
COMP/CS 605: Introduction to Parallel
Computing

Topic: Parallel Computing Overview/Introduction

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Posted: 02/07/17
Updated: 02/07/17

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 2/33 Mary Thomas

Table of Contents

1 Parallel Program Design
Partitioning
Communication
Agglomeration
Mapping
Histogram Example

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 3/33 Mary Thomas

Parallel Program Design

Fosters Methodology: The PCAM Method

Partitioning: Decompose computation and data operations into
small tasks. Focus on identifying tasks that can be executed in
parallel.

Communication: Define communication structures and algorithms
for the tasks defined above

Agglomeration: Tasks are combined into larger tasks to improve
performance or to reduce development costs.

Mapping: Maximize processor utilization and minimizing
communication costs by distributing tasks to processors or threads.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 4/33 Mary Thomas

Parallel Program Design

Foster Algorithm 4.1

Example

1D finite difference problem (FD), in which there is a vector, X (0)

of size N that must compute XT , where

0 < i < N − 1 : X
(t+1)
i =

X
(t)
i−1+2X

(t)
i +X

(t)
i+1

4

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 5/33 Mary Thomas

Parallel Program Design

Foster Algorithm 4.1

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 6/33 Mary Thomas

Parallel Program Design

Foster’s Methodology: PCAM

Figure Ref: Foster, Designing and Building Parallel Programs

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 7/33 Mary Thomas

Parallel Program Design

Partitioning

Partitioning/Decomposition

Domain decomposition
Functional decomposition

Figure Refs: Foster, Designing and Building Parallel Programs

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 8/33 Mary Thomas

Parallel Program Design

Partitioning

Partitioning Design Checklist

1 Size of partition >> # of processors (10x)

2 Partition should avoid redundant computation and storage
requirements

3 Are tasks of comparable size? If not, it may be hard to allocate each
processor equal amounts of work.

4 #Tasks must scale with probsize: increase in probsize should
increase #tasks rather not size

5 Consider alternative partitions – domain and functional
decompositions.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 9/33 Mary Thomas

Parallel Program Design

Communication

Communication

Local: task communicates with a small set of other tasks (neighbors);

Global: requires each task to communicate with many tasks.

Structured: task & neighbors form a regular structure, such as a tree or
grid/matrix

Unstructured: networks may be arbitrary graphs.

Static: identity of communication partners does not change over time.

Dynamic: identity of communication partners determined at runtime

Synchronous: producers & consumers are coordinated (e.g. data xfers)

Asynchronous: consumer obtains data without cooperation of producer.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 10/33 Mary Thomas

Parallel Program Design

Communication

Communication: 2D Stencil

Jacobi finite difference method

X
(t+1)
i,j =

4X
(t)
i,j +X

(t)
i−1,j+X

(t)
i+1,j+X

(t)
i,j−1+X

(t)
i,j+1

8

Task and channel
structure for 2D finite
difference computation

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 11/33 Mary Thomas

Parallel Program Design

Communication

Communication: 2D Stencil Algorithm

Jacobi finite difference method

for t = 0 to T − 1

send X
(t)
i,j to each neighbor

receive X
(t)
i−1,j , X

(t)
i+1,j , X

(t)
i,j−1, X

(t)
i−1,j+1

compute X
(t+1)
i,j

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 12/33 Mary Thomas

Parallel Program Design

Communication

Communication: Local

Two finite difference update strategies,applied on a two-dimensional grid with a
five-point stencil.
Shaded grid points have already been updated to step t+1.
Arrows show data dependencies for one of the latter points.
Figure on left is Gauss-Seidel, on right is red-black.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 13/33 Mary Thomas

Parallel Program Design

Communication

Communication: Global

Centralized summation algorithm

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 14/33 Mary Thomas

Parallel Program Design

Communication

Communication: Global

Figure 2.8: Tree structure for divide-and-conquer summation algorithm with N=8. The N
numbers located in the tasks at the bottom of the diagram are communicated to the tasks in the
row immediately above; these each perform an addition and then forward the result to the next
level. The complete sum is available at the root of the tree after steps.

In summary, we observe that in developing an efficient parallel summation algorithm, we have
distributed the N-1 communication and computation operations required to perform the summation
and have modified the order in which these operations are performed so that they can proceed
concurrently. The result is a regular communication structure in which each task communicates
with a small set of neighbors.

2.3.3 Unstructured and Dynamic Communication

Tree structure for divide-and-conquer summation algorithm with N=8.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 15/33 Mary Thomas

Parallel Program Design

Communication

Communication Checklist

1 Do all tasks perform about the same number of communication
operations?

2 Does each task communicate only with a small number of neighbors?

3 Are communication operations able to proceed concurrently?

4 Is the computation associated with different tasks able to proceed
concurrently?

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 16/33 Mary Thomas

Parallel Program Design

Communication

Agglomeration

Agglomeration: Tasks are combined into larger tasks to improve
performance or to reduce development costs.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 17/33 Mary Thomas

Parallel Program Design

Agglomeration

Agglomeration

Examples of agglomeration.
(a) the size of tasks is increased by
reducing the dimension of the
decomposition from three to two.

(b) adjacent tasks are combined to yield a
three-dimensional decomposition of higher
granularity.

(c) subtrees in a divide-and-conquer
structure are coalesced.

(d) nodes in a tree algorithm are
combined.

Figure 2.11: Examples of agglomeration. In (a), the size of tasks is increased by reducing the
dimension of the decomposition from three to two. In (b), adjacent tasks are combined to yield a
three-dimensional decomposition of higher granularity. In (c), subtrees in a divide-and-conquer
structure are coalesced. In (d), nodes in a tree algorithm are combined.

The number of tasks yielded by the agglomeration phase, although reduced, may still be greater
than the number of processors. In this case, our design remains somewhat abstract, since issues
relating to the mapping of tasks to processors remain unresolved. Alternatively, we may choose
during the agglomeration phase to reduce the number of tasks to exactly one per processor. We
might do this, for example, because our target parallel computer or program development
environment demands an SPMD program. In this case, our design is already largely complete,
since in defining P tasks that will execute on P processors, we have also addressed the mapping
problem. In this section, we focus on general issues that arise when increasing task granularity.
Specific issues relating to the generation of SPMD programs are discussed in Section 2.5.

Three sometimes-conflicting goals guide decisions concerning agglomeration and replication:
reducing communication costs by increasing computation and communication granularity,
retaining flexibility with respect to scalability and mapping decisions, and reducing software
engineering costs. These goals are discussed in the next three subsections.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 18/33 Mary Thomas

Parallel Program Design

Agglomeration

Agglomeration

Figure shows fine- and coarse-grained two-
dimensional partitions.In each case, a single
task is exploded to show its outgoing messages
(dark shading) and incoming messages (light
shading). In (a), a computation on an grid is
partitioned into tasks; (b) the same
computation is partitioned into tasks

Figure 2.12: Effect of increased granularity on communication costs in a two-dimensional finite
difference problem with a five-point stencil. The figure shows fine- and coarse-grained two-
dimensional partitions of this problem. In each case, a single task is exploded to show its outgoing
messages (dark shading) and incoming messages (light shading). In (a), a computation on an

grid is partitioned into tasks, each responsible for a single point, while in (b) the
same computation is partioned into tasks, each responsible for 16 points. In (a),

communications are required, 4 per task; these transfer a total of 256 data values. In
(b), only communications are required, and only data values are
transferred.

Surface-to-Volume Effects.

If the number of communication partners per task is small, we can often reduce both the number of
communication operations and the total communication volume by increasing the granularity of
our partition, that is, by agglomerating several tasks into one. This effect is illustrated in Figure
2.12. In this figure, the reduction in communication costs is due to a surface-to-volume effect. In
other words, the communication requirements of a task are proportional to the surface of the

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 19/33 Mary Thomas

Parallel Program Design

Agglomeration

Agglomeration Checklist

1 Has agglomeration reduced communication costs by increasing locality?

2 If agglomeration has replicated computation, have you verified that the benefits of this replication outweigh its costs, for a range
of problem sizes and processor counts?

3 For data replication, verifiy that this does not compromise the scalability of your algorithm

4 Has agglomeration yielded tasks with similar computation and communication costs?

5 Does the number of tasks still scale with problem size?

6 If agglomeration eliminated opportunities for concurrent execution,verified that there is sufficient concurrency for current and
future target computers

7 Can the number of tasks be reduced still further, without introducing load imbalances, increasing software engineering costs, or
reducing scalability?

8 If you are parallelizing an existing sequential program, considered the cost of the modifications required to the sequential code

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 20/33 Mary Thomas

Parallel Program Design

Mapping

Mapping

Maximize processor utilization and minimizing communication costs
by distributing tasks to processors or threads.

Specify where tasks will execute

Not applicable to shared memory computers

There are no general-purpose mapping solutions for distributed
memory which have complex communication requirements

Must be done manually. Main approaches:

Domain decomposition - fixed problem/tasks
Load balancing - dynamic task distribution
Task scheduling - many tasks with weak locality.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 21/33 Mary Thomas

Parallel Program Design

Mapping

Domain Decomposition

Straightforward:

Fixed number of equal sized
tasks
Structured local/global
communication.
Minimized communication

Complex Problems:

Variable amounts of work per
task
Unstructured communication
(sometimes)

Clearly, these two strategies will sometimes conflict, in which case our design will involve
tradeoffs. In addition, resource limitations may restrict the number of tasks that can be placed on a
single processor.

The mapping problem is known to be NP -complete, meaning that no computationally tractable
(polynomial-time) algorithm can exist for evaluating these tradeoffs in the general case. However,
considerable knowledge has been gained on specialized strategies and heuristics and the classes of
problem for which they are effective. In this section, we provide a rough classification of problems
and present some representative techniques.

Figure 2.16: Mapping in a grid problem in which each task performs the same amount of
computation and communicates only with its four neighbors. The heavy dashed lines delineate
processor boundaries. The grid and associated computation is partitioned to give each processor
the same amount of computation and to minimize off-processor communication.

Many algorithms developed using domain decomposition techniques feature a fixed number of
equal-sized tasks and structured local and global communication. In such cases, an efficient
mapping is straightforward. We map tasks in a way that minimizes interprocessor communication
(Figure 2.16); we may also choose to agglomerate tasks mapped to the same processor, if this has
not already been done, to yield a total of P coarse-grained tasks, one per processor.

In more complex domain decomposition-based algorithms with variable amounts of work per task
and/or unstructured communication patterns, efficient agglomeration and mapping strategies may
not be obvious to the programmer. Hence, we may employ load balancing algorithms that seek to
identify efficient agglomeration and mapping strategies, typically by using heuristic techniques.
The time required to execute these algorithms must be weighed against the benefits of reduced
execution time. Probabilistic load-balancing methods tend to have lower overhead than do
methods that exploit structure in an application.

The most complex problems are those in which either the number of tasks or the amount of
computation or communication per task changes dynamically during program execution. In the
case of problems developed using domain decomposition techniques, we may use a dynamic load-
balancing strategy in which a load-balancing algorithm is executed periodically to determine a
new agglomeration and mapping. Because load balancing must be performed many times during
program execution, local algorithms may be preferred that do not require global knowledge of
computation state.

Figure: Block-block distribution.
Each task does same work and
communication. Dotted lines
represent processor boundaries

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 22/33 Mary Thomas

Parallel Program Design

Mapping

Load Balancing

Load Balancing Algorithms:

Variable number of tasks.
Variable communication.
Performed multiple times.
Often employ local load
balancing
Also called partitioning
algorithms:
divide computational domain
into specialized subdomains per
processor

Figure 2.17: Load balancing in a grid problem. Variable numbers of grid points are placed on
each processor so as to compensate for load imbalances. This sort of load distribution may arise if
a local load-balancing scheme is used in which tasks exchange load information with neighbors
and transfer grid points when load imbalances are detected.

Local Algorithms.

 The techniques just described are relatively expensive because they require global knowledge of
computation state. In contrast, local load-balancing algorithms compensate for changes in
computational load using only information obtained from a small number of neighboring
processors. For example, processors may be organized in a logical mesh; periodically, each
processor compares its computational load with that of its neighbors in the mesh and transfers
computation if the difference in load exceeds some threshold. Figure 2.17 and Plate 3

show load distributions produced by such schemes.

Plate 3: A dynamic, local load-balancing algorithm applied to a weather model. This shows the
situation after grid points have migrated to compensate for a ``hot spot'' slightly to the left of the
center of the grid. Image courtesy of J. Michalakes.

Because local algorithms are inexpensive to operate, they can be useful in situations in which load
is constantly changing. However, they are typically less good at balancing load than global
algorithms and, in particular, can be slow to adjust to major changes in load characteristics. For
example, if a high load suddenly appears on one processor, multiple local load-balancing
operations are required before load ``diffuses'' to other processors.

Figure: Irregular load balancing;
each processor gets different data
distribution and/or number of
points

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 23/33 Mary Thomas

Parallel Program Design

Mapping

Types of Load Balancing Algorithms

Recursive Bisection:
Partition domain into equal subdomains of equal computational
costs.
Minimize communication costs.
”Divide and Conquer” – recursively cut domain

Local Algorithms
Compensate for changes in computational load by getting
information from a small number of neighbors.
Does not require global knowledge of program state

Probabilistic Methods
Allocate tasks randomly to processors.
Assumes that if number of tasks is large, each processor will end up
with about the same load.
Best when there are a large number of tasks and little
communication.

Cyclic Mappings
Computational load per grid varies and load is spatially dependent.
On average, each processor gets same load but communication costs
may increase.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 24/33 Mary Thomas

Parallel Program Design

Mapping

Task-Scheduling Algorithms:

Used when functional decomposition yields many tasks

Tasks have weak locality.

Centralized task pool sent to/from processors

Allocation of tasks to processors can be complex.

Manager-Worker:

Centralized manager allocates tasks/problems
Workers requests and executes tasks; may submit new tasks.

Hierarchical Manager-Worker:

divides work into subsets which each have a manager

Decentralized Schemes:

No centralized task manager - each processor has task pool.
Idle workers request tasks from other processors

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 25/33 Mary Thomas

Parallel Program Design

Mapping

Mapping Checklist

1 For SPMD design for a complex problem, consider an algorithm
based on dynamic task creation and deletion.

2 If considering design based on dynamic task creation and deletion,
consider a SPMD algorithm.

3 For centralized load-balancing scheme, verify that manager will not
become a bottleneck.

4 For dynamic load-balancing scheme, evaluate relative costs of
different strategies.

5 For probabilistic or cyclic methods, load-balancing requires a large
number of tasks.

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 26/33 Mary Thomas

Parallel Program Design

Histogram Example

Fosters Methodology Example: Histogram (Pacheco,
ch2)

1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,2.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 27/33 Mary Thomas

Parallel Program Design

Histogram Example

Serial Histogram program - inputs

1 The number of measurements: data count

2 An array of data count floats: data

3 The minimum value for the bin containing the smallest values:
min meas

4 The maximum value for the bin containing the largest values:
max meas

5 The number of bins: bin count

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 28/33 Mary Thomas

Parallel Program Design

Histogram Example

Serial Histogram program - Outputs

1 bin maxes : an array of bin count floats; stores upper bound for
each bin.

2 bin counts : an array of bin count ints; stores number of data
elements in each bin.

3 assume data count ¿¿ : bin count

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 29/33 Mary Thomas

Parallel Program Design

Histogram Example

Serial Histogram Pseudo-code

[frame=single,rulecolor=\color{blue}]
/* Allocate arrays needed */
.
/* Generate the data */
.
/* Create bins for storing counts */
.
/* Count number of values in each bin */
for (i = 0; i < data_count; i++) {

bin = Find_bin(data[i], bin_maxes, bin_count, min_meas);
bin_counts[bin]++;

}

Find bin: returns bin that data[i] belongs in - simple linear search function

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 30/33 Mary Thomas

Parallel Program Design

Histogram Example

Parallelizing Histogram program

Using Fosters methodology, identify the tasks and communication needed.

Tasks:

Finding the bin for data[i]
Incrementing bin count for that element

Communication:

between identification/computation of the bin
incrementing the bin count

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 31/33 Mary Thomas

Parallel Program Design

Histogram Example

Fosters Methodology Example: Histogram

Problems occur when both data and bins are distributed.
What happens when Pn needs to update bin count on another Processor?

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 32/33 Mary Thomas

Parallel Program Design

Histogram Example

Fosters Methodology Example: Histogram

Solution: Taskn updates local copy of bin count, then sum bin counts at end

COMP/CS 605: Topic Posted: 02/07/17 Updated: 02/07/17 33/33 Mary Thomas

Parallel Program Design

Histogram Example

Fosters Methodology Example: Histogram

Tree structure gathering of bin count data.

	Parallel Program Design
	Partitioning
	Communication
	Agglomeration
	Mapping
	Histogram Example

