

Advanced MPI Programming

Tutorial at SC14, November 2014

Latest slides and code examples are available at

www.mcs.anl.gov/~thakur/sc14-mpi-tutorial

Pavan Balaji

Argonne National Laboratory

Email: balaji@mcs.anl.gov

Web: <u>www.mcs.anl.gov/~balaji</u>

William Gropp

University of Illinois, Urbana-Champaign

Email: wgropp@illinois.edu

Web: www.cs.illinois.edu/~wgropp

Torsten Hoefler

ETH Zurich

Web: <a href="http://http://https://http://h

Rajeev Thakur

Argonne National Laboratory

Email: thakur@mcs.anl.gov

Web: www.mcs.anl.gov/~thakur

Outline

Morning

- Introduction
 - MPI-1, MPI-2, MPI-3
- Running example: 2D stencil code
 - Simple point-to-point version
- Derived datatypes
 - Use in 2D stencil code
- One-sided communication
 - Basics and new features in MPI-3
 - Use in 2D stencil code
 - Advanced topics
 - Global address space communication

Afternoon

- MPI and Threads
 - Thread safety specification in MPI
 - How it enables hybrid programming
 - Hybrid (MPI + shared memory) version of 2D stencil code
- Nonblocking collectives
 - Parallel FFT example
- Process topologies
 - 2D stencil example
- Neighborhood collectives
 - 2D stencil example
- Recent efforts of the MPI Forum
- Conclusions

MPI-1

- MPI is a message-passing library interface standard.
 - Specification, not implementation
 - Library, not a language
- MPI-1 supports the classical message-passing programming model: basic point-to-point communication, collectives, datatypes, etc
- MPI-1 was defined (1994) by a broadly based group of parallel computer vendors, computer scientists, and applications developers.
 - 2-year intensive process
- Implementations appeared quickly and now MPI is taken for granted as vendor-supported software on any parallel machine.
- Free, portable implementations exist for clusters and other environments (MPICH, Open MPI)

MPI-2

- Same process of definition by MPI Forum
- MPI-2 is an extension of MPI
 - Extends the message-passing model.
 - Parallel I/O
 - Remote memory operations (one-sided)
 - Dynamic process management
 - Adds other functionality
 - C++ and Fortran 90 bindings
 - similar to original C and Fortran-77 bindings
 - External interfaces
 - Language interoperability
 - MPI interaction with threads

Timeline of the MPI Standard

- MPI-1 (1994), presented at SC'93
 - Basic point-to-point communication, collectives, datatypes, etc
- MPI-2 (1997)
 - Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes, thread support, C++ bindings, ...
- ---- Stable for 10 years ----
- MPI-2.1 (2008)
 - Minor clarifications and bug fixes to MPI-2
- MPI-2.2 (2009)
 - Small updates and additions to MPI 2.1
- MPI-3 (2012)
 - Major new features and additions to MPI

Overview of New Features in MPI-3

- Major new features
 - Nonblocking collectives
 - Neighborhood collectives
 - Improved one-sided communication interface
 - Tools interface
 - Fortran 2008 bindings
- Other new features
 - Matching Probe and Recv for thread-safe probe and receive
 - Noncollective communicator creation function
 - "const" correct C bindings
 - Comm_split_type function
 - Nonblocking Comm_dup
 - Type_create_hindexed_block function
- C++ bindings removed
- Previously deprecated functions removed

Status of MPI-3 Implementations (*)

	MPICH	MVAPICH	Open MPI	Cray MPI	Tianhe MPI	Intel MPI	IBM BG/Q MPI ¹	IBM PE MPICH ²	IBM Platform	SGI MPI	Fujitsu MPI	MS MPI
NB collectives	~	~	/	V	/	V	V	Q4 '14	V	~	V	*
Neighborhood collectives	v	V	~	V	•	•	•	Q4 '14	Q3 '15	~	Q2 '15	
RMA	✓	•	/	✓	•	•	V	Q4 '14	Q3 '15	✓	Q2 '15	:
Shared memory	V	•	•	v	•	v	v	Q4 '14	Q3 '15	v	Q2 '15	•
Tools Interface	V	V	/	/	/	/	√ 3	Q4 '14	Q3 '15	/	Q2 '15	*
Non-collective comm. create	V	V	•	V	•	v	v	Q4 '14	Q3 '15	•	Q2 '15	
F08 Bindings	✓	•	•	Q4 '14	•	Q4 '14	V	Q4 '14	Q3 '15	✓	Q2 '15	
New Datatypes	V	V	•	•	•	•	v	Q4 '14	Q3 '15	~	Q2 '15	*
Large Counts	V	•	/	✓	•	✓	V	Q4 '14	Q3 '15	✓	Q2 '15	*
Matched Probe	V	•	•	•	•	•	v	Q4 '14	Q3 '15	/	•	*

Release dates are estimates and are subject to change at any time.

Empty cells indicate no publicly announced plan to implement/support that feature.

(*) Platform-specific restrictions might apply for all supported features

¹Open source, but unsupported

² Beta release

³ No MPI_T variables exposed

^{*} Under development

Important considerations while using MPI

 All parallelism is explicit: the programmer is responsible for correctly identifying parallelism and implementing parallel algorithms using MPI constructs

Web Pointers

- MPI standard : http://www.mpi-forum.org/docs/docs.html
- MPI Forum : http://www.mpi-forum.org/
- MPI implementations:
 - MPICH : http://www.mpich.org
 - MVAPICH : http://mvapich.cse.ohio-state.edu/
 - Intel MPI: http://software.intel.com/en-us/intel-mpi-library/
 - Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961
 - Open MPI : http://www.open-mpi.org/
 - IBM MPI, Cray MPI, HP MPI, TH MPI, ...
- Several MPI tutorials can be found on the web.

Latest MPI 3.0 Standard in Book Form

Available from amazon.com

http://www.amazon.com/dp/B002TM5BQK/

New Tutorial Books on MPI

Basic MPI

Advanced MPI, including MPI-3