COMP/CS 605: Introduction to Parallel

Computing
Topic: Parallel Computing Overview/Introduction

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Posted: 02/07/17
Updated: 02/07/17

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 p. Mary Thomas

Table of Contents

o Parallel Program Design
o Partitioning

Communication

Agglomeration

Mapping

Histogram Example

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 3 Mary Thomas
Parallel Program Design

Fosters Methodology: The PCAM Method

o Partitioning: Decompose computation and data operations into
small tasks. Focus on identifying tasks that can be executed in
parallel.

o Communication: Define communication structures and algorithms
for the tasks defined above

o Agglomeration: Tasks are combined into larger tasks to improve
performance or to reduce development costs.

o Mapping: Maximize processor utilization and minimizing
communication costs by distributing tasks to processors or threads.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 4/33 Mary Thomas

Parallel Program Design

Foster Algorithm 4.1

o] [xa] o[xa] 5] xef o

@:CLErENEEHENE

left” C right”

1D finite difference problem (FD), in which there is a vector, X(©)
of size N that must compute X', where

X,(H'l) _ Xi(i)1+2xi(r) +Xi(4:)1

0<i<N-1: X .

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 3 Mary Thomas
Parallel Program Design

Foster Algorithm 4.1

A parallel algorithm for this problem creates N tasks, one for each point in X. The i th task is given
0 1) (2 T
the value X7)and is responsible for computing, 1? T steps, the values X{():X.g), s X). Hence,
. . 1) 1) o
at step ¢, it must obtain the values X and Xi¥tfrom tasks -1 and i+ 1. We specify this data
transfer by defining channels that link each task with "'left" and “'right" neighbors, as shown in
Figure 1.11, and requiring that at step ¢, each task 7 other than task 0 and task N-/

(1
1. sends its data X+ on its left and right outports,

. 1))) o
2. receives Xi-1 and Xi+1from is left and right inports, and
(t4+1)

3. uses these values to compute 4

Notice that the N tasks can execute independently, with the only constraint on execution order
being the synchronization enforced by the receive operations. This synchronization ensures that no
data value is updated at step ++/ until the data values in neighboring tasks have been updated at
step . Hence, execution is deterministic.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design

Foster's Meth

PROBLEM
partiti

Figure Ref: Foster, Designing and Building Parallel Programs

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 3 Mary Thomas
Parallel Program Design
Partitioning

Partitioning/Decomposition

VAV Wl Ay |
NVl WAy / Atmospheric Model
! 1 1
Y Y /1 Hydrology s
/ Model Ocean

Model
1D 2D 3D ’_Lmd Surface Model

Domain decomposition

Functional decomposition

Figure Refs: Foster, Designing and Building Parallel Programs

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 8/33 Mary Thomas
Parallel Program Design
Partitioning

Partitioning Design Checklist

o
(2]
o
o
o

Size of partition >> # of processors (10x)

Partition should avoid redundant computation and storage
requirements

Are tasks of comparable size? If not, it may be hard to allocate each
processor equal amounts of work.

Tasks must scale with probsize: increase in probsize should
increase #tasks rather not size

Consider alternative partitions — domain and functional
decompositions.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 9/33 Mary Thomas
Parallel Program Design
Communication

Communication

o Local: task communicates with a small set of other tasks (neighbors);

@ Global: requires each task to communicate with many tasks.

Structured: task & neighbors form a regular structure, such as a tree or
grid/matrix

Unstructured: networks may be arbitrary graphs.
Static: identity of communication partners does not change over time.
Dynamic: identity of communication partners determined at runtime

Synchronous: producers & consumers are coordinated (e.g. data xfers)

Asynchronous: consumer obtains data without cooperation of producer.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17
Parallel Program Design
Communication

Mary Thomas

Communication: 2D Stencil

Jacobi finite difference method D @‘_ 0 D
X(t+1) _ 4Xi(,5')+Xi(—)1,j+xi(-+t-)1,j+xi(,?—1+Xi(,;')+1
i 8

o 0 0 0 0
Task and channel

structure for 2D finite
difference computation

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Communication

Communication: 2D Stencil Algorithm

Jacobi finite difference method

fort=0to T -1
send X,-(j) to each neighbor
receive Xi(f)u, X,-(i)lyj, X,-(j)_l, Xi(f)17j+1

compute X,-(jﬂ)

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17

Mary Thomas
Parallel Program Design

Communication

Communication: Local

Two finite difference update strategies,applied on a two-dimensional grid with a
five-point stencil.

Shaded grid points have already been updated to step t+1.

Arrows show data dependencies for one of the latter points.

Figure on left is Gauss-Seidel, on right is red-black.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Communication

Communication: Global

9
T oo

Centralized summation algorithm

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 33 Mary Thomas
Parallel Program Design
Communication

Communication: Global

/\

0

/N /\

WYY

Tree structure for divide-and-conquer summation algorithm with N=8.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Communication

Communication Checklist

@ Do all tasks perform about the same number of communication
operations?

@ Does each task communicate only with a small number of neighbors?

© Are communication operations able to proceed concurrently?

@ Is the computation associated with different tasks able to proceed
concurrently?

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Communication

Agglomeration

o Agglomeration: Tasks are combined into larger tasks to improve
performance or to reduce development costs.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 33 Mary Thomas
Parallel Program Design
Agglomeration

Agglomeration

Examples of agglomeration. @ —
o (a) the size of tasks is increased by
reducing the dimension of the
decomposition from three to two.

@ (b) adjacent tasks are combined to yield a ® — 4
three-dimensional decomposition of higher
granularity.

@ (c) subtrees in a divide-and-conquer /O\

structure are coalesced. g /g\ —_

@ (d) nodes in a tree algorithm are

combined. o)

@ K(b' ‘6\40%_)056“73-@

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17
Parallel Program Design
Agglomeration

Agglomeration

Mary Thomas

Figure shows fine- and coarse-grained two-
dimensional partitions.In each case, a single
task is exploded to show its outgoing messages
(dark shading) and incoming messages (light
shading). In (a), a computation on an grid is
partitioned into tasks; (b) the same
computation is partitioned into tasks

COMP/CS 605: Topic e Updated: 02/07/17 9 Mary Thomas
Parallel Program Design
Agglomeration

Agglomeration Checklist

o
o
Q
Qo
(5}
(5]
Q
o

Has agglomeration reduced communication costs by increasing locality?

If agglomeration has replicated computation, have you verified that the benefits of this replication outweigh its costs, for a range
of problem sizes and processor counts?

For data replication, verifiy that this does not compromise the scalability of your algorithm
Has agglomeration yielded tasks with similar computation and communication costs?
Does the number of tasks still scale with problem size?

If agglomeration eliminated opportunities for concurrent execution,verified that there is sufficient concurrency for current and
future target computers

Can the number of tasks be reduced still further, without introducing load imbalances, increasing software engineering costs, or
reducing scalability?

If you are parallelizing an existing sequential program, considered the cost of the modifications required to the sequential code

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Mapping

Mapping

@ Maximize processor utilization and minimizing communication costs
by distributing tasks to processors or threads.

Specify where tasks will execute

Not applicable to shared memory computers

@ There are no general-purpose mapping solutions for distributed
memory which have complex communication requirements

o Must be done manually. Main approaches:

o Domain decomposition - fixed problem /tasks
o Load balancing - dynamic task distribution
o Task scheduling - many tasks with weak locality.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Mapping

Domain Decomposition

o Straightforward:

o Fixed number of equal sized
tasks -

o Structured local/global : i
communication. ' |
P . . . H 1
o Minimized communication " i

T S O L O S O PO S

o Complex Problems: A LT r

o Variable amounts of work per ; ;
o Unstructured communication N)
' 1l

(sometimes)

Figure: Block-block distribution.
Each task does same work and
communication. Dotted lines
represent processor boundaries

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 22/33 Mary Thomas

Parallel Program Design
Mapping

Load Balancing

@ Load Balancing Algorithms:
Variable number of tasks.
Variable communication.
Performed multiple times.
Often employ local load
balancing
o Also called partitioning
algorithms:
divide computational domain
into specialized subdomains per
processor

e © o o
! '_E._._.i._.

)
-

'

'

bemal

v

'

'
-

I

'

'
...

|

1

'

]
-

'

'

Figure: Irregular load balancing;
each processor gets different data
distribution and/or number of
points

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Mapping

Types of Load Balancing Algorithms

@ Recursive Bisection:
o Partition domain into equal subdomains of equal computational
costs.
o Minimize communication costs.
o "Divide and Conquer” — recursively cut domain
o Local Algorithms
o Compensate for changes in computational load by getting
information from a small number of neighbors.
o Does not require global knowledge of program state
@ Probabilistic Methods
o Allocate tasks randomly to processors.
o Assumes that if number of tasks is large, each processor will end up
with about the same load.
o Best when there are a large number of tasks and little
communication.
o Cyclic Mappings
o Computational load per grid varies and load is spatially dependent.
o On average, each processor gets same load but communication costs
may increase.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Mapping

Task-Scheduling Algorithms:

Used when functional decomposition yields many tasks
Tasks have weak locality.
Centralized task pool sent to/from processors

Allocation of tasks to processors can be complex.

®© 6 6 o o

Manager-Worker:

o Centralized manager allocates tasks/problems
o Workers requests and executes tasks; may submit new tasks.

o Hierarchical Manager-Worker:
o divides work into subsets which each have a manager
o Decentralized Schemes:

o No centralized task manager - each processor has task pool.
o Idle workers request tasks from other processors

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Mapping

Mapping Checklist

(*)
(2]
o
Q
o

For SPMD design for a complex problem, consider an algorithm
based on dynamic task creation and deletion.

If considering design based on dynamic task creation and deletion,
consider a SPMD algorithm.

For centralized load-balancing scheme, verify that manager will not
become a bottleneck.

For dynamic load-balancing scheme, evaluate relative costs of
different strategies.

For probabilistic or cyclic methods, load-balancing requires a large
number of tasks.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Histogram Example

Fosters Methodology Example: Histogram (Pacheco,
ch2)

1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 27/33 Mary Thomas
Parallel Program Design
Histogram Example

Serial Histogram program - inputs

(")
(2]
o
Q
o

The number of measurements: data_count
An array of data_count floats: data

The minimum value for the bin containing the smallest values:
min_meas

The maximum value for the bin containing the largest values:
max_meas

The number of bins: bin_count

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 28/33 Mary Thomas
Parallel Program Design
Histogram Example

Serial Histogram program - Outputs

@ bin_maxes : an array of bin_count floats; stores upper bound for
each bin.

@ bin_counts : an array of bin_count ints; stores number of data
elements in each bin.

@ assume data_count j; : bin_count

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Histogram Example

Serial Histogram Pseudo-code

[frame=single,rulecolor=\color{blue}]
/* Allocate arrays needed */

/* Generate the data */

/* Create bins for storing counts */

/* Count number of values in each bin */
for (i = 0; i < data_count; i++) {

bin = Find_bin(data[i], bin_maxes, bin_count, min_meas);
bin_counts[bin]++;

Find_bin: returns bin that data[i] belongs in - simple linear search function

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Histogram Example

Parallelizing Histogram program

Using Fosters methodology, identify the tasks and communication needed.

@ Tasks:

o Finding the bin for datai]
o Incrementing bin_count for that element

o Communication:

o between identification/computation of the bin
o incrementing the bin_count

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17

Parallel Program Design
Histogram Example

Fosters Methodology Example: Histogram

Mary Thomas

Find_bin XX

Increment
bin_counts

datali-1]

datali]

data[i+1]

\/

¢ |bin_counts[b-1]++

bin_counts[b]++

Problems occur when both data and bins are distributed.
What happens when P, needs to update bin_count on another Processor?

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 32/33 Mary Thomas
Parallel Program Design
Histogram Example

Fosters Methodology Example: Histogram

Find bin ... data[i—1]|| datalil] |

Bl

| |loc_bin_cts [b]++ |

cee

|loc bin_cts[b-1]++ |loc bin_cts[b]++

SN

= | | bin_counts[bl+=

Solution: Task, updates local copy of bin_count, then sum bin_counts at end

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 Mary Thomas
Parallel Program Design
Histogram Example

Fosters Methodology Example: Histogram

Tree structure gathering of bin_count data.

	Parallel Program Design
	Partitioning
	Communication
	Agglomeration
	Mapping
	Histogram Example

