
SSC 335/394: Scientific and Technical Computing

Computer Architectures
single CPU

Von Neumann Architecture

• Instruction decode: determine operation and
operands

• Get operands from memory
• Perform operation
• Write results back
• Continue with next instruction

Contemporary Architecture

• Multiple operations simultaneously “in flight”
• Operands can be in memory, cache, register
• Results may need to be coordinated with

other processing elements
• Operations can be performed speculatively

What does a CPU look like?

What does it mean?

What is in a core?

Functional units

• Traditionally: one instruction at a time
• Modern CPUs: Multiple floating point units, for

instance 1 Mul + 1 Add, or 1 FMA
x <- c*x+y

• Peak performance is several ops/clock cycle
(currently up to 4)

• This is usually very hard to obtain

Pipelining

• A single instruction takes several clock cycles to
complete

• Subdivide an instruction:
– Instruction decode
– Operand exponent align
– Actual operation
– Normalize

• Pipeline: separate piece of hardware for each
subdivision

• Compare to assembly line

Pipeline 4-Stage FP Pipe

Floa%ng	
 Point	
 Pipeline

Register	
 Access

CP	
 1 CP	
 2 CP	
 3 CP	
 4

Argument	
 Loca%on

Memory
Pair	
 	
 1

Memory
Pair	
 	
 2

Memory
Pair	
 	
 3

Memory
Pair	
 	
 4

A	
 serial	
 mul%stage	
 func%onal	
 unit.
Each	
 stage	
 can	
 work	
 on	
 different
sets	
 of	
 independent	
 operands
simultaneously.

AEer	
 execu%on	
 in	
 the	
 final	
 stage,
first	
 result	
 is	
 available.

Latency	
 =	
 #	
 of	
 stages	
 *	
 CP/stage

CP/stage	
 is	
 the	
 same	
 for
each	
 stage	
 and	
 usually	
 1.

Pipelining

Pipeline analysis: n1/2

• With s segments and n operations, the time
without pipelining is sn

• With pipelining it becomes s+n-1+q where q
is some setup parameter, let’s say q=1

• Asymptotic rate is 1 result per clock cycle
• With n operations, actual rate is n/(s+n)
• This is half of the asymptotic rate if s=n

Instruction pipeline

The “instruction pipeline” is all of the processing steps (also called
segments) that an instruction must pass through to be
“executed”

• Instruction decoding
• Calculate operand address
• Fetch operands
• Send operands to functional units
• Write results back
• Find next instruction
As long as instructions follow each other predictably everything is

fine.

Branch Prediction

• The “instruction pipeline” is all of the processing steps (also
called segments) that an instruction must pass through to be
“executed”.

• Higher frequency machines have a larger number of segments.
• Branches are points in the instruction stream where the

execution may jump to another location, instead of executing the
next instruction.

• For repeated branch points (within loops), instead of waiting for
the loop to branch route outcome, it is predicted.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pen%um	
 III	
 processor	
 pipeline

Pen%um	
 4	
 	
 	
 processor	
 pipeline

Mispredic%on	
 is	
 more	
 “expensive”	
 on	
 Pen%um	
 4’s.

Memory Hierarchies
• Memory is too slow to keep up with the

processor
– 100--1000 cycles latency before data arrives
– Data stream maybe 1/4 fp number/cycle;

processor wants 2 or 3
• At considerable cost it’s possible to build

faster memory
• Cache is small amount of fast memory

Memory Hierarchies
• Memory is divided into different levels:

– Registers
– Caches
– Main Memory

• Memory is accessed through the hierarchy
– registers where possible
– ... then the caches
– ... then main memory

Memory Relativity

L1 cache
(SRAM, 64k)

L2 cache
(SRAM, 1M)

MEMORY
(DRAM, >1G)

SPEED SIZE Cost ($/bit)
CPU
Registers: 16

Latency and Bandwidth

• The two most important terms related to
performance for memory subsystems and for
networks are:
– Latency

• How long does it take to retrieve a word of memory?
• Units are generally nanoseconds (milliseconds for

network latency) or clock periods (CP).
• Sometimes addresses are predictable: compiler will

schedule the fetch. Predictable code is good!
– Bandwith

• What data rate can be sustained once the message is
started?

• Units are B/sec (MB/sec, GB/sec, etc.)

Implications of Latency and
Bandwidth: Little’s law

• Memory loads can depend on each other:
loading the result of a previous operation

• Two such loads have to be separated by at least
the memory latency

• In order not to waste bandwidth, at least latency
many items have to be under way at all times,
and they have to be independent

• Multiply by bandwidth:

Little’s law: Concurrency = Bandwidth x Latency

Latency hiding & GPUs

• Finding parallelism is sometimes called
`latency hiding’: load data early to hide
latency

• GPUs do latency hiding by spawning many
threads (recall CUDA SIMD programming):
SIMT

• Requires fast context switch

How good are GPUs?

• Reports of 400x speedup
• Memory bandwidth is about 6x better
• CPU peak speed hard to attain:

– Multicores, lose factor 4
– Failure to pipeline floating point unit: lose factor 4
– Use of multiple floating point units: another 2

The memory subsystem in detail

Registers
• Highest bandwidth, lowest latency memory that a modern processor

can acces
– built into the CPU
– often a scarce resource
– not RAM

• AMD x86-64 and Intel EM64T Registers

x86-­‐64	
 EM64T

63

SSE GP

X87

x86

127 31 0 079

Registers

• Processors instructions operate on registers
directly
– have assembly language names names like:

• eax, ebx, ecx, etc.

– sample instruction:
addl %eax, %edx

• Separate instructions and registers for
floating-point operations

Data Caches
• Between the CPU Registers and main memory
• L1 Cache: Data cache closest to registers
• L2 Cache: Secondary data cache, stores both data and

instructions
– Data from L2 has to go through L1 to registers
– L2 is 10 to 100 times larger than L1
– Some systems have an L3 cache, ~10x larger than L2

• Cache line
– The smallest unit of data transferred between main memory

and the caches (or between levels of cache)
– N sequentially-stored, multi-byte words (usually N=8 or 16).

Cache line

• The smallest unit of data transferred between main
memory and the caches (or between levels of cache;
every cache has its own line size)

• N sequentially-stored, multi-byte words (usually N=8 or
16).

• If you request one word on a cache line, you get the
whole line
– make sure to use the other items, you’ve paid for them in

bandwidth
– Sequential access good, “strided” access ok, random access

bad

Main Memory

• Cheapest form of RAM
• Also the slowest

– lowest bandwidth
– highest latency

• Unfortunately most of our data lives out here

Multi-core chips

• What is a processor? Instead, talk of “socket”
and “core”

• Cores have separate L1, shared L2 cache
– Hybrid shared/distributed model

• Cache coherency problem: conflicting access
to duplicated cache lines.

That Opteron again…

Approximate Latencies and Bandwidths
in a Memory Hierarchy

 ~5 CP
 ~15 CP
 ~300 CP
~10000 CP

 ~2 W/CP
 ~1 W/CP
 ~0.25 W/CP
 ~0.01 W/CP

Registers
L1 Cache
L2 Cache
Memory
Dist. Mem.

Latency Bandwidth

L1 DataRegs. Memory
8KB

L2

2 W (load)
 CP

 0.18 W
 CP

@533MHz FSB
 3GHz CPU

2/6 CPLatencies

0.5 W (store)
 CP

7/7 CP ~90-250 CP

Line size L1/L2 =8W/16W

256/512KB

on die

Int/FLT Int/FLT

1 W (load)
 CP
0.5 W (store)
 CP

Example: Pentium 4

Cache and register access

• Access is transparent to the programmer
– data is in a register or in cache or in memory
– Loaded from the highest level where it’s found
– processor/cache controller/MMU hides cache access from

the programmer
• …but you can influence it:

– Access x (that puts it in L1), access 100k of data, access x
again: it will probably be gone from cache

– If you use an element twice, don’t wait too long
– If you loop over data, try to take chunks of less than cache

size
– C declare register variable, only suggestion

Register use

• y[i] can be kept in
register

• Declaration is only
suggestion to the
compiler

• Compiler can usually
figure this out itself

for (i=0; i<m; i++) {
 for (j=0; j<n; j++) {
 y[i] = y[i]+a[i][j]*x[j];
 }
}

register double s;
for (i=0; i<m; i++) {
 s = 0.;
 for (j=0; j<n; j++) {
 s = s+a[i][j]*x[j];
 }
 y[i] = s;
}

• Cache hit
– location referenced is found in the cache

• Cache miss
– location referenced is not found in cache
– triggers access to the next higher cache or memory

• Cache thrashing
– Two data elements can be mapped to the same

cache line: loading the second “evicts” the first
– Now what if this code is in a loop? “thrashing”: really

bad for performance

Hits, Misses, Thrashing

Cache Mapping

• Because each memory level is smaller than
the next-closer level, data must be mapped

• Types of mapping
– Direct
– Set associative
– Fully associative

Direct Mapped Caches

Direct mapped cache: A block from main memory can go in
exactly one place in the cache. This is called direct mapped
because there is direct mapping from any block address in
memory to a single location in the cache. Typically modulo
calculation cache

main memory

Direct Mapped Caches

• If the cache size is Nc and it is divided into k
lines, then each cache line is Nc/k in size

• If the main memory size is Nm, memory is
then divided into Nm/(Nc/k) blocks that are
mapped into each of the k cache lines

• Means that each cache line is associated with
particular regions of memory

Direct mapping example

• Memory is 4G: 32 bits
• Cache is 64K (or 8K words): 16 bits
• Map by taking last 16 bits
• (why last?)
• (how many different memory locations map to

the same cache location?)
• (if you walk through a double precision array,

i and i+k map to the same cache location.
What is k?)

The problem with Direct Mapping
• Example: cache size 64k=216

byte = 8192 words
• a[0] and b[0] are mapped to the

same cache location
• Cache line is 4 words
• Thrashing:

– b[0]..b[3] loaded to cache, to register
– a[0]..a[3] loaded, gets new value,

kicks b[0]..b[3] out of cache
– b[1] requested, so b[0]..b[3] loaded

again
– a[1] requested, loaded, kicks b[0..3]

out again

double a[8192],b[8192];
for (i=0; i<n; i++) {
 a[i] = b[i]
}

Fully Associative Caches

Fully associative cache : A block from main memory can be placed in any
location in the cache. This is called fully associative because a block
in main memory may be associated with any entry in the cache.
Requires lookup table.

cache

main memory

Fully Associative Caches

• Ideal situation
• Any memory location can be associated with

any cache line
• Cost prohibitive

Set Associative Caches

Set associative cache : The middle range of designs between
direct mapped cache and fully associative cache is called
set-associative cache. In a n-way set-associative cache a
block from main memory can go into n (n at least 2)
locations in the cache.

2-way set-associative cache

main memory

Set Associative Caches

• Direct-mapped caches are 1-way set-
associative caches

• For a k-way set-associative cache, each
memory region can be associated with k
cache lines

• Fully associative is k-way with k the number
of cache lines

Intel Woodcrest Caches

• L1
– 32 KB
– 8-way set associative
– 64 byte line size

• L2
– 4 MB
– 8-way set associative
– 64 byte line size

TLB

• Translation Look-aside Buffer
• Translates between logical space that each program has

and actual memory addresses
• Memory organized in ‘small pages’, a few Kbyte in size
• Memory requests go through the TLB, normally very fast
• Pages that are not tracked through the TLB can be found

through the ‘page table’: much slower
• => jumping between more pages than the TLB can track

has a performance penalty.
• This illustrates the need for spatial locality.

Prefetch

• Hardware tries to detect if you load regularly
spaced data:

• “prefetch stream”
• This can be programmed in software, often

only in-line assembly.

Theoretical analysis of performance

• Given the different speeds of memory &
processor, the question is: does my algorithm
exploit all these caches? Can it theoretically;
does it in practice?

Data reuse

• Performance is limited by data transfer rate
• High performance if data items are used

multiple times
• Example: vector addition xi=xi+yi: 1op, 3 mem

accesses
• Example: inner product s=s+xi*yi: 2op, 2 mem

access (s in register; also no writes)

Data reuse: matrix-matrix product

• Matrix-matrix product: 2n3 ops, 2n2 data

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 s = 0;
 for (k=0; k<n; k++) {
 s = s+a[i][k]*b[k][j];
 }
 c[i][j] = s;
 }
}

Is there any data
reuse in this
algorithm?

Data reuse: matrix-matrix product

• Matrix-matrix product: 2n3 ops, 2n2 data
• If it can be programmed right, this can

overcome the bandwidth/cpu speed gap
• Again only theoretically: naïve implementation

inefficient
• Do not code this yourself: use mkl or so
• (This is the important kernel in the Linpack

benchmark.)

Reuse analysis:
matrix-vector product

y[i] invariant but not
reused: arrays get
written back to memory,
so 2 accesses just for
y[i]

for (i=0; i<m; i++) {
 for (j=0; j<n; j++) {
 y[i] = y[i]+a[i][j]*x[j];
 }
}

for (i=0; i<m; i++) {
 s = 0.;
 for (j=0; j<n; j++) {
 s = s+a[i][j]*x[j];
 }
 y[i] = s;
}

s stays in register

Reuse analysis(1):

matrix-vector product
Reuse of x[j], but the gain

is outweighed by
multiple load/store of
y[i]

for (j=0; j<n; j++) {
 for (i=0; i<m; i++) {
 y[i] = y[i]+a[i][j]*x[j];
 }
}

for (j=0; j<n; j++) {
 t = x[j];
 for (i=0; i<m; i++) {
 y[i] = y[i]+a[i][j]*t;
 }
}

Different behaviour
matrix stored by rows
and columns

Reuse analysis(2):

matrix-vector product
Loop tiling:
• x is loaded m/2 times, not m
Register usage for y as before
Loop overhead half less
Pipelined operations exposed
Prefetch streaming

for (i=0; i<m; i+=2) {
 s1 = 0.; s2 = 0.;
 for (j=0; j<n; j++) {
 s1 = s1+a[i][j]*x[j];
 s2 = s2+a[i+1][j]*x[j]
 }
 y[i] = s1; y[i+1] = s2;
}

for (i=0; i<m; i+=4) {
 for (j=0; j<n; j++) {
 s1 = s1+a[i][j]*x[j];
 s2 = s2+a[i+1][j]*x[j]
 s3 = s3+a[i+2][j]*x[j]
 s4 = s4+a[i+3][j]*x[j]

Matrix stored by columns:
Now full cache line of A used

Reuse analysis(3):

matrix-vector product
Further optimization: use pointer

arithmetic instead of indexing
a1 = &(a[0][0]);
a2 = a1+n;
for (i=0,ip=0; i<m/2; i++) {
 s1 = 0.; s2 = 0.;
 xp = &x;
 for (j=0; j<n; j++) {
 s1 = s1+*(a1++)**xp;
 s2 = s2+*(a2++)**(xp++);
 }
 y[ip++] = s1; y[ip++] = s2;
 a1 += n; a2 += n;
}

Locality

• Programming for high performance is based
on spatial and temporal locality

• Temporal locality:
– Group references to one item close together:

• Spatial locality:
– Group references to nearby memory items

together

Temporal Locality

• Use an item, use it again before it is flushed
from register or cache:
– Use item,
– Use small number of other data
– Use item again

Temporal locality: example

for (loop=0; loop<10; loop++) {
 for (i=0; i<N; i++) {
 ... = ... x[i] ...
 }
}
for (i=0; i<N; i++) {
 for (loop=0; loop<10; loop++) {
 ... = ... x[i] ...
 }
}

Original loop:
long time between uses of x,
Rearrangement:
x is reused

Spatial Locality

• Use items close together
• Cache lines: if the cache line is already

loaded, other elements are ‘for free’
• TLB: don’t jump more than 512 words too

many times

Illustrations

Cache size

for (i=0; i<NRUNS; i++)
 for (j=0; j<size; j++)
 array[j] = 2.3*array[j]+1.2;

• If the data fits in L1 cache, the transfer is very fast
• If there is more data, transfer speed from L2 dominates

Cache size

 for (i=0; i<NRUNS; i++) {
 blockstart = 0;
 for (b=0; b<size/l1size; b++)
 for (j=0; j<l1size; j++)
 array[blockstart+j] = 2.3*array[blockstart+j]+1.2;
 }

• Data can sometimes be arranged to fit in cache:
• Cache blocking

Cache line utilization
 for (i=0,n=0; i<L1WORDS; i++,n+=stride)
 array[n] = 2.3*array[n]+1.2;

• Same amount of data, but increasing
stride

• Increasing stride: more cachelines
loaded, slower execution

TLB
#define INDEX(i,j,m,n) i+j*m
 array = (double*) malloc(m*n*sizeof(double));

 /* traversal #1 */
 for (j=0; j<n; j++)
 for (i=0; i<m; i++)
 array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

• Array is stored with columns contiguous
• Loop traverses the columns:
• No big jumps through memory
• (max: 2000 columns, 3000 cycles)

TLB
#define INDEX(i,j,m,n) i+j*m
 array = (double*) malloc(m*n*sizeof(double));

 /* traversal #2 */
 for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 array[INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

• Traversal by columns:
• Every next column is n words away
• If n more than page size: TLB misses
• (max: 2000 columns, 10Mcycles, 300

times slower)

Associativity

• Opteron: L1 cache 64k=4096 words
• Two-way associative, so m>1 leads to

conflicts:
• Cache misses/column goes up linearly
• (max: 7 terms, 35 cycles/column)

Associativity

• Opteron: L1 cache 64k=4096 words
• Allocate vectors with 4096+8 words: no

conflicts: cache misses negligible
• (7 terms: 6 cycles/column)

