier 2
Thread 3 > Awakened in barrier 2
Thread 3 > Signalling other threads
Thread 0 > Awakened in barrier 3
All threads completed barrier 3
Thread 2 > Awakened in barrier 3
Thread 1 > Awakened in barrier 3
Elapsed time = 5.729198e-04 seconds

v

W N
vV VvVvy

v

in barrier

in barrier

in barrier

in barrier

o

N

w

ipp.ch4/crit-sect] ./pth_cond_bar 4
Thread 3 > Signalling other threads
Thread O > Awakened in barrier 0
All threads completed barrier 0
Thread 1 > Awakened in barrier 0
Thread
Thread
Thread

Awakened in barrier 0
Signalling other threads
Avakened in barrier 1
Thread Avakened in barrier 1
Thread 0O Awakened in barrier 1
All threads completed barrier 1
Thread O > Signalling other threads
All threads completed barrier 2
Thread 2 > Awakened in barrier 2
Thread 1 > Awakened in barrier 2
Thread 3 > Awakened in barrier 2
Thread 3 > Signalling other threads
Thread O > Awakened in barrier 3
All threads completed barrier 3
Thread 2 > Awakened in barrier 3
Thread 1 > Awakened in barrier 3
Elapsed time = 5.729198e-04 seconds

W
vV VvVvy

v

in barrier

in barrier

in barrier

in barrier

o

N}

w

	Controlling Access & Synchronization
	Busy-Waiting
	Mutexes
	Pthreads: Producer/Consumer, Synchronization, Semaphores
	PThreads - Barriers and Condition Variables

