COMP 605: Introduction to Parallel Computing

Topic: Shared Memory Programming with
OpenMP

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Presented: 04/11/17
Last Update: 04/10/17

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17

Mary Thomas

o Introduction to Shared Memory Programming with OpenMP
@ OpenMP Overview

@ Compiling and Running OpenMP Code: Hello World
@ OpenMP: The PRAGMA Directive

@ Binding OpenMP Thread to a Processor
Trapeziodal Rule with OpenMP

Variable Scope

Reduction Clause

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas

Introduction to Shared Memory Programming with OpenMP

OpenMP Overview

What is OpenMP?
@ OpenMP = Open Multir-Processing
@ an API that supports multi-platform shared memory multiprocessing
programming.
o Designed for systems in which each thread or process can potentially
have access to all available memory.
@ System is viewed as a collection of cores or CPUs, all of which have
access to main memory
o Applications built using hybrid model of parallel programming:
o Runs on a computer cluster using both OpenMP and Message Passing
Interface (MPI)
o OR through the use of OpenMP extensions for non-shared memory
systems.
o See:
o http://openmp.org/
o http://en.wikipedia.org/wiki/OpenMP

http://openmp.org/
http://en.wikipedia.org/wiki/OpenMP

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 4/4 Mary Thomas
Introduction to Shared Memory Programming with OpenMP

OpenMP Overview

What is OpenMP?

@ OpenMP grew out of the need to standardize different vendor specific
directives related to parallelism.

@ Pthreads not scaleable to large systems and does not support
incremental parallelism very well.

o Correlates with evolution of hybrid architectures: shared memory and
multi PE architectures being developed in early '90s.

@ Structured around parallel loops and was meant to handle dense
numerical applications.

Bus Interconnect

Source: https://computing.llnl.gov/tutorials/openMP

https://computing.llnl.gov/tutorials/openMP

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas

Introduction to Shared Memory Programming with OpenMP
OpenMP Overview

OpenMP is an implementation of multithreading

Parallel Task | Parallel Task Il Paralbal Task 11

Master Thﬂ.'.nd

Parallel Task | Farallel Task Il Parallel Task Il
Master Thread] L=
| B
e I

Source: http://en.wikipedia.org/wiki/OpenMP

@ Method of parallelizing where a master thread forks a specified
number of slave threads

@ Tasks are divided among them.

@ Threads run concurrently.

 http://en.wikipedia.org/wiki/OpenMP

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 4 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
OpenMP Overview

Shared memory architecture 1

CPU CPU CPU CPU
l Interconnect ‘

l

Memory

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 4 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
OpenMP Overview

Non Uniform Memory Access (NUMA)

RS ¥ g rre Fezgaree P rre Fuzsarea WERES ISR Frorsarrod

Lachs Chihe SAThs SRChE

% Interconnedt

Hierarchical Scheme: processors are grouped by physical location
located on separate multi-core (PE) CPU packages or nodes.
Processors (PEs) within a node share access to memory modules via
UMA shared memory architecture.

o PE’s may also access memory from the remote node using a shared
interconnect

Source: https://software.intel.com/en-us/articles/optimizing-applications-for-numa

https://software.intel.com/en-us/articles/optimizing-applications-for-numa

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 8 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
OpenMP Overview

OpenMP Features & Advantages

o Portable, threaded, shared-memory programming specification with
light syntax

Exact behavior depends on OpenMP implementation!
Requires compiler support (C or Fortran)
Allows programmer to define and separate serial and parallel regions

Does not "detect” parallel dependencies or guarantee speedup

Can use OpenMP to parallelize many serial for loops with only small
changes to the source code.

(]

Task parallelism.
o Explicit thread synchronization.

Standard problems in shared-memory programming

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 4 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
OpenMP Overview

OpenMP Challenges

@ Currently only runs efficiently in shared-memory multiprocessor
platforms

Scalability is limited by memory architecture.

Cache memories

Dealing with serial libraries

Thread safety

Unreliable error handling.

Mostly used for loop parallelization

Requires a compiler that supports OpenMP

Lacks fine-grained mechanisms to control thread-processor mapping.

Synchronization between subsets of threads is not allowed.

®© 6 6 6 6 66 o o o o

Can be difficult to debug, due to implicit communication between
threads via shared variables.

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17
Introduction to Shared Memory Programming with OpenMP
Compiling and Running OpenMP Code: Hello World

OpenMP: General Code Structure

Mary Thomas

#include <omp.h>
main () {
int varl, var2, var3;
Serial code

/* Beginning of parallel section.
Fork a team of threads. Specify variable scoping*/
#pragma omp parallel private(varl, var2) shared(var3)

/* Parallel section executed by all threads */
/* All threads join master thread and disband*/

}

Resume serial code

COMP 605: Topic nted: 04/11/17 Last Update: 04/10/17 4 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Compiling and Running OpenMP Code: Hello World

OpenMP: A Very Simple Hello World

File: omp_hello_env.c
Compile: gcc -g -Wall -fopenmp -o omp_hello_env omp_hello_env.c

*
*
*
* In this example, the number of threads is set
* using the value for the environment variable
* OMP_NUM_THREADS
* It can be set via the command line:
* OMP_NUM_THREADS=8 ./omp_hello_env

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[]) {
int nthds, thd_rank;

#pragma omp parallel default(shared) private(thd_rank, nthds)

nthds = omp_get_num_threads();
thd_rank = omp_get_thread_num();
printf("Hello from thread %d out of %d\n",
thd_rank, nthds);
¥

return 0;

How are the number of threads set????

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 47 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Compiling and Running OpenMP Code: Hello World

OpenMP: Using/Setting OMP_NUM _THREADS

@ You can run using just the name of the executable and default
number of threads via the command line:

[mthomas] ./omp_hello

Hello from thread 3 out of 4
Hello from thread O out of 4
Hello from thread 1 out of 4
Hello from thread 2 out of 4

@ You can change the number of threads via the command line (or set
the env var in your shell):

[mthomas] OMP_NUM_THREADS=8 ./omp_hello
Hello from thread 3 out of
Hello from thread 6 out of
Hello from thread 7 out of
Hello from thread 4 out of
Hello from thread 5 out of
Hello from thread O out of
Hello from thread 1 out of
Hello from thread 2 out of

0 00 00 0O 0O 00 00 O

COMP 605: Topic nted: 04/11/17 Last Update: 04/10/17 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Compiling and Running OpenMP Code: Hello World

OpenMP: Using/Setting OMP_NUM _THREADS

You can pass the number of threads as a command line argument:

/* File: omp_hello.c
* Purpose: A parallel hello, world program that uses OpenMP
* Compile: gcc -g -Wall -fopenmp -o omp_hello omp_hello.c
* Run: ./omp_hello <number of threads>
*/
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

void Hello(void); /* Thread function */

/ /
int main(int argc, charx argv[l) {
int thread_count = strtol(argv([1], NULL, 10);

pragma omp parallel num_threads(thread_count)
Hello();

return 0;
} /% main %/

/

* Function: Hello

* Purpose: Thread function that prints message
*/

void Hello(void) {
int my_rank = omp_get_thread_num();
int thread_count = omp_get_num_threads();

printf("Hello from thread %d of %d\n", my_rank, thread_count);

} /* Hello */

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Compiling and Running OpenMP Code: Hello World

OpenMP: Using/Setting OMP_NUM _THREADS

[mthomas]?
[mthomas@tuckool$ mpicc -g -Wall -fopenmp -o omp_hello omp_hello.c

[mthomas@tuckoo ch5]$./omp_hello 10

Hello from thread 6 of 10
Hello from thread 4 of 10
Hello from thread 5 of 10
Hello from thread O of 10
Hello from thread 1 of 10
Hello from thread 7 of 10
Hello from thread 2 of 10
Hello from thread 3 of 10
Hello from thread 9 of 10
Hello from thread 8 of 10

COMP 605: Topic nted: 04/11/17 Last Update: 04/10/17 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Compiling and Running OpenMP Code: Hello World

OpenMP: You can set OMP_NUM_THREADS in a

batch script

[mthomas] cat batch.omp_hello_thdarg
#!/bin/sh

run using:

gsub -v T=16 batch.omp_hello

gsub -v T=16 batch.omp_hello_thdarg

#PBS -1 nodes=1:corelf

#PBS -N omp_hello_thdarg

#PBS -] oe

#PBS -r n

#PBS -q batch

cd $PBS_O_WORKDIR

echo PBS: current home directory is $PBS_O_HOME

set number of threads using env var
OMP_NUM_THREADS=${T}

export OMP_NUM_THREADS=${T}
./omp_hello

#or pass to program:
#./omp_hello_thdarg $T

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Compiling and Running OpenMP Code: Hello World

What to do if compiler does not support OpenMP

#ifdef _OPEN_MP
#include <omp.h>
#include <omp.h> #endif

int rank;
int thd_cnt;

#ifdef _OPEN_MP
rank=omp_get_thread_num() ;
thd_cnt=omp_get_num_threads();
#else

rank=0;

thd_cnt=1;

#endif

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 47 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
OpenMP: The PRAGMA Directive

OpenMP Directive: #pragma

pragma omp parallel num_threads(thread_count)
Hello();

#£pragma is first OpenMP directive.

Scope of a directive is one block of statements {...}
OpenMP determines # threads to create, synchronize, destroy
Start threads running thread function Hello.

num_threads(thread_count) is an OpenMP clause

Similar (but less work) to the Pthread command:

pthread_create(&thread_handles[i], NULL, Thread_work, (voidx) i);

Special preprocessor instructions.

Typically added to a system to allow behaviors that arent part of the
basic C specification.

Portable: compilers that don't support the pragmas ignore them.

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 8/47 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
OpenMP: The PRAGMA Directive

OpenMP: Parallel Region Construct

o Defines a block of code to be executed by the threads:

pragma omp parallel num_threads(thread_count)
{

} (implied barrier)

@ Example clauses:

o if (expression): only in parallel if expression evaluates to true
private(list): everything private and local (no relation with variables
outside the block).
shared(list): data accessed by all threads
default (none — shared)
reduction (operator: list)
firstprivate(list), lastprivate(list)

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17
Introduction to Shared Memory Programming with OpenMP
OpenMP: The PRAGMA Directive

OpenMP: Data Model

Mary Thomas

o Private and shared e
variables =
I L.Ipl |- Ip
o Global data space: E T -IE E
accessed by all parallel
threads.

o Private space: only be

accessed by the thread. P = privaia din spece
G « global data space

o Parallel for loop index PAT B
private by default. r I, 3
f 55 - : ‘-\\ “
#pragma omp parallel for private(i Pl T 1
privindx, privDbl) I P . id I I ——
for (1o 01 b < amraySize; 140 privindx privindx privIads priviadx
for (privdx=0; privdx <16;privdx++){ privDbl pivDbl privDbl privObl
privDbl=((double)privdx)/16; 4 4 4
y[il=sin(exp(cos(-exp(sin(x[il1)))))
+ cos(privDbl);
} }
]

execufion conext {or *arrayUpdate_II*

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas

Introduction to Shared Memory Programming with OpenMP

OpenMP: The PRAGMA Directive

OpenMP pragma directives

#pragmal omp

#Desc

atomic Identifies a specific memory location that must be updated atomically and not be
exposed to multiple, simultaneous writing threads.

atomic Identifies a specific memory location that must be updated atomically and not be
exposed to multiple, simultaneous writing threads.

parallel Defines crit. block to be run by multiple threads in parallel. With specific exceptions,
all other OpenMP directives work within parallelized regions defined by this directive.

for Work-sharing construct identifying an iterative for-loop whose iterations should be run
in parallel.

parallel for Shortcut combination of omp parallel and omp for pragma directives, used to define
a parallel region containing a single for directive.

ordered Work-sharing construct identifying a structured block of code that must be executed
in sequential order.

section(s) Work-sharing construct identifying a non-iterative section of code containing one or

more subsections of code that should be run in parallel.

parallel sections

Shortcut combination of omp parallel and omp sections pragma directives, used to
define a parallel region containing a single sections directive.

single Work-sharing construct identifying section of code to be run by a single avail. thread.

master Synchronization construct identifying a section of code that must be run only by the
master thread.

critical Synchronization construct identifying a statement block that must be executed by a
single thread at a time.

barrier Synchronizes all the threads in a parallel region.

flush Synchronization construct identifying a point at which the compiler ensures that all

threads in a parallel region have the same view of specified objects in memory.

threadprivate

Defines the scope of selected file-scope data variables as being private to a thread,
but file-scope visible within that thread.

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
OpenMP: The PRAGMA Directive

Some OpenMP Comments & Observations

@ In OpenMP terminology, the collection of threads executing the
parallel block the original thread and the new threads is called a
team

the original thread is called the master
additional threads are called slaves

the master starts p-1 new threads

implicit barrier: formed after the hello thread — all threads must
return to this point in the code

@ all threads share STDIO

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 2 7 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Binding OpenMP Thread to a Processor

Binding OpenMP Thread to a Processor

@ There may be system-defined limitations on the number of threads
that a program can start.

OpenMP standard does not guarantee that the directive will actually
start the number of requested threads.

Modern systems can start hundreds or thousands of threads

(]

OpenMP typically will scale to the number of cores on a node

OpenMPI contains features that allow you to force binding to get one

thread per core.

@ Two mechanisms:

o Set the environment variable OMP_PROC_BIND to logical true or
false via the command line, in your .bashrc file, or in the batch script
(or the command line)

o use an API to find out the binding setting: omp_proc_bind_t
omp_get_proc_bind(void)

Note: this requires a special library version, which is not on tuckoo

COMP 605: Topic nted: 04/11/17 Last Update: 04/10/17 2 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Binding OpenMP Thread to a Processor

Binding OpenMP Thread to a Processor

1 /* File: omp_info.c

2 * Written by: Mary Thomas, April, 2016

3 * Compile: gcc -g -Wall -fopenmp -o omp_info omp_info.c

4 */

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include <sched.h>

8 #include <omp.h>

9
10 void Usage(char* prog_name);
11
12 int main(int argc, char* argv[]) {
13 int omp_req_thds, omp_nprocs, omp_core, omp_numthds, omp_tid;
14
15 if (arge != 2) {
16 fprintf(stderr, " usage: %s <omp_req_thds> \n", argv[0]);
17 exit(0);

18 ¥

19 omp_req_thds = strtol(argv[1], NULL, 10);
20
21 /* get the total number of processors available to the device */
22 omp_nprocs = omp_get_num_procs();
23 /* set the number of threads to override any ENV vars */
24 omp_set_num_threads (omp_req_thds) ;
25 printf ("omp_nprocs=/d, omp_req_thds=)d\n", omp_nprocs,omp_req_thds);
26
27 # pragma omp parallel num_threads(omp_req_thds) private(omp_core,omp_numthds, omp_tid) {
28 omp_core = sched_getcpu(Q);
29 omp_numthds = omp_get_num_threads(); /* get number of OpenMP threads */
30 omp_tid = omp_get_thread_numn(); /* get OpenMP thread ID */
31 printf ("OMP region: omp_tid=%d, omp_core=%d, omp_numthds=Yd \n",
32 omp_tid, omp_core, omp_numthds);
33 }
34 3

COMP 605: Topic nted: 04/11/17 Last Update: 04/10/17 24/4 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Binding OpenMP Thread to a Processor

OpenMP Thread to Processor Bindings: Batch Script

1 [mthomas@tuckoo] cat batch.omp_info

2 #!/bin/sh

3 # run using:

4 qsub -v T=16,B=false batch.omp_info

5 #

6 #PBS -V

7 #PBS -1 nodes=1:corelf

8 #PBS -N omp_info

9 #PBS -] oe

10 #PBS -r n

11 #PBS -q batch

12 cd $PBS_O_WORKDIR

13 echo PBS: current home directory is $PBS_O_HOME
14

15 # set binding of threads to processors

16 # logical true or false

17 # set the ENV var in this script, or on the command line
18 OMP_PROC_BIND=$B

19 export OMP_PROC_BIND
20
21 # use this if you are not setting number of
22 # threads in program
23 #set number of cores using command line arg
24 OMP_NUM_THREADS=${T}
25 export OMP_NUM_THREADS=${T}
26
27 # either of these lines will work:
28 OMP_PROC_BIND=$B ./omp_info $T
29 #### . /omp_info $T
30

COMP 605: Topic ented: 04/11/17 Last Update: 04/10/17 2 Mary Thomas
Introduction to Shared Memory Programming with OpenMP
Binding OpenMP Thread to a Processor

OpenMP Thread to Processor Bindings: Output

Setting the environment variable OMP_PROC_BIND to logical true will
force the system to bind 1 thread to 1 processor. The default is false If
the number of threads is larger than the number of processors, the system
will begin to assign multiple threads.

[mthomas] qsub -v B=true,T=16 batch.omp_info [mthomas] qsub -v B=false,T=16 batch.omp_info
6738.tuckoo.sdsu.edu 6736.tuckoo.sdsu.edu

[mthomas] cat omp_info.06738 | sort [mthomas] cat omp_info.06736 | sort
omp_nprocs=16, omp_req_thds=16 omp_nprocs=16, omp_req_thds=16

OMP region: omp_tid=0, omp_core=0, omp_numthds=16 OMP region: omp_tid=0, omp_core=12, omp_numthds=16

OMP region: omp_tid=1, omp_core=1, omp_numthds=16 OMP region: omp_ti.

*
*

omp_core=1, omp_numthds=16

OMP region: omp_tid=2, OMP region: , omp_numthds=16
OMP region: omp_tid=3, OMP region: 3, omp_numthds=16
OMP region: omp_tid=4, OMP region: , omp_numthds=16
OMP region: omp_tid=5, OMP region: , omp_numthds=16
OMP region: omp_tid=6, OMP region: 4, omp_numthds=16

OMP region: omp_tid=7, OMP region: omp_tid=7, omp_core=5, omp_numthds=16

OMP region: omp_tid=8, OMP region: , omp_numthds=16
OMP region: omp_tid=9, omp_core=9, OMP region: 5, omp_numthds=16
OMP region: omp_tid=10, omp_core=10, OMP region: 0, omp_core=7, omp_numthds=16
OMP region: omp_tid=11, omp_core=11, omp_numthds=16 OMP region: omp_tid=11, omp_core=0, omp_numthds=16 fox
OMP region: omp_tid=12, omp_core=12, omp_numthds=16 OMP region: omp_core=8, omp_numthds=16
OMP region: omp_tid=13, omp_core=13, omp_numthds=16 OMP region: omp_core=0, omp_numthds=16 f**
OMP region: omp_tid=14, omp_core=14, omp_numthds=16 OMP region: omp_core=9, omp_numthds=16

OMP region: omp_tid=15, omp_core=15, omp_numthds=16 OMP region: omp_tid=15, omp_core=1, omp_numthds=16 f**

COMP 605
Introduction to Shared Memory Programming with OpenMP

© 0O U WN

Topic

Presente

d: 04/11/17

Binding OpenMP Thread to a Processor

OpenMP Thread Bindings:

Last Update: 04/10/17

0OMP
0OMP
0OMP

omp_nprocs=16,
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:
region:

omp_tid=0,
omp_tid=1,

omp_tid=2,

omp_tid=3,

omp_tid=4,

omp_tid=5,

omp_tid=6,

omp_tid=7,

omp_tid=8,

omp_tid=9,

omp_tid=10,
omp_tid=11,
omp_tid=12,
omp_tid=13,
omp_tid=14,
omp_tid=15,
omp_tid=16,
omp_tid=17,
omp_tid=18,
omp_tid=19,
omp_tid=20,
omp_tid=21,
omp_tid=22,
omp_tid=23,
omp_tid=24,
omp_tid=25,
omp_tid=26,
omp_tid=27,
omp_tid=28,
omp_tid=29,
omp_tid=30,
omp_tid=31,

[mthomas] gsub -v B=false,T=32 batch.omp_info
6740.tuckoo.sdsu.edu
[mthomas] cat omp_info.06740 | sort
omp_req_thds=32

omp_core=11, omp_numthds=32
, omp_numthds=32
omp_core=2, omp_numthds=32
2, omp_numthds=32
omp_core=0, omp_numthds=32
omp_core=0, omp_numthds=32
omp_core=0, omp_numthds=32
omp_core=0, omp_numthds=32
omp_core=0, omp_numthds=32
omp_core=0, omp_numthds=32
omp_nunthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
, omp_numthds=32
omp_core=3, omp_numthds=32
omp_core=3, omp_numthds=32
omp_core=3, omp_numthds=32
omp_core=3, omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_core=1, omp_numthds=32

Fxkk

Hokkk
ok
ok
HHkk
HHkk
*Hkk
HHkok
*hkk

Mary Thomas

Requesting More Threads than Cores

COMP 605: Topic
Introduction to Shared Memory Programming with OpenMP

© 0O U WN

Presented: 04/11/17

Binding OpenMP Thread to a Processor

OpenMP Thread Bindings:

Last Update: 04/10/17

omp_nprocs=16,

omp_req_thds=32

OMP region: omp_tid=0, omp_core=0,
OMP region: omp_tid=1,
OMP region: omp_tid=2,
OMP region: omp_tid=3,
OMP region: omp_tid=4, omp_core=4,
OMP region: omp_tid=5, omp_core=5,
OMP region: omp_tid=6, omp_core=6,
OMP region: omp_tid=7, omp_core=7,
OMP region: omp_tid=8, omp_core=8,
OMP region: omp_tid=9, omp_core=9,
OMP region: omp_tid=10, omp_cor
OMP region: omp_tid=11, omp_core=11
OMP region: omp_tid=12, omp_cor
OMP region: omp_tid=13,
OMP region: omp_tid=14,
OMP region: omp_tid=15,
OMP region: omp_tid=16, _ s
OMP region: omp_tid=17,

OMP region: omp_tid=18,
OMP region: omp_tid=19, omp_core=3,
OMP region: omp_tid=20, omp_core=4,
OMP region: omp_tid=21, omp_core=5,
OMP region: omp_tid=22, omp_core=6,
OMP region: omp_tid=23,
OMP region: omp_tid=24,
OMP region: omp_tid=25,
OMP region: omp_tid=26,
OMP region: omp_tid=27,
OMP region: omp_tid=28,
OMP region: omp_tid=29,
OMP region: omp_tid=30,
OMP region: omp_tid=31,

10,

omp_core=13,

mthomas] gsub -v B=true,T=32 batch.omp_info
6739.tuckoo.sdsu.edu
[[mthomas] cat omp_info.06739 | sort

omp_numthds=32
omp_numthd;
omp_numthds=;
omp_numthd;
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
=32

omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32
omp_numthds=32

omp_core=15, omp_numthds=32

Mary Thomas

Requesting More Threads than Cores

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17
Trapeziodal Rule with OpenMP

The Trapezoid Rule for Numerical Integration

Solve the Integral: fab F (x)dx

The Trapezoidal Rule

y L4

(b)

Where F (x) can be any function of x: f (x?), f (x3)
See Pacheco IPP (2011), Ch3.

Mary Thomas

Last Update: 04/10/17 lary Thomas

COMP 605: Topic Presented: 04/11/17

Trapeziodal Rule with OpenMP

Trapezoid Equations

Y
, fx3) 1
Integral: [f (x)dx
f(Xi11) 4
Area of 1 trapezoid: = & |f (x;) + f (xi1)]
Base: h= 222
Endpoints: xp=a, xi=a+h, x2=a+2h,..., xp_1=a+(n—1)h, xc.=0b

Sum of Areas: Area = h \‘@ + f(Xig1) + £ (Xig1) + ... + F (x—1) %J

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Trapeziodal Rule with OpenMP

Trapezoid Problem: Serial Algorithm

/* Input: a ,b, n */
h = (b-a)/n ;
approx - (F(a) + F(b))/2.0
for (i=0; i<= n-1; i++) {
Xx_i = a + ixH;
approx += f(x_i);
}

approx = h* approx

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Trapeziodal Rule with OpenMP

Parallelizing the Trapezoidal Rule

PCAM Approach
@ Partition problem solution into tasks.
o Identify communication channels between tasks.
o Aggregate tasks into composite tasks.

@ Map composite tasks to cores.

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 /4 Mary Thomas
Trapeziodal Rule with OpenMP

Compute area
of trap 1

Compute area
of trap n—1

Compute area
of trap 0

Add areas

Two types of tasks:
Compute area of 1 trapezoid
Compute area sums

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Trapeziodal Rule with OpenMP

First OpenMP Version of the Trap Alg.

1 We identified two types of tasks:
a computation of the areas of individual trapezoids, and
b adding the areas of trapezoids.
2 There is no communication among the tasks in the first collection,
but each task in the first collection communicates with task 1b.

3 We assumed that there would be many more trapezoids than cores.
So we aggregated tasks by assigning a contiguous block of trapezoids
to each thread (and a single thread to each core).

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17
Trapeziodal Rule with OpenMP

Mary T

Time Thread O Thread 1
0 global_result = 0 to register finish my_result
T | :'r-.g'_resu-it =1 'l'o'regi.;:lé_r-) 'gl-c result = 0to rt_;_;i'.\lcr
2 add my_result to global_result | my_result = 2 to register
3 store global result = 1 add my_result to global result
4 store global_result = 2

Unpredictable results when two (or more)
threads attempt to simultaneously execute:

global_result += my_result ;

NN

Results in a race condition

COMP 605

Topic Presented: 04/11/17 Last Update: 04/10/17

Trapeziodal Rule with OpenMP

Mary T

| Mutual exclusion

pragma omp critical <
global_result += my_result ;

only one thread can execute
the following structured block at a time

critical directive tells compiler that system needs to provide
mutually exclusive access control for the block of code.

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17
Trapeziodal Rule with OpenMP

Mary Thomas

#include <stdio.h>
#include <stdlib . h>
#include <omp.h>

void Trap(double a, double b, int n., doubles globa

int main(int argc, chars=

printf("Enter a,
scanf("%1f %1f %d", &a, &b,

pragma omp parallel num_threads(thread_count)
Trap(a, b, n, &global_result);

printf("With n =
printf("of the
a, b, global_
return 0:
b /% main +/

double global_result 0.0; /s Srore resulr in global_resuls
double a. b: /+ Left and right endpoints

int n; /= Total number of trapezoids
int thread_count;

thre count = 10);

®/
=/
w/

Mary Thomas

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17

Trapeziodal Rule with OpenMP

void Trap(double a, double b, int n, doublex global_result_p) {

double h, x, my_result;
local_a, local_b;

_rank = omp_get ead_num();
hread_count = omp_get_num_threads();

h = (b—a)/n;

1 n/thread_count;

a + my_rankslocal_nxh;
local_a + local_nxh;
= (f(local_a) + f(local_b))/2.0;
1: i <= local_n-—1; i++) {

1_a + i=xh;

(x);

my_result +=

my_result = my_resultxl

pragma omp critical
*global_result_p += my_result;
Y} /% Trap +/

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 38/47 Mary Thomas

Variable Scope

| Scope

1

= In serial programming, the scope of a
variable consists of those parts of a
program in which the variable can be used.

= In OpenMP, the scope of a variable refers
to the set of threads that can access the
variable in a parallel block.

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17
Variable Scope

| Scope in OpenMP

= A variable that can be accessed by all the
threads in the team has shared scope.

= A variable that can only be accessed by a
single thread has private scope.

= The default scope for variables
declared before a parallel block
is shared.

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Variable Scope

o for C, variables defined in main have global; variables defined in a
function have function scope.

o for OpenMP: the scope of a variable is associated with the set of
threads that can access the variable in a parallel block.
o shared scope:
o the default scope for variables defined outside a parallel block
o e.g. global_results was declared in main, so it is shared by all threads
o private scope:

o a variable that can only be accessed by a single thread
o The default scope for variables declared inside a parallel block is
private (e.g. all vars in defined in Trap).

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 Mary Thomas
Variable Scope

* Function: Trap
* Purpose: Use trapezoidal rule to
* estimate definite integral
* Input args:
% a: left endpoint
% b: right endpoint
int main(int argc, charx argv[]) { x n: nuiber Ofptrapezoids
/% Store result in global result */ % global_result_p: pointer to global trap sum
double global_result = 0.0; + Output arg
/* Left and right endpoints */ * integral: estimate of integral from a to b of f(x)
double a, b; */
int n; /* Total number of trapezoids*/ void Trap(double a, double b, int n
int thread_count; ’ X o

doublex global_result_p) {
double h, x, my_result;
double local_a, local_b;
int i, local_n;
int my_rank = omp_get_thread_num();
int thread_count = omp_get_num_threads();

if (argc != 2) Usage(argv[0]);

thread_count = strtol(argv[1], NULL, 10);

printf("Enter a, b, and n\n");

scanf ("41f %1f %d", &a, &b, &n);

if (n % thread_count != 0) Usage(argv[0]);
pragma omp parallel num_threads(thread_count) h = (b-a)/nm;

Trap(a, b, n, &global_result);

local_n = n/thread_count;
local_a = a + my_rank*local_nxh;
local_b = local_a + local_nxh;
my_result = (f(local_a) + f(local_b))/2.0;
for (i = 1; i <= local_n-1; i++) {
x = local_a + i*h;
my_result += f£(x);

printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %.14e\n",
a, b, global_result);
return 0;
} /* main */

¥

my_result = my_resultxh;

pragma omp critical
*global_result_p += my_result;
} /% Trap */

COMP 605: Topic
Reduction Clause

Presented: 04/11/17 Last Update: 04/10/17

OpenMP: Reduction Clause

Mary Thomas

We need this more complex version to add each
thread’ s local calculation to get global_result.

void Trap(double a, double b, int n,

Although we’ d prefer this.

double b, int n);

double Trap(double =z,

doublex global_result_p);

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17 43/47 Mary Thomas
Reduction Clause

1

1

If we use this, there’ s no critical section!

double Local_trap(double a, double b, int n):

If we fix it like this...

global result = 0.0;

pragma omp parallel num_threads(thread_count)
{

= pragma omp critical

global_result += Local_trap(double a, double b, int n);

}

. we force the threads to execute sequentially.

Local_Trap does not have reference to the
global variable global_result

COMP 605: Topic
Reduction Clause

Presented: 04/11/17 Last Update: 04/10/17

Mary Thomas

1

We can avoid this problem by declaring a private
variable inside the parallel block and moving

the critical section after the function call.

global_result = 0.0;
pragma omp parallel num_threads(thread_count)

{
double my_result = 0.0; /x private */
my_result (double a, double b, int n);
pragma omp critical
al_result += my_result;
}

Notes: the call to Local_Trap is inside the parallel block, but outside critical section;
my_result is private to each thread

COMP 605: Topic Presented: 04/11/17 Last Update: 04/10/17
Reduction Clause

| Reduction operators

= A reduction operator is a binary operation
(such as addition or multiplication).

= A reduction is a computation that
repeatedly applies the same reduction
operator to a sequence of operands in
order to get a single result.

= All of the intermediate results of the
operation should be stored in the same
variable: the reduction variable.

COMP 605: Topic

Reduction Clause

Last Update: 04/10/17

Presented: 04/11/17

Mary Thomas

A reduction clause can be added to a parallel
directive.

list>)

reduction(<operator>: <variable

/
[

R W |

global_resu = 0.0;

pragma omp parallel num_threads(thread_count) \
(+: global_ 1

+= Local_

trap(double a, double b,

int

n);

Mary Thomas

Last Update: 04/10/17

Presented: 04/11/17

COMP 605: Topic
Reduction Clause

A few comments

@ OpenMP (1) creates private thread variable, (2) stores result for

thread, and (3) creates critical section block.
@ subtraction ops are not guaranteed (not associative or commutative):

result = 0

for(i=1, i < 4 i++)
result —= i
o floating point arithmetic is not associative, so results are not

guaranteed:

a 4+ (b+ c) may not equal (a+ b) + ¢

	Introduction to Shared Memory Programming with OpenMP
	OpenMP Overview
	Compiling and Running OpenMP Code: Hello World
	OpenMP: The PRAGMA Directive
	Binding OpenMP Thread to a Processor

	Trapeziodal Rule with OpenMP
	Variable Scope
	Reduction Clause

