
COMP/CS 605: Introduction to Parallel
Computing

Lecture : Controlling Access & Synchronization

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Presented: 04/06/17
Updated: 04/03/17

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 2/45 Mary Thomas

Table of Contents

1 Controlling Access & Synchronization
Busy-Waiting
Mutexes
Pthreads: Producer/Consumer, Synchronization, Semaphores
PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 3/45 Mary Thomas

Controlling Access & Synchronization

Busy-Waiting

Busy-Waiting

A thread repeatedly tests a condition

Thread 1 cannot enter critical section until Thread 0 has finished.

Beware of optimizing compilers:
They can optimize code and rearrange order of code affecting
busy-wait cycle.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 4/45 Mary Thomas

Controlling Access & Synchronization

Busy-Waiting

Pthreads: global sum with busy-waiting

1 *--

2 * Function: Thread_sum

3 * Purpose: Add in the terms computed by the thread running this

4 * In arg: rank

5 * Ret val: ignored

6 * Globals in: n, thread_count

7 * Global in/out: sum

8 */

9 void* Thread_sum(void* rank) {

10 long my_rank = (long) rank;

11 double factor;

12 long long i;

13 long long my_n = n/thread_count;

14 long long my_first_i = my_n*my_rank;

15 long long my_last_i = my_first_i + my_n;

16
17 if (my_first_i % 2 == 0)

18 factor = 1.0;

19 else

20 factor = -1.0;

21
22 for (i = my_first_i; i < my_last_i; i++, factor = -factor) {

23 while (flag != my_rank);

24 sum += factor/(2*i+1);

25 flag = (flag+1) % thread_count;

26 }

27 return NULL;

28 } /* Thread_sum */

Thread 1 spins until Thread 0 finishes - could waste resources.
Add in logic for last thread to reset flag

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 5/45 Mary Thomas

Controlling Access & Synchronization

Busy-Waiting

1 [tuckoo] mthomas% ./pth_pi_busy1 8 100000

2 With n = 100000 terms,

3 Multi-threaded estimate of pi = 3.141582653589717

4 Elapsed time = 1.306486e-02 seconds

5 Single-threaded estimate of pi = 3.141582653589720

6 Elapsed time = 4.179478e-04 seconds

7 Math library estimate of pi = 3.141592653589793

8

1 [tuckoo] mthomas% ./pth_pi_busy1 8 10000000

2 With n = 10000000 terms,

3 Multi-threaded estimate of pi = 3.141592553589788

4 Elapsed time = 9.265280e-01 seconds

5 Single-threaded estimate of pi = 3.141592553589792

6 Elapsed time = 4.049492e-02 seconds

7 Math library estimate of pi = 3.141592653589793

8

Note: Serial version is faster than threaded version!

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 6/45 Mary Thomas

Controlling Access & Synchronization

Busy-Waiting

Pthreads: Controlling Access to Shared Variable

1 *--

2 * Function: Thread_sum

3 * Purpose: Add in the terms computed by the thread running this

4 * In arg: rank

5 * Ret val: ignored

6 * Globals in: n, thread_count

7 * Global in/out: sum

8 */

9 void* Thread_sum(void* rank) {

10 long my_rank = (long) rank;

11 double factor;

12 long long i;

13 long long my_n = n/thread_count;

14 long long my_first_i = my_n*my_rank;

15 long long my_last_i = my_first_i + my_n;

16
17 if (my_first_i % 2 == 0)

18 factor = 1.0;

19 else

20 factor = -1.0;

21
22 for (i = my_first_i; i < my_last_i; i++, factor = -factor)

23 my_sum += factor/(2*i+1);

24
25 while (flag != my_rank);

26 sum += my_sum;

27 flag = (flag+1) % thread_count;

28
29 return NULL;

30 } /* Thread_sum */

Define local sum, then update global sum in a critical section after
loop

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 7/45 Mary Thomas

Controlling Access & Synchronization

Busy-Waiting

Output after using local sum var; moving critical section to after loop.

1 [mthomas@tuckoo ch4]$./pth_pi_busy2 8 1000000

2 With n = 1000000 terms,

3 Multi-threaded estimate of pi = 3.141591653589728

4 Elapsed time = 1.039195e-02 seconds

5 Single-threaded estimate of pi = 3.141591653589774

6 Elapsed time = 1.185608e-02 seconds

7 Math library estimate of pi = 3.141592653589793

8

1
2 [mthomas@tuckoo ch4]$./pth_pi_busy2 8 10000000

3 With n = 10000000 terms,

4 Multi-threaded estimate of pi = 3.141592553589832

5 Elapsed time = 3.278208e-02 seconds

6 Single-threaded estimate of pi = 3.141592553589792

7 Elapsed time = 1.130030e-01 seconds

8 Math library estimate of pi = 3.141592653589793

Note: Serial and threaded timings are closer

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 8/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

Mutexes

A thread that is busy-waiting may continually use the CPU
accomplishing nothing.

Mutex (mutual exclusion) is a special type of variable that can be
used to restrict access to a critical section to a single thread at a
time.

Used to guarantee that one thread ”excluded” all other threads
while it executes the critical section.

The Pthreads standard includes a special type for mutexes:
pthread mutex t .

int pthread mutex init (
pthread mutex t ∗ mutex p / ∗ out ∗ /
pthread mutexattr t ∗ attr p / ∗ out ∗ /);

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 9/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

Mutexes

When a thread is finished executing the code in a critical section, it
should call

calling thread waits until no other thread is in critical section

steps:

declare global mutex variable
have main thread init variable
use pthread mutex lock work use pthread mutex unlock pair
this is a blocking call

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 10/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

main defines global mutex variable, inits and destroys

pthread_mutex_t mutex; /*declare global mutex variable */

int main(int argc, char* argv[]) {

long thread; /* Use long in case of a 64-bit system */

pthread_t* thread_handles;

double start, finish, elapsed;

/* Get number of threads from command line */

Get_args(argc, argv);

thread_handles = (pthread_t*) malloc (thread_count*sizeof(pthread_t));

/**/

pthread_mutex_init(&mutex, NULL);

sum = 0.0;

GET_TIME(start);

for (thread = 0; thread < thread_count; thread++)

pthread_create(&thread_handles[thread], NULL,Thread_sum, (void*)thread);

for (thread = 0; thread < thread_count; thread++)

pthread_join(thread_handles[thread], NULL);

GET_TIME(finish);

elapsed = finish - start;

sum = 4.0*sum;

GET_TIME(start); sum = Serial_pi(n); GET_TIME(finish);

elapsed = finish - start;

/**/

pthread_mutex_destroy(&mutex);

free(thread_handles);

return 0; } /* end main */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 11/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

function computes local my sum, then uses mutex lock for control

/*--*/

void* Thread_sum(void* rank) {

long my_rank = (long) rank;

double factor;

long long i;

long long my_n = n/thread_count;

long long my_first_i = my_n*my_rank;

long long my_last_i = my_first_i + my_n;

double my_sum = 0.0;

if (my_first_i % 2 == 0)

factor = 1.0;

else

factor = -1.0;

for (i = my_first_i; i < my_last_i; i++, factor = -factor) {

my_sum += factor/(2*i+1);

}

pthread_mutex_lock(&mutex);

sum += my_sum;

pthread_mutex_unlock(&mutex);

return NULL;

} /* Thread_sum */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 12/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 13/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70

Ru
n-
Ti
m
e

#Pthreads

Thread	runtimes

Busy-Wait

Mutex

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 14/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

A few observations

Results on OS X are similar to text. What would happen on tuckoo?

The order in which threads execute is random

This is effectively a barrier, so you expect mutex performance to
degrade (Nthreads > Ncores)

if T Tserial

Tparallel
≈ threadcount then you have Speedup

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 15/45 Mary Thomas

Controlling Access & Synchronization

Mutexes

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 16/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Producer-Consumer Model, Synchronization and
Semaphores

Busy-waiting enforces the order in which threads access a critical
section.

Using mutexes, the order is left to chance and the system.

There are applications where we need to control the order threads
access the critical section.

Trade-off between safety (mutex) and control (busy-wait) and
performance.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 17/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Global sum function that uses a mutex.

Problem: Matrix-Matrix multiplication is not commutative.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 18/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

First attempt at sending messages using Pthreads

[Psource]→ [Pmyrank]→ [Pdestination]

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 19/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

pth msg.c

/* File: pth_msg.c

*

* Purpose: Illustrate a synchronization problem with pthreads: create

* some threads, each of which creates and prints a message.

*

* Input: none

* Output: message from each thread

*

* Compile: gcc -g -Wall -o pth_msg pth_msg.c -lpthread

* Usage: pth_msg <thread_count>

*

* IPP: Section 4.7 (pp. 172 and ff.)

*/

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

const int MAX_THREADS = 1024;

const int MSG_MAX = 100;

/* Global variables: accessible to all threads */

int thread_count;

char** messages;

void Usage(char* prog_name);

void *Send_msg(void* rank); /* Thread function */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 20/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

pth msg.c

/*--*/

int main(int argc, char* argv[]) {

long thread;

pthread_t* thread_handles;

if (argc != 2) Usage(argv[0]);

thread_count = strtol(argv[1], NULL, 10);

if (thread_count <= 0 || thread_count > MAX_THREADS) Usage(argv[0]);

thread_handles = (pthread_t*) malloc (thread_count*sizeof(pthread_t));

messages = (char**) malloc(thread_count*sizeof(char*));

for (thread = 0; thread < thread_count; thread++)

messages[thread] = NULL;

for (thread = 0; thread < thread_count; thread++)

pthread_create(&thread_handles[thread], (pthread_attr_t*) NULL,

Send_msg, (void*) thread);

for (thread = 0; thread < thread_count; thread++) {

pthread_join(thread_handles[thread], NULL);

}

for (thread = 0; thread < thread_count; thread++)

free(messages[thread]);

free(messages);

free(thread_handles);

return 0;

} /* main */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 21/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

pth msg.c

/*--

* Function: Usage

* Purpose: Print command line for function and terminate

* In arg: prog_name

*/

void Usage(char* prog_name) {

fprintf(stderr, "usage: %s <number of threads>\n", prog_name);

exit(0);

} /* Usage */

/*---

* Function: Send_msg

* Purpose: Create a message and ‘‘send’’ it by copying it

* into the global messages array. Receive a message

* and print it.

* In arg: rank

* Global in: thread_count

* Global in/out: messages

* Return val: Ignored

* Note: The my_msg buffer is freed in main

*/

void *Send_msg(void* rank) {

long my_rank = (long) rank;

long dest = (my_rank + 1) % thread_count;

long source = (my_rank + thread_count - 1) % thread_count;

char* my_msg = (char*) malloc(MSG_MAX*sizeof(char));

sprintf(my_msg, "Hello to %ld from %ld", dest, my_rank);

messages[dest] = my_msg;

if (messages[my_rank] != NULL)

printf("Thread %ld > %s\n", my_rank, messages[my_rank]);

else

printf("Thread %ld > No message from %ld\n", my_rank, source);

return NULL;

} /* Send_msg */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 22/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Sending Messages Using Pthreads: mutex does not control when
messages are sent so some get lost.

[gidget:intro-par-pgming-pacheco/ipp-source/ch4] mthomas% ./pth_msg 4

Thread 0 > No message from 3

Thread 1 > Hello to 1 from 0

Thread 3 > No message from 2

Thread 2 > Hello to 2 from 1

[gidget:intro-par-pgming-pacheco/ipp-source/ch4] mthomas% ./pth_msg 10

Thread 0 > No message from 9

Thread 3 > No message from 2

Thread 2 > No message from 1

Thread 1 > Hello to 1 from 0

Thread 5 > No message from 4

Thread 4 > Hello to 4 from 3

Thread 6 > Hello to 6 from 5

Thread 7 > Hello to 7 from 6

Thread 9 > No message from 8

Thread 8 > Hello to 8 from 7

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 23/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Possible Solutions

Try busy-wait, but we will waste cpu time.
while (messages [my rank] == NULL)
printf (”Thread %d > %s”,my rank,messages [my rank])

There is no MPI style send/recv pairs

Find way to notify destination thread, not easy to do with mutexes
messages [dest] = my msg ;
Notify thread [Pdest] to enter block
. . .

Await notification from thread [Psource]
printf (”Thread %d > %s”,my rank,messages [my rank])

Solution: Semaphores

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 24/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

What is a semaphore?

Ask.com:

semaphore

Noun:

A system of sending messages by holding the arms or two flags or poles in certain

positions according to an alphabetic code.

Verb:

Send (a message) by semaphore or by signals resembling semaphore.

Synonyms:

noun. traffic light - traffic lights - signal

verb. signal

Wikepedia:

In computer science, a semaphore is a variable or abstract data

type that provides a simple but useful abstraction for controlling

access by multiple multiple processes to a common resource in

a parallel programming environment.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 25/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Possible Solutions

unsigned int

binary semaphore = 0,1 == locked,unlocked

usage:
1 init semaphore to 1 (unlocked)
2 before critical block, thread places call to sem wait
3 if semaphore > 1 , decrement semaphore and enter critical block
4 when done, call sem post, which increments semaphore for next

thread

semaphores have no ownership: any thread can modify them

semaphores are not part of Pthreads, so need to include
semaphore.h

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 26/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 27/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Send msg using semaphore

/*---

* Function: Send_msg

* Purpose: Create a message and ‘‘send’’ it by copying it

* into the global messages array. Receive a message

* and print it.

* In arg: rank

* Global in: thread_count

* Global in/out: messages, semaphores

* Return val: Ignored

* Note: The my_msg buffer is freed in main

*/

void *Send_msg(void* rank) {

long my_rank = (long) rank;

long dest = (my_rank + 1) \% thread_count;

char* my_msg = (char*) malloc(MSG_MAX*sizeof(char));

sprintf(my_msg, "Hello to \%ld from \%ld", dest, my_rank);

messages[dest] = my_msg;

sem_post(&semaphores[dest]); /* "Unlock" the semaphore of dest */

sem_wait(&semaphores[my_rank]); /* Wait for our semaphore to be unlocked */

printf("Thread \%ld > \%s\n", my_rank, messages[my_rank]);

return NULL;

} /* Send_msg */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 28/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Send msg output on tuckoo using PBS node

[mthomas@tuckoo ch4]$ cat pth_msg_sem.o63124

Thread 1 > Hello to 1 from 0

Thread 2 > Hello to 2 from 1

Thread 5 > Hello to 5 from 4

Thread 3 > Hello to 3 from 2

Thread 4 > Hello to 4 from 3

Thread 6 > Hello to 6 from 5

Thread 7 > Hello to 7 from 6

Thread 8 > Hello to 8 from 7

Thread 9 > Hello to 9 from 8

Thread 10 > Hello to 10 from 9

Thread 11 > Hello to 11 from 10

Thread 12 > Hello to 12 from 11

Thread 13 > Hello to 13 from 12

Thread 14 > Hello to 14 from 13

Thread 15 > Hello to 15 from 14

Thread 16 > Hello to 16 from 15

Thread 17 > Hello to 17 from 16

Thread 18 > Hello to 18 from 17

Thread 19 > Hello to 19 from 18

Thread 20 > Hello to 20 from 19

Thread 21 > Hello to 21 from 20

Thread 22 > Hello to 22 from 21

Thread 23 > Hello to 23 from 22

Thread 24 > Hello to 24 from 23

Thread 25 > Hello to 25 from 24

Thread 26 > Hello to 26 from 25

Thread 27 > Hello to 27 from 26

Thread 28 > Hello to 28 from 27

Thread 29 > Hello to 29 from 28

Thread 0 > Hello to 0 from 29

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 29/45 Mary Thomas

Controlling Access & Synchronization

Pthreads: Producer/Consumer, Synchronization, Semaphores

Send msg output on OS Mountain Lion

[gidget] mthomas\% ./pth_msg_sem 30

Thread 0 > (null)

Thread 2 > (null)

Thread 1 > Hello to 1 from 0

Thread 3 > Hello to 3 from 2

Thread 4 > Hello to 4 from 3

Thread 5 > Hello to 5 from 4

Thread 6 > Hello to 6 from 5

Thread 7 > Hello to 7 from 6

Thread 8 > Hello to 8 from 7

Thread 11 > Hello to 11 from 10

Thread 10 > (null)

Thread 9 > Hello to 9 from 8

Thread 12 > Hello to 12 from 11

Thread 13 > Hello to 13 from 12

Thread 14 > Hello to 14 from 13

Thread 15 > Hello to 15 from 14

Thread 16 > Hello to 16 from 15

Thread 17 > Hello to 17 from 16

Thread 19 > (null)

Thread 18 > Hello to 18 from 17

Thread 20 > Hello to 20 from 19

Thread 21 > Hello to 21 from 20

Thread 22 > Hello to 22 from 21

Thread 23 > Hello to 23 from 22

Thread 24 > Hello to 24 from 23

Thread 25 > Hello to 25 from 24

Thread 26 > Hello to 26 from 25

Thread 27 > Hello to 27 from 26

Thread 28 > Hello to 28 from 27

Thread 29 > Hello to 29 from 28

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 30/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Barriers and Condition Variables

Synchronizing the threads to make sure that they all are at the same
point in a program is called a barrier.

No thread can cross the barrier until all the threads have reached it.

Barriers are used for timing, debugging, and synchronization of the
threads

Used to make sure that they are all at the same point in a program

Not part of the Pthreads standard, so have to build customized
barrier

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 31/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 32/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Using barriers for debugging

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 33/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

xxx

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 34/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

PE’s could still end up spinning. Issue with global mutex counter:
not all threads will see its value, could result in hung processes.

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 35/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 36/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 37/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 38/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Send msg output on OS Mountain Lion

API:

pthread_cond_init (condition,attr) -- dynamically initialize condition variables

pthread_cond_destroy (condition) -- destroy condition variables

pthread_condattr_init (attr)

pthread_condattr_destroy (attr)

pthread_mutex_lock (mutex) -- used by a thread to acquire a lock on the specified mutex variable

pthread_mutex_trylock (mutex)

pthread_mutex_unlock (mutex)

pthread_cond_wait (condition,mutex) -- blocks the calling thread until the specified condition is signalled

pthread_cond_signal (condition) -- signal (or wake up) another thread which is waiting on the condition variable.

pthread_cond_broadcast (condition) -- use instead of pthread_cond_signal() if more than one thread is waiting

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 39/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 40/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Comparing three barrier methods

/Users/mthomas/Documents/Teaching/COMP-
Teaching-Material/Topics/Pthreads/pach-ch4-imgs/Slide0

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 41/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

Comparing three barrier methods

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 42/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 43/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

PThread Condition Barrier Code Example
int thread_count;

int barrier_thread_count = 0;

pthread_mutex_t barrier_mutex;

pthread_cond_t ok_to_proceed;

void Usage(char* prog_name);

void *Thread_work(void* rank);

/*--*/

int main(int argc, char* argv[]) {

long thread;

pthread_t* thread_handles;

double start, finish;

if (argc != 2)

Usage(argv[0]);

thread_count = strtol(argv[1], NULL, 10);

thread_handles = malloc (thread_count*sizeof(pthread_t));

pthread_mutex_init(&barrier_mutex, NULL);

pthread_cond_init(&ok_to_proceed, NULL);

GET_TIME(start);

for (thread = 0; thread < thread_count; thread++)

pthread_create(&thread_handles[thread], NULL,

Thread_work, (void*) thread);

for (thread = 0; thread < thread_count; thread++) {

pthread_join(thread_handles[thread], NULL);

}

GET_TIME(finish);

printf("Elapsed time = %e seconds\n", finish - start);

pthread_mutex_destroy(&barrier_mutex);

pthread_cond_destroy(&ok_to_proceed);

free(thread_handles);

return 0;

} /* main */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 44/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

PThread Condition Barrier Code Example

void *Thread_work(void* rank) {

ifdef DEBUG

long my_rank = (long) rank;

endif

int i;

for (i = 0; i < BARRIER_COUNT; i++) {

pthread_mutex_lock(&barrier_mutex);

barrier_thread_count++;

if (barrier_thread_count == thread_count) {

barrier_thread_count = 0;

ifdef DEBUG

printf("Thread %ld > Signalling other threads in barrier %d\n",

my_rank, i);

fflush(stdout);

endif

pthread_cond_broadcast(&ok_to_proceed);

} else {

// Wait unlocks mutex and puts thread to sleep.

// Put wait in while loop in case some other

// event awakens thread.

while (pthread_cond_wait(&ok_to_proceed,

&barrier_mutex) != 0);

// Mutex is relocked at this point.

ifdef DEBUG

printf("Thread %ld > Awakened in barrier %d\n", my_rank, i);

fflush(stdout);

endif

}

pthread_mutex_unlock(&barrier_mutex);

ifdef DEBUG

if (my_rank == 0) {

printf("All threads completed barrier %d\n", i);

fflush(stdout);

}

endif

}

return NULL;

} /* Thread_work */

COMP/CS 605: Lecture Presented: 04/06/17 Updated: 04/03/17 45/45 Mary Thomas

Controlling Access & Synchronization

PThreads - Barriers and Condition Variables

pthd cond bar.c output
arrival time into/out of barrier is non-deterministic

ipp.ch4/crit-sect] ./pth_cond_bar 4

Thread 3 > Signalling other threads in barrier 0

Thread 0 > Awakened in barrier 0

All threads completed barrier 0

Thread 1 > Awakened in barrier 0

Thread 2 > Awakened in barrier 0

Thread 2 > Signalling other threads in barrier 1

Thread 3 > Awakened in barrier 1

Thread 1 > Awakened in barrier 1

Thread 0 > Awakened in barrier 1

All threads completed barrier 1

Thread 0 > Signalling other threads in barrier 2

All threads completed barrier 2

Thread 2 > Awakened in barrier 2

Thread 1 > Awakened in barrier 2

Thread 3 > Awakened in barrier 2

Thread 3 > Signalling other threads in barrier 3

Thread 0 > Awakened in barrier 3

All threads completed barrier 3

Thread 2 > Awakened in barrier 3

Thread 1 > Awakened in barrier 3

Elapsed time = 5.729198e-04 seconds

ipp.ch4/crit-sect] ./pth_cond_bar 4

Thread 3 > Signalling other threads in barrier 0

Thread 0 > Awakened in barrier 0

All threads completed barrier 0

Thread 1 > Awakened in barrier 0

Thread 2 > Awakened in barrier 0

Thread 2 > Signalling other threads in barrier 1

Thread 3 > Awakened in barrier 1

Thread 1 > Awakened in barrier 1

Thread 0 > Awakened in barrier 1

All threads completed barrier 1

Thread 0 > Signalling other threads in barrier 2

All threads completed barrier 2

Thread 2 > Awakened in barrier 2

Thread 1 > Awakened in barrier 2

Thread 3 > Awakened in barrier 2

Thread 3 > Signalling other threads in barrier 3

Thread 0 > Awakened in barrier 3

All threads completed barrier 3

Thread 2 > Awakened in barrier 3

Thread 1 > Awakened in barrier 3

Elapsed time = 5.729198e-04 seconds

	Controlling Access & Synchronization
	Busy-Waiting
	Mutexes
	Pthreads: Producer/Consumer, Synchronization, Semaphores
	PThreads - Barriers and Condition Variables

