
COMP 605: Introduction to Parallel Computing
Topic: OpenMP: Producer-Consumers

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Presented: 04/18/17
Last Update: 04/18/17

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 2/46 Mary Thomas

1 OpenMP: Producer-Consumers
Queueing Systems
Queue Message Passing
Atomic Directive

2 Critical Sections & Locks
Producer/Consumer Code Example

3 OpenMP Summary & Conclusions

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 3/46 Mary Thomas

OpenMP: Producer-Consumers

Queueing Systems

Producer-Consumers: Queueing Systems

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 4/46 Mary Thomas

OpenMP: Producer-Consumers

Queueing Systems

Producer-Consumer Benefit from Use of Queues

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 5/46 Mary Thomas

OpenMP: Producer-Consumers

Queueing Systems

First in First Out (FIFO) queue

Source: http://www.cs.oberlin.edu/~jdonalds/341/lecture04.html

 http://www.cs.oberlin.edu/~jdonalds/341/lecture04.html

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 6/46 Mary Thomas

OpenMP: Producer-Consumers

Queueing Systems

Source: http://en.wikipedia.org/wiki/OpenMP

 http://en.wikipedia.org/wiki/OpenMP

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 7/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Using Queues for Message Passing

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 8/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 9/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Sending Messages

Any thread can enqueue messages into another threads queue

Need to know front/head and back/tail of queue (FIFO)

Need to develop an Enqueue function

Critical Block to control access to
front/head/and messages (send or recv)

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 10/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Pseudo code for Send msg()

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 11/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Receiving Messages

Only owner can dequeue messages, so synchronization important.

Need to develop a Dequeue function that controls access to messages.

Critical Block to control access to front/head/and messages (send or
recv)

use two variables count number of messages enqueued and dequeued.
queue size = enqueued − dequeued

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 12/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Pseudo code for Try receive()

A thread is responsible for dequeueing its messages. Other threads can only add messages.
Messages added to end and removed from front (FIFO).

Synchronization needed after last entry.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 13/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Message Queue Data

list of messages

pointer to rear of queue

pointer to front of queue

count of messages dequeued

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 14/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Thread Queue Program complete

When done, threads increments done sending

This is a critical section: # pragma omp critical

OpenMP has intrinsic function: # pragma omp atomic

higher performance but limited

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 15/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Thread Queue Program Startup

Threads are started with a parallel block directive

At start of execution, one thread gets command line arguments

Master allocates array of message queues: one for each thread.

array needs to be shared among the threads
any thread can send to any other thread
any thread can enqueue a message in any of the queues.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 16/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Thread Queue Program Startup

Queue elements:

list of messages
pointer index to rear of queue
pointer index to front of queue
count of enqueued messages
count of dequeue messages

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 17/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Thread Queue Program Startup

In some cases, one or more threads may finish allocating their queues
before some other threads.

Explicit barrier is needed to block threads until all threads in team
have arrived.

After all the threads have reached the barrier all the threads in the
team can proceed.

Accomplished by using: # pragma omp barrier

When thread is done, it increments its done sending variable, which is
a critical section.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 18/46 Mary Thomas

OpenMP: Producer-Consumers

Queue Message Passing

Source: http://sc.tamu.edu/help/power/powerlearn/presentations/OpenMPnw.ppt

http://sc.tamu.edu/help/power/powerlearn/presentations/OpenMPnw.ppt

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 19/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 20/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 21/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

Atomic Directive

x < op >=< expression >

Only the load and store of x are guaranteed to be protected

What happens here?

pragma omp atomic

x + = y + +

x update is protected: < op > is a + operation, so it is protected.

y + + update may not be safe

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 22/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

/* File: queue_lk.c

* Purpose: Implement a queue with locks using a linked list and OpenMP.

* Operations are Enqueue, Dequeue, Print, Search, and Free.

*

* To be used with omp_msglk.c

*

* Compile: gcc -g -Wall -DUSE_MAIN -fopenmp -o queue_lk queue_lk.c

*

* Usage: ./queue_lk

*

* Input: Operations (first letter of op name) and, when necessary, keys

* Output: Prompts for input and results of operations

*

* IPP: Section 5.8.9 (pp. 248 and ff.)

*/

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 23/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

#include "queue_lk.h"

#ifdef USE_MAIN

int main(void) {

char op;

int src, mesg, not_empty;

struct queue_s* q_p = Allocate_queue();

printf("Op? (e, d, p, s, f, q)\n");

scanf(" %c", &op); switch (op) {

case ’e’:

case ’E’:

printf("Src? Mesg?\n");

scanf("%d%d", &src, &mesg);

omp_set_lock(&q_p->lock);

Enqueue(q_p, src, mesg);

omp_unset_lock(&q_p->lock);

break;

case ’d’:

case ’D’:

omp_set_lock(&q_p->lock);

not_empty = Dequeue(q_p, &src, &mesg);

omp_unset_lock(&q_p->lock);

if (not_empty)

printf("Dequeued src = %d,

mesg = %d\n", src, mesg);

else

printf("Queue is empty\n");

break;

case ’s’:

case ’S’:

printf("Mesg?\n"); scanf("%d", &mesg);

if (Search(q_p, mesg, &src))

printf("Found %d from %d\n", mesg, src);

else

printf("Didn’t find %d\n", mesg);

break;

case ’p’:

case ’P’:

Print_queue(q_p); break;

case ’f’:

case ’F’:

omp_set_lock(&q_p->lock);

Free_queue(q_p);

omp_unset_lock(&q_p->lock);

break;

default:

printf("%c isn’t a valid command\n", op);

printf("Please try again\n");

} /* switch */

printf("Op? (e, d, p, s, f, q)\n"); scanf(" %c", &op);

} /* while */

Free_queue(q_p);

omp_destroy_lock(&q_p->lock);

free(q_p);

return 0;

} /* main */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 24/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

struct queue_s* Allocate_queue() {

struct queue_s* q_p = malloc(sizeof(struct queue_s));

q_p->enqueued = q_p->dequeued = 0;

q_p->front_p = NULL;

q_p->tail_p = NULL;

omp_init_lock(&q_p->lock);

return q_p;

} /* Allocate_queue */

/* Frees nodes in queue: leaves queue struct allocated and lock

* initialized */

void Free_queue(struct queue_s* q_p) {

struct queue_node_s* curr_p = q_p->front_p;

struct queue_node_s* temp_p;

while(curr_p != NULL) {

temp_p = curr_p;

curr_p = curr_p->next_p;

free(temp_p);

}

q_p->enqueued = q_p->dequeued = 0;

q_p->front_p = q_p->tail_p = NULL;

} /* Free_queue */

void Print_queue(struct queue_s* q_p) {

struct queue_node_s* curr_p = q_p->front_p;

printf("queue = \n");

while(curr_p != NULL) {

printf(" src = %d, mesg = %d\n", curr_p->src, curr_p->mesg);

curr_p = curr_p->next_p;

}

printf("enqueued = %d, dequeued = %d\n", q_p->enqueued, q_p->dequeued);

printf("\n");

} /* Print_Queue */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 25/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

void Enqueue(struct queue_s* q_p, int src, int mesg) {

struct queue_node_s* n_p = malloc(sizeof(struct queue_node_s));

n_p->src = src;

n_p->mesg = mesg;

n_p->next_p = NULL;

if (q_p->tail_p == NULL) { /* Empty Queue */

q_p->front_p = n_p;

q_p->tail_p = n_p;

} else {

q_p->tail_p->next_p = n_p;

q_p->tail_p = n_p;

}

q_p->enqueued++;

} /* Enqueue */

int Dequeue(struct queue_s* q_p, int* src_p, int* mesg_p) {

struct queue_node_s* temp_p;

if (q_p->front_p == NULL) return 0;

*src_p = q_p->front_p->src;

*mesg_p = q_p->front_p->mesg;

temp_p = q_p->front_p;

if (q_p->front_p == q_p->tail_p) /* One node in list */

q_p->front_p = q_p->tail_p = NULL;

else

q_p->front_p = temp_p->next_p;

free(temp_p);

q_p->dequeued++;

return 1;

} /* Dequeue */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 26/46 Mary Thomas

OpenMP: Producer-Consumers

Atomic Directive

int Search(struct queue_s* q_p, int mesg, int* src_p) {

struct queue_node_s* curr_p = q_p->front_p;

while (curr_p != NULL)

if (curr_p->mesg == mesg) {

*src_p = curr_p->src;

return 1;

} else {

curr_p = curr_p->next_p;

}

return 0;

} /* Search */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 27/46 Mary Thomas

Critical Sections & Locks

Critical Sections

For the case of multiple critical sections, OpenMP provides the option
of adding a name to a critical directive:

pragma omp critical(name)

Parallelism: two blocks protected with critical directives with different
names can be executed simultaneously.

Problem: names are set during compilation - how to set different
critical section for each threads queue?

=⇒ Locks

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 28/46 Mary Thomas

Critical Sections & Locks

OpenMP Locks

A lock is composed of a data structure and functions that allow the
programmer to explicitly enforce mutual exclusion in a critical section.

It is shared among threads that will exec critical section.

one thread will init the lock (e.g. master)
other threads will try to enter the block:

On success, a thread obtains the lock
when done the thread will relinquish the lock.

the last thread using lock will destroy lock.

Two types of locks:

simple: can only be set once before it is unset.
nested: can be set multiple times by same thread before it is unset.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 29/46 Mary Thomas

Critical Sections & Locks

OpenMP Lock Functions

Thread Based Parallelism:

void omp_init_lock(omp_lock_t *lock): Initializes a lock
associated with the lock variable

void omp_set_lock(omp_lock_t *lock): Acquires ownership of a lock

void omp_destroy_lock(omp_lock_t *lock): Disassociates the given lock variable
from any locks

int omp_test_lock(omp_lock_t *lock): Attempts to set a lock, but does not
block if the lock is unavailable.

Nested Parallelism:

The API provides for the placement of parallel regions
inside other parallel regions. Implementations may or may not support this feature.

void omp_init_nest_lock(omp_nest_lock_t *lock):
initializes lock; the initial state is unlocked, for the nestable lock the
initial count is zero. These functions should be called from serial portion.

void omp_set_nest_lock(omp_nest_lock_t *lock):
ownership of lock is granted to the thread executing the function; with
nestable lock the nesting count is incremented if the (simple) lock is set
when the function is executed the requesting thread is blocked until the
lock can be obtained

void omp_destroy_nest_lock(omp_nest_lock_t *lock); the argument should
point to initialized lock variable that is unlocked

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 30/46 Mary Thomas

Critical Sections & Locks

Locks.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 31/46 Mary Thomas

Critical Sections & Locks

OpenMP Lock Functions

Code Example:
#include <omp.h>
. . .
omp_lock_t *lck;
. . .
omp_init_lock(lck);
. . .
/* spin until the lock is granted */
while(!omp_test_lock(lck));
{

do some work
}
omp_destroy_lock(lck);
. . .

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 32/46 Mary Thomas

Critical Sections & Locks

Using Locks with Queue-based Message-Passing Programs.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 33/46 Mary Thomas

Critical Sections & Locks

Message Queue Data Structure Example

Source: https://image.slidesharecdn.com/ipcinlinux-120215010012-phpapp01/95/ipc-in-linux-34-728.jpg?cb=1329269028

https://image.slidesharecdn.com/ipcinlinux-120215010012-phpapp01/95/ipc-in-linux-34-728.jpg?cb=1329269028

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 34/46 Mary Thomas

Critical Sections & Locks

Message Queue Structure Data

list of messages

pointer to rear/end of queue

pointer to front/start of queue

pointer to next message in queue

count of messages dequeued

lock variable: omp lock t

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 35/46 Mary Thomas

Critical Sections & Locks

Which access control mechanism is best?

We have looked at the critical and atomic directives, and locks.

atomic: fast because it only does one thing; but OpenMP allows all
atomic directives to enforce mutual exclusion across all atomic
directives.

critical: easy to use, for multiple they should be named.

locks: performance and function similar to named critical; best used
for structures

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 36/46 Mary Thomas

Critical Sections & Locks

Things to consider

You shouldn’t mix the different types of mutual exclusion for a single
critical section - they don’t share exclusive actions:

Consider the following program:

#pragma omp atomic
x + = f (y)

pragma omp critical
x = g(x)

The second critical block does not contain a valid OMP expression,
so it has critical, but that does not override what the atomic block
can do so it is not protected.

either rewrite g(x), or use two critical blocks.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 37/46 Mary Thomas

Critical Sections & Locks

More things to consider

There is no guarantee of fairness in mutual exclusion constructs:
a thread can be blocked forever waiting for the unlock to occur.

while(1) {
. . .

pragma omp critical
x = g(my rank)
. . . }

It can be dangerous to nest mutual exclusion constructs: deadlock
example:
pragma omp critical

y + = f (x)
.....
double f(double x) {

#pragma omp critical
z + = g(x) /* z is shared */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 38/46 Mary Thomas

Critical Sections & Locks

Caveats (2)

Can improve things with naming
pragma omp critical(one)

y + = f (x)
.....
double f(double x) {

#pragma omp critical(two)
z + = g(x) /* z is shared */

but this won’t help in all situations; example of deadlock

Time Thread u Thread v
0 Enter crit. sect. one Enter crit. sect. two
1 Attempt to enter two Attempt to enter one
2 Block Block

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 39/46 Mary Thomas

Critical Sections & Locks

Producer/Consumer Code Example

Main

/* File: producer_comsumer.c

* Purpose: Implement a producer-consumer program in which some of the threads are producers

and others are consumers. The producers read text from a collection of files, one per producer.

They insert lines of text into a single shared queue. The consumers take the lines of text and

tokenize them -- i.e., identify strings of characters separated by whitespace from the rest of the

line. When a consumer finds a token, it writes to stdout.

*/

int main(int argc, char* argv[]) {

int prod_count, cons_count;

FILE* files[MAX_FILES];

int file_count;

if (argc != 3) Usage(argv[0]);

prod_count = strtol(argv[1], NULL, 10);

cons_count = strtol(argv[2], NULL, 10);

/* Read in list of filenames and open files */

Get_files(files, &file_count);

ifdef DEBUG

printf("prod_count = %d, cons_count = %d, file_count = %d\n",

prod_count, cons_count, file_count);

endif

/* Producer-consumer */

Prod_cons(prod_count, cons_count, files, file_count);

return 0;

} /* main */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 40/46 Mary Thomas

Critical Sections & Locks

Producer/Consumer Code Example

/ * Function: Prod_cons * Purpose: Divides tasks among threads */

void Prod_cons(int prod_count, int cons_count, FILE* files[], int file_count) {

int thread_count = prod_count + cons_count;

struct list_node_s* queue_head = NULL; struct list_node_s* queue_tail = NULL;

int prod_done_count = 0;

pragma omp parallel num_threads(thread_count) default(none) \

shared(file_count, queue_head, queue_tail, files, prod_count, \

cons_count, prod_done_count)

{ int my_rank = omp_get_thread_num(), f;

if (my_rank < prod_count) { /* Producer code */

/* A cyclic partition of the files among the producers */

for (f = my_rank; f < file_count; f += prod_count) {

Read_file(files[f], &queue_head, &queue_tail, my_rank);

}

pragma omp atomic

prod_done_count++;

} else { /* Consumer code */

struct list_node_s* tmp_node;

while (prod_done_count < prod_count) {

tmp_node = Dequeue(&queue_head, &queue_tail, my_rank);

if (tmp_node != NULL) {

Tokenize(tmp_node->data, my_rank);

free(tmp_node); } }

while (queue_head != NULL) {

tmp_node = Dequeue(&queue_head, &queue_tail, my_rank);

if (tmp_node != NULL) {

Tokenize(tmp_node->data, my_rank);

free(tmp_node); } } }

} /* pragma omp parallel */

} /* Prod_cons */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 41/46 Mary Thomas

Critical Sections & Locks

Producer/Consumer Code Example

Read file

/*--

* Function: Read_file

* Purpose: read text line from file into the queue linkedlist

* In arg: file, my_rank

* In/out arg: queue_head, queue_tail

*/

void Read_file(FILE* file, struct list_node_s** queue_head,

struct list_node_s** queue_tail, int my_rank) {

char* line = malloc(MAX_CHAR*sizeof(char));

while (fgets(line, MAX_CHAR, file) != NULL) {

printf("Th %d > read line: %s", my_rank, line);

Enqueue(line, queue_head, queue_tail);

line = malloc(MAX_CHAR*sizeof(char));

}

fclose(file);

} /* Read_file */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 42/46 Mary Thomas

Critical Sections & Locks

Producer/Consumer Code Example

Enqueue

/*--

* Function: Enqueue

* Purpose: create data node, add into queue linkedlist

* In arg: line

* In/out arg: queue_head, queue_tail

*/

void Enqueue(char* line, struct list_node_s** queue_head,

struct list_node_s** queue_tail) {

struct list_node_s* tmp_node = NULL;

tmp_node = malloc(sizeof(struct list_node_s));

tmp_node->data = line;

tmp_node->next = NULL;

pragma omp critical

if (*queue_tail == NULL) { // list is empty

*queue_head = tmp_node;

*queue_tail = tmp_node;

} else {

(*queue_tail)->next = tmp_node;

*queue_tail = tmp_node;

}

} /* Enqueue */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 43/46 Mary Thomas

Critical Sections & Locks

Producer/Consumer Code Example

Dequeue

/*--

* Function: Dequeue

* Purpose: remove a node from queue linkedlist and tokenize them

* In arg: my_rank

* In/out arg: queue_head, queue_tail

* Ret val: Node at head of queue, or NULL if queue is empty

*/

struct list_node_s* Dequeue(struct list_node_s** queue_head,

struct list_node_s** queue_tail, int my_rank) {

struct list_node_s* tmp_node = NULL;

if (*queue_head == NULL) // empty

return NULL;

pragma omp critical

{

if (*queue_head == *queue_tail) // last node

*queue_tail = (*queue_tail)->next;

tmp_node = *queue_head;

*queue_head = (*queue_head)->next;

}

return tmp_node;

} /* Dequeue */

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 44/46 Mary Thomas

OpenMP Summary & Conclusions

Summary and Conclusions

OpenMP is a standard for programming shared-memory systems.

OpenMP uses both special functions and preprocessor directives called pragmas.

OpenMP programs start multiple threads rather than multiple processes.

Many OpenMP directives can be modified by clauses

A major problem in the development of shared memory programs is the possibility of race
conditions.

OpenMP provides several mechanisms for insuring mutual exclusion in critical sections:
Critical directives: Named critical directives; Atomic directives; Simple locks

By default most systems use a block-partitioning of the iterations in a parallelized for loop:
OpenMP offers a variety of scheduling options.

In OpenMP the scope of a variable is the collection of threads to which the variable is
accessible.

A reduction is a computation that repeatedly applies the same reduction operator to a
sequence of operands in order to get a single result.

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 45/46 Mary Thomas

OpenMP Summary & Conclusions

COMP 605: Topic Presented: 04/18/17 Last Update: 04/18/17 46/46 Mary Thomas

OpenMP Summary & Conclusions

Run Time Library

subroutine omp_set_num_threads(scalar)
sets the number of threads to use for subsequent parallel region

integer function omp_get_num_threads()
should be called from parallel segment. Returns \# of threads currently executing

integer function omp_get_max_threads()
can be called anywhere in the program. Returns max number of threads that can
be returned by omp_get_num_threads()

integer function omp_get_thread_num()
returns id of the thread executing the function. The thread id lies in between 0 and
omp_get_num_threads()-1

integer function omp_get_num_procs()
maximum number of processors that could be assigned to the program

logical function omp_in_parallel()
returns .TRUE. (non-zero) if it is called within dynamic extent of a parallel region
executing in parallel; otherwise it returns .FALSE. (0).

subroutine omp_set_dynamic(logical)
logical function omp_get_dynamic()

query and setting of dynamic thread adjustment; should be called only from serial
portion of the program

	OpenMP: Producer-Consumers
	Queueing Systems
	Queue Message Passing
	Atomic Directive

	Critical Sections & Locks
	Producer/Consumer Code Example

	OpenMP Summary & Conclusions

