
COMP 605: Introduction to Parallel Computing
Lecture : GPU Architecture

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Posted: 04/10/17
Last Update: 04/10/17

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 2/16 Mary Thomas

Table of Contents

1 GPU Architecture Overview
GPU Features
GPU Memory Model

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 3/16 Mary Thomas

GPU Architecture Overview

GPU Architecture

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 4/16 Mary Thomas

GPU Architecture Overview

GPU Computing: Simplified Hardware View

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 5/16 Mary Thomas

GPU Architecture Overview

CPU = Central Processing Units

single or miltiple processing units (cores)
standalone or integrated into clusters
designed to run processes, supports threads

GPU = Graphical Processing Units

Usually attached to a host CPU
Developed for games (think Sony, PS3), and visualization (OpenGl,
think Pixar)
Designed to run lightweight threads, may have multiple PE’s
Accessible via specialized libraries, compiler directives (OpenACC),
and extensions to languages (C, C++ and Fortran).

CUDA (Compute Unified Device Architecture)

a parallel computing platform and programming model created by
NVIDIA.
extension of C programming language

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 6/16 Mary Thomas

GPU Architecture Overview

GPU Architecture

GPU is a highly threaded coprocessor to the host
CPU and associated memory

Kernels are sections of the application that are run
on the GPU by a thread.

A thread block is a batch of threads that can

cooperate with each other by:

Sharing data through shared memory
Synchronizing their execution
Each block is organized as 3D array of
threads:
(blockDim.x , blockDim.y , and blockDim.z)

Threads within a thread block must:

execute the same kernel
share data, so they must be issued to the
same processor

A grid is a collection of blocks:

A Grid is organized as a 2D array of blocks:
(gridDim.x and gridDim.y)

Source: http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 7/16 Mary Thomas

GPU Architecture Overview

GPU: Kernel

Kernels are not full applications:

they are the parallel sections or critcal blocks

They are executed by a grid of unordered thread blocks:

up to 512 threads per block.
Thread blocks start at the same instruction address, execute in parallel
Blocks can have different endpoints (divergence) but these are limited
Communicate through shared memory and synchronization barriers.
Must be assigned to the same processor

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 8/16 Mary Thomas

GPU Architecture Overview

GPU: Threads

A thread of execution is the
smallest sequence of programmed
instructions that can be managed
independently by an operating
system scheduler.

A thread is a light-weight process.

In most cases, a thread is
contained inside a process.

Multithreading generally occurs
by time-division multiplexing (as
in multitasking)

Multiprocessor (including
multi-core system): threads or
tasks run at the same time - each
processor or core runs a particular
thread or task.

Source: http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/lecture_notes/gpus.pdf

http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/lecture_notes/gpus.pdf

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 9/16 Mary Thomas

GPU Architecture Overview

NVIDIA Thread Calculations

Thread ID is unique within a block

Bock ID is unique

Can make unique ID for each thread per kernel using Thread and
Block IDs.

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 10/16 Mary Thomas

GPU Architecture Overview

GPU: Grid

A collection of blocks that can (but are not required to) execute in
parallel.

Theres no synchronization at all between the blocks.

Number of [concurrent] grids on a GPU:
1 for GPU Cores < 2.0
16 for 2.0 <= CC <= 3.0
32 for CC = 3.5
. . .

Need to use right API in order to avoid serialization.

There is an API for querying the GPU system.

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 11/16 Mary Thomas

GPU Architecture Overview

The GPU Memory Model

Red is fast on-chip, orange is DRAM

Register file & local memory are private for each
thread

Shared memory is used for communication between
threads (appx same latency as regs)

DRAM, Readonly:

Constant memory (64KB) used for random
accesses (such as instructions)
Texture memory (large) and has two
dimensional locality

Global Memory: visible to an entire grid, can be
arbitrarily written to and read from by the GPU or
the CPU.

Source: NVIDIA

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 12/16 Mary Thomas

GPU Architecture Overview

NVIDIA Hardware: GEForce 8800

Streaming Multiprocessors (SMs, also
called nodes)

8 Stream Processors (SPs) (or cores):
primary thread processor

has 1000’s of registers that can be
partitioned among threads of execution

Multiple caches:

shared memory for fast data
interchange between threads,
constant cache for fast broadcast of
reads from constant memory,
texture cache to aggregate
bandwidth from texture memory,
L1 cache: reduce latency to memory

warp schedulers: switch contexts between
threads and instructions to warps;

Execution cores:

Integer and floating point ops
Special Function Units (SFUs)

Source: http://www.compsci.hunter.cuny.

edu/~sweiss/course_materials/csci360/

lecture_notes/gpus.pdf

http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/lecture_notes/gpus.pdf
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/lecture_notes/gpus.pdf
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/csci360/lecture_notes/gpus.pdf

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 13/16 Mary Thomas

GPU Architecture Overview

NVIDIA GPU GF100 High-Level Block Diagram (2010)

CPU is the host

GPU is the device

The GF100 has 4 Graphics Processing Clusters
(GPCs): laid out in (2x2) arrangement (also called
”Raster Engine”).

Each GPC has 4 Streaming Multiprocessors, (SMs):
NVIDIAs’ term for multiprocessor (also called
”Polymorph Engines”).

Arranged in 1x4 layout.
Total number of SMs = 4 ∗ 4 = 16

Each SM has a block of Stream Processors (SPs)
or Cores– also called execution units.

Arranged in 8x4 layout.
Total number of SPs on each SM = 8 ∗ 4 = 32

Total number of cores on the GPU
#Cores = #SPs/SM×#SMs/GPC ×#GPCs

= 32 × 4 × 4 = 512

Source: http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview

http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 14/16 Mary Thomas

GPU Architecture Overview

NVIDIA GF100 SM Block Diagram

each SM block in
each GPC is
comprised of 32 cores

48/16KB of shared
memory (3 x that of
GT200),

16/48KB of L1
(there is no L1 cache
on GT200),

Source: http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 15/16 Mary Thomas

GPU Architecture Overview

NVIDIA GT200 SM Arch (2008)

highly threaded single-issue processor with
SIMD/SIMT (single instruction multiple thread)

8 functional units

Each SM can execute up to 8 thread blocks
concurrently and a total of 1024 threads
concurrently

warp: a group of threads managed by SM thread
scheduler

Single Instruction, Multiple Thread (SIMT)
programming model

Source: http://www.realworldtech.com/gt200

http://www.realworldtech.com/gt200

COMP 605: Topic Posted: 04/10/17 Last Update: 04/10/17 16/16 Mary Thomas

GPU Architecture Overview

GPU Global Scheduler (work distribution unit)

Manages coarse grained parallelism at
thread block level

At kernel startup, information for grid sent
from CPU (host) to GPU (device)

Scheduler reads information and issues
thread blocks to streaming multiprocessors
(SM)

Issues thread blocks in a round-robin
fashion to SMs

Uniformly distribute threads to SMs

Key distribution factors:

kernel demand for threads per block
shared memory per block
registers per thread
thread and block state requirements
current availability resources in SM

http://www.realworldtech.com/gt200/6/

http://www.realworldtech.com/gt200/6/

	GPU Architecture Overview

