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Computer Architecture Background

Von Neumann electronic digital computer

Central processing unit:

e arithmetic logic unit
(ALU)
@ processor registers

Central Processing Unit

Control unit:

o instruction register

@ program counter gnput Arithmetic/Logic Unit Qutput
e Memory unit:
o data
o instructions
o External mass storage Source: http:
//en.wikipedia.org/wiki/Von_Neumann_architecture
@ Input and output

mechanisms


http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Von_Neumann_architecture
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|_ The von Neumann Architecture

Interconnect ‘

Address Contents

Main Memory

Figure 2.1

Mary Thomas
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Computer Architecture Background

Main memory

= This is a collection of locations, each of
which is capable of storing both
instructions and data.

= Every location consists of an address,
which is used to access the location, and
the contents of the location.
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Parallel Hardware Architectures

Computer Architecture Background

| _Central processing unit (CPU)

= Divided into two parts. /

s Control unit - responsible for
deciding which instruction in
a program should be
executed. (the boss)

= Arithmetic and logic unit (ALU) -
responsible for executing the actual
instructions. (the worker)
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Computer Architecture Background

Key terms

= Register — very fast storage, part of the
CPU.

= Program counter — stores address of the
next instruction to be executed.

= Bus — wires and hardware that connects
the CPU and memory.

gl e
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memory

fetch/read

l

memory

write/store
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Computer Architecture Background

An operating system “process”

= An instance of a computer program that is
being executed.

= Components of a process:
= The executable machine language program.
= A block of memory.

= Descriptors of resources the OS has allocated
to the process.

= Security information.
= Information about the state of the process.
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Parallel Hardware Architectures
Computer Architecture Background

|__Multitasking

= Gives the illusion that a single processor
system is running multiple programs
simultaneously.

= Each process takes turns running. (time
slice)

m After its time is up, it waits until it has a
turn again. (blocks)
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Computer Architecture Background

Threading

= Threads are contained within processes.

= They allow programmers to divide their
programs into (more or less) independent
tasks.

= The hope is that when one thread blocks
because it is waiting on a resource,
another will have work to do and can run.
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Computer Architecture Background




Mary Thomas

CS 596: Topic Posted: 01/30/17  Updated: 01/30/17
Parallel Hardware Architectures
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A process and two threads

the “master” thread

v
/
/ Thread
J rea
Process /
a2
/
4
:// Thread
y terminating a thread
Is called joining

starting a thread
Is called forking

Figure 2.2
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Computer Architecture Background

MODIFICATIONS TO THE VON
NEUMANN MODEL
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Computer Architecture Background

Basics of caching

= A collection of memory locations that can
be accessed in less time than some other
memory locations.

= A CPU cache is typically located on the
same chip, or one that can be accessed
much faster than ordinary memory.
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Computer Architecture Background

Principle of locality

= Accessing one location is followed by an
access of a nearby location.

= Spatial locality — accessing a nearby
location.

= Temporal locality — accessing in the near
future.
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Principle of locality

float z[1000];

sum = 0.0;
for (i=0;i<1000; i++)
sum += z[i];
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Levels of Cache

smallest & fastest

L1 4

L2 |

L3 [N

C—/ largest & slowest
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| Cache hit

L2 y z total

|L3 A[] radius r1 center ‘

Cache miss

-
TP =i ]

main

L2 Mz total

|L3 A[] radius center ‘
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Shared Memory Systems

Issues with cache

= When a CPU writes data to cache, the
value in cache may be inconsistent with
the value in main memory.

= Write-through caches handle this by
updating the data in main memory at the
time it is written to cache.

= Write-back caches mark data in the cache
as dirty. When the cache line is replaced
by a new cache line from memory, the dirty
line is written to memory.
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Cache mappings

= Full associative — a new line can be
placed at any location in the cache.

= Direct mapped — each cache line has a
unique location in the cache to which it will
be assigned.

= n-way set associative — each cache line
can be place in one of n different locations
in the cache.
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n-way set associative

= When more than one line in memory
can be mapped to several different
locations in cache we also need to be
able to decide which line should be
replaced or evicted.
e ¢

b

ke

Mary Thomas
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Example

Cache Location
Memory Index |[ Fully Assoc | Direct Mapped | 2-way
1] 0,1,2,0r3 0 Dorl
1 0,1,2,0r3 1 2or3
2 0,1,2,0r3 2 Dor 1
3 0,1,2.0r3 3 2ord
4 0,1,2,0r3 [1] Dorl
5 0,1,2,0r3 1 2orl
6 1 k] 2 Dorl
7 1, 3 3 2or3
8 L 3 0 Dorl
9 1,2,0r3 1 2or3
10 1 or3 2 Dorl
11 1,2,0r3 3 2ord
12 1,2,0r3 0 Dor1
13 1,2,0r3 1 2or3
14 1,2,0r3 2 Dorl
15 1,2,0r3 3 2or3

Table 2.1: Assignments of a 16-line
main memory to a 4-line cache
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Caches and programs

double A[MAX][MAX], x[MAX], y[MAX]:

/+ Imitialize A and x, assign y

/+ First pair of loops +/
for (i = 0; 1 < MAX: i++)
for (j = 0; j < MAX; j++)

Mary Thomas

v[i] += ALi][3]+x[3];

/= Assign y = 0 =/

/= Second pair of loops =/

=0 »/

Cache Line Elements of &
1] AloJ[o] [afo] (1] | Aafo] (2]
1 A[1][0) [ A1) [1] | A[1](2]
2 A[2][0] A[2] [2]
3 A[3110] A[3][2]

for (3 = 0; § < MAX; j++)
for (1 = 0;: 1 < MAX: i++)
y[i] += A[i][j)+x[3]:
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Shared Memory Systems

|_Virtual memory (1)

= If we run a very large program or a
program that accesses very large data
sets, all of the instructions and data may

not fit into main memory.

= Virtual memory functions as a cache for
secondary storage.
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Virtual memory (2)

= It exploits the principle of spatial and
temporal locality.

= It only keeps the active parts of running
programs in main memory.
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|_Virtual memory (3)

= Swap space - those parts that are idle are
kept in a block of secondary storage.

= Pages — blocks of data and instructions.
= Usually these are relatively large.

= Most systems have a fixed page
size that currently ranges from
4 to 16 kilobytes.
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Virtual memory (4)

program A main memory

program B

program C

Mary Thomas
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|_Virtual page numbers

= When a program is compiled its pages are
assigned virfual page numbers.

= When the program is run, a table is
created that maps the virtual page
numbers to physical addresses.

= A page table is used to translate the
virtual address into a physical address.
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_Page table

30/99

Virtual Address

Virtual Page Number Byte Offset
31 | 30 13|12 11| 10 10
1 0 1 1 OO0 ]|---|1]1

Table 2.2: Virtual Address Divided into
Virtual Page Number and Byte Offset

Mary Thomas
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Translation-lookaside buffer (TLB)

= Using a page table has the potential to
significantly increase each program’s
overall run-time.

= A special address translation cache in the
processor.
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Shared Memory Systems

Translation-lookaside buffer (2)

= It caches a small number of entries
(typically 16—512) from the page table in
very fast memory.

= Page fault — attempting to access a valid
physical address for a page in the page
table but the page is only stored on disk.
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Instruction Level Parallelism (2)

= Pipelining - functional units are arranged
in stages.

= Multiple issue - multiple instructions can
be simultaneously initiated.
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Pipelining
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Pipelining example (1)

Time Operation Operand 1 | Operand 2 Result
1 Fetch operands 9.87 = 107 | 6.54 x 107
2 Compare exponents || 9.87 x 107 | 6.54 < 107
3 Shift one operand 9.87 x 107 | 0.654 x 107
4 Add 0.87 x 107 | 0.654 x 107 | 10.524 x 107
5 || Normalize result 9.87 = 107 [ 0.654 = 107 | 1.0524 x 10°
6 Round result 0.87 x 107 [ 0.654 x 107 | 1.05 x 10°
7 Store result 0.87 x 107 [ 0.654 x 107 | 1.05 = 107

Add the floating point numbers
9.87x10%and 6.54x103
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Shared Memory Systems

Pipelining example (2)

float x[1000], y[1000]. z[1000];

for (i = 0; 1 < 1000; i++)
z[i] = x[i] + y[i];

= Assume each operation
takes one nanosecond
(109 seconds).

m This for loop takes about
7000 nanoseconds.
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Pipelining (3)

= Divide the floating point adder into 7
separate pieces of hardware or functional
units.

= First unit fetches two operands, second
unit compares exponents, etc.

s Output of one functional unit is input to the
next.
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Pipelining (4)

Time || Fetch | Compare | Shift | Add | Normalize | Round | Store

0 0

1 1 0

2 2 | 0

3 3 2 1 0

4 4 3 2 1 0

5 3 ) ;] ] T 0

6 6 5 4 3 2 1 [1]
999 999 998 997 | 996 995 994 993
1000 B 998 | 997 996 995 994
1001 999 | 998 997 996 | 995
1002 999 998 997 996
1003 999 998 997
1004 999 | 998
1005 999

Table 2.3: Pipelined Addition.
Numbers in the table are subscripts of operands/results.
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Shared Memory Systems

Pipelining (5)

= One floating point addition still takes
7 nanoseconds.

now takes 1006 nanoseconds!

W
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|_Multiple Issue (1)

= Multiple issue processors replicate
functional units and try to simultaneously
execute different instructions in a
program.

for (i = 0; i < 1000; i++)
z[i] = x[i] + y[il;

Z[3) z[4]
Ay 2[1] z[2) >

adder #1 adder #2
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|_Multiple Issue (2)

s static multiple issue - functional units are
scheduled at compile time.

= dynamic multiple issue — functional units
are scheduled at run-time.

N\

superscalar
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Shared Memory Systems

Speculation (1)

= |In order to make use of multiple issue, the
system must find instructions that can be
executed simultaneously.

72 a In speculation, the compiler or
the processor makes a guess
about an instruction, and then
executes the instruction on the
basis of the guess.
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Speculation (2)

Z=x+Yy;

if(z>0) Z will be
W E X

else
wW=y;

If the system speculates incorrectly,
it must go back and recalculate w = y.
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Hardware multithreading (1)

= There aren’ t always good opportunities for
simultaneous execution of different
threads.

= Hardware multithreading provides a means
for systems to continue doing useful work
when the task being currently executed
has stalled.

= Ex., the current task has to wait for data to be
loaded from memory.
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Hardware multithreading (2)

= Fine-grained - the processor switches
between threads after each instruction,
skipping threads that are stalled.

= Pros: potential to avoid wasted machine time
due to stalls.

= Cons: a thread that’ s ready to execute a long
sequence of instructions may have to wait to
execute every instruction.
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Shared Memory Systems

Hardware multithreading (3)

= Coarse-grained - only switches threads
that are stalled waiting for a time-
consuming operation to complete.

= Pros: switching threads doesn’ t need to be
nearly instantaneous.

= Cons: the processor can be idled on shorter
stalls, and thread switching will also cause
delays.
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Hardware multithreading (3)

= Simultaneous multithreading (SMT) - a
variation on fine-grained multithreading.

= Allows multiple threads to make use of the
multiple functional units.
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Flynn’s Taxonomy

SISD MISD
SISD Instruction Pool MISD Instruction Pool
= g
~ ~
= =
= =
[=} [=]
SIMD MIMD
SIMD Instruction Pool MIMD Instruction Pool

Data Pool
Data Pool

| ———Fy] | L[y

Source:

http://en.wikipedia.org/wiki/Flynn’s_taxonomy


http://en.wikipedia.org/wiki/Flynn's_taxonomy

CS 596: Topic Posted: 01/30/17  Updated: 01/30/17 49/99
Shared Memory Systems
SIMD

Single Instruction Single Data

instruction D?[a
(in)

Data l
(out)

Single Instruction Single Data

Mary Thomas
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Single Instruction Multiple Data

Data Data
(in) (in)

o Parallelism achieved by
dividing data among the

processors. ; | | | |
. . : l ! l
1 Dat: Dat: Dat
° Appl|es.the same.lnstructlon a (:ula]], e
to multiple data items. Single Instruction Multiple Data

o Called data parallelism



CS 596: Topic Posted: 01/30/17  Updated: 01/30/17 Mary Thomas
Shared Memory Systems
SIMD

SIMD example

Q
0 0 0
control unit mn data |temsm
nALUs
0 8]
X[1] X[2] . X[n]
ALU;, ALU, ALU,

for (i= 0; i < n; i++)
x[i] += y[i];
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SIMD Data Distribution

@ What if we dont have as many ALUs as data items?
@ Divide the work and process iteratively.
@ Ex. m = 4 ALUs and n = 14 data items.

Round | ALUI | ALU2 | ALU3 | ALU4
1 X | X[] | X2] | X[3
2 X[ | X[5] | X[6] | X[7
3 X[8] | X[9] | X[10] | X[11]
4 | X[12] | X[13]
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Shared Memory Systems
SIMD

| SIMD drawbacks

» All ALUs are required to execute the same

instruction, or remain idle.

In classic design, they must also operate

synchronously.

= The ALUs have no instruction storage.

= Efficient for large data parallel problems,
but not other types of more complex
parallel problems.

M( Copyright © 2010, Elsevier Inc. All rights Reserved 9
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Shared Memory Systems
SIMD

Vector processors (1)

= Operate on arrays or vectors of data while
conventional CPU’s operate on individual
data elements or scalars.

= Vector registers.

= Capable of storing a vector of operands and
operating simultaneously on their contents.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 10
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SIMD

Vector processors (2)

» Vectorized and pipelined functional units.

= The same operation is applied to each
element in the vector (or pairs of elements).

= Vector instructions.
= Operate on vectors rather than scalars.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 1"
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Shared Memory Systems
SIMD

Vector processors (3)

= Interleaved memory.

= Multiple “banks” of memory, which can be
accessed more or less independently.

= Distribute elements of a vector across multiple
banks, so reduce or eliminate delay in loading/
storing successive elements.
= Strided memory access and hardware
scatter/gather.

= The program accesses elements of a vector
located at fixed intervals.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 12
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SIMD

| Vector processors - Pros

©)
©)

= Fast.

= Easy to use.

= Vectorizing compilers are good at
identifying code to exploit.

» Compilers also can provide information

about code that cannot be vectorized.
= Helps the programmer re-evaluate code.

= High memory bandwidth.
= Uses every item in a cache line.

(

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 13
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| Vector processors - Cons

= They don’t handle irregular v
data structures as well as other ~
parallel architectures.

= A very finite limit to their ability to handle
ever larger problems. (scalability)

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 14




CS 596: Topic Posted: 01/30/17  Updated: 01/30/17 Mary Thomas

Shared Memory Systems
SIMD

Vector Regtsters

g

The Cray-1 Vector r
Computer:

Togtcat
e

Vector
Functions]
s3_fumes

@ First vector machine
(1975)

o $8.86 million
]

@ appx 140 MFlops, for s —
weather calculation!! ST s v

vector
Congrol

@ load a lot of data into
memory, perform a lot of
ops on that data

@ Freon liquid cooling

@ 12 functional units
(address, scalar, vector,
and floating point)

Instruction
” Burters
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SIMD

| Graphics Processing Units (GPU)

= Real time graphics application
programming interfaces or API's use
points, lines, and triangles to internally
represent the surface of an object.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 15
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SIMD

| GPUs

= A graphics processing pipeline converts
the internal representation into an array of
pixels that can be sent to a computer

screen. i/

= Several stages of this pipeline -
(called shader functions) are
programmable.

= Typically just a few lines of C code.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 16
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Shared Memory Systems

SIMD

| GPUs

= Shader functions are also implicitly
parallel, since they can be applied to
multiple elements in the graphics stream.

= GPU'’s can often optimize performance by
using SIMD parallelism.

= The current generation of GPU’s use SIMD
parallelism.
= Although they are not pure SIMD systems.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 17
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SIMD

Host Interface

NVIDIA GPU GF100
High-Level Block Diagram
(2010)

@ CPU is called the host
and the cores in the GPU
are called devices

e 4"GPC" clusters
e Many SM (stream

multiprocessors) each
with SPs

o 512 CUDA stream
processors (SPs) or cores

o SIMT (single instr.
multiple thread)

Py —

3
5
i

P —

[ —

Source: http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview
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NVIDIA GPU

@ each SM core in each
GPC is comprised of
32 CUDA cores

@ 48/16KB of shared
memory (3 x that of
GT200),

o 16/48KB of L1

(there is no L1 cache
on GT200),

Thomas

Source: http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview
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Shared Memory Systems
MIMD

| MIMD

= Supports multiple simultaneous instruction
streams operating on multiple data
streams.

= Typically consist of a collection of fully
independent processing units or cores,
each of which has its own control unit and
its own ALU.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 18
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y Systems
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Multiple Instruction Multiple Data

instruction D2t instruction D212 instruction D2t instruction D3t2
(] {in} (in) {in}
| | | Il |
| | | | J |
Data L Data i Data i Data i
(out) (out) {out) (out)
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Shared Memory Systems
MIMD

| Shared Memory System (1)

= A collection of autonomous processors is
connected to a memory system via an
interconnection network.

= Each processor can access each memory
location.

= The processors usually communicate
implicitly by accessing shared data
structures.

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 19




CS 596: Topic Posted: 01/30/17  Updated: 01/30/17 Mary Thomas
Shared Memory Systems

MIMD

| Shared Memory System (2)

= Most widely available shared memory
systems use one or more multicore
processors.
= (multiple CPU’s or cores on a single chip)

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 20
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MIMD

Shared Memory System

CPU CcPU CcPU CPU

! l | !

‘ Interconnect |

Memory

Figure 2.3

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 21
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MIMD

01/30/17

70/99
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Chip 1

UMA multicore system

Chip 2

I Core 1 | | Core 2 ‘

[ Core 1 | | Core 2 [

Time to access all
the memory locations
will be the same for
all the cores.

I

|

Interconnect }

J

Memory

Figure 2.5

Copyright @ 2010, Elsevier Inc. All rights Reserved
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MIMD

| NUMA multicore system
|

I Interconnect Interconnect

| l

Memory

Memory

A memory location a core is Figure 2.6
directly connected to can be

accessed faster than a memory

location that must be accessed

through another chip.
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| Distributed Memory System

s Clusters (most popular)
= A collection of commodity systems.

= Connected by a commodity interconnection
network.

= Nodes of a cluster are individual
computations units joined by a
communication network.

avkiov hwbvid systewms
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MIMD

Distributed Memory System

CPU l CPU ‘ \ CPU | CPU

| Memory | | Memory | | Memory |

l Interconnect |

Figure 2.4
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Mac Book Pro - Intel
Core
o Intel Core i7, Z77
chipset .
i il ﬂ‘; ‘m
0 4 cores, 8 1 - ' : L 1 : 'I‘jlﬂ-i System
hyperthreads | e |
P ; I i " A Controlleq |
o 32 + 32 KB L1 ; (;‘:J::;ISCOSI' - - & - 8 incuding |
cache for data and 5 5 : Lt
instructions (per '
core)
o 256 KByte L2 cache
(per core)
o 8 MB L3 cache (split
up between cores
and GPU) &

Source: http://http://www.notebookcheck.net/Review-Intel-lvy-Bridge-Quad-Core-Processors.73624.0.html
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Interconnection networks

» Affects performance of both distributed
and shared memory systems.

= Two categories:
= Shared memory interconnects
= Distributed memory interconnects
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Shared memory interconnects

= Bus interconnect

= A collection of parallel communication wires
together with some hardware that controls
access to the bus.

= Communication wires are shared by the
devices that are connected to it.

= As the number of devices connected to the
bus increases, contention for use of the bus
increases, and performance decreases.
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| Shared memory interconnects

= Switched interconnect

= Uses switches to control the routing of data
among the connected devices.

= Crossbar —
= Allows simultaneous communication among
different devices.
= Faster than buses.
= But the cost of the switches and links is relatively
high.
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Figure 2.7 ‘ L ] : :
M1 — O O——
A crossbar switch connecting 4 ﬂ—x(i’%—i[ﬁ
processors (Pi) and 4 memory E_<;_; —O—0O
modules (M) @
,”}Jr‘\.a
(b) \’

Configuration of internal switches o ®
in a crossbar

u
3
B
2

(2]
z
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I Vs

@
(c) Simultaneous memory [2]
accesses by the processors [w]

[ —.
N
)

M( Copyright @ 2010, Elsevier Inc. All rights Reserved 29




CS 596: Topic Posted: 01/30/17  Updated: 01/30/17 Mary Thomas
Shared Memory Systems

Interconnection Networks

| Distributed memory interconnects

= Two groups
= Direct interconnect

= Each switch is directly connected to a processor
memory pair, and the switches are connected to
each other.

= Indirect interconnect

= Switches may not be directly connected to a
processor.
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Direct interconnect

Figure 2.8 ] | ‘ |
SEAE]

s . o s £ i
O 5 o— \ / . /
¢ \O - O

P3 ™

(a) (b)

ring toroidal mesh
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| Bisection width

= A measure of “number of simultaneous
communications” or “connectivity”.

= How many simultaneous communications
can take place “across the divide” between
the halves?
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Interconnection Networks

Two bisections of a ring

m

(a) (b)

Figure 2.9
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A bisection of a toroidal mesh

Figure 2.10
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Definitions

= Bandwidth
= The rate at which a link can transmit data.

= Usually given in megabits or megabytes per
second.

= Bisection bandwidth
= A measure of network quality.

= Instead of counting the number of links joining
the halves, it sums the bandwidth of the links.
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Fully connected network

= Each switch is directly connected to every
other switch.

o
g

&
K

bisection width = p2/4

Figure 2.11
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| Hypercube

= Highly connected direct interconnect.

= Built inductively:

= A one-dimensional hypercube is a fully-
connected system with two processors.

= A two-dimensional hypercube is built from two
one-dimensional hypercubes by joining
“corresponding” switches.

= Similarly a three-dimensional hypercube is
built from two two-dimensional hypercubes.
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Figure 2.12
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(a)
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Hypercubes
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Indirect interconnects

» Simple examples of indirect networks:
s Crossbar
= Omega network

s Often shown with unidirectional links and a
collection of processors, each of which has
an outgoing and an incoming link, and a
switching network.
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| A generic indirect network
( ] ... |
= ——
Switching
Network
N\ S 1
L
Figure 2.13
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Crossbar interconnect for
distributed memory
/

)—*Cﬂ
Ll Ul —

01 O
O——0—<
O——0—<

Figure 2.14
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An omega network

Figure 2.15
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A switch in an omega network

Figure 2.16
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More definitions

= Any time data is transmitted, we're
interested in how long it will take for the
data to reach its destination.

= Latency

= The time that elapses between the source’s
beginning to transmit the data and the
destination’s starting to receive the first byte.

= Bandwidth

= The rate at which the destination receives data
after it has started to receive the first byte.
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Message transmission time =1+ n/b

L 4

latency (seconds) ——— s & e k,/—'
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ORNL Titan Supercomputer - Jaguar upgrade

Gemini Switch Fabric

@ 38,400-processors, 307,200
CPU cores

@ 20-petaflop [ AMD Opteron
6200 ]
o Cray Gemini Interconnect

o processor-to-processor
o Optical network of 2x2

switches a Qi
o Banyan: O( Nlog N ) o Ll o

[ electrical control .
L8] and swich E| optical switch

- = glectrical path —== optical path

Source: http://www.extremetech.com /extreme/99413-titan-supercomputer-38400-processor-20-petaflop-successor-to-jaguar
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Cache coherence

= Programmers have no | | CTG L | LiSomiti]
control over caches
| Cache 0 ‘ | Cache 1 ]

and when they get
updated. [ I

| Interconnect }
Figure 2.17 | N l 2 } | v I ]
A shared memory system with two
cores and two caches | yo | ‘ | z1 | |
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Cache coherence

y0 privately owned by Core 0
y1 and z1 privately owned by Core 1

x = 2; /* shared variable */

Time Core 0 Core |
0 y0 = x; yl = 3*x;
1 x =71; Statement(s) not involving x
2 Statement(s) not involving x | z1 = 4*x;

y0 eventually ends up =2

y1 eventually ends up =6
z1 =777
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Snooping Cache Coherence

= The cores share a bus .

= Any signal transmitted on the bus can be
“seen” by all cores connected to the bus.

= When core 0 updates the copy of x stored
in its cache it also broadcasts this
information across the bus.

= If core 1 is “snooping” the bus, it will see

that x has been updated and it can mark
its copy of x as invalid.
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| Directory Based Cache Coherence

» Uses a data structure called a directory
that stores the status of each cache line.

= When a variable is updated, the directory
is consulted, and the cache controllers of
the cores that have that variable’s cache
line in their caches are invalidated.
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