COMP 605: Introduction to Parallel Computing

Lecture : Compute Unified Device Architecture
(CUDA) Overview

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Posted: 04/20/17
Last Update: 04/20/17

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 2/18 Mary Thomas

Table of Contents

© CUDA Overview
o CUDA Kernel Basics
o Passing Parameters

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 8 Mary Thomas

CUDA Overview

Compute Unified Device Architecture (CUDA) Overview

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17

CUDA Overview

Introduction to Compute Unified Device
Architecture (CUDA, K&W Ch3; S&K, Ch3)

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 Mary Thomas
CUDA Overview

Outline:

Basic Program Example
The CUDA Kernel

Passing Parameters

® 6 o6 o

Memory Management

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 8 Mary Thom:
CUDA Overview

CUDA (Compute Unified Device Architecture)

MMain cpU
. . emory
Example of CUDA processing flow: - —
I Instruct the processing
@ CPU initializes, allocates, ._h
copies data from main Merncey
memory to GPU memory el |
i . GPU Ea_cecutehparallel
@ CPU sends instructions to 1 (GeForce 8800)| =4 in each core
GPU
Q GPU llel code i ==I
executes parallel code in
each core 55 55
@ GPU Copies the result from p e
GPU mem to main mem rocessing flow
on CUDA

Source: http://en.wikipedia.org/wiki/CUDA

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 /18 Mary Thomas
CUDA Overview

CUDA API (1)

o CUDA C is a variant of C with extensions to define:
o where a function executes (host CPU or the GPU)
o where a variable is located in the CPU or GPU address space
o execution parallelism of kernel function distributed in terms of grids
and blocks
o defines variables for grid, block dimensions, indices for blocks and
threads
@ Requires the nvcc 64-bit compiler and the CUDA driver outputs PTX
(Parallel Thread eXecution, NVIDIA pseudo-assembly language) ,
CUDA, standard C binaries

o CUDA run-time JIT compiler (optional);
compiles PTX code into native operations

e math libraries, cuFFT, cuBLAS and cuDPP (optional)

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 8/18 Mary Thomas
CUDA Overview

CUDA Programming Model

@ Mainstream processor chips are parallel
systems: multicore CPUs and many core

GPUs Multithreaded QUDA Program
HokO Boki Hok2 Bok3
@ CUDA/GPU provides three key abstractions: ks Baks Hoké Bok7
o hierarchy of thread groups
o shared memory
o barrier synchronization e ——Te
@ fine-grained data & thread parallelism, nested SMO sM1 sMO | SM1 sM2 sM3

within coarse-grained data & task parallelism

@ partitions problem into coarse sub-probs == - -- -I-
solved with parallel independent blocks of ‘Bock2 Block3. Hoks BokS Bocké Block?

threads
@ sub-problems divided into finer pieces solved
in parallel by all threads in block Bk Bok?

@ GPU has array of Streaming Multiprocs (SMs)

. .. . Source: NVIDIA cuda-c-programming-guide
@ Multithreaded program partitioned into blocks

of threads that execute independently from
each other

@ Scales: GPU (more MPs) executes in less
time than GPU (fewer MPs).

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 Mary Thomas
CUDA Overview

CUDA Kernel Basics

CUDA Kernel Basics

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17
CUDA Overview

CUDA Kernel Basics

Mary Thomas

CUDA Code Example: simple_hello.cu (K&S Ch3)

[mthomas@tuckoo hellol$ cat simple_hello.cu
/%
* Copyright 1993-2010 NVIDIA
* Corporation.
* All rights reserved.
*/
#include <stdio.h>

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello, GPU World!\n");
return 0;

CUDA code highlights:
o mykernel <<< 1,1 >>> () directs
the function to be run on the device
o mykernel() is an empty function

o __global__is a CUDA directive that
tells system to run this function on
the GPU device

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 8 Mary Thomas
CUDA Overview
CUDA Kernel Basics

CUDA API: Kernel

In its simplest form it looks like:
kernelRoutine <<< gridDim, blockDim >>> (args)

Kernel runs on the device. It is executed by threads, each of which knows
about:

@ variables passed as arguments

@ pointers to arrays in device memory (also arguments)

@ global constants in device memory

@ shared memory and private registers/local variables

@ some special variables:

gridDim: size (or dimensions) of grid of blocks
blockldx : index (or 2D/3D indices)of block
blockDim: size (or dimensions) of each block
threadldx: index (or 2D /3D indices) of thread

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17
CUDA Overview
CUDA Kernel Basics

Mary Thomas

Function Type Qualifiers

Function type qualifiers specify whether a function executes on the
host or on the device and whether it is callable from the host or
from the device:

o __device__

o Executed on GPU
o Launched on GPU

o _global__
o Executed on device
o Callable from host
o Callable from the device for devices of compute capability 3.x
o __host__ (optional)
o Executed on host
o Callable from host only
Source:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#function-type-qualifiers

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#function-type-qualifiers

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 Mary Thomas
CUDA Overview
CUDA Kernel Basics

Grids and Blocks

o A Grid is a collection of blocks:
o gridDim: size (dimensions) of
grid of blocks
o blockldx : index (2D/3D
indices) of block

@ A Block is a collection of
threads (columns):

o blockDim: size (dimensions)
Block2 | Thread 0 | Thread 1 Thread 3
of each block

o threadldx: index (or 2D/3D
indices) of thread

Block 0 | Thread0 | Thread 1 Thread 2 | Thread 3

Block1 | Thread 0 | Thread 1 | Thread2 | Thread3

Block3 | Thread 0 | Thread 1 Thread 2 | Thread 3

@ Threads execute the kernel code

on device: Source: Cuda By Example (Ch 5)

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17
CUDA Overview
CUDA Kernel Basics

Two types of parallelism:

Mary Thomas

Block Parallelism
Launch N blocks with 1 thread each:

add <<< N,1>>> (dev_a, dev_b, dev_c)>>>

Thread Parallelism
Launch 1 block with N threads:

add <<< 1,N >>> (dev_a, dev_b, dev_c)>>>

We will look at examples for each type of parallel mechanisms.

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 Mary Thomas
CUDA Overview

CUDA Kernel Basics

Memory Allocation
o CPU: malloc, calloc, free, cudaMallocHost, cudaFreeHost

o GPU: cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray,
cudaFreeArray

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 Mary Thomas
CUDA Overview

Passing Parameters

Passing Parameters to the Kernel

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17
CUDA Overview

Passing Parameters

simple_kernel_params.cu (part 1)

#include <iostream>
#include "book.h"

__global__ void add(int a, int b, int *c) {
xc = a + b;
}
int main(void) {
int c;
int *dev_c;

/% allocate memory on the device for the variable */
HANDLE_ERROR (
cudaMalloc((void**)&dev_c, sizeof(int)));

/* nothing to copy -- no call to cudaMemcpy */

/* launch the kernel */
add<<<1,1>>>(2, 7, dev_c);

/* copy results back from device to the host */
HANDLE_ERROR (

cudaMemcpy (&c,dev_c,sizeof (int) , cudaMemcpyDeviceToHost)
)5
printf("2 + 7 = %d\n", c);

cudaFree(dev_c);

return 0;

Mary Thomas

The Kernel: add <<<
1,1 >>>(2,7,dev_c)
runs on the device.
__global__is a CUDA
directive that tells system

to run this function on the
GPU device

Kernel passing variables
that are modified on the
device.

using 1 block with 1 thread

Result passed from the
device back to the host

Must use pointers

COMP 605: Topic Posted: 04/20/17 Last Update: 04/20/17 / Mary Thomas
CUDA Overview

Passing Parameters

simple_kernel_params.cu (part 1)

[cuda_by_example/chapter03] nvcc -o simple_add simple_add.cu

[cuda_by_example/chapter03] gsub simple_add.bat
7987 .tuckoo.sdsu.edu
[cuda_by_example/chapter03]$ cat simple_device_call.o7987

simple_device_call using 1 cores...
2+7=9

#!/bin/bash

#PBS -1 nodes=node9:ppn=1
#PBS -N simple_add

#PBS -j oe

#PBS -r n

#PBS -q batch

cd $PBS_O_WORKDIR

echo "Running simple_add."
./simple_add

	CUDA Overview
	CUDA Kernel Basics
	Passing Parameters

