
Serial Jacobi Iterative Scheme
A single-process implementation of the Jacobi Scheme as applied to the Laplace
equation is included below. Note that:

F90 is used.
System size, m, is determined at run time.
Boundary conditions are handled by subroutine bc.
Pointer arrays c, n, e, w, and s point to parts of the solution space, u. They
are used to avoid unnecessary memory usage as well as to improve
readability.
This scheme is very slow to converge and is not used in practice.
This code is shown primarily to provide a starting point for subsequent
introduction of parallel concepts. It also serves as a starting point for
convergence rate improvement ideas.

! Solve Laplace equation using Jacobi iteration method
! Kadin Tseng, Boston University, November 1999

MODULE jacobi_module
 IMPLICIT NONE
 INTEGER, PARAMETER :: real4 = selected_real_kind(6,37)
 INTEGER, PARAMETER :: real8 = selected_real_kind(15,307)
 REAL(real8), DIMENSION(:,:), ALLOCATABLE :: unew
 REAL(real8), DIMENSION(:,:), ALLOCATABLE, TARGET :: u ! solution array
 REAL(real8) :: tol=1.d-4, gdel=1.0d0
 REAL(real4) :: start_time, end_time
 INTEGER :: m, iter = 0
 PUBLIC

CONTAINS
 SUBROUTINE bc(u, m)
! PDE: Laplacian u = 0; 0<=x<=1; 0<=y<=1
! B.C.: u(x,0)=sin(pi*x); u(x,1)=sin(pi*x)*exp(-pi); u(0,y)=u(1,y)=0
! SOLUTION: u(x,y)=sin(pi*x)*exp(-pi*y)
 IMPLICIT NONE
 INTEGER m, j
 REAL(real8), DIMENSION(0:m+1,0:m+1) :: u
 REAL(real8), DIMENSION(:,:), POINTER :: c
 REAL(real8), DIMENSION(0:m+1) :: y0

 y0 = sin(3.141593*(/(j,j=0,m+1)/)/(m+1))

 u = 0.0d0 ! at x=0,1; all y plus initialize interior
 u(:, 0) = y0 ! at y = 0; all x
 u(:,m+1) = y0*exp(-3.141593) ! at y = 1; all x
 RETURN
 END SUBROUTINE bc

END MODULE jacobi_module

PROGRAM Jacobi
USE jacobi_module
REAL(real8), DIMENSION(:,:), POINTER :: c, n, e, w, s

Serial Jacobi Iterative Scheme http://scv.bu.edu/~kadin/alliance/apply/solvers/jacobi_serial.html

1 of 2 8/14/12 10:40 PM

write(*,*)'Enter matrix size, m:'
read(*,*)m

CALL cpu_time(start_time) ! start timer, measured in seconds

ALLOCATE (unew(m,m), u(0:m+1,0:m+1)) ! mem for unew, u

c => u(1:m ,1:m) ! i ,j Current/Central for 1<=i<=m; 1<=j<=m
n => u(1:m ,2:m+1) ! i ,j+1 North (of Current)
e => u(2:m+1,1:m) ! i+1,j East (of Current)
w => u(0:m-1,1:m) ! i-1,j West (of Current)
s => u(1:m ,0:m-1) ! i ,j-1 South (of Current)

CALL bc(u, m) ! set up boundary values

DO WHILE (gdel > tol) ! iterate until error below threshold
 iter = iter + 1 ! increment iteration counter
 IF(iter > 5000) THEN
 WRITE(*,*)'Iteration terminated (exceeds 5000)'
 STOP ! nonconvergent solution
 ENDIF
 unew = (n + e + w + s)*0.25 ! new solution, Eq. 3
 gdel = MAXVAL(DABS(unew-c)) ! find local max error
 IF(MOD(iter,10)==0) WRITE(*,"('iter,gdel:',i6,e12.4)")iter,gdel
 c = unew ! update interior u
ENDDO

CALL CPU_TIME(end_time) ! stop timer
PRINT *,'Total cpu time =',end_time - start_time,' x 1'
PRINT *,'Stopped at iteration =',iter
PRINT *,'The maximum error =',gdel

DEALLOCATE (unew, u)

END PROGRAM Jacobi

Serial Jacobi Iterative Scheme http://scv.bu.edu/~kadin/alliance/apply/solvers/jacobi_serial.html

2 of 2 8/14/12 10:40 PM

