CS 596:Introduction to Parallel Computing

Topic: Parallel Performance

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Posted: 02/15/17
Last Update: 02/15/17

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 3¢ Mary Thomas

Table of Contents

@ Performance

© Parallel Performance Metrics
o Speedup and Efficiency of Parallel Code
o Amdahl's Law
@ Thomas timing examples - Parallel Model
o Code Performance: Serial Looptest.f90

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17
Performance

Timing Serial or Parallel Code

What/how to measure? Units/Metrics?

o CPU_time? System? o Time: seconds, milliseconds,
Hardware? 1/0? Human? micro, nano

o What is start/stop time, o Frequency: Hz (1/sec)
how to compute? @ Scale: Kilo, Mega, Giga,

@ Where to time? Critical Tera, Peta, .
blocks? @ Operation counts:

o Subprograms? Overhead? o FLOPS: floating point

o Difference between Ty, operations per second
TCPUY Tuser

o Data type: integer, char,
float, double...

In general, performance is measured not calculated

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 3t Mary Thomas
Performance

Total Program Time

Total computer program time is a function of a large number of variables:
computer hardware (cpu, memory, software, network), and the program
being run (algorithm, problem size, # Tasks, complexity)

T = F (ProbSize, Tasks, /0, ...)

Source: http://en.wikipedia.org/wiki/Wall-clock_time

http://en.wikipedia.org/wiki/Wall-clock_time

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 5/3¢ Mary Thomas
Performance

Where to time the code?

@ Look for where the most work is being done.

@ You don’t need to time all of the program
@ Critical Blocks:

o Points in the code where you expect to do a large amount of work
o Problem size dependencies
o 2D matrix: ¥ (n* m), Binary Search Tree: ¥ (log n)

@ Input and Output statements:

e STDIO/STDIN
o File I/0

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 6/3¢ Mary Thomas
Performance

Wallclock Time: T,y

A measure of the real time that elapses from the start to the end of a
computer program.

It is the difference between the time at which the program finishes and the
time at which the program started.

Twan = Tcpu + Tijo + Tide + Tother

Source: http://en.wikipedia.org/wiki/Wall-clock_time

http://en.wikipedia.org/wiki/Wall-clock_time

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 3¢ Mary Thomas

Performance

Wallclock Time: T,y

Twan = Tcpu + Tijo + Tidie + Tother

Twan: The total (or real) time that has elapsed from the start to the
completion of a computer program or task.

Tcpu: The amount of time for which a central processing unit (CPU)
is used for processing instructions of a computer program or operating
system.

Ti/0: The time spent by a computer program reading/writing data

to/from files such as /STDIN/STDERR, local data files, remote data
services or databases.

Tidie: The time spent by a computer program waiting for execution

instructions.

Toverhead: The amount of time required to set up a computer program
including setting up hardware, local and remote data and resources,

network connections, messages.

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 8/3t Mary Thomas
Parallel Performance Metrics

Total Parallel Program Time

@ The total parallel program run time is a function of a large number of
variables: number of processing elements (PEs); communication;
hardware (cpu, memory, software, network), and the program being
run (algorithm, problem size, # Tasks, complexity, data distribution);
parallel libraries:

T = F(PEs, N, Tasks, /O, Communication, . ..)

@ The execution time required to run a problem of size N on processor
i, is a function of the time spent in different parts of the program
(computation, communication, |/0, idle):

Ti = Tciomp + Tciomm + T/,o + if:’/e

@ The total time is the sum of the times over all processes averaged
over the number of the processors: T =

% (27;01 7—comp + Zf;al 7—comm + Zf;()l Tio + Zf;ol Tidel)

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 9/3¢ Mary Thomas
Parallel Performance Metrics
Speedup and Efficiency of Parallel Code

Speedup

o Refers to how much faster the parallel algorithm runs than a
corresponding sequential algorithm (non-MPI).

o Tg = time between when serial program begins to when it
completes its tasks.

o T, = time between when first processor begins execution to when
the /ast processor completes its tasks.

@ The Speedup is defined to be: Sp = %

o Where:

e p = number of cores (processors, PE's)
o Ts = serial execution time
o Tpar = parallel execution time

@ Linear speedup, or ideal speedup, is obtained when S, = p, or

Tpar - Tser / p

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 0/35 Mary Thomas
Parallel Performance Metrics
Speedup and Efficiency of Parallel Code

Efficiency

o Estimation of how well the processors are used to solve the problem
vs. effort is wasted in communication and synchronization.

o T,p == time between when first processor begins execution to when
the last processor completes its tasks
(Tserial)
E _ § _ Tparalle/ _ Tserial
p p p- Tparallel

o Where:

o p == number of cores (processors, PE's)

o Tsr == serial execution time

o Tpar == parallel execution time

o Efficiency is ypically between zero and one

CS 596: Topic: Parallel Performance
Parallel Performance Metrics

Posted: 02/15/17

Speedup and Efficiency of Parallel Code

Last Update: 02/15/17

Mary Thomas

RunTimes p 1 2 4 8 16
Half RT 1.00 0.53 0.32 0.21 0.16
Original RT 1.00 0.53 0.28 0.15 0.09
Double RT 1.00 0.53 0.26 0.09 0.07
ProbSize p 1 2 a4 8 16
Half S 1.00 1.90 3.10 4.80 6.20

E 1.00 0.95 0.78 0.60 0.39
Original S 1.00 1.90 3.60 6.50 10.80
E 1.00 0.95 0.90 0.81 0.68
Double S 1.00 1.90 3.90 10.80 14.20
E 1.00 0.95 0.98 0.94 0.89

Test data from showing the effect of problem size on the
run times (RT), speedup (S) and efficiency (E).

Source: Pacheco IPP (Ch 2)

S 596: Topic: Parallel Performance 1 02/15/ £ Mary Thomas

Parallel Performance Metrics
Speedup and Efficiency of Parallel Code

Speedup vs. Number of Processors
16.00
14.00
12.00
10.00

B.00 g

SPeedup

600 =@=Criginal

400 i Oouble
2.00 A

0.00
a 3 10 15 20

Number of Processors

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/ £ Mary Thomas
Parallel Performance Metrics

Speedup and Efficiency of Parallel Code

Efficiency vs. Number of Processors

1.20

100 H%w

> 080
c
.g 0.60 e

E 0.40 == 0riginal
0.20 Double

0.00
0 5 10 15 20

Number of Processors

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17
Parallel Performance Metrics

Mary Thomas

Speedup and Efficiency of Parallel Code

Run Times vs. Number of Processors

-
(=
[=1

L)

|
Ll

I

B
(=

=8=riginal

Run Time [seconds)
= = S
(=5 o =
= = =

0.20 - Doubla

0.00
0 3 10 15 0

MNumber of Processors

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 5/3¢ Mary Thomas
Parallel Performance Metrics
Speedup and Efficiency of Parallel Code

Effect of Overhead

@ Overhead is associated with work done by program and system on
non-computational activities

@ These include process management, backend communications, page
swapping and data access control, security, etc.

Tser
TPar = ;e + Toverhead

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 6/3¢ Mary Thomas

Parallel Performance Metrics
Amdahl’s Law

Amdahl’s Law
@ Used to find the maximum expected improvement to an overall
system when only part of the system is improved.

@ Often used in parallel computing to predict the theoretical maximum
speedup using multiple processors.

Definition: If B is the fraction of the algorithm that is strictly serial,
and p is the number of processes (cores, threads, etc.), then the time
T (n) required for a program to execute can be written as:

T(n) - Tser + Tpar
—T)B+IW(1-B)
=T(1)(B+5(1-B))

CS 596: Topic: Parallel Performance Posted: 02/15/17
Parallel Performance Metrics

Last Update: 02/15/17 Mary Thomas

Amdahl’s Law

Example

= We can parallelize 90% of a serial
program.

= Parallelization is “perfect” regardless of the
number of cores p we use.

® Tgoia = 20 seconds
= Runtime of parallelizable part is

DO Tougl p=18/p

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 3E Mary Thomas

Parallel Performance Metrics
Amdahl’s Law

Example (cont.)

= Runtime of “unparallelizable” part is

6 b G =2

serial

= Overall parallel run-time is

Tpara\lel =0.9x Tseriall p+ 0.1x Tseria\ =18/ p+ 2

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 3t Mary Thomas
Parallel Performance Metrics

Amdahl’s Law

Example (cont.)

» Speed up

Tserial 20

S_ O'QXTseriaI,p+O-1XTseriaI - 18/p+2

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 0/35 Mary Thomas
Parallel Performance Metrics

Amdahl’s Law

|_scalability

= In general, a problem is scalable if it can handle
ever increasing problem sizes.

» If we increase the number of processes/threads
and keep the efficiency fixed without increasing
problem size, the problem is strongly scalable.

» If we keep the efficiency fixed by increasing the
problem size at the same rate as we increase the
number of processes/threads, the problem is
weakly scalable.

CS 596 pic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 3E Mary Thomas
Parallel Performance Metrics
Thomas timing examples - Parallel Model

Customized Timings: Parallel Framework

TABLE II. TIME SPENT IN MAIN SECTIONS OF THE SERIAL AND
PARALLEL MODELS (16 AND 32 PROCESSOR ELEMENTS)

Section Serial 16 Processors 32 Processors
Tinit 48571 24285 16190
Tloop 59451 29725 19817
Twall 108083 54041 36027
TABLE ITIL. TIME SPENT IN DIFFERENT SUBMODULES EXECUTED

DURING THE MATN ITERATION LOOP

Serial 16 Processors 32 Processors
31619 15810 10540
17961 8981 5987
3026 1513 1009
1736 868 579
1726 863 575
1716 858 572
TbcondP 448 224 150
Tvelcorv 120 61 40
Tvelcorw 110 55 36
TvelcorU 109 54 367
TbcondW 22 11 7
ThbcondU 22 11 7
TbcondV 20 11 67

Tloop (meas) 58635 29317 19545

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 L Mary Thomas
Parallel Performance Metrics

Thomas timing examples - Parallel Model

Runtime vs Number of Iterations as a Function of the
Number of Processors (linear-linear)

4.E+05

3.E+05

3.E+05 /

=
B
€
§ 2.E+05 SerRef
2
T Par4
2
& 2E+05 par8
°
= Parl6
1.E+05 par32
e
5.E+04 /
—
0.E+00
0.E+00 5.E+04 1.E+05 2.E+05 2.E+05 3.E+05

Number of Iterations

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 3/3E Mary Thomas
Parallel Performance Metrics

Thomas timing examples - Parallel Model

Runtime vs Number of Iterations as a Function of the
Number of Processors (log-log)
1.E406
LE+05 /
& LE04 /
3
€
g / SerRef
3 LE+03 Par4
g
:"- Par8
3
T 1E+02 Par16
Par32
1.E+01
1.E400 - - . . !
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Number of Iterations

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 L Mary Thomas
Parallel Performance Metrics

Thomas timing examples - Parallel Model

Runtime vs Number of Iterations as a Function of the
Number of Processors (log-linear)
1.E406
1.E+05 f
- 1.E404
3
€
3 LE+03 (Par4
g
:"- Par8
3
T 1E+02 Par16
Par32
1.E+01
1.E400 . - . !
0.E+00 5.E+04 1.E+05 2.E+05 2.E+05 3.E+05
Number of Iterations

Mary Thomas

Posted: 02/15/17 Last Update: 02/15/17

CS 596: Topic: Parallel Performance
Parallel Performance Metrics
Thomas timing examples - Parallel Model

Speedup (Ts/Tp)
35
30
25
520
B
é’_ 15 ==Speedup
~—|deal
10
5
0 T T T T T T)
0 5 10 15 20 25 30 35
Processor Elements

S 596: Topic: Parallel Performance Posted: Last Update: 02/15/ 6/3¢ Mary Thomas

Parallel Performance Metrics

Thomas timing examples - Parallel Model

Efficiency = (Ts/Tp)/P = Ts/(P*Tp)

18

=
[}

=
i

=
¥}

===Efficiency

\ 5 10 15 20 25 30 35

.~

—

Ideal

Efficiency (%)
=

o
o0

©
@

o
'S

0.2

Processors

CS 596: Topic: Parallel Performance Posted: 02/ Last Update: 02/15/17
Parallel Performance Metrics

Mary Thomas

Thomas timing examples - Parallel Model

#include <stdio.h>

#include <stdlib .h>

#include <unistd .h>

#include "mpi.h"

int main (int argc, charx argv[])

/* hello.c by James Otto, 1/31/11 int rank, nprocs, ierr, i, error=0;
—— for running serial processes MPI_Status status;
on a cluster... see batch.hello %/
#include <stdio.h> ierr = MPIl_Init(&argc, &argv);
#include <unistd .h> if (ierr != MPI.SUCCESS) {
int main(void) printf("MPI initialization error\n");}
char cptr[100]; // processing element ID
gethostname (cptr,100); MPI_Comm_rank (MPL.COMM.WORLD, &rank);
printf(” hello, world from %s\n", cptr);
return 0; // 1D of communicator connecting PE's
3 MPI_Comm_size (MPI.COMM_WORLD, &nprocs);
printf(” Hello Processor: rank:
COMPILE & RUN SERIAL PGM %d, nprocs: %d\n", rank, nprocs);
[tuckoo]$ mpicc —o hello hello.c MPI_Finalize ();
[mthomas@tuckoo ex.2014]$ mpirun —np 5 ./ hello return 0;
hello, world from tuckoo }
hello, world from tuckoo
hello, world from tuckoo COMPILE & RUN PARALLEL PGM
hello, world from tuckoo
hello, world from tuckoo [tuckoo]$ mpicc —o hello_mpi hello_mpi.c

[tuckoo]$ mpirun —np 5 ./hello_mpi

Hello Processor: rank: 0, nprocs: 5
Hello Processor: rank: 1, nprocs: 5
Hello Processor: rank: 3, nprocs: 5
Hello Processor: rank: 4, nprocs: 5
Hello Processor: rank: 2, nprocs: 5

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 /3E Mary Thomas
Parallel Performance Metrics

Code Performance: Serial Looptest.f90

Looptest demonstrates way to measure time app spends in subroutines

program looptest

! fortran 90 source code contains
implicit none subroutine loopl(yloc, maxloc)
integer , parameter :: max=10000 integer :: maxloc
integer i,] double precision 21 yloc(maxloc)
double precision :: tws,twe, ts, te, do i=1,maxloc
a(max,max), x(max), y(max) do j=1,maxloc
call cpu-time(tws) yloc(i) = a(i,j) = x(j)
L——— initialize arrays enddo
a=0. x=0.0; y=0.0 enddo
do 1,max end subroutine loopl
x(i) = i;: y(i) = max—i
do j=1,max subroutine loop2(yloc , maxloc)
a(i,j) = 10%j + i integer :: maxloc
enddo; enddo double precision :: yloc(maxloc)
! compute loopl do j=1,maxloc
call cpu-time(ts) do i=1,maxloc
call loopl(y,max) yloc(i) = a(i,j) = x(j)
call cpu-time(te) enddo
print " Telap: loop 1 =", (te — ts) enddo
L——— compute loop2 end subroutine loop2
ts=0.0; te=0.0;
call cpu_time(ts) subroutine loop3(yloc, maxloc)
call loop2(y,max) integer :: maxloc
call cpu-time(te) double precision 21 yloc(maxloc)
print *," Telap: loop 2 =", (te — ts) do i=1,maxloc
bL——— compute loop3 do j=1,maxloc
ts=0.0; te=0.0; yloc(i) = a(i,j) = sqrt(x(j))
call cpu-time(ts) enddo
call loop3(y,max) enddo
call cpu-time(te) end subroutine loop3
print *,"Telap: loop 3 = ", (te — ts)
call cpu_time (twe) end program looptest

print *,"Wallclock Time: =", (twe — tws)

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17

Mary Thomas
Parallel Performance Metrics

Code Performance: Serial Looptest.f90

Compile with gprof option (-p), and run job from command line

SERIAL JOB: FROM COMMAND LINE

[mthomas@tuckoo]$ cat makefile [mthomas@tuckoo]$./looptstp
Testing FORTRAN loops (column major):
MAKE FILE Telap: loop 1 = 960.8539 msec
Telap: loop 2 = 580.9109 msec
MPIF90 = mpif90 Telap: loop 3 1744.7349 msec
MPICC = mpicc Wallclock Time: = 5861.1099 msec
CcC = gcc
all: looptst looptstp
looptst: looptst.f90 PROFILING: using —p option in make

$(MPIF90) —o looptst looptst=—F
[mthomas@tuckoo]$ gprof looptstp gmon.out

looptstp: looptst.f90 Flat profile:
$(MPIF90) —p —o looptstp lodpatrdt stBfiple counts as 0.01 seconds.
cumulative self self total
clean: time seconds seconds calls s/call s/call name
rm —rf %.0 looptst looptst—mfi.58 1.39 1.39 1 1.39 3.67 MAIN..
27.04 2.40 1.00 1 1.00 1.00 frame.dummy
23.25 3.26 0.86 1 0.86 0.86 loopl.1529

10.95 3.67 0.41 1 0.41 0.41 loop2.1523

CS 596: Topic: Para erformance Posted: 02/15/17 Last Update: 02/15/17 30/3¢ Mary Thomas
Parallel Performance Metrics
Code Performance: Serial Looptest.f90

Run Serial Job In Queue

= SUBMIT SERIAL JOB TO QUEUE

[mthomas@tuckoo looptst]$ cat batch.looptstp

#!/bin/sh
#PBS —V
#PBS —| nodes=2:ppn=4:core4 Telap: loop 1 = 0.8308729
#PBS —N looptstp Telap: loop 1 = 0.8308739
#PBS —joe Telap: loop 1 = 0.8328739
#PBS —q batch Telap: loop 1 = 0.8428719
cd $PBS_O_WORKDIR
NCORES=‘wc —w < $PBS_NODEFILE" Telap: loop 2 = 0.4499310
echo "looptstp—test using $NCORES cores...” Telap: loop 2 = 0.4549309
mpirun —np 4 —hostfile $PBS_NODEFILE Telap: loop 2 = 0.4559310
—nooversubscribe ./looptstp Telap: loop 2 = 0.4559310

[mthomas@tuckoo looptst]$!qsub
qsub batch.mpi—looptstp Telap: loop 3 = 0.9898489
16478.tuckoo.sdsu.edu Telap: loop 3 = 0.9908489
—_— Telap: loop 3 = 0.9918490

OUTPUT (asynchronous) Telap: loop 3 = 1.0078469

Telap: loop 1 0.84287199999 Wallclock Time: 5.02523599
Telap: loop 2 0.4549309999 Wallclock Time: 5.0262349
Telap: loop 2 0.455931 Wallclock Time: 5.02823599
Telap: loop 2 0.449931 Wallclock Time: 5.049231
Telap: loop 2 0.455931

Telap: loop 3 = 0.9918490

Wallclock Time: = 5.028235

Telap: loop 3 = 0.99084

Wallclock Time: = 5.02623

Note: no gain by using multiple PE’'s —— > no MPI calls in code

CS 596: Topic: Parallel Performance Posted

Parallel Performance Metrics

Code Performance: Serial Looptest.f90

Add MPI Calls

Last Update: 02/15/17

Mary Thoma

program looptest
1

implicit none

include "mpif.h"

integer , parameter max=10000
double precision, allocatable

oa(:, x(:), y(:)

double precision ©: tws,twe, ts, te
integer

:: i,j, rank, nprocs, ierr, token

integer :: status (MPI.STATUS.SIZE)

call cpu-time(tws)

call MPIINIT (ierr)

if (ierr .ne. MPI.SUCCESS) then
print %, "Error: initing in MPIINIT()"
stop

endif

I— find out how many processes \&
local process rank
call MPI.COMM.RANK(MPI.COMM.WORLD, rank, ierr)

call MPI.COMM_SIZE (MPI.COMM.WORLD, nprocs, ierr)

maxloc=gl_max/nprocs
allocate (a(maxloc, maxloc), x(maxloc), &
y(maxloc), stat=ierr)

linitialize arrays
do i=1,max
x(i) = i; y(i) = max—i
do j=1,max
a(i,j) =10%j + i
enddo
enddo

! compute loopl
call cpu_-time(ts)

call loopl(y,max)
call cpu_time(te)
write()

! compute loop2
ts=0.0; te=0.0;
call cpu-time(ts)

call loop2(y,max)
call cpu-time(te)
write()

! compute loop3
ts=0.0; te=0.0;
call cpu_time(ts)
call loop3(y,max)
call cpu_-time(te)
write (

call cpu-time(twe)
write()

call MPI_FINALIZE(ierr)

contains

CS 596

Topic: Para erformance Posted: 02/15/17 Last Update: 02/15/17
Parallel Performance Metrics

Code Performance: Serial Looptest.f90

Run MPI Job In Queue

= SUBMIT JOB TO QUEUE
[mthomas@tuckoo looptst]$!qsub
qsub batch.mpi—looptstp
16478.tuckoo.sdsu.edu

= OUTPUT (asynchronous)

[mthomas@tuckoo looptst]$ cat mpi—looptstp.0l16485
mpi—looptstp—test using 8 cores...

LocaMAX: 2500

LocaMAX: 2500

LocaMAX: 2500

LocaMAX: 2500

PE[0]: Telap, loop 1= 0.07698800
PE[3]: Telap, loop 1= 0.07698800
PE[2]: Telap, loop 1= 0.07598900
PE[2]: Telap, loop 2= 0.03799400
PE[1]: Telap, loop 3= 0.07998700
PE[1]: Telap, Twall= 0.33794800
PE[0]: Telap, loop 3= 0.07898800
PE[0]: Telap, Twall= 0.33594800
PE[3]: Telap, Twall= 0.34294600
PE[2]: Telap, loop 3= 0.07998800
PE[2]: Telap, Twall= 0.33294900

PE
PE
PE
PE

PE
PE

PE
PE
PE
PE
PE

PE
PE

PE

WO | wWNRO | wWoHO

W N O

Telap,
Telap,
Telap,
Telap,

Telap,
Telap,
Telap,
Telap,

Telap,
Telap,
Telap,
Telap,

Telap,
Telap,
Telap,
Telap,

Note: T,.; reduced from 5+ seconds to 0.3

loop
loop
loop
loop

loop
loop
loop
loop

loop
loop
loop
loop

1=

2=

3=
3=

Twall=
Twall=
Twall=
Twall=

cooo

Mary Thomas

07698800
07698800
07598900
07698800

03799400
03799500
03799400
03699500

0.07898800
0.
0
0

07998700

.07998800
.08098700

0.33594800
0.33794800
0.33294900
0.34294600

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 33/3¢ Mary Thomas
Parallel Performance Metrics
Code Performance: Serial Looptest.f90

mpi-looptst RunTime (Twall)

16

SN
TN
0.8 \

3
g K\ =g gopTest

0.6

== deal
04
0.2
0
1 2 4 6 8
Nprocs

Note: Ideal runtime computed using Tigeas = T;e’

CS 596: Topic: Parallel Performance Posted: 02/15/17
Parallel Performance Metrics
Code Performance: Serial Looptest.f90

mpi-looptst: Speedup

Last Update: 02/15/17

Mary Thomas

Speedup
[e=]

Nprocs

10

e=h==Speedup
e{=|deal

CS 596: Topic: Parallel Performance Posted: 02/15/17 Last Update: 02/15/17 35/3¢ Mary Thoma
Parallel Performance Metrics
Code Performance: Serial Looptest.f90

DEMO COLUMNS

LHS RHS

	Performance
	 Parallel Performance Metrics
	Speedup and Efficiency of Parallel Code
	Amdahl's Law
	Thomas timing examples - Parallel Model
	Code Performance: Serial Looptest.f90

