SSC 335/394: Scientific and
Technical Computing

Computer Architectures:
parallel computers
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The basic idea

e Spread operations over many processors
* If n operations take time t on 1 processor,
* Does this become t/p on p processors (p<=n)?

for (i=0; i<n; i++)
a[i] = b[i]+c[i]

|dealized version: every
process has one array
element

b+c

a

TACG TEXAS ADVANCED COMPUTING CENTER



|
Q <4— 0O | 4+ | T
Q <4— O | + | T
Q <4+— 0| 4+ | T
<4

TACG TEXAS ADVANCED COMPUTING CENTER



The basic idea

e Spread operations over many processors
* If n operations take time t on 1 processor,
* Does this become t/p on p processors (p<=n)?

for (i=0; i<n; i++)
af[i] = b[i]+c[1i]

b+c

a

for (i=my low; i<my high; i++)
af[i] = b[i]+c[i]

|dealized version: every
process has one array
element

Slightly less ideal: each
processor has part of the
array
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The basic idea (cont’d)

e Spread operations over many processors
* If n operations take time t on 1 processor,
e Does it always become t/p on p processors (p<=n)?

s = sum( x[i], i=0,n-1 )
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The basic idea (cont’d)

e Spread operations over many processors
* If n operations take time t on 1 processor,
e Does it always become t/p on p processors (p<=n)?

s = sum( x[i], i=0,n-1 )

Conclusion: n operations can be
done with n/2 processors, in total

for (p=0; p<n/2; p++)
x[2p,0] = x[2p]+x[2p+1]
for (p=0; p<n/4; p++)
x[4p,1] = x[4p]l+x[4p+2]
for ( .. p<n/8 .. )

Et cetera

time log,n

Theoretical question: can addition
be done faster?

Practical question: can we even do
this?
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Some theory

....before we get into the hardware
Optimally, P processes give T,=T,/P
Speedup S, =T, /T, is P at best

Superlinear speedup not possible in theory,
sometimes happens in practice.

Perfect speedup in “embarrassingly parallel
applications”

Less than optimal: overhead, sequential parts,
dependencies
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Some more theory

e ...before we get into the hardware

* Optimally, P processes give T,=T,/P

* Speedup S, =T,/T,, is P at best

* Efficiency E, =S /P

* Scalability: efficiency bounded below
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Scaling

* Increasing the number of processors for a given problem makes
sense up to a point: p>n/2 in the addition example has no use

e Strong scaling: problem constant, number of processors
increasing

* More realistic: scaling up problem and processors
simultaneously, for instance to keep data per processor
constant: Weak scaling

* Weak scaling not always possible: problem size depends on
measurements or other external factors.
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Amdahl’s Law

 Some parts of a code are not parallelizable
 =>they ultimately become a bottleneck

* Forinstance, if 5% is sequential, you can not
get a speedup over 20, no matter P.

* Formally: F +F =1, T =T,(F+F /p),
so T, approaches T,F_as p increases
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More theory of parallelism

e PRAM: Parallel Random Access Machine
e Theoretical model

— Not much relevance to practice
— Often uses (implicitly) unrealistic machine models
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Theoretical characterization of
architectures
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Parallel Computers Architectures

* Parallel computing means using multiple processors, possibly
comprising multiple computers

* Flynn's (1966) taxonomy is a first way to classify parallel computers
into one of four types:

— (SISD) Single instruction, single data
* Your desktop (unless you have a newer multiprocessor one)

— (SIMD) Single instruction, multiple data:
e Thinking machines CM-2
e Cray 1, and other vector machines (there’s some controversy here)
e Parts of modern GPUs

— (MISD) Multiple instruction, single data
e Special purpose machines
* No commercial, general purpose machines

— (MIMD) Multiple instruction, multiple data
* Nearly all of today’s parallel machines
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SIMD

* Based on regularity of computation: all
processors often doing the same operation:
data parallel

* Big advantage: processor do not need
separate ALU

e ==> |ots of small processors packed together
* Ex: Goodyear MPP: 64k processors in 1983
e Use masks to let processors differentiate
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SIMD then and now

* There used to be computers that were

entirely SIMD (usually attached processor to a
front end)

e SIMD these days:

— SSE instructions in regular CPUs
— GPUs are SIMD units (sort of)
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Kinda SIMD: Vector Machines

* Based on a single processor with:
— Segmented (pipeline) functional units
— Needs sequence of the same operation
 Dominated early parallel market
— overtaken in the 90s by clusters, et al.

 Making a comeback (sort of)

— clusters/constellations of vector machines:
* Earth Simulator (NEC SX6) and Cray X1/X1E

— Arithmetic units in CPUs are pipelined.
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Pipeline

* Assembly line model (body on frame, attach
wheels, doors, handles on doors)

* Floating point multiply: exponent
align,multiply, exponent normalize

e Separate hardware for each stage: pipeline
processor

TACG TEXAS ADVANCED COMPUTING CENTER



c<a+b,

3 'bb—a +b—— —

& '—% “h—a +tbh—

a4 ' Baf—3 “h g Foh—a +5h

TACG TEXAS ADVANCED COMPUTING CENTER



Pipeline’

* Complexity model: asymptotic rate, n,,
* Multi-vectors, parallel pipes (demands on code)

e |s like SIMD

 (There is also something called an “instruction
pipeline”)
* Requires independent operations:
Cli <= bi+ci
not:
ad; <= b1'_+ai_1
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MIMD

* Multiple Instruction, Multiple Data

* Most general model: each processor works on
its own data with its own data stream: task
parallel

e Example: one processor produces data, next
processor consumes/analyzes data
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MIMD

* In practice SPMD: Single Program Multiple
Data:

— all processors execute the same code

— Just not the same instruction at the same time
— Different control flow possible too

— Different amounts of data: load unbalance
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Granularity

* You saw data parallel and task parallel

 Medium grain parallelism: carve up large job
into tasks of data parallel work

 (Example: array summing, each processor has
a subarray)

* Good match to hybrid architectures:
task -> node
data parallel -> SIMD engine
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GPU: the miracle architecture

* Lots of hype about incredible speedup / high performance for
low cost. What’s behind it?

e Origin of GPUs: that “G”

e Graphics processing: identical (fairly simple) operations on
lots of pixels

 Doesn’t matter when any individual pixel gets processed, as
long as they all get done in the end

e (Otoh, CPU: heterogeneous instructions, need to be done
ASAP.)

e =>GPU is SIMD engine
e ...and scientific computing is often very data-parallel
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GPU programming:

« KernelProc<< m,n >>( args )
e Explicit SIMD programming
 There is more: threads (see later)
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Characterization by Memory
structure
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Parallel Computer Architectures

* Top500 List now dominated by MPPs and
Clusters

e The MIMD model “won”.
e SIMD exists only on smaller scale

A much more useful way to classification is by
memory model

— shared memory

— distributed memory
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Two memory models

 Shared memory: all processors share the
same address space

— OpenMP: directives-based programming
— PGAS languages (UPC, Titanium, X10)

e Distributed memory: every processor has its
own address space

— MPI: Message Passing Interface
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Shared and Distributed Memory
HE N N EEEER

Shared memory: single address Distributed memory: each processor
space. All processors have access has its own local memory. Must do

to a pool of shared memory. message passing to exchange data
(e.g., Single Cluster node (2-way, 4-way, ...)) between processors.

(examples: Linux Clusters, Cray XT3)
Methods of memory access :

- Bus Methods of memory access :
- Distributed Switch - single switch or switch hierarchy
- Crossbar with fat tree, etc. topology

TACG TEXAS ADVANCED COMPUTING CENTER



Shared Memory

ke i
B[lJS

Memory

Time for memory access depends

: UMA and NUMA

Uniform Memory Access (UMA):
Each processor has uniform access
time to memory - also known as
symmetric multiprocessors (SMPs)
(example: Sun E25000 at TACC)

I US |

Non-Uniform Memory Access (NUMA):
Ill’IIPllll’Illl’I | LI?_ILIUUI;%ILIFIl
|

onlocation of data; also known as

I
Memory Memory

Distributed Shared memory machines. S~ -

Local access is faster than non-local Network
access. Easier to scale than SMPs

(e.g.: SGI Origin 2000)
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Numa example: ranger node

Two PCle x8 - 32Gbps
One PCle x4 - 16Gbps

Note the asymmetric
paths to some memory!!!
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Interconnects
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Topology of interconnects

 What is the actual ‘shape’ of the

interconnect? Are the nodes connect by a 2D
mesh? A ring? Something more elaborate?

e =>some graph theory
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Completely Connected and Star
Networks

e Completely Connected : Each processor has direct
communication link to every other processor

(compare ranger node)

e Star Connected Network : The middle processor is
the central processor; every other processor is
connected to it.

TACG TEXAS ADVANCED COMPUTING CENTER



Arrays and Rings

* Linear Array :

® ® ® ®
® ®
* Ring: \/

 Mesh Network (e.g. 2D-array) |
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Torus

2-d Torus (2-d version of the ring)
ISassl
&N
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Hypercubes

 Hypercube Network : A multidimensional mesh of
processors with exactly two processors in each
dimension. A d dimensional processor consists of

P = Zd processors

e Shown below are 0, 1, 2, and 3D hypercubes

1

3-D  hypercubes
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Inductive definition
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Pros and cons of hypercubes

* Pro: processors are close together: never
more than log(P)

e Lots of bandwidth
e Little chance of contention

e Con: the number of wires out of a processor
depends on P: complicated design

e Values of P other than 2”p not possible.
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Mapping applications to
hypercubes

* |Isthere a natural mapping from 1,2,3D to a hypercube?
* Naive node numbering does not work:

* Nodes 0 and 1 have distance 1, but

3 and 4 have distance 3

* (sodo7and0) _» - 111
001 = ﬁ;ﬂ
‘o1 4 110
0’/ ¢
000 100
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Mapping applications to
hypercubes

* |sthere a natural mapping from 1,2,3D to a hypercube?

e =>Gray codes

* Recursive definition: number subcube, then other subcube in mirroring

order.
Subsequent processors (in the

5 Linear ordering) all one link apart

4
' Recursive definition:
5 7 ' 5 01
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Busses/Hubs and Crossbars

Hub/Bus: Every processor shares the
communication links

® O ® O
Crossbar Switches: Every processor connects to

the switch which routes communlcatlons to
their destinations %

®
hd
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Butterfly exchange network

<
* Built out of simple i

switching elements

 Multi-stage; #stages
grows with #procs N

e Multiple non-colliding - = =
paths possible

* Uniform memory access —

.,

7

TACG TEXAS ADVANCED COMPUTING CENTER



Fat Trees

* Multiple switches

e Each level has the same
number of links in as out

* Increasing number of links at
each level

e Gives full bandwidth between
the links

 Added latency the higher you
go
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Fat Trees

* in practice emulated by switching network

‘._ | .» _ Intermediate
| < levels

Leaves
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Interconnect graph theory

* Degree

How many links to other processors does each node have?
More is better, but also expensive and hard to engineer

e Diameter

maximum distance between any two processors in the network.

The distance between two processors is defined as the shortest path, in
terms of links, between them.

completely connected network is 1, for star network is 2, for ring is p/2
(for p even processors)

* Connectivity

measure of the multiplicity of paths between any two processors (# arcs
that must be removed to break the connection).

high connectivity is desired since it lowers contention for communication
resources.

1 for linear array, 1 for star, 2 for ring, 2 for mesh, 4 for torus

technically 1 for traditional fat trees, but there is redundancy in the
switch infrastructure
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Practical issues in interconnects

e Latency : How long does it take to start sending a
"message"? Units are generally microseconds or
milliseconds.

e Bandwidth : What data rate can be sustained once
the message is started? Units are Mbytes/sec or
Gbytes/sec.

— Both point-to-point and aggregate bandwidth are of
interest

* Multiple wires: multiple latencies, same bandwidth
 Sometimes shortcuts possible: 'wormhole routing’
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Measures of bandwidth

* Aggregate bandwidth: total data rate if every
processor sending: total capacity of the wires.
This can be very high and quite unrealistic.

* Imagine linear array with processor i sending
to P/2+i: "Contention’

e Bisection bandwidth: bandwidth across the
minimum number of wires that would split
the machine in two.
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Interconnects

Bisection width

— Minimum # of communication links that have to be removed to
partition the network into two equal halves. Bisection width is

— 2 forring, sq. root(p) for mesh with p (even) processors, p/2 for
hypercube, (p*p)/4 for completely connected (p even).

Channel width

— of physical wires in each communication link

Channel rate
— peak rate at which a single physical wire link can deliver bits

Channel BW

— peak rate at which data can be communicated between the ends
of a communication link

— = (channel width) * (channel rate)

Bisection BW

— minimum volume of communication found between any 2 halves
of the network with equal # of procs

@isecﬁon width) * (channel BW) THE UNIVERSITY OF TEXAS AT AUSTIN
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Parallel programming
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Programming the memory models

 Shared memory: all processors share the
same address space

— OpenMP: directives-based programming
— PGAS languages (UPC, Titanium, X10)

e Distributed memory: every processor has its
own address space

— MPI: Message Passing Interface
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ldeal vs Practice

* Shared memory (or SMP: Symmetric
MultiProcessor) is easy to program (OpenMP)
but hard to build

— bus-based systems can become saturated

— large, fast (high bandwidth, low latency) crossbars
are expensive

— cache-coherency is hard to maintain at scale
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ldeal vs Practice

e Distributed memory is easy to build (bunch of
PCs, ethernet) but hard to program (MPI)

— You have to spell it all out

— interconnects have higher latency, so data is not
immediately there

— makes parallel algorithm development and
programming harder
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Programmer’s view vs Hard reality

* |tis possible for distributed hardware to act
like shared

 Middle layer: programmatic, OS, hardware
support

* New machines: SGI UV, Cray Gemini
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Shared memory programming in
OpenMP

Parallel Task | Parallel Task Il Parallel Task |l

Master Thréad

Parallel Task | Parallel Task || Parallel Task Il

Master Thread ——

 Shared memory.

e Various issues: critical regions, binding, thread
overhead
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Thread programming

* Threads have shared address space (unlike
processes)

e Great for parallel processing on shared memory
e Ex: quad-core => use 4 threads (8 with HT)

 OpenMP declares parallel tasks, the threads execute
them in some order (shared memory essential!)

* Obvious example: loop iterations can be parallel
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OpenMP programming

* “pragma”-based: directives to the compiler

#pragma omp parallel default(none) \
shared(n,x,y) private (i)
{
#pragma omp for
for (1=0; i<n; i++)
x[1] += yl[il:
} /*-— End of parallel region —--%*/

'Somp parallel default (none) &
'Somp shared(n,x,y) private (i)
'Somp do

do 1 =1, n

x(1) = x(1) + y(1)

end do
'Somp end do
'Somp end parallel

clauses

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER



OpenMP programming

 Handling of private and shared data

sum = 0.0
!Somp parallel de
!Somp shared(n,x) private
1Somp do reduction (+:sum)

do 1 =1, n

sum = sum + x(1)

end do
!Somp end do
ISomp end parallel

print *,sum

Variable SUM is a
shared variable
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Now that threads have come up...

* Your typical core can handle one thread (two
with HT)

* Context switching’ is expensive

 GPU handles many threads with ease, in fact
relies on it

e => GPU is even more SIMD than you already
realized
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On to Distributed Memory
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Parallel algorithms vs
parallel programming

 Example: two arrays x and y; n processors;
p; stores x; and y,

* Algorithm:y. :=y+x, ,

* Global description:

— Processors 0..n-2 send their x element to the right

— Processors 1..n-1 receive an x element from the
left

— Add the received number to their y element
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Local implementations

* One implementation:

— If my number >0: receive a x element, add it to my
y element

— If my number <n-1: send my x element to the right
 Other implementation

— If my number <n-1: send my x element to the right

— If my number >0: receive a x element, add it to my
x element
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* One implementation:

— If my number >0: receive a x element, add it to my
y element

— If my number <n-1: send my x element to the right

Ph-1

Pi
| local timelines
> L

\

\\\
~
S

global timeline

J S
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 Other implementation
— If my number <n-1: send my x element to the right

— If my number >0: receive a x element, add it to my
y element

| local timelines

J—V’/ global timeline
>
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* Better implementation
— If my number odd: receive then send

— If my number even: send then receive

Po Pi+1

| local timelines

| > " J > »‘ ‘ global timeline
> >
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Blocking operations

* Send & recv operations are blocking: a send

does not finished until the message is actually
received

* Parallel operation becomes sequentialized; in
a ring even loads to deadlock
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Non-Blocking operations

* Non-blocking send & recv:

— Give a buffer to the system to send from / recv
Into

— Continue with next instruction

— Check for completion later
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MPI: message passing

if (myid == 0)

* Message Passing
Interface: library
for explicit
communication

* Point-to-point
and collective
communication

* Blocking
semantics,
buffering

e Looks harder
than itis

{

}

printf("WE have %d processors\n", numprocs);
for(i=1;i<numprocs;i++)
{

sprintf (buff, "Hello %d", 1i);

MPI Send(buff, 128, MPI CHAR,

i, 0, MPI_COMM WORLD);

}
for(i=1;i<numprocs;i++)
{

MPI Recv(buff, 128, MPI CHAR,

i, 0, MPI_COMM WORLD, &stat);

printf("%s\n", buff);

}

else

{

MPI Recv(buff, 128, MPI CHAR,
0, 0, MPI_COMM WORLD, &stat);
sprintf(idstr, " Processor %d ", myid);
strcat(buff, idstr);
strcat(buff, "reporting for duty\n");
MPI Send(buff, 128, MPI CHAR, 0, 0, MPI COMM WORLD);

TACG
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Basic Anatomy of a
Server/Desktop/Laptop/Cluster-node

node node
motherboard motherboard
CPU CPU
Switch
I Memory 3 E I Memory
I:]"Afdapter e
g e /
( Processors

® Memory

® Interconnect Network
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Lonestar @ TACC

TopSpin 270.

gt N T Jeamy
e
c

Login Nodes

=

i

InfiniBand [Switch

Hierarchy
|
TopSpin 120
B GigE
GigE Switch | e
Hierarchy i _Tibre Lhanne
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RAID

 Was: Redundant Array of Inexpensive Disks
* Now: Redundant Array of Independent Disks

 Multiple disk drives working together to:
— increase capacity of a single logical volume
— increase performance
— improve reliability/add fault tolerance

e 1 Server with RAIDed disks can provide disk
access to multiple nodes with NFS
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Parallel Filesystems

* Use multiple servers together to aggregate disks
— utilizes RAIDed disks
— improved performance
— even higher capacities
— may use high-performance network

* Vendors/Products
— CFS/Lustre
— IBM/GPFS
— IBRIX/IBRIXFusion
— RedHat/GFS
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Summary

* Why so much parallel talk?
— Every computer is a parallel computer now
— Good serial computing skills a central to good parallel
computing
— Cluster and MPP nodes are appear largely like
desktops and laptops
* Processing units: CPUs, FPUs, GPUs

 Memory hierarchies: Registers, Caches, Main memory
* Internal Interconnect: Buses and Switch-based networks

— Clusters and MPPs built via fancy connections.
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