SSC 335/394: Scientific and Technical Computing

Computer Architectures
single CPU
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Von Neumann Architecture

 |nstruction decode: determine operation and
operands

* Get operands from memory
» Perform operation

* Write results back

* Continue with next instruction
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Contemporary Architecture

Multiple operations simultaneously “in flight”
Operands can be in memory, cache, register

Results may need to be coordinated with
other processing elements

Operations can be performed speculatively
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What does a CPU look like?
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What does it mean?
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What is in a core?
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Functional units

 Traditionally: one instruction at a time

 Modern CPUs: Multiple floating point units, for
instance 1 Mul + 1 Add, or 1 FMA
X <- C*X+y

« Peak performance is several ops/clock cycle
(currently up to 4)

* This is usually very hard to obtain
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Pipelining

* A single instruction takes several clock cycles to
complete

e Subdivide an instruction:
— Instruction decode
— Operand exponent align

— Actual operation
— Normalize

* Pipeline: separate piece of hardware for each
subdivision

« Compare to assembly line
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Pipelining
4-Stage FP Pipe

Pipeline
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Pipeline analysis: n,

* With s segments and n operations, the time
without pipelining is sn

« With pipelining it becomes s+n-71+q where q
IS some setup parameter, let's say g=1

* Asymptotic rate is 1 result per clock cycle
« With n operations, actual rate is n/(s+n)
* This is half of the asymptotic rate if s=n

TAGG



Instruction pipeline

The “instruction pipeline” is all of the processing steps (also called
segments) that an instruction must pass through to be
“executed”

* Instruction decoding

 Calculate operand address

« Fetch operands

« Send operands to functional units

«  Write results back

 Find next instruction

As long as instructions follow each other predictably everything is
fine.
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* The “instruction pipeline” is all of the processing steps (also
called segments) that an instruction must pass through to be

“executed”’.

« Higher frequency machines have a larger number of segments.

Branch Prediction

« Branches are points in the instruction stream where the
execution may jump to another location, instead of executing the

next instruction.
« For repeated branch points (within loops), instead of waiting for

the loop to branch route outcome, it is predicted.
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Misprediction is more “expensive” on Pentium 4’s.




Memory Hierarchies

 Memory is too slow to keep up with the
pProcessor
— 100--1000 cycles latency before data arrives

— Data stream maybe 1/4 fp number/cycle;
processor wants 2 or 3

» At considerable cost it's possible to build
faster memory

« Cache is small amount of fast memory
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Memory Hierarchies

 Memory is divided into different levels:
— Registers
— Caches
— Main Memory

 Memory is accessed through the hierarchy
— registers where possible

— ... then the caches
— ... then main memory
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SPEED

Memory Relativity

CPU
Registers: 16

LL1 cache
(SRAM, 64k)

.2 cache
(SRAM, 1M)

MEMORY
(DRAM, >1G)

SIZE  Cost ($/bit)

)
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Latency and Bandwidth

* The two most important terms related to
performance for memory subsystems and for
networks are:

— Latency
* How long does it take to retrieve a word of memory?

« Units are generally nanoseconds (milliseconds for
network latency) or clock periods (CP).

« Sometimes addresses are predictable: compiler will
schedule the fetch. Predictable code is good!
— Bandwith

 What data rate can be sustained once the message is
started?

* Units are B/sec (MB/sec, GB/sec, etc.)
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Implications of Latency and
Bandwidth: Little’s law

 Memory loads can depend on each other:
loading the result of a previous operation

* Two such loads have to be separated by at least
the memory latency

* |n order not to waste bandwidth, at least latency
many items have to be under way at all times,
and they have to be independent

* Multiply by bandwidth:

Little's law: Concurrency = Bandwidth x Latency
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Latency hiding & GPUs

* Finding parallelism is sometimes called
‘latency hiding’: load data early to hide
latency

« GPUs do latency hiding by spawning many
threads (recall CUDA SIMD programming):
SIMT

* Requires fast context switch
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How good are GPUs?

» Reports of 400x speedup
 Memory bandwidth is about 6x better
 CPU peak speed hard to attain:

— Multicores, lose factor 4
— Failure to pipeline floating point unit: lose factor 4
— Use of multiple floating point units: another 2
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The memory subsystem in detail

TACS Texas Advanced Computing Center




Registers

« Highest bandwidth, lowest latency memory that a modern processor
can acces

— built into the CPU
— often a scarce resource
— not RAM

« AMD x86-64 and Intel EM64T Registers

127 63 31 0 79 0
X87
| [x86
SSE GP [ |x86-64 EM64T
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Registers

* Processors instructions operate on registers
directly

— have assembly language names names like:
* eax, ebx, ecx, eftc.

— sample instruction:
addl %eax, %edx
« Separate instructions and registers for
floating-point operations
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Data Caches

« Between the CPU Registers and main memory

« L1 Cache: Data cache closest to registers

« L2 Cache: Secondary data cache, stores both data and
instructions
— Data from L2 has to go through L1 to registers
— L2 is 10 to 100 times larger than L1
— Some systems have an L3 cache, ~10x larger than L2

« Cache line

— The smallest unit of data transferred between main memory
and the caches (or between levels of cache)

— N sequentially-stored, multi-byte words (usually N=8 or 16).
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Cache line

* The smallest unit of data transferred between main
memory and the caches (or between levels of cache;
every cache has its own line size)

* N sequentially-stored, multi-byte words (usually N=8 or
16).

 If you request one word on a cache line, you get the
whole line

— make sure to use the other items, you’ve paid for them in
bandwidth

— Sequential access good, “strided” access ok, random access
bad
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Main Memory

* Cheapest form of RAM

 Also the slowest
— lowest bandwidth
— highest latency

« Unfortunately most of our data lives out here
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Multi-core chips

 What is a processor? Instead, talk of “socket”
and “core”

» Cores have separate L1, shared L2 cache
— Hybrid shared/distributed model

« Cache coherency problem: conflicting access
to duplicated cache lines.
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That Opteron again...
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Approximate Latencies and Bandwidths
in a Memory Hierarchy

Latency Bandwidth

Reqister

L1e gCZtc(:ehZ ~5 CP 4 ~2  WICP
L2 Cache ~15 CP 4 ~1  W/CP
Memory ~300 CP 4 :83? w;gg
Dist. Mem. ~10000 CP A :
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Example: Pentium 4

@533MHz FSB

2 W (load) 1 W (load) 3GHz CPU

cP cP 0.18 w/

s 0.5 W (store) 0.5 W (st0li)ummmmn,  op

Cp WA cp on die
Regs. <— L1 Data «—» L2 Memory
8KB 256/512KB
Latencies* 2/6cp ~ 77CP ~ € 90250cCcP
Int/FLT Int/FLT

Line size L1/L2 =8W/16W
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Cache and register access

* Access is transparent to the programmer
— data is in a register or in cache or in memory
— Loaded from the highest level where it's found
— processor/cache controller/MMU hides cache access from
the programmer
e ...but you can influence it:

— Access x (that puts it in L1), access 100k of data, access x
again: it will probably be gone from cache

— If you use an element twice, don’t wait too long

— If you loop over data, try to take chunks of less than cache
size

— C declare register variable, only suggestion
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Register use

 y[i] can be kept in
register
» Declaration is only

suggestion to the
compiler

« Compiler can usually
figure this out itself

for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
y[i] = yl[i]l+a[i] [J]1*=x[]]’
}
}

register double s;
for (i=0; i<m; i++) {
s =0.;
for (j3=0; j<n; Jj++) {
s = s+a[i][J]1*x[]];
}
y[i] = s;
}
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Hits, Misses, Thrashing

« Cache hit

— location referenced is found in the cache

« Cache miss
— location referenced is not found in cache
— triggers access to the next higher cache or memory

* Cache thrashing

— Two data elements can be mapped to the same
cache line: loading the second “evicts” the first

— Now what if this code is in a loop? “thrashing”: really
bad for performance
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Cache Mapping

« Because each memory level is smaller than
the next-closer level, data must be mapped

« Types of mapping
— Direct
— Set associative
— Fully associative
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Direct Mapped Caches

Direct mapped cache: A block from main memory can go in
exactly one place in the cache. This is called direct mapped
because there is direct mapping from any block address in

memory to a single location in the cache. Typically modulo
calculation cache

——

aln memory
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Direct Mapped Caches

* If the cache size is N, and it is divided into k
ines, then each cache line is Nk in size

* If the main memory size is N,,, memory is

then divided into N, /(N _/k) blocks that are
mapped into each of the k cache lines

« Means that each cache line is associated with
particular regions of memory
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Direct mapping example

 Memory is 4G: 32 bits

« Cache is 64K (or 8K words): 16 bits
* Map by taking last 16 bits

* (why last?)

* (how many different memory locations map to
the same cache location?)

« (if you walk through a double precision array,
I and /+k map to the same cache location.
What is k7?)
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The problem with Direct Mapping

for (i=0; i<n;
a[i] = b[1i]
}

double a[8192],b[8192];

i++) |

Example: cache size 64k=216
byte = 8192 words

a[0] and b[0] are mapped to the
same cache location

Cache line is 4 words

Thrashing:

— bJ[0]..b[3] loaded to cache, to register

— a0]..a[3] loaded, gets new value,
kicks b[0]..b[3] out of cache

— b[1] requested, so b[0]..b[3] loaded
again

— a[1] requested, loaded, kicks b[0..3]
out again
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Fully Associative Caches

Fully associative cache : A block from main memory can be placed in any
location in the cache. This is called fully associative because a block
In main memory may be associated with any entry in the cache.
Requires lookup table.

cache

L N <

main memory
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Fully Associative Caches

e |deal situation

* Any memory location can be associated with
any cache line

» Cost prohibitive
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Set Associative Caches

Set associative cache : The middle range of designs between
direct mapped cache and fully associative cache is called
set-associative cache. In a n-way set-associative cache a
block from main memory can go into n (n at least 2)
locations in the cache.

2-way set-associative cache

main memory
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Set Associative Caches

* Direct-mapped caches are 1-way set-
associative caches

* For a k-way set-associative cache, each
memory region can be associated with k
cache lines

* Fully associative is k-way with k the number
of cache lines
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Intel Woodcrest Caches

e L1
— 32 KB
— 8-way set associative
— 64 byte line size

¢ |2
-4 MB
— 8-way set associative
— 64 byte line size
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TLB

 Translation Look-aside Buffer

« Translates between logical space that each program has
and actual memory addresses

« Memory organized in ‘'small pages’, a few Kbyte in size
 Memory requests go through the TLB, normally very fast

« Pages that are not tracked through the TLB can be found
through the ‘page table’: much slower

e => jumping between more pages than the TLB can track
has a performance penalty.

« This illustrates the need for spatial locality.
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Prefetch

* Hardware tries to detect if you load regularly
spaced data:

e “prefetch stream”

* This can be programmed in software, often
only in-line assembly.
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Theoretical analysis of performance

* Given the different speeds of memory &
processor, the question is: does my algorithm
exploit all these caches”? Can it theoretically;
does it in practice?
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Data reuse

« Performance is limited by data transfer rate

* High performance if data items are used
multiple times

« Example: vector addition x,=x;+y;: 10p, 3 mem
accesses

« Example: inner product s=s+x;*y;: 20p, 2 mem
access (s in register; also no writes)
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Data reuse: matrix-matrix product

« Matrix-matrix product: 2n3ops, 2n? data

for (i=0;

s =

}

}
}

i<n; i++) {

for (j=0; j<n; j++) {
s = 0;
for (k=0; k<n; k++) {

s+a[i] [k]1*b[k][j];

c[i][]] = s;

|s there any data
reuse in this
algorithm?
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Data reuse: matrix-matrix product

« Matrix-matrix product: 2n3ops, 2n? data

 If it can be programmed right, this can
overcome the bandwidth/cpu speed gap

* Again only theoretically: naive implementation
inefficient

* Do not code this yourself: use mkl or so

* (This is the important kernel in the Linpack
benchmark.)
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Reuse analysis:
matrix-vector product

for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
yl[i] = yl[i]l+a[i] [J]1*=x[]]"’
}
}

for (i=0; i<m; i++) {
s =0.;
for (j=0; j<n; j++) {
s = sta[i] [J]1*x[]]~
}
y[i] = s;
}

y[i] invariant but not
reused: arrays get
written back to memory,
SO 2 accesses just for

y[i]
s stays in register
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Reuse analysis!!)
matrix-vector product

for (j=0; j<n; j++) { Reuse of x[j], but the gain
for (i=0; i<m; i++) { is outweighed by

y[i] = yl[il+a[i] [J]1*x[]];

: multiple load/store of
) y[i]
for (§=0; j<n; j++) { Different behaviour
t = xI[3]; matrix stored by rows
for (i=0; i<m; i++) { d |
y[il = ylil+a[il [31*¢; and columns

}
}
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Reuse analysis(?)
matrix-vector product

for (i=0; i<m; i+=2) {
sl =0.; s2 =0.;
for (j=0; j<n; j++) {

sl = sl+a[il [J1*x[7F];
s2 = s2+a[i+1][j]*x[]]
}
y[i] = s1; y[i+l] = s2;

}

for (i=0; i<m; i+=4) {
for (j=0; j<n; j++) {

sl = sl+a[i]l [J1*x[7F];
s2 = s2+al[i+1][j]1*x[]]
s3 = s3+al[i+2][j]1*x[]]
s4 = sd4+al[i+3]1[j]1*x[]]

Loop tiling:

X is loaded m/2 times, not m
Register usage for y as before
Loop overhead half less
Pipelined operations exposed
Prefetch streaming

Matrix stored by columns:
Now full cache line of A used
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Reuse analysis)
matrix-vector product

al = &(a[0]1[0]); Further optimization: use pointer
a2 = al+n; arithmetic instead of indexing
for (i=0,ip=0; i<m/2; i++) {
sl 0., s2 =0.;
Xp &xX;
for (j=0; j<n; j++) {
sl = sl+*(al++) **xp;
s2 = s2+* (a2++) ** (xp++) ;
}
ylip++] = sl1; yl[ip++] = s2;
al += n; a2 += n;

}
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Locality

* Programming for high performance is based
on spatial and temporal locality

* Temporal locality:
— Group references to one item close together:

« Spatial locality:

— Group references to nearby memory items
together

TAGG



Temporal Locality

« Use an item, use it again before it is flushed
from register or cache:
— Use item,
— Use small number of other data
— Use item again
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Temporal locality: example

for (loop=0; loop<10; loop++) { Original loop:
for (i=0; i<N; i++) { long time between uses of x,
— : Rearrangement:
o= X )
) X is reused

for (i=0; i<N; i++) {
for (loop=0; loop<10; loop++) {
o= X[
Y
Y

TAGG



Spatial Locality

* Use items close together

« Cache lines: if the cache line is already
loaded, other elements are ‘for free’

« TLB: don't jump more than 512 words too
many times
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lllustrations
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Cache size

for (1=0; 1<NRUNS; 1++)
for (3=0; j<size; Jj++)
array[j] = 2.3*array[j]+1.2;

Cache miss fraction

12

10f

1.8

!
-
o)

L
[
¥

11.2

: - 1.0
10 15 20 25 30l
dataset size

« If the data fits in L1 cache, the transfer is very fast
« If there is more data, transfer speed from L2 dominates

- (=)
cycles per op
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Cache size

for (1=0; 1<NRUNS; 1i++) {
blockstart = 0;
for (b=0; b<size/llsize; b++)
for (3=0; j<llsize; j++)
array[blockstart+j] = 2.3*array[blockstart+j]+1.2;

« Data can sometimes be arranged to fit in cache:
« Cache blocking
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Cache line utilization

for (1=0,n=0; 1<L1WORDS; 1i++,n+=stride)
array[n] = 2.3*array[n]+1.2;

« Same amount of data, but increasing
stride

* Increasing stride: more cachelines
loaded, slower execution

cache line utilization
Eotal kcycleg
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TLB
#define INDEX(i,j,m,n) 1+7j*m

array = (double*) malloc(m*n*sizeof(double));

/* traversal #1 */
for (3=0; j<n; J++)
for (1=0; i<m; 1++)
array [ INDEX(i,j,m,n)] = array[INDEX(i,j,m,n)]+1;

le7 3.0

2.0 -

)
* Array is stored with columns contiguous A q/\wﬁfwj UM\ \ﬁw
« Loop traverses the columns: 1 Jw\ o
* No big jumps through memory

1.0

total cycles

« (max: 2000 columns, 3000 cycles)

tlb misses / column

0.5}

0.0

) . 0.0
0 500 1000 1500 200'0(
#columns
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TLB

#define INDEX(i,j,m,n) i1+7j*m

/* traversal #2 */
for (1=0; i<m; 1i++)
for (3=0; j<n; J++)
array [ INDEX(1i,j,m,n)]

array = (double*) malloc(m*n*sizeof(double));

array [ INDEX(i,j,m,n)]+1;

« Traversal by columns:
« Every next column is n words away
* If n more than page size: TLB misses

* (max: 2000 columns, 10Mcycles, 300
times slower)

tlb misses / column
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Associativity

m
Vi:y; =y +ZI,'_J‘.

i=1

* Opteron: L1 cache 64k=4096 words

« Two-way associative, so m>1 leads to
conflicts:

« Cache misses/column goes up linearly
« (max: 7 terms, 35 cycles/column)

L1 cache misses per column

cycles per column

TAGG



Associativity

m
Vj: Yi =Y +Zrisj'

i=1

* Opteron: L1 cache 64k=4096 words

* Allocate vectors with 4096+8 words: no
conflicts: cache misses negligible

« (7 terms: 6 cycles/column)

L1 cache misses per column

o
A
S

©
-
N

o
-
o

10

cycles per column

TAGG



