COMP/CS 605: Introduction to Parallel

Computing
Topic : Code Basics/Parallel Software

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Posted: 02/07/17
Updated: 02/07/17

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas

Table of Contents

Parallel Software: Developing & Writin
g g

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 3 Mary Thomas
Parallel Software: Developing & Writing

Parallel Software for HPC

o Hardware and compilers continuously evolve
@ Software must adapt to these changes

o Compilers

o Tool Libraries and API's

o Performance Profiling

o Complexity abstraction (how to synchronize 10° to 10° processors?)

o Key issues in writing software:

o Thread coordination
o Shared memory
o Distributed memory

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Software: Developing & Writing

Memory Distribution Patterns

CPU CPU CPU CPU
@ In shared memory programs: ‘ ‘ ‘ ‘ ‘ ‘
o Start a single process and 1 T |;|
fork threads. \ ntorconnect ‘
o Threads carry out tasks.
Memory
@ In distributed memory er e cr e
programs: [Memory | | | [Memory | | | [emory |
o Start multiple processes. T
o Processes carry out tasks. I + I I

‘ Interconnect |

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Software: Developing & Writing

SPMD single program multiple data

o A SPMD programs consists of a single executable that can behave
as if it were multiple different programs through the use of
conditional branches.

if (I am thread process i)
do something;
else
do more interesting things;

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Software: Developing & Writing

| Writing Parallel Programs

1. Divide the work among the |double x[n], y[n];
processes/threads

(a) so each process/thread o
gets roughly the same for (i=0;i<n;i++)
amount of work x[i] += y[il;
(b) and communication is !
minimized.
2. Arrange for the processes/threads to synchronize.
3. Arrange for communication among processes/threads.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Software: Developing & Writing

Shared Memory

= Dynamic threads

= Master thread waits for work, forks new
threads, and when threads are done, they
terminate

= Efficient use of resources, but thread creation
and termination is time consuming.

= Static threads
= Pool of threads created and are allocated
work, but do not terminate until cleanup.
= Better performance, but potential waste of
system resources.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Software: Developing & Writing

Nondeterminism

printf ("Thread %d > my_val = %d\n",
my rank , my Xx);

/ (N\
A
k/} Thread 0 > my_val =7

Thread 1 > my_val = 19

Thread 1 > my_val =19
Thread 0 > my_val =7

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17
Parallel Software: Developing & Writing

Mary Thomas

Nondeterminism

my_val = Compute_val (my_rank) ;
X += my_val ;

Time Core 0 Core |
0 Finish assignment to my_val In call to Compute_val
1 Load x = 0 into register Finish assignment to my_val
2 Load my_val = 7 into register | Load x = 0 into register
3 Addmy_val = 7tox Load my_val = 19 into register
4 Store x = 7 Add my_val tox
S Stant other work Store x = 19

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17
Parallel Software: Developing & Writing

Nondeterminism

s Race condition
s Critical section
= Mutually exclusive

= Mutual exclusion lock (mutex, or simply
lock)

my_val = Compute_val (my_rank) ;
Lock(&add_my_ val lock) ;

X +=my_val ;
Unlock(&add_my val lock) ;

Mary Thomas

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17

Parallel Software: Developing & Writing

busy-waiting

my_val = Compute_val (my_rank) ;
if(my_rank ==1)

while (!ok_for_1); /* Busy—wait loop */
X +=my_val ; /* Critical section */
i f(my_rank == 0)

ok for 1 =true; /* Letthread 1 update x
*/

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Software: Developing & Writing

message-passing

char message[100];

my_rank = Get_rank () ;
i f(my_rank ==1){
sprintf (message , "Greetings from process 1") ;
Send (message , MSG_CHAR , 100, 0);
telseif(my_rank==0){
Receive (message , MSG_CHAR , 100, 1);

printf ("Process 0 > Received: %s\n",
message) ;

T e w

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17
Parallel Software: Developing & Writing

Partitioned Global Address
Space Languages

sharedintn=...;

shared double x[n],y[n];

private inti, my_first_element, my_last_element ;
my_first_element=...;

my_last_element=...;

/ * Initialize x and y */

for(i=my._first_element;i<=my_last_element;it++)
x[i]+=y[i];

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas

Parallel Software: Developing & Writing

Input and Output

= In distributed memory programs, only
process 0 will access sidin. In shared
memory programs, only the master thread
or thread 0 will access sidin.

= In both distributed memory and shared
memory programs all the processes/
threads can access stdout and stderr.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17

Parallel Software: Developing & Writing

Input and Output

= However, because of the indeterminacy of
the order of output to sidout, in most cases
only a single process/thread will be used
for all output to stdout other than
debugging output.

= Debug output should always include the
rank or id of the process/thread that’ s
generating the output.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 16/16 Mary Thomas
Parallel Software: Developing & Writing

Input and Output

= Only a single process/thread will attempt to
access any single file other than stdin,
stdout, or stderr. So, for example, each
process/thread can open its own, private
file for reading or writing, but no two
processes/threads will open the same file.

	Parallel Software: Developing & Writing

