
COMP 605: Introduction to Parallel Computing
Lecture : Compute Unified Device Architecture

(CUDA) Overview

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Posted: 04/20/17
Last Update: 04/20/17

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 2/18 Mary Thomas

Table of Contents

1 CUDA Overview
CUDA Kernel Basics
Passing Parameters

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 3/18 Mary Thomas

CUDA Overview

Compute Unified Device Architecture (CUDA) Overview

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 4/18 Mary Thomas

CUDA Overview

Introduction to Compute Unified Device
Architecture (CUDA, K&W Ch3; S&K, Ch3)

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 5/18 Mary Thomas

CUDA Overview

Outline:

Basic Program Example

The CUDA Kernel

Passing Parameters

Memory Management

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 6/18 Mary Thomas

CUDA Overview

CUDA (Compute Unified Device Architecture)

Example of CUDA processing flow:

1 CPU initializes, allocates,
copies data from main
memory to GPU memory

2 CPU sends instructions to
GPU

3 GPU executes parallel code in
each core

4 GPU Copies the result from
GPU mem to main mem

Source: http://en.wikipedia.org/wiki/CUDA

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 7/18 Mary Thomas

CUDA Overview

CUDA API (1)

CUDA C is a variant of C with extensions to define:

where a function executes (host CPU or the GPU)
where a variable is located in the CPU or GPU address space
execution parallelism of kernel function distributed in terms of grids
and blocks
defines variables for grid, block dimensions, indices for blocks and
threads

Requires the nvcc 64-bit compiler and the CUDA driver outputs PTX
(Parallel Thread eXecution, NVIDIA pseudo-assembly language) ,
CUDA, standard C binaries

CUDA run-time JIT compiler (optional);
compiles PTX code into native operations

math libraries, cuFFT, cuBLAS and cuDPP (optional)

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 8/18 Mary Thomas

CUDA Overview

CUDA Programming Model
Mainstream processor chips are parallel
systems: multicore CPUs and many core
GPUs

CUDA/GPU provides three key abstractions:

hierarchy of thread groups
shared memory
barrier synchronization

fine-grained data & thread parallelism, nested
within coarse-grained data & task parallelism

partitions problem into coarse sub-probs
solved with parallel independent blocks of
threads

sub-problems divided into finer pieces solved
in parallel by all threads in block

GPU has array of Streaming Multiprocs (SMs)

Multithreaded program partitioned into blocks
of threads that execute independently from
each other

Scales: GPU (more MPs) executes in less
time than GPU (fewer MPs).

Source: NVIDIA cuda-c-programming-guide

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 9/18 Mary Thomas

CUDA Overview

CUDA Kernel Basics

CUDA Kernel Basics

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 10/18 Mary Thomas

CUDA Overview

CUDA Kernel Basics

CUDA Code Example: simple hello.cu (K&S Ch3)

[mthomas@tuckoo hello]$ cat simple_hello.cu
/*
* Copyright 1993-2010 NVIDIA
* Corporation.
* All rights reserved.
*/

#include <stdio.h>

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello, GPU World!\n");
return 0;

}

CUDA code highlights:

mykernel <<< 1, 1 >>> () directs
the function to be run on the device

mykernel() is an empty function

global is a CUDA directive that
tells system to run this function on
the GPU device

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 11/18 Mary Thomas

CUDA Overview

CUDA Kernel Basics

CUDA API: Kernel

In its simplest form it looks like:

kernelRoutine <<< gridDim, blockDim >>> (args)

Kernel runs on the device. It is executed by threads, each of which knows
about:

variables passed as arguments

pointers to arrays in device memory (also arguments)

global constants in device memory

shared memory and private registers/local variables

some special variables:

gridDim: size (or dimensions) of grid of blocks
blockIdx : index (or 2D/3D indices)of block
blockDim: size (or dimensions) of each block
threadIdx : index (or 2D/3D indices) of thread

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 12/18 Mary Thomas

CUDA Overview

CUDA Kernel Basics

Function Type Qualifiers

Function type qualifiers specify whether a function executes on the
host or on the device and whether it is callable from the host or
from the device:

device

Executed on GPU
Launched on GPU

global

Executed on device
Callable from host
Callable from the device for devices of compute capability 3.x

host (optional)

Executed on host
Callable from host only

Source:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#function-type-qualifiers

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#function-type-qualifiers

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 13/18 Mary Thomas

CUDA Overview

CUDA Kernel Basics

Grids and Blocks

A Grid is a collection of blocks:

gridDim: size (dimensions) of
grid of blocks
blockIdx : index (2D/3D
indices) of block

A Block is a collection of
threads (columns):

blockDim: size (dimensions)
of each block
threadIdx : index (or 2D/3D
indices) of thread

Threads execute the kernel code
on device: Source: Cuda By Example (Ch 5)

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 14/18 Mary Thomas

CUDA Overview

CUDA Kernel Basics

Two types of parallelism:

Block Parallelism
Launch N blocks with 1 thread each:

add <<< N, 1 >>> (dev a, dev b, dev c) >>>

Thread Parallelism
Launch 1 block with N threads:

add <<< 1,N >>> (dev a, dev b, dev c) >>>

We will look at examples for each type of parallel mechanisms.

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 15/18 Mary Thomas

CUDA Overview

CUDA Kernel Basics

Memory Allocation

CPU: malloc, calloc, free, cudaMallocHost, cudaFreeHost

GPU: cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray,
cudaFreeArray

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 16/18 Mary Thomas

CUDA Overview

Passing Parameters

Passing Parameters to the Kernel

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 17/18 Mary Thomas

CUDA Overview

Passing Parameters

simple kernel params.cu (part 1)

#include <iostream>

#include "book.h"

__global__ void add(int a, int b, int *c) {

*c = a + b;

}

int main(void) {

int c;

int *dev_c;

/* allocate memory on the device for the variable */

HANDLE_ERROR(

cudaMalloc((void**)&dev_c, sizeof(int)));

/* nothing to copy -- no call to cudaMemcpy */

/* launch the kernel */

add<<<1,1>>>(2, 7, dev_c);

/* copy results back from device to the host */

HANDLE_ERROR(

cudaMemcpy(&c,dev_c,sizeof(int),cudaMemcpyDeviceToHost)

);

printf("2 + 7 = %d\n", c);

cudaFree(dev_c);

return 0;

}

The Kernel: add <<<
1, 1 >>> (2, 7, dev c)
runs on the device.

global is a CUDA
directive that tells system
to run this function on the
GPU device

Kernel passing variables
that are modified on the
device.

using 1 block with 1 thread

Result passed from the
device back to the host

Must use pointers

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 18/18 Mary Thomas

CUDA Overview

Passing Parameters

simple kernel params.cu (part 1)

[cuda_by_example/chapter03] nvcc -o simple_add simple_add.cu

[cuda_by_example/chapter03] qsub simple_add.bat

7987.tuckoo.sdsu.edu

[cuda_by_example/chapter03]$ cat simple_device_call.o7987

simple_device_call using 1 cores...

2 + 7 = 9

#!/bin/bash

#

#

#PBS -V

#PBS -l nodes=node9:ppn=1

#PBS -N simple_add

#PBS -j oe

#PBS -r n

#PBS -q batch

cd $PBS_O_WORKDIR

echo "Running simple_add."

./simple_add

	CUDA Overview
	CUDA Kernel Basics
	Passing Parameters

