SSC 335/394: Scientific and Technical Computing

Computer Architectures
single CPU

TAGG

Von Neumann Architecture

 |nstruction decode: determine operation and
operands

* Get operands from memory
» Perform operation

* Write results back

* Continue with next instruction

TAGG

Contemporary Architecture

Multiple operations simultaneously “in flight”
Operands can be in memory, cache, register

Results may need to be coordinated with
other processing elements

Operations can be performed speculatively

TAGG

What does a CPU look like?

Y

ek,

TAGG

What does it mean?

[e m — — — — —— — ——— T ——— ————— —————

Core O Core 1 Core 2 Core 3
2MB 13 Cache

I T

Systern Request Interface; Crossbar
4)

¥ ¥

| |

\ | HyperTransport 3.0 Memory Controllers i

| |

I |

T
4 Gbfsdink 5.33 GB/vlink

TAGG

What is in a core?

From'to L3 cache

From'to L2 cache
chwricdm = = Load! Store :qucuc units
‘ cont Datacache TR L
; Y
¥ ¥ t 64 KB
Instruction
Z:clth - Lewvel 2
'g -~ Integer exec. = S
g T wnit | 512KB
Tevel ITLE|| Future addr i
32 entries " E g File - 4 gc.wau
E unit]
Level 2 TLE 3 25
512 entries " = Ll) A | 1 4
2 2 3 F N \/
Branch pred JT—= % Bl (== ik
ran;b!cprr . g FPUstack " |15 eptries FPU S S
% map’ . scpﬁsd L | registers + X
rename .
7 12 entries 120 =
N ;ﬁi o entrics =%
12 entries o | 12TLB
- 1 [}

TAGG

Functional units

 Traditionally: one instruction at a time

 Modern CPUs: Multiple floating point units, for
instance 1 Mul + 1 Add, or 1 FMA
X <- C*X+y

« Peak performance is several ops/clock cycle
(currently up to 4)

* This is usually very hard to obtain

TAGG

Pipelining

* A single instruction takes several clock cycles to
complete

e Subdivide an instruction:
— Instruction decode
— Operand exponent align

— Actual operation
— Normalize

* Pipeline: separate piece of hardware for each
subdivision

« Compare to assembly line

TAGG

Pipelining
4-Stage FP Pipe

Pipeline
CP1 CP2 CP3 CP4
A serial multistage functional unit. ME
. emor
Each stage can work on different bl Floating Point Pipeline

sets of independent operands

. —» —» —+»
simultaneously.

]
After execution in the final stage, Memory l
first result is available. Pair 2

Latency = # of stages * CP/stage

Memory l

CP/stage is the same for Pair 3 I N
each stage and usually 1.
I
—— V¥
M
—P Register Access Pa(ierm:ry Y Y Y

Argument Location

TAGG

TAGG

Pipeline analysis: n,

* With s segments and n operations, the time
without pipelining is sn

« With pipelining it becomes s+n-71+q where q
IS some setup parameter, let's say g=1

* Asymptotic rate is 1 result per clock cycle
« With n operations, actual rate is n/(s+n)
* This is half of the asymptotic rate if s=n

TAGG

Instruction pipeline

The “instruction pipeline” is all of the processing steps (also called
segments) that an instruction must pass through to be
“executed”

* Instruction decoding

 Calculate operand address

« Fetch operands

« Send operands to functional units

« Write results back

 Find next instruction

As long as instructions follow each other predictably everything is
fine.

TAGG

* The “instruction pipeline” is all of the processing steps (also
called segments) that an instruction must pass through to be

“executed”’.

« Higher frequency machines have a larger number of segments.

Branch Prediction

« Branches are points in the instruction stream where the
execution may jump to another location, instead of executing the

next instruction.
« For repeated branch points (within loops), instead of waiting for

the loop to branch route outcome, it is predicted.

Pentium Il processor pipeline

3

4

5

6

10

Pentium 4 processor pipeline

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Misprediction is more “expensive” on Pentium 4’s.

Memory Hierarchies

 Memory is too slow to keep up with the
pProcessor
— 100--1000 cycles latency before data arrives

— Data stream maybe 1/4 fp number/cycle;
processor wants 2 or 3

» At considerable cost it's possible to build
faster memory

« Cache is small amount of fast memory

TAGG

Memory Hierarchies

 Memory is divided into different levels:
— Registers
— Caches
— Main Memory

 Memory is accessed through the hierarchy
— registers where possible

— ... then the caches
— ... then main memory

TAGG

SPEED

Memory Relativity

CPU
Registers: 16

LL1 cache
(SRAM, 64k)

.2 cache
(SRAM, 1M)

MEMORY
(DRAM, >1G)

SIZE Cost ($/bit)

)

TAGG

Latency and Bandwidth

* The two most important terms related to
performance for memory subsystems and for
networks are:

— Latency
* How long does it take to retrieve a word of memory?

« Units are generally nanoseconds (milliseconds for
network latency) or clock periods (CP).

« Sometimes addresses are predictable: compiler will
schedule the fetch. Predictable code is good!
— Bandwith

 What data rate can be sustained once the message is
started?

* Units are B/sec (MB/sec, GB/sec, etc.)

TAGG

Implications of Latency and
Bandwidth: Little’s law

 Memory loads can depend on each other:
loading the result of a previous operation

* Two such loads have to be separated by at least
the memory latency

* |n order not to waste bandwidth, at least latency
many items have to be under way at all times,
and they have to be independent

* Multiply by bandwidth:

Little's law: Concurrency = Bandwidth x Latency

TAGG

Latency hiding & GPUs

* Finding parallelism is sometimes called
‘latency hiding’: load data early to hide
latency

« GPUs do latency hiding by spawning many
threads (recall CUDA SIMD programming):
SIMT

* Requires fast context switch

TAGG

How good are GPUs?

» Reports of 400x speedup
 Memory bandwidth is about 6x better
 CPU peak speed hard to attain:

— Multicores, lose factor 4
— Failure to pipeline floating point unit: lose factor 4
— Use of multiple floating point units: another 2

TAGG

The memory subsystem in detail

TACS Texas Advanced Computing Center

Registers

« Highest bandwidth, lowest latency memory that a modern processor
can acces

— built into the CPU
— often a scarce resource
— not RAM

« AMD x86-64 and Intel EM64T Registers

127 63 31 0 79 0
X87
| [x86
SSE GP [|x86-64 EM64T

TAGG

Registers

* Processors instructions operate on registers
directly

— have assembly language names names like:
* eax, ebx, ecx, eftc.

— sample instruction:
addl %eax, %edx
« Separate instructions and registers for
floating-point operations

TAGG

Data Caches

« Between the CPU Registers and main memory

« L1 Cache: Data cache closest to registers

« L2 Cache: Secondary data cache, stores both data and
instructions
— Data from L2 has to go through L1 to registers
— L2 is 10 to 100 times larger than L1
— Some systems have an L3 cache, ~10x larger than L2

« Cache line

— The smallest unit of data transferred between main memory
and the caches (or between levels of cache)

— N sequentially-stored, multi-byte words (usually N=8 or 16).

TAGG

Cache line

* The smallest unit of data transferred between main
memory and the caches (or between levels of cache;
every cache has its own line size)

* N sequentially-stored, multi-byte words (usually N=8 or
16).

 If you request one word on a cache line, you get the
whole line

— make sure to use the other items, you’ve paid for them in
bandwidth

— Sequential access good, “strided” access ok, random access
bad

TAGG

Main Memory

* Cheapest form of RAM

 Also the slowest
— lowest bandwidth
— highest latency

« Unfortunately most of our data lives out here

TAGG

Multi-core chips

 What is a processor? Instead, talk of “socket”
and “core”

» Cores have separate L1, shared L2 cache
— Hybrid shared/distributed model

« Cache coherency problem: conflicting access
to duplicated cache lines.

TAGG

That Opteron again...

TAGG

Approximate Latencies and Bandwidths
in a Memory Hierarchy

Latency Bandwidth

Reqister

L1e gCZtc(:ehZ ~5 CP 4 ~2 WICP
L2 Cache ~15 CP 4 ~1 W/CP
Memory ~300 CP 4 :83? w;gg
Dist. Mem. ~10000 CP A :

TAGG

Example: Pentium 4

@533MHz FSB

2 W (load) 1 W (load) 3GHz CPU

cP cP 0.18 w/

s 0.5 W (store) 0.5 W (st0li)ummmmn, op

Cp WA cp on die
Regs. <— L1 Data «—» L2 Memory
8KB 256/512KB
Latencies* 2/6cp ~ 77CP ~ € 90250cCcP
Int/FLT Int/FLT

Line size L1/L2 =8W/16W

TAGG

Cache and register access

* Access is transparent to the programmer
— data is in a register or in cache or in memory
— Loaded from the highest level where it's found
— processor/cache controller/MMU hides cache access from
the programmer
e ...but you can influence it:

— Access x (that puts it in L1), access 100k of data, access x
again: it will probably be gone from cache

— If you use an element twice, don’t wait too long

— If you loop over data, try to take chunks of less than cache
size

— C declare register variable, only suggestion

TAGG

Register use

 y[i] can be kept in
register
» Declaration is only

suggestion to the
compiler

« Compiler can usually
figure this out itself

for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
y[i] = yl[i]l+a[i] [J]1*=x[]]’
}
}

register double s;
for (i=0; i<m; i++) {
s =0.;
for (j3=0; j<n; Jj++) {
s = s+a[i][J]1*x[]];
}
y[i] = s;
}

TAGG

Hits, Misses, Thrashing

« Cache hit

— location referenced is found in the cache

« Cache miss
— location referenced is not found in cache
— triggers access to the next higher cache or memory

* Cache thrashing

— Two data elements can be mapped to the same
cache line: loading the second “evicts” the first

— Now what if this code is in a loop? “thrashing”: really
bad for performance

TAGG

Cache Mapping

« Because each memory level is smaller than
the next-closer level, data must be mapped

« Types of mapping
— Direct
— Set associative
— Fully associative

TAGG

Direct Mapped Caches

Direct mapped cache: A block from main memory can go in
exactly one place in the cache. This is called direct mapped
because there is direct mapping from any block address in

memory to a single location in the cache. Typically modulo
calculation cache

——

aln memory

TAGG

Direct Mapped Caches

* If the cache size is N, and it is divided into k
ines, then each cache line is Nk in size

* If the main memory size is N,,, memory is

then divided into N, /(N _/k) blocks that are
mapped into each of the k cache lines

« Means that each cache line is associated with
particular regions of memory

TAGG

Direct mapping example

 Memory is 4G: 32 bits

« Cache is 64K (or 8K words): 16 bits
* Map by taking last 16 bits

* (why last?)

* (how many different memory locations map to
the same cache location?)

« (if you walk through a double precision array,
I and /+k map to the same cache location.
What is k7?)

TAGG

The problem with Direct Mapping

for (i=0; i<n;
a[i] = b[1i]
}

double a[8192],b[8192];

i++) |

Example: cache size 64k=216
byte = 8192 words

a[0] and b[0] are mapped to the
same cache location

Cache line is 4 words

Thrashing:

— bJ[0]..b[3] loaded to cache, to register

— a0]..a[3] loaded, gets new value,
kicks b[0]..b[3] out of cache

— b[1] requested, so b[0]..b[3] loaded
again

— a[1] requested, loaded, kicks b[0..3]
out again

TAGG

Fully Associative Caches

Fully associative cache : A block from main memory can be placed in any
location in the cache. This is called fully associative because a block
In main memory may be associated with any entry in the cache.
Requires lookup table.

cache

L N <

main memory

TAGG

Fully Associative Caches

e |deal situation

* Any memory location can be associated with
any cache line

» Cost prohibitive

TAGG

Set Associative Caches

Set associative cache : The middle range of designs between
direct mapped cache and fully associative cache is called
set-associative cache. In a n-way set-associative cache a
block from main memory can go into n (n at least 2)
locations in the cache.

2-way set-associative cache

main memory

TAGG

Set Associative Caches

* Direct-mapped caches are 1-way set-
associative caches

* For a k-way set-associative cache, each
memory region can be associated with k
cache lines

* Fully associative is k-way with k the number
of cache lines

TAGG

Intel Woodcrest Caches

e L1
— 32 KB
— 8-way set associative
— 64 byte line size

¢ |2
-4 MB
— 8-way set associative
— 64 byte line size

TAGG

TLB

 Translation Look-aside Buffer

« Translates between logical space that each program has
and actual memory addresses

« Memory organized in ‘'small pages’, a few Kbyte in size
 Memory requests go through the TLB, normally very fast

« Pages that are not tracked through the TLB can be found
through the ‘page table’: much slower

e => jumping between more pages than the TLB can track
has a performance penalty.

« This illustrates the need for spatial locality.

TAGG

Prefetch

* Hardware tries to detect if you load regularly
spaced data:

e “prefetch stream”

* This can be programmed in software, often
only in-line assembly.

TAGG

Theoretical analysis of performance

* Given the different speeds of memory &
processor, the question is: does my algorithm
exploit all these caches”? Can it theoretically;
does it in practice?

TAGG

Data reuse

« Performance is limited by data transfer rate

* High performance if data items are used
multiple times

« Example: vector addition x,=x;+y;: 10p, 3 mem
accesses

« Example: inner product s=s+x;*y;: 20p, 2 mem
access (s in register; also no writes)

TAGG

Data reuse: matrix-matrix product

« Matrix-matrix product: 2n3ops, 2n? data

for (i=0;

s =

}

}
}

i<n; i++) {

for (j=0; j<n; j++) {
s = 0;
for (k=0; k<n; k++) {

s+a[i] [k]1*b[k][j];

c[i][]] = s;

|s there any data
reuse in this
algorithm?

TAGG

Data reuse: matrix-matrix product

« Matrix-matrix product: 2n3ops, 2n? data

 If it can be programmed right, this can
overcome the bandwidth/cpu speed gap

* Again only theoretically: naive implementation
inefficient

* Do not code this yourself: use mkl or so

* (This is the important kernel in the Linpack
benchmark.)

TAGG

Reuse analysis:
matrix-vector product

for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
yl[i] = yl[i]l+a[i] [J]1*=x[]]"’
}
}

for (i=0; i<m; i++) {
s =0.;
for (j=0; j<n; j++) {
s = sta[i] [J]1*x[]]~
}
y[i] = s;
}

y[i] invariant but not
reused: arrays get
written back to memory,
SO 2 accesses just for

y[i]
s stays in register

TAGG

Reuse analysis!!)
matrix-vector product

for (j=0; j<n; j++) { Reuse of x[j], but the gain
for (i=0; i<m; i++) { is outweighed by

y[i] = yl[il+a[i] [J]1*x[]];

: multiple load/store of
) y[i]
for (§=0; j<n; j++) { Different behaviour
t = xI[3]; matrix stored by rows
for (i=0; i<m; i++) { d |
y[il = ylil+a[il [31*¢; and columns

}
}

TAGG

Reuse analysis(?)
matrix-vector product

for (i=0; i<m; i+=2) {
sl =0.; s2 =0.;
for (j=0; j<n; j++) {

sl = sl+a[il [J1*x[7F];
s2 = s2+a[i+1][j]*x[]]
}
y[i] = s1; y[i+l] = s2;

}

for (i=0; i<m; i+=4) {
for (j=0; j<n; j++) {

sl = sl+a[i]l [J1*x[7F];
s2 = s2+al[i+1][j]1*x[]]
s3 = s3+al[i+2][j]1*x[]]
s4 = sd4+al[i+3]1[j]1*x[]]

Loop tiling:

X is loaded m/2 times, not m
Register usage for y as before
Loop overhead half less
Pipelined operations exposed
Prefetch streaming

Matrix stored by columns:
Now full cache line of A used

TAGG

Reuse analysis)
matrix-vector product

al = &(a[0]1[0]); Further optimization: use pointer
a2 = al+n; arithmetic instead of indexing
for (i=0,ip=0; i<m/2; i++) {
sl 0., s2 =0.;
Xp &xX;
for (j=0; j<n; j++) {
sl = sl+*(al++) **xp;
s2 = s2+* (a2++) ** (xp++) ;
}
ylip++] = sl1; yl[ip++] = s2;
al += n; a2 += n;

}

TAGG

Locality

* Programming for high performance is based
on spatial and temporal locality

* Temporal locality:
— Group references to one item close together:

« Spatial locality:

— Group references to nearby memory items
together

TAGG

Temporal Locality

« Use an item, use it again before it is flushed
from register or cache:
— Use item,
— Use small number of other data
— Use item again

TAGG

Temporal locality: example

for (loop=0; loop<10; loop++) { Original loop:
for (i=0; i<N; i++) { long time between uses of x,
— : Rearrangement:
o= X)
) X is reused

for (i=0; i<N; i++) {
for (loop=0; loop<10; loop++) {
o= X[
Y
Y

TAGG

Spatial Locality

* Use items close together

« Cache lines: if the cache line is already
loaded, other elements are ‘for free’

« TLB: don't jump more than 512 words too
many times

TAGG

lllustrations

TAGG

Cache size

for (1=0; 1<NRUNS; 1++)
for (3=0; j<size; Jj++)
array[j] = 2.3*array[j]+1.2;

Cache miss fraction

12

10f

1.8

!
-
o)

L
[
¥

11.2

: - 1.0
10 15 20 25 30l
dataset size

« If the data fits in L1 cache, the transfer is very fast
« If there is more data, transfer speed from L2 dominates

- (=)
cycles per op

TAGG

Cache size

for (1=0; 1<NRUNS; 1i++) {
blockstart = 0;
for (b=0; b<size/llsize; b++)
for (3=0; j<llsize; j++)
array[blockstart+j] = 2.3*array[blockstart+j]+1.2;

« Data can sometimes be arranged to fit in cache:
« Cache blocking

TAGG

Cache line utilization

for (1=0,n=0; 1<L1WORDS; 1i++,n+=stride)
array[n] = 2.3*array[n]+1.2;

« Same amount of data, but increasing
stride

* Increasing stride: more cachelines
loaded, slower execution

cache line utilization
Eotal kcycleg

TAGG

TLB
#define INDEX(i,j,m,n) 1+7j*m

array = (double*) malloc(m*n*sizeof(double));

/* traversal #1 */
for (3=0; j<n; J++)
for (1=0; i<m; 1++)
array [INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

le7 3.0

2.0 -

)
* Array is stored with columns contiguous A q/\wﬁfwj UM\ \ﬁw
« Loop traverses the columns: 1 Jw\ o
* No big jumps through memory

1.0

total cycles

« (max: 2000 columns, 3000 cycles)

tlb misses / column

0.5}

0.0

) . 0.0
0 500 1000 1500 200'0(
#columns

TAGG

TLB

#define INDEX(i,j,m,n) i1+7j*m

/* traversal #2 */
for (1=0; i<m; 1i++)
for (3=0; j<n; J++)
array [INDEX(1i,j,m,n)]

array = (double*) malloc(m*n*sizeof(double));

array [INDEX(i,j,m,n)]+1;

« Traversal by columns:
« Every next column is n words away
* If n more than page size: TLB misses

* (max: 2000 columns, 10Mcycles, 300
times slower)

tlb misses / column

TAGG

le8

1200

1000

800F

600

4001

200

1.2

500

1000
#columns

1500

total cycles

Associativity

m
Vi:y; =y +ZI,'_J‘.

i=1

* Opteron: L1 cache 64k=4096 words

« Two-way associative, so m>1 leads to
conflicts:

« Cache misses/column goes up linearly
« (max: 7 terms, 35 cycles/column)

L1 cache misses per column

cycles per column

TAGG

Associativity

m
Vj: Yi =Y +Zrisj'

i=1

* Opteron: L1 cache 64k=4096 words

* Allocate vectors with 4096+8 words: no
conflicts: cache misses negligible

« (7 terms: 6 cycles/column)

L1 cache misses per column

o
A
S

©
-
N

o
-
o

10

cycles per column

TAGG

