COMP 605: Introduction to Parallel Computing

Lecture : CUDA Matrix-Matrix Multiplication

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Posted: 04/25/17
Last Update: 04/25/17

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 p Mary Thomas

Table of Contents

@ CUDA Matrix Multiplication
@ Matrix-Matrix Multiplication - CUDA Approach
o CUDA MatMul Code

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas

CUDA Matrix Multiplication

Matrix-Matrix Multiplication (Mat-Mat-Muilt)

COMP 605: Topic Posted: 04/25/17

Last Update: 04/25/17
CUDA Matrix Multiplication

Mary Thomas

2D Matrix-Matrix Multiplication (Mat-Mat-Mult)

/* Serial_matrix_mult */
for (i = 0; i < mn; i++)
for (j = 0; j < mnj; j++) {
C[i1[j1 = 0.0;
for (k = 0; k < n; k++)
C[il[j] = C[i1[j] + A[i1[k1*B[k]1[jl;
printf(...)
}

Where:

A is an [m x k] matrix
Bis a [kxn]
C is a matrix with the dimensions [m x n]

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 3 Mary Thomas
CUDA Matrix Multiplication

2D Matrix-Matrix Multiplication (Mat-Mat-Mult)

Definition: Let A be an [m x k] matrix, and B be a be an [k x n],
then C will be a matrix with the dimensions [m x n].

Then AB = |¢j], and
cj = Zle aitbyj = ajbyj + ajpboj + -+ - + ak1byj

i a0 --- A0j --- A0,k—1 boo ... boj ... by n—1
= Qg ... Ajj - Aik—1 L] b,'o bij b,'y,,_l
L am—1,0 --- @3m—1,j - am—1,k—1 bk—1,1 -+ bij - bp—1,p—1

€0 --- C1j --- Cln—1

= Cio -+ Cij -.. Cip—1

L €m—1,0 --- Cmj --- Cm—1,n—1

c12 = abio + a1abon + a13bs

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Recall: Defining GPU Threads and Blocks

o Looking at Device: Nvidia Tesla C1060 - -
o Kernels run on GPU threads E
o Grid: organized as 2D array of blocks: =
o Maximum sizes of each dimension: Kemel | ——
[gridDim.x x gridDim.y x gridDim.z] ' T e | do || @0
= (65,536 x 65,536 x 1) blocks v ol e
o Block: 3D collection of threads cd,z
o Max threads per block: 512 o i
o Max thread dimensions: (512, 512, 64) 2
[blockDim.x x blockDim.y * blockDim.z] T
MaxThds/Block < 1024 : B
o threads composing a thread block must: i

o execute the same kernel
o share data: issued to the same core
o Warp: group of 32 threads; min size of
. . Source: http://hothardware.com/Articles/NVIDIA-
data processed in SIMD fashion by GF100-Architecture-and-Feature-Preview
CUDA multiprocessor.

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Matrix Mult: linear mapping of a 2D matrix in C.

o CUDA does not allow

run-time allocation of a 2D Memory Layout of a Matrix in C
matrix

o C memory mapping is Moy Mys My My
row — major order. ol W

Mu,l M|J MJ..J MJ,J

@ Index for accessing matrix M
in the inner loop: M
M i x width + k]

@ Need to linearize the array in
row — major order, into a
vector which can be

. © David Kir/NVIDIA and Wen-mei W. Hwu, 2007-2009
d y namic. 'ECE498AL, University of Illinois, Urbana-Champaign

RO B BB i s b

o 1 D array, where Element[row][col] is element [row*width+-col]
@ Thread mapping: intx = threadldx.x + blockldx.x * blockDim.x;

Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas

CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Mapping Serial Code to Threads

=
Map this code:
for (i = 0; i < n; ++i) - Bh
for (j = 0; j < m; +4j) .,,v, ™ A=B*C
for (k = 0; k < p; ++k) b, | b
a[i+n*j] += b[i+n*k] * c[k+p*j];
a3,7by 1*¢; 0+by 0%y,

into this (logical) architecture:
Grid of thread blocks

blockldx.x =g

wons SN I (WS

threadldx.x ==—# 012345 012345 012345
blockidx.x * blockDimx+ g3 23 45 67891011 121314151617
threadldx.x

Source: http://www.hpcwire.com/features/Compilers_and_More_
Optimizing_GPU_Kernels.html

http://www.hpcwire.com/features/Compilers_and _More_Optimizing_GPU_Kernels.html
http://www.hpcwire.com/features/Compilers_and _More_Optimizing_GPU_Kernels.html

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 9/3 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Programming Model

Programming Model:
Square Matrix Multiplication Example

* P=M*N of size WIDTH x WIDTH
« Without tiling:

— One thread calculates one element
of P

— Mand N are loaded WIDTH times
from global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2(
ECEA98AL, University of Ilinois, Urbana-Champaign

P =M x N is a dot product
Each dot product is independent of all the others.

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Matrix Mult: Serial C code (K&H)

Caleulating P[i][j] = P[i]lj] + M[i][K] x N[k][j]

A Simple Host Version in C

void MatrixMulOnHost(float* M, float* N, float* P
for (imt i = 0; i < Width; ++i)

for (imt j = 0; j < Width; ++j) {
float sum = 0; k
for (int k = 0; k < Width; ++k) { X
float a = M[i * Width + k]; 7
float b = N[k * Width + j];

sum += a * b;

int Width) {
N

WIDTH

P[i * Width + j] = sum;

}

’ " P i
i |
:1
z
e
. =
k |
|

Adspted From: WIDTH WIDTH

David Kirk/NVIDIA and Wen-mei W. Hwu, UTUC

Posted: 04/25/17 Last Update: 04/25/17
CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Mary Thomas

Matrix-Multiplication Algorithm for GPU/CUDA Host.

void MatrixMultiplication(float* M, float* N, float* P, int Width)
{

int size=Width * Width * sizeof(float);

float* Md, Nd, Pd;

1. // Allocate device memory for M, N, and P
// copyMand N to allocated device memory locations

2. // Kernel invocation code - to have the device to perform
// the actual matrixmultiplication

3. // copy P from the device memory
// Free device matrices

Host uses CudaMalloc to allocate memory on the device globalmemory
space.

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 2/33 Mary Thomas
CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Cuda Device Memory Model

GPU Grid

Block (0, 0) Block (1, 0)

wm| o

Thread (1,0) | | Thread (0, 0)

@ Host and device have separate
memories.

e

Thread (1, 0)

-1

@ Host can only copy to/from
global memory and
constant memory

o cudaMalloc()
o cudaFree()
o cudaMemcpy()

Thread (0, 0)

vV i 444 i 444 i 44

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Matrix-Multiplication Algorithm for GPU/CUDA Host.

Host code showing cudaMalloc calls.

void MatrixMultiplication{flcat* M, float* N, float* P, int Width)
{

int size =Width * Width * sizeof(float);

float* Md, Nd, Pd;

1. // Transfer Mand N to device memory
cudaMalloc((void**) &Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc((void**) &Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// AlTocate P on the device
cudaMalloc((void**) &Pd, size);

2. // Kernel invocation code - to be shown later

3. // Transfer P from device to host
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);
// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

1
¥

COMP 605: Topic Posted: 04/25, Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

GPU Kernel Function

_ global__
void MatrixMulKernel(float* d_M, an ¥
float* d_N, |
float* d_P, k
int Width) {
int row = threadIdx.y; 5 T
int col = threadldx.x; i B
float P_val = 0; (threadIdx.x) H
for (imt k = 0; k < Width; ++k) { w
float M _elem = d M[row * Width + k];
float N_elem = d_N[k * Width + col];
P_val += M_elem * N_elem; +
} dM dp |
d_p[row*Width+col] = P_val; row
} (threadIdx.y)
I
E
=]
—— : 2
Adapted From: sty JIDTH WIRTH T

David KirkNVIDIA and Wen-mei W. Hwu, UIUC

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 /3 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Current code only uses threadldnx, so can only use 1 block.

Kernel Invocation and Copy Results

// Setup the execution configuration
dim3 dimGrid(l, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(d M, d_N, d_P,
Width) ;

// Copy back the results from device to host
cudaMemcpy (P, d_P, matrix size, cudaMemcpyDeviceToHost);

// Free up the device memory matrices
cudaFree(d_P);
cudaFree(d_M);
cudaFree(d_N);

5: Topic Posted: 04/25/17 Last Update: 04/25/17

CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Oanly One Thtead Block Used

» One Block of threads compute
matrix d_p

= Each thread
1 Loads a row of matrixd_M
2 Loads a column of matrix d_¥
- Perform one multiply and
addition for each pair of d_M
and d_N elements
o Computes one element of d_P

Size of matrix limited by
the number of threads
allowed in a thread block
WIDTH
dn
Adapted From: 5

David Kirk/NVIDIA and Wen-mel W. Hwu, UTUC sity, Winter 88/Spring 89, Reza Azimi §

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 /3 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Handling Arbitrary Sized Square Matrices

Solution 1: Give Each Thread More Work

TILE_WIDTH
« >

- threadIdz.x 4

d_P

threadIdx.y

Each thread is assigned to
a Tile of

TILE WIDTHxTILE WIDTH
entries

GPU Programming, Shiraz University, Winter 587 Spring 89, Rezt Azt

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Solution 1: Give Each Thread Mote
Wotk

__global _ void MatrixMulKernel(float* d M,
float* d_N,
float* d_P,
int Width) {
int start_row = threadIdx.y * TILE WIDTH;
int end row = start_row + TILE_WIDTH;
int start_col = threadIdx.x * TILE WIDTH;
int end col = start_col + TILE WIDTH;

for (int row = start_row; row < end row; rowt+) {
for(int col = start_col; col < end_col; col++) {
float P_val = 0;
for (int k = 0; k < Width; ++k) {
float M_elem = d_M[row * Width + k];
float N_elem = d_N[k * Width + col];
P_val += M elem * N_elem;
With one block we utilize

}
d_p(rowtWidthtcol] = P_val; gniy one multiprocessor!

MP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Solution 2: Use Multiple Thread Blocks

threadide-x

* blockIdx.x e 1 . ‘hlﬂt:lmim.!
dpP ' :
- blockDim.y
v
blockldx.y
i | _assignedioa
threadldx.y th
v |“d
| assignedto a
! ! 1 thread block
I] 1
| 1 f
I] 1
1 1 1
1 1 1

GPU Programming, Shiraz Uritversity, Wiater 58/ Spring 80, Rezt Azvn ‘

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25, Mary Thomas

CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Matrix Multiplication Using
Multiple Blocks 012 e o

* Break-up Pd into tiles

+ Each block calculates one
tile
- Each thread calculates one
element
- Block size equal tile size

0
:

ty

TILE_WIDTHY

© David Kirk/NVIDIA and Wen-mci W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

COMP 605: Topic

Posted: 04/25/17 Last Update: 04/25/17

CUDA Matrix Multiplication

Mary Thomas

Matrix-Matrix Multiplication - CUDA Approach

* Have each 2D thread block to
compute a (TILE_WIDTH)? sub-
matrix (tile) of the result matrix
- Each has (TILE_WIDTH)2threads

* Generate a 2D Grid of
(WIDTHITILE_WIDTH)2 blocks

You still need to put a loop
around the kernel call for cases
where WIDTH/TILE WIDTH
is greater than max grid size
(64K)!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

bx

by

TILE WIDTH

ECEA98AL, University of llinois, Urbana-Champaign

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 22/33 Mary Thomas
CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Matrix-Multiplication Using 2x2 Block Grid

Block(0,0) Block(1,0)

Poo | Pro|Pao | Pso| TILE WIDTH =2
PO‘I Pl,l PZ,I P3,1

Poy | Pia|Poz | Psp

Pos [Pis | Pos | P

Block(0,1) Block(1,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Matrix-Multiplication - Thread Actions

A Small Example: Multiplication

Pd;

1|Pds

2|Pds,2

5|Pds 3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECEA498AL, University of Illinos, Urbana-Champaign

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Matrix-Multiplication using multiple thread blocks

int block size = 64;

/] Setup the execution configuration

dim3 dimGrid(Width/block size, Width/block size);
dim3 dimBlock(block size, block size);

/] Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(d M, d N, d P,
Width);

Size of matrix limited by the
number of threads allowed
on a device

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Ma Multiplication
Matrix-Matrix Multiplication - CUDA Approach

Matrix-Multiplication using multiple thread blocks

__global

void MatrixMulKernel(float* d M,
float* d N,
float* d P,

int width) {
int row = blockIdx.y * blockDim.y + threadldx.y;
int col = blockIdx.x * blockDim.x + threadldx.x;
float P val = 0;

for (int k = 0; k < Width; ++k) {
float M elem = d M[row * Width + k];
float N elem = d N[k * Width + col];
P val += M elem * N elem;
}
d_p[row*Width+col] = P_val;
}

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Combining the Two Solutions

threadIdx.x
. blockIdx.x e T ‘hlﬂcui.m X

blockDim.y

blockIdx.y

TILE_WIDTH
El .

threadIdx.y

! TILE_WID

GPU Prog — —_ .

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Combining the Two Solutions

_global__ void MatrixMulKernel(float* d_M,
float* d_N,
float* d_P,
int Width) {
int start_row = blockDim.y * blockIdx.y + threadIdx.y * TILE_WIDTH;
int end_row = start_row + TILE_WIDTH;
int start_col = blockDim.x * blockIdx.x + threadIdx.x * TILE_WIDTH;
int end_col = start_cel + TILE WIDTH;

for (int row = start_row; row < end_row; row++) {
for(int col = start_col; col < end_col; colt+) {
float P_val = 0;
for (int k = 0; k < Width; ++k) {
float M elem = d_M[row * Width + k];
float N_elem = d_N[k * Width + col];
P_val += M _elem * N_elem;
}
d_p[row*Width+col] = P_val;

COMP 605: Topic Posted: 04 Last Update:

CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Mary Thomas

Transparent Scalability

» Hardware is free to assign blocks to any processor at any time, given
the resources

— Akernel scales across any number of parallel processors

— When less resources are available, hardware will reduce the
number of blocks run in parallel (compare right with left block
assignment below)

Block 0 Block 1
/ Block2 Block 3 \
Block 0 Block 1 Block 4 Block 5
Block 6 Block 7 i Block0 Block1 Block2 Block3
Block2 Block 3 1me

Block4 Block5 Block6 Block7

Block4 Block 5 i .
Each block can execute in any order relative to

Block6 Block 7 other blocks.

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17
CUDA Matrix Multiplication

Mary Thomas

Matrix-Matrix Multiplication - CUDA Approach

G80 Example: Executing Thread Blocks

tOt1t2 ... tm | o, SMO0 SM1 T 02 . tm
| [aalea |2
sl Hfsel |

Blocks HE BN . Threads are assigned to Streaming
HEEER i Multiprocessors in block granularity

.. .. — Up to 8 blocks to each SM as

k ¥ resource allows

d — SMin G80 can take up to 768 threads

* Could be 256 (threads/block) * 3
blocks

« Or 128 (threads/block) * 6 blocks, etc.
* Threads run concurrently
— SM maintains thread/block id #s

— SM manages/schedules thread

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 execution 2
ECE498AL, University of Illinois, Urbana-Champaign

Mary Thomas

Last Update: 04/25/17

COMP 605: Topic Posted: 04/25/17

CUDA Matrix Multiplication
Matrix-Matrix Multiplication - CUDA Approach

G80 Example: Thread Scheduling

Block 1 Warps Block 2 Warps Block 1 Warps

« Each Block is executed as
t0t1t2 t31

32-thread Warps Todo_ o1 Tong .61
— Animplementation decision,
not part of the CUDA

programming model
Warps are scheduling units

Streaming Multiprocessor

in SM
* If 3 blocks are assigned to an [struction FetchiDispatch _|
| Shared Memory I

SM and each block has 256
EX |IEX

threads, how many Warps are

there in an SM? e | e |
Each Block is divided into
256/32 = 8 Warps g_g_

There are 8 * 3 = 24 Warps

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17

CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

Mary Thomas

G80 Example: Thread Scheduling
(Cont.)

+ SM implements zero-overhead warp scheduling

Effectively provides for latency hiding (memory waits, etc.)

At any time, only one of the warps is executed by SM

Warps whose next instruction has its operands ready for
consumption are eligible for execution

Eligible Warps are selected for execution on a prioritized
scheduling policy

All threads in a warp execute the same instruction when selected

|

p————T81, W1 stal———|
}—T82, W stal—+

83

w1

1i2

TB3, W2 stall |
TB1
w1
78

T83 TB1 | TB1 | TB3

w2
3.4

TB2
w1
3i4

81
w1
1:2i3:i4:5:6

—Time-» TB = Thread Block, W = Warp

B2
w1
1:i2

w2
1:2

w2
1i2

w3
1i2

Instruction:

COMP 605: Topic Posted: 04/25/17 Last Update: 04/25/17 / Mary Thomas
CUDA Matrix Multiplication

Matrix-Matrix Multiplication - CUDA Approach

G80 Block Granularity Considerations

+ For Matrix Multiplication using multiple blocks, should |
use 8X8, 16X16 or 32X32 blocks?

— For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!
This will lead to under-utilization (bad for latency hiding).

— For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

— For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

MP 605: Topic Posted: 04/25/17 Last Update: 04/ Mary Thomas
CUDA Matrix Multiplication

CUDA MatMul Code

CONTENT

	CUDA Matrix Multiplication
	Matrix-Matrix Multiplication - CUDA Approach
	CUDA MatMul Code

