COMP/CS 605: Introduction to Parallel
Computing

Topic : Distributed Memory Programming:
Message Passing Interface

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Presented: 02/13/17
Updated: 02/13/17

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17

Table of Contents

@ Distributed Memory Programming with MP]I
o Distributed-Memory Programming with MPI
@ Obtaining node configuration information:
MPI Programming Env
Example: MPI Hello World
MPI API: Basic Routines
MPI Communication

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 E Mary Thomas
Distributed Memory Programming with MPI
Distributed-Memory Programming with MPI

Distributed-Memory Programming with MPI

CPU CPU CPU CPU
CPU CPU CPU CPU ‘ ‘ ‘ ‘ ‘
| Memory ‘ | Memory ‘ Memory | ‘ Memory | Interconnect ‘
L] | —
‘ Interconnect ‘
Distributed-memory system: Shared-memory system:
collection of cores, connected with collection of cores interconnected
a network, each with its own to a global memory.

memory.

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI
Distributed-Memory Programming with MPI

An HPC Cluster

Mary Thomas

A Cluster has multiple, separate nodes, each has multiple cores

Cluster: compute nodes

Users, submitting jobs

Figure: Diagram of a cluster

Source: https://www.hpc2n.umu.se/support/beginners_guide

https://www.hpc2n.umu.se/support/beginners_guide

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 Mary Thomas
Distributed Memory Programming with MPI

Obtaining node configuration information:

Student Cluster: tuckoo.sdsu.edu

[mthomas@tuckoo:~] date
Fri Feb 12 09:57:36 PST 2016
[mthomas@tuckool$ cat /etc/motd

the cluster system has 11 compute nodes with various CPUs:

Node name #Avail Cores Node Properties** Got GPUs?
nodel,node2,node3,noded 4ea. core4, mpi no
node6 6 core6, mpi no
node9 6 core6, mpi yes
nodes 8 core8, mpi no
node8 8 core8, mpi yes
node7 12 core12,mpi yes
nodell 16 core16,mpi yes

#*see the output from "pbsnodes -a".

CPUs & RAM

nodel thru node4, Xeon X3360 @ 2.83GHz, 8GB ea.
nodeb Xeon E5420 @ 2.50GHz, 20GB

node6é Xeon E5-1650 @ 3.20GHz, 64GB

node7 Xeon X5650 @ 2.67GHz, 48GB

node8 Xeon E5620 @ 2.40GHz, 48GB

node9 Xeon E5-1660 @ 3.30GHz, 32GB

nodell Xeon E5-2650 @ 2.60GHz, 64GB

GPUs

node9 has 2 GTX 480 gpu cards (1.6GB dev ram ea.)
node8 has 2 C2075 gpu cards (6GB dev ram ea.)
node7 has 2 C1060 gpu cards (4GB dev ram ea.)
nodell has 1 K40 gpu card ()

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17

Mary Thomas

Distributed Memory Programming with MPI
MPI Programming Env

How does MPI Work?

1]

000 O©00

The parallel job is controlled by the resource manager on the cluster.

On Initialization, MPI assigns P processors (cores) to a global
" communicator” group called MPI_COMM_WORLD.

MPI sets up the MPI environment on each of the P; cores.
MPI launches an identical copy of the executable on the P; cores.

Program queries MPI_COMM_WORLD to get group information:

o Number of processes
o Process ID/Rank

COMP/CS 605

Topic Presented: 02/13/17 Updated: 02

Distributed Memory Programming with MPI
MPI Programming Env

MPI Programming Model

Message Passing Interface

Written in C (or Fortran, Python, etc.)
Has main.

Uses stdio.h, string.h, etc.

Need to add mpi.h header file.

Identifiers defined by MPI start with MPI_.

First letter following underscore is uppercase.

For function names and MPI-defined types.

Helps to avoid confusion

Mary Thomas

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI
MPI Programming Env

Basic MPI Routines

Message Passing Interface
@ For running codes on distributed memory systems.

o Data resides on other processes — accessed through MPI calls.

@ The minimal set of routines that most parallel codes use:

MPLINIT
MPI_COMM_SIZE
MPI_.COMM_RANK
MPI_SEND
MPI_RECV
MPI_FINALIZE

Mary Thomas

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 Mary Thomas
Distributed Memory Programming with MPI
MPI Programming Env

Serial Hello World

#include <stdio.h>
#include <unistd.h>

int main(void)
{
char cptr[100];

gethostname (cptr,100) ;
printf("hello, world from %s\n", cptr);

return O;

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI

Example: MPI Hello World

MPI Hello World

/* File:

* mpi_hello.c

*

* Purpose:

* A "hello,world" program that uses MPI

*

* Compile:

* mpicc -g -Wall -std=C99 -o mpi_hello mpi_hello.c
* Usage:

* mpiexec -np <number of processes> ./mpi_hello

*

* Input:

* None

* Output:

* A greeting from each process

*

* Algorithm:

* Each process sends a message to process 0, which prints
* the messages it has received, as well as its own message.
*

* IPP: Section 3.1 (pp. 84 and ff.)

*/

#include <stdio.h>

#include <string.h> /* For strlen */
#include <mpi.h> /% For MPI functions, etc */

const int MAX_STRING = 100;
int main(void) {
char greeting[MAX_STRING]; /* String storing message */

int comm_sz; /* Number of processes */
int my_rank; /* My process rank */
int q;

Mary Thomas

/* Start up MPI */
MPI_Init(NULL, NULL);

/* Get the number of processes */
MPI_Comm_size (MPI_COMM_WORLD, &comm_sz);

/* Get my rank among all the processes */
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

if (my_rank !'= 0) {
/* Create message */
sprintf (greeting, "Greetings from process %d of %d!",
my_rank, comm_sz);
/* Send message to process 0 */
MPI_Send(greeting, strlen(greeting)+1,
MPI_CHAR, 0, 0, MPI_COMM_WORLD);
} else {
/* Print my message */
printf("Greetings from Master process %d of %d!\n",
my_rank, comm_sz);
for (q = 1; q < comm_sz; q++) {
/* Receive message from process q */
MPI_Recv(greeting, MAX_STRING, MPI_CHAR, q,
0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
/* Print message from process q */
printf("%s\n", greeting);

}

/* Shut down MPI %/
MPI_Finalize();

return 0;
} /x main */

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 2f Mary Thomas
Distributed Memory Programming with MPI

Example: MPI Hello World

[mthomas@tuckoo ch3]$ mpirun -np 16 ./mpi_hello
Greetings from process 0 of 16!

__ wrapper script to compile Greetings from process 1 of 16!
(— source file Greetings from process 2 of 16!
Greetings from process 3 of 16!
Greetings from process 4 of 16!
mplcc -g pg -Wa” -0 mpl he”o Greetings from process 5 of 16!
LY Greetings from process 6 of 16!
mpi_hello.¢ b / Greetings from process 7 of 16!

(— ;
produce — ~ create this executable file name Greetings from process 8 of 16!
debugging Greetings from process 9 of 16!

N

(as opposed to default a.out) Greetings from process 10 of 16!
Greetings from process 11 of 16!
Greetings from process 12 of 16!
Greetings from process 13 of 16!
Greetings from process 14 of 16!
Greetings from process 15 of 16!

information

turns on all warnings

batch here

COMPILE CODE

[tuckool$ mpirun -np 16 --nooversubscribe ./mpi_hello

= There are not enough slots available in the system to
[tuckoo]$ mpicc -g -pg -Wall -o mpi_hello mpi_hello.c satisfy the 16 slots that were requested by the application:
./mpi_hello

Either request fewer slots for your application, or
make more slots available for use.

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 Mary Thomas
Distributed Memory Programming with MPI

MPI API: Basic Routines

’ MPI Components

= MPI_Init

= Tells MPI to do all the necessary setup.

int MPI_Init(
int#* argc_p [fx infout =/,
char*x* argv_p /x infout =*/);

= MPI| Finalize

= Tells MPI we’ re done, so clean up anything
allocated for this program.

|inl MPI_Finalize(void); ‘

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI

Mary Thomas

MPI API: Basic Routines

Basic Outline

#include <mpi.h>

int main(int argc, charx argv[]) {
/% No MPI calls before this =/
MPI_Init(&argc, &argv);
MPI_Finalize ();

/* No MPI calls after this =%/

return 0:

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI

MPI Communication

Communicators

= A collection of processes that can send
messages to each other.

= MPI_Init defines a communicator that
consists of all the processes created when
the program is started.

= Called MPI_COMM_WORLD.

COMP/CS 605: Topic

Presented: 02/13/17 Updated: 02

Distributed Memory Programming with MPI

MPI Communication

Mary T

Communicators

int MPI_Comm_size(

MPI_Comm comm fx in =f;
intx* COMM_SZ_p /* out */);
Fd
-

—
number of processes in the communicator

int MPI_Comm_rank(

MPI_Comm comm /* in */
int# my_rank_p /x out */);
a

my rank —
(the process making this call)

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 16/26
Distributed Memory Programming with MPI

MPI Communication

|_SPMD

= Single-Program Multiple-Data
= We compile one program.

= Process 0 does something different.

= Receives messages and prints them while the
other processes do the work.

s The if-else construct makes our program
SPMD.

COMP/CS 605: Topic

Presented

02/13/17 Updated: 02/13/17

Distributed Memory Programming with MPI

Mary Th

MPI Communication

’ Data types

MPI datatype

C datatype

MPI_CHAR
MPI_SHORT

MPI_INT

MPI_LONG
MPI_LONG_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_BYTE
MPI_PACKED

signed char

signed short int
signed int

signed long int
signed long long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02
Distributed Memory Programming with MPI

MPI Communication

18/26

Mary T

Communication

int MPI_Send(

void # msg_buf_p
int msg_size
MPI_Datatype msg_type

int dest

int tag

MPI_Comm communicator

/*
/%
/%
/*
/%
Ve

in
in
in
in
in
in

r
x/
%/,
#/

x/ };

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02
Distributed Memory Programming with MPI

MPI Communication

19/26

Mary T

int MPI_Recv(
void#
int
MPI_Datatype
int
int

MPI_Comm
MPI_Statusx

Communication

msg_buf_p
buf_size
buf_type
source
tag

communicator
status_p

/%
[*
Ve
/=
/%

/x
/%

out
in
in
in
in
in
out

A
x/
x/,
*/,
i

x/,
x/);

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 Mary Thomas
Distributed Memory Programming with MPI

MPI Communication

Message matching

MPI_Recv(rgcv'l’bw_'

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI

MPI Communication

| Receiving messages

1

= A receiver can get a message without
knowing:
= the amount of data in the message,
= the sender of the message,
= or the tag of the message.

[8 o

X

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI

Mary T

MPI Communication

I status_p argument

MPI_Recv(recv_buf_p, recv_buf_sz, recv_type, src, recv_tag,
recv_comm, &status);

MPI_Status® —~
MP|_Status* status; | MP_SOURCE

MPI_TAG
MPI_ERROR

| status.MPI_SOURCE

| status.MPI_TAG

COMP/CS 605

Topic Presented: 02/13/17 Updated: 02/13/17

Distributed Memory Programming with MPI

MPI Communication

Mary T

’ How much data am | receiving?

int MPI_Get_count(
MPI_Status* status_p /* in =l
MPI_Datatype type /x in w/,
int= count_p /+ out xf);

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI

MPI Communication

| Issues with send and receive

= Exact behavior is determined by the MPI
implementation.

= MPI_Send may behave differently with
regard to buffer size, cutoffs and blocking.

= MPI_Recv always blocks until a matching
message is received.

= Know your implementation;
don’ t make assumptions!

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17 Mary Thomas

Distributed Memory Programming with MPI
MPI Communication

MPI Template (C)

#include <stdio.h>

#include "mpi.h"

#include <math.h>

main(int argc, char sargv[]) {

int p;
int my_rank;
int ierr;

/* start up initial MPI environment x/
MPI_Init(&argc, &argv);

/+ get the number of PE's in the group: MPI.LCOMMWORLD x/
MPI_Comm_size (MPI.LCOMM_WORLD, &p);

/* get my rank in the group: MPLLCOMMWORLD s/
MPI_Comm_rank (MPLCOMM_WORLD, &my_rank);

/* say hello =/
printf("My rank: PW[%d] out of %d Total Processors \n" my_rank,p);

MPI_Finalize (); /% shut down MPI env =/
} /x main %/

COMP/CS 605: Topic Presented: 02/13/17 Updated: 02/13/17
Distributed Memory Programming with MPI
MPI Communication

MPI Template (FORTRAN 90)

program template
l—— Template for any mpi program
implicit none ! highly recommended. It will make
! debugging infinitely easier.
l——Include the mpi header file

include mpif.h I —> Required statement
l——Declare all variables and arrays.
integer ierr, myid, numprocs, itag, irc

l——Initialize MPI

call MPILINIT(ierr) I —> Required statement
l——Who am |? —— get my rank=myid

call MPILCOMM_RANK(MPI.COMM.WORLD, myid, ierr)
l——How many processes in the global group?

call MPI.COMM.SIZE(MPI.COMM_WORLD, numprocs, ierr)

l——Finalize MPI
call MPI_FINALIZE(irc) I ——> Required statement

stop end

Mary Thomas

	Distributed Memory Programming with MPI
	Distributed-Memory Programming with MPI
	Obtaining node configuration information:
	MPI Programming Env
	Example: MPI Hello World
	MPI API: Basic Routines
	MPI Communication

