
Parallel Successive Over Relaxation Red-black
Scheme
A parallel implementation of the Successive Over Relaxation Red-black Scheme
(based on a Parallel Jacobi Implementation) as applied to the Laplace equation is
included below. Note that:

F90 is used.
System size, m, is determined at run time.
MPI cartesian topology is used.
Boundary conditions are handled by subroutine bc.
The parallel Jacobi code uses subroutine neighbors to provide adjoining
process numbers. In this implementation, since cartesian topology is used,
MPI_Cart_shift is used to provide the same information.
A red-black scheme is used to speed in-processor convergence.
Subroutine update_bc_2 updates the blue cells of current and adjoining
processes simultaneously by MPI routine that pairs send and receive,
MPI_Sendrecv, for subsequent iteration.
Subroutine update_bc_1 may be used in place of update_bc_2 as an
alternative message passing method
Subroutine printmesh may be used to print local solution for tiny cases (like
4x4)
Pointer arrays c, n, e, w, and s point to various parts of the solution space, u.
They are used to avoid unnecessary memory usage as well as to improve
readability.
MPI_Allreduce is used to collect global error from all participating
processes to determine whether further iteration is required. This is
somewhat costly to do in every iteration. Using the fact that the number of
iterations is proportional to the grid size, m, and the assumption that we
focus on m in the hundredths, MPI_Allreduce is called once every 100
iterations. (In the interests of clarity, we opt to use this simplified criteria).
As we said earlier in the parallel Jacobi implementation, there is a small
price to pay by calling MPI_Allreduce infrequently. If the solution error
threshold is reached inside the 100 iterations, the solution marches on
unabated until the 100 count is reached and hence unnecessary computation
is performed. However, with slight modifications to the testing criteia,
wasteful computing cycles may be minimized. At least for this problem, the
savings in MPI_Allreduce calls far outweigh the penalty.
The effect of MPI_Allreduce call is significantly less noticeable on the SGI
Origin2000 shared-memory multiprocessor than on, say, a Linux Pentium
cluster due to better communications on the Origin.
This scheme is considerably more rapid in convergent rate than the Jacobi
Scheme.

Parallel Successive Over Relaxation Red-black Scheme http://scv.bu.edu/~kadin/alliance/apply/solvers/sor_parallel.html

1 of 3 8/14/12 10:42 PM

PROGRAM sor_cart
 USE types_module
 USE sor_module
 TYPE (redblack) :: c, n, e, w, s
 INTEGER, PARAMETER :: period=0, ndim=1
 INTEGER :: grid_comm, me, iv, coord, dims
 LOGICAL, PARAMETER :: reorder = .true.

 CALL MPI_Init(ierr) ! starts MPI
 CALL MPI_Comm_rank(MPI_COMM_WORLD, k, ierr) ! get current process id
 CALL MPI_Comm_size(MPI_COMM_WORLD, p, ierr) ! get # procs from env or
 ! command line
 if(k == 0) then
 write(*,*)'Enter matrix size, m :'
 read(*,*)m
 endif
 CALL MPI_Bcast(m, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

 rhoj = 1.0d0 - pi*pi*0.5/(m+2)**2
 rhojsq = rhoj*rhoj
 mp = m/p
 ALLOCATE (vnew(m/2,mp/2), v(0:m+1,0:mp+1))

 CALL cpu_time(start_time) ! start timer, measured in seconds

 ! create 1D cartesian topology for matrix
 dims = p
 CALL MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, &
 period, reorder, grid_comm, ierr)
 CALL MPI_Comm_rank(grid_comm, me, ierr)
 CALL MPI_Cart_coords(grid_comm, me, ndim, coord, ierr)
 iv = coord
 CALL bc(v, m, mp, iv, p) ! set up boundary conditions

 CALL MPI_Cart_shift(grid_comm, 0, 1, below, above, ierr)

 c = news(v, m, mp, 0, 0) ! i+0,j+0 center
 n = news(v, m, mp, 0, 1) ! i+0,j+1 north
 e = news(v, m, mp, 1, 0) ! i+1,j+0 east
 w = news(v, m, mp,-1, 0) ! i-1,j+0 west
 s = news(v, m, mp, 0,-1) ! i+0,j-1 south

 omega = 1.0d0
 CALL update_u(c%red, n%red, e%red, w%red, s%red, &
 vnew, m, mp, omega, delr) ! update red
 CALL update_bc_2(v, m, mp, iv, below, above)
 omega = 1.0d0/(1.0d0 - 0.50d0*rhojsq)
 CALL update_u(c%black, n%black, e%black, w%black, s%black, &
 vnew, m, mp, omega, delb) ! update black
 CALL update_bc_2(v, m, mp, iv, below, above)
 DO WHILE (gdel > tol)
 iter = iter + 1 ! increment iteration counter
 omega = 1.0d0/(1.0d0 - 0.25d0*rhojsq*omega)
 CALL update_u(c%red, n%red, e%red, w%red, s%red, &
 vnew, m, mp, omega, delr) ! update red
 CALL update_bc_2(v, m, mp, iv, below, above)
 omega = 1.0d0/(1.0d0 - 0.25d0*rhojsq*omega)
 CALL update_u(c%black, n%black, e%black, w%black, s%black, &
 vnew, m, mp, omega, delb) ! update black
 del = (delr + delb)*4.d0
 IF(MOD(iter,100)==0) THEN
 del = (delr + delb)*4.d0
 CALL MPI_Allreduce(del, gdel, 1, MPI_DOUBLE_PRECISION, MPI_MAX, &
 MPI_COMM_WORLD, ierr) ! find global max error

Parallel Successive Over Relaxation Red-black Scheme http://scv.bu.edu/~kadin/alliance/apply/solvers/sor_parallel.html

2 of 3 8/14/12 10:42 PM

 IF(k == 0) WRITE(*,'(i5,3d13.5)')iter,del,gdel,omega
 ENDIF
 ENDDO

 CALL cpu_time(end_time) ! stop timer

 IF(k == 0) THEN
 PRINT *,'#######################################'
 PRINT *,'Total cpu time =',end_time - start_time,' x',p
 PRINT *,'Stopped at iteration =',iter
 PRINT *,'The maximum error =',del
 write(40,"(3i5)")m,mp,p
 ENDIF
 WRITE(41+k,"(6d13.4)")v
 DEALLOCATE (vnew, v)

 CALL MPI_Finalize(ierr)

END PROGRAM sor_cart

Parallel Successive Over Relaxation Red-black Scheme http://scv.bu.edu/~kadin/alliance/apply/solvers/sor_parallel.html

3 of 3 8/14/12 10:42 PM

