
Virtual Topologies:
Iterative Solvers

Slides taken from full lecture slides at:
http://site.sci.hkbu.edu.hk/tdgc/tutorial.php

Iterative Solvers

• In this example, we demonstrate an application of the
Cartesian topology by way of a simple elliptic (Laplace)
equation.

• Fundamentals: The Laplace equation, along with
prescribed boundary conditions, are introduced. Finite
Difference Method is then applied to discretize the PDE
to form an algebraic system of equations.

• Jacobi Scheme: A very simple iterative method, known
as the Jacobi Scheme, is described. A single-process
computer code is shown. This program is written in
Fortran 90 for its concise but clear array representations.
(Parallelism and other improvements will be added to this
code as you progress through the example.)

Iterative Solvers

• Parallel Jacobi Scheme: A parallel algorithm for this problem is
discussed. Simple MPI routines, without the invocations of Cartesian
topology, are inserted into the basic, single-process code to form the
parallel code.

• SOR Scheme: The Jacobi scheme, while simple and hence
desirable for demonstration purposes, is impractical for "real"
applications because of its slow convergence. Enhancements to the
basic technique are introduced leading to the Successive Over
Relaxation (SOR) scheme.

• Parallel SOR Scheme: With the introduction of a "red-black"
algorithm, the parallel algorithm used for Jacobi is employed to
parallelize the SOR scheme.

• Scalability: The performance of the code for a number of processes
is shown to demonstrate its scalability.

Fundamentals

• First, some basics.
Equation (1)

02

2

2

2

=
¶
¶

+
¶
¶

y
u

x
u

• where u=u(x,y) is an unknown scalar potential
subjected to the following boundary conditions:
Equation (2)

()
()
() 1y0 0),1(,0

1x0)sin(1,
1x0)sin(0,

££==
££=

££=
-

yuyu
enxxu

nxxu
x

Fundamentals

• Discretize the equation numerically with centered
difference results in the algebraic equation
Equation 3:

mjmi
uuuu

u
nnnn

n
ji

jijijiji ,,1;,,1;
4

1,1,,1,11
, !! ==

+++
@

-+-++

• where n and n+1 denote the current and the next
time step, respectively, while represents
Equation 4:

n
jiu ,1-

()
()()yjxiu

mjmiyxuu
n

ji
nn

ji

DD-=

=== --

,1

,,1;,,1;,1,1 !!

Fundamentals

• and for simplicity, we take

• Note that the analytical solution for this boundary value
problem can easily be verified to be
Equation (5):

• and is shown below in a contour plot with x pointing from
left to right and y going from bottom to top.

1
1
+

=D=D
m

yx

() () 10;10;sin, ££££= - yxexyxu xyp

Fundamentals

Figure 8.9. Contour plot showing the analytical solution for the boundary value problem.

Jacobi Scheme

• While numerical techniques abound to solve PDEs such
as the Laplace equation, we will focus on the use of two
iterative methods. These methods will be shown to be
readily parallelizable, as well as lending themselves to
the opportunity to apply MPI Cartesian topology
introduced above. The simplest of iterative techniques is
the Jacobi scheme, which may be stated as follows:
1. Make initial guess for ui,j at all interior points (i,j) for all i=1:m

and j=1:m.
2. Use Equation 3 to compute un+1

i,j at all interior points (i,j).
3. Stop if the prescribed convergence threshold is reached,

otherwise continue on to the next step.
4. un

i,j = un+1
i,j.

5. Go to Step 2.

Serial Jacobi Iterative Scheme

• A single-process implementation of the Jacobi
Scheme as applied to the Laplace equation is
given below. Note that
– Program is written in C.
– System size, m, is determined at run time.
– Boundary conditions are handled by subroutine bc.
– This scheme is very slow to converge and is not used

in practice.
– This example provides a starting point for later

introduction of parallelization and convergence rate
improvement concepts.

sjacobi.c

#include "solvers.h"

INT main() {
/********** MAIN PROGRAM *********************************
* Solve Laplace equation using Jacobi iteration method *
* Kadin Tseng, Boston University, August, 2000 *
***/

INT iter, m, mi, mp;
REAL gdel;
CHAR line[10];
REAL **u, **un;

fprintf(OUTPUT,"Enter size of interior points, mi :");
(void) fgets(line, sizeof(line), stdin);
(void) sscanf(line, "%d", &mi);
fprintf(OUTPUT,"mi = %d\n",mi);

sjacobi.c

m = mi + 2; /* interior points plus 2 b.c. points */
mp = m/P;

u = allocate_2D(m, mp); /* allocate mem for 2D array */
un = allocate_2D(m, mp);

gdel = 1.0;
iter = 0;

bc(m, mp, u, K, P); /* initialize and define B.C. for u */

replicate(m, mp, u, un); /* u = un */

sjacobi.c

while (gdel > TOL) { /* iterate until error below threshold */
iter++; /* increment iteration counter */

if(iter > MAXSTEPS) {
fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);
fprintf(OUTPUT,")\n");
return (0); /* nonconvergent solution */

}
/* compute new solution according to the Jacobi scheme */

update_jacobi(m, mp, u, un, &gdel);

if(iter%INCREMENT == 0) {
fprintf(OUTPUT,"iter,gdel: %6d, %lf\n",iter,gdel);

}
}

fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
fprintf(OUTPUT,"The maximum error = %f\n",gdel);

/* write u to file for use in MATLAB plots */
write_file(m, mp, u, K, P);

return (0);
}

Jacobi and SOR Iterative Scheme
Utility Functions

• The following includes solvers.h, utils.h and utils.c.
#ifndef _SOLVERS_H_INCLUDED_
#define _SOLVERS_H_INCLUDED_

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define CHAR char
#define REAL double
#define INT int

#define OUTPUT stdout /* output to standard out */
#define PLOT_FILE "plots" /* output files base name */
#define INCREMENT 100 /* number of steps between convergence check */

#define P 1 /* define processor count for serial codes */
#define K 0 /* current thread number for serial code is 0 */
#define MAX_M 512 /* maximum size of indices of Array u */
#define MAXSTEPS 50000 /* Maximum number of iterations */
#define TOL 0.000001 /* Numerical Tolerance */
#define PI 3.14159265 /* pi */

#include "utils.h" /* header file of function prototype in utils.c */
#endif

Jacobi and SOR Iterative Scheme
Utility Functions

#ifndef _UTILS_H_INCLUDED_
#define _UTILS_H_INCLUDED_

/* begin function prototyping */

REAL **allocate_2D(int m, int n);
REAL my_max(REAL a, REAL b);
void init_array(INT m, INT n, REAL **a);
void bc(INT m, INT n, REAL **a, INT k, INT p);
void prtarray(INT nx, INT ny, REAL **a, FILE *fd);
INT write_file(INT m, INT n, REAL **u, INT k, INT p);
INT update_jacobi(INT m, INT n, REAL **u, REAL **unew, REAL *gdel);
INT update_sor(INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack);
INT replicate(INT m, INT n, REAL **u, REAL **ut);
INT transpose(INT m, INT n, REAL **u, REAL **ut);
void neighbors(INT k, INT p, INT UNDEFINED, INT *below, INT *above);

/* end function prototyping */

#endif

Jacobi and SOR Iterative Scheme
Utility Functions

/********** U T I L I T Y ************************************
* Utility functions for use with the Jacobi and SOR solvers *
* Kadin Tseng, Boston University, November 1999 *
***/
#include "solvers.h"
#include <malloc.h>

REAL **allocate_2D(INT m, INT n) {
INT i;
REAL **a;

a = (REAL **) malloc((unsigned) m*sizeof(REAL*));

/* Each pointer array element points to beginning of a row with n entries*/
for (i = 0; i < m; i++) {

a[i] = (REAL *) malloc((unsigned) n*sizeof(REAL));
}

return a;
}

Jacobi and SOR Iterative Scheme
Utility Functions

INT write_file(INT m, INT n, REAL **u, INT k, INT p) {
/***
* Writes 2D array ut columnwise (i.e. C convention) *
* m- size of rows *
* n - size of columns *
* u - scratch array *
* k - 0 <= k < p; = 0 for single thread code *
* p - p >= 0; =1 for single thread code *
***/

INT ij, i, j, per_line;
CHAR filename[50], file[53];
FILE *fd;

/*
prints u, 6 per line; used for matlab plots;
PLOT_FILE contains the array size and number of procs;
PLOT_FILE.(k+1) contains u pertaining to proc k;
for serial job, PLOT_FILE.1 contains full u array.

*/

(void) sprintf(filename, "%s", PLOT_FILE);

Jacobi and SOR Iterative Scheme
Utility Functions

if (k == 0) {
fd = fopen(filename, "w");
fprintf(fd, "%5d %5d %5d\n", m, n, p);
fclose(fd);

}
per_line = 6; /* to print 6 per line */
(void) sprintf(file, "%s.%d", filename, k); /* create output file */
fd = fopen(file, "w");
ij = 0;
for (j = 0; j < n; j++) {

for (i = 0; i < m; i++) {
fprintf(fd, "%11.4f ", u[i][j]);
if ((ij+1)%per_line == 0) fprintf(fd, "\n");
ij++;
}

}
fprintf(fd, "\n");
fclose(fd);
return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

void init_array(INT m, INT n, REAL **a) {
/********* Initialize Array **********************
* Initialize array with nx rows and ny columns *
***/

INT i, j;

for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {

a[i][j] = 0.0; /* initialize all entries to zero */
}

}
}

Jacobi and SOR Iterative Scheme
Utility Functions

void bc(INT m, INT n, REAL **u, INT k, INT p) {
/*********** Boundary Conditions **
* PDE: Laplacian u = 0; 0<=x<=1; 0<=y<=1

*
* B.C.: u(x,0)=sin(pi*x); u(x,1)=sin(pi*x)*exp(-pi); u(0,y)=u(1,y)=0 *
* SOLUTION: u(x,y)=sin(pi*x)*exp(-pi*y)

*
**/

INT i;

init_array(m, n, u);
/* initialize u to 0 */

if (p > 1) {
if (k == 0) {

for (i = 0; i < m; i++) {
u[i][0] = sin(PI*i/(m-1));

/* at y = 0; all x */
}

}

Jacobi and SOR Iterative Scheme
Utility Functions

if (k == p-1) {
for (i = 0; i < m; i++) {

u[i][n-1] = sin(PI*i/(m-1))*exp(-PI); /* at y = 1; all x */
}

}
} else if (p == 1) {

for (i = 0; i < m; i++) {
u[i][0] = sin(PI*i/(m-1)); /* at y = 0; all x */
u[i][n-1] = u[i][0]*exp(-PI); /* at y = 1; all x */

}
} else {

printf("p is invalid\n");
}

}

Jacobi and SOR Iterative Scheme
Utility Functions

void prtarray(INT m, INT n, REAL **a, FILE *fd) {
/*********** Print Array ***********************
* Prints array "a" with m rows and n columns *
* tda is the Trailing Dimension of Array a *
***/

INT i, j;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {

fprintf(fd, "%8.2f", a[i][j]);
}
fprintf(fd, "\n");

}
}

Jacobi and SOR Iterative Scheme
Utility Functions

INT update_jacobi(INT m, INT n, REAL **u, REAL **unew, REAL *del) {
/**
* Updates u according to Jacobi method *
* m - (INPUT) size of interior rows *
* n - (INPUT) size of interior columns *
* u - (INPUT) solution array *
* unew - (INPUT) next solution array *
* del - (OUTPUT) error norm between 2 solution steps *
**/

INT i, j;
*del = 0.0;
for (i = 1; i < m-1; i++) {

for (j = 1; j < n-1; j++) {
unew[i][j] = (u[i][j+1] + u[i+1][j] +

u[i-1][j] + u[i][j-1])*0.25;
del += fabs(unew[i][j] - u[i][j]); / find local max error */

}
}
for (i = 1; i < m-1; i++) {

for (j = 1; j < n-1; j++) {
u[i][j] = unew[i][j];

}
}
return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT update_sor(INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack) {
/**
* Updates u according to successive over relaxation method *
* m - (INPUT) size of interior rows *
* n - (INPUT) size of interior columns *
* u - (INPUT) array *
* omega - (INPUT) adjustable constant used to speed up convergence of SOR *
* del - (OUTPUT) error norm between 2 solution steps *
* redblack - (INPUT) either 'r' for red and 'b' for black *
**/

INT i, ib, ie, j, jb, je;
REAL up;

*del = 0.0;
if (redblack == 'r') {

/* process RED odd points ... */
jb = 1; je = n-2; ib = 1; ie = m-2;
for (j = jb; j <= je; j+=2) {

for (i = ib; i <=ie; i+=2) {
up = (u[i][j+1] + u[i+1][j] +

u[i-1][j] + u[i][j-1])*0.25;
u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
*del += fabs(up-u[i][j]);

}
}

Jacobi and SOR Iterative Scheme
Utility Functions

/* process RED even points ... */
jb = 2; je = n-2; ib = 2; ie = m-2;
for (j = jb; j <= je; j+=2) {

for (i = ib; i <= ie; i+=2) {
up = (u[i][j+1] + u[i+1][j] +

u[i-1][j] + u[i][j-1])*0.25;
u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
*del += fabs(up-u[i][j]);

}
}
return (0);

} else {
if (redblack == 'b') {

/* process BLACK odd points ... */
jb = 2; je = n-2; ib = 1; ie = m-2;
for (j = jb; j <= je; j+=2) {

for (i = ib; i <= ie; i+=2) {
up = (u[i][j+1] + u[i+1][j] +

u[i-1][j] + u[i][j-1])*0.25;
u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
*del += fabs(up-u[i][j]);

}
}

Jacobi and SOR Iterative Scheme
Utility Functions

/* process BLACK even points ... */
jb = 1; je = n-2; ib = 2; ie = m-2;
for (j = jb; j <= je; j+=2) {

for (i = ib; i <= ie; i+=2) {
up = (u[i][j+1] + u[i+1][j] +

u[i-1][j] + u[i][j-1])*0.25;
u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
*del += fabs(up-u[i][j]);

}
}
return (0);

} else {
return (1);

}
}

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT replicate(INT m, INT n, REAL **a, REAL **b) {
/**
* Replicates array a into array b *
* m - (INPUT) size of interior points in 1st index *
* n - (INPUT) size of interior points in 2st index *
* a - (INPUT) solution at time N *
* b - (OUTPUT) solution at time N + 1 *
**/

INT i, j;

for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {

b[i][j] = a[i][j];
}

}
return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT transpose(INT m, INT n, REAL **a, REAL **at) {
/**
* Transpose a(0:m+1,0:n+1) into at(0:n+1,0:m+1) *
* m - (INPUT) size of interior points in 1st index *
* n - (INPUT) size of interior points in 2st index *
* a - (INPUT) a = a(0:m+1,0:n+1) *
* at - (OUTPUT) at = at(0:n+1,0:m+1) *
**/

INT i, j;

for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {

at[j][i] = a[i][j];
}

}
return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

void neighbors(INT k, INT p, INT UNDEFINED, INT *below, INT *above) {
/**
* determines two adjacent threads *
* k - (INPUT) current thread *
* p - (INPUT) number of processes (threads) *
* UNDEFINED - (INPUT) code to assign to out-of-bound neighbor *
* below - (OUTPUT) neighbor thread below k (usually k-1) *
* above - (OUTPUT) neighbor thread above k (usually k+1) *
**/

if(k == 0) {
below = UNDEFINED; / tells MPI not to perform send/recv */
*above = k+1;

} else if(k == p-1) {
*below = k-1;
above = UNDEFINED; / tells MPI not to perform send/recv */

} else {
*below = k-1;
*above = k+1;

}
}

Parallel Algorithm for the Jacobi
Scheme

• First, to enable parallelism, the work must be divided
among the individual processes; this is known commonly
as domain decomposition.

• Because the governing equation is two-dimensional,
typically the choice is to use a 1D or 2D decomposition.

• This section will focus on a 1D decomposition, deferring
the discussion of a 2D decomposition for later.

• Assuming that p processes will be used, the
computational domain is split into p horizontal strips,
each assigned to one process, along the north-south or y-
direction. This choice is made primarily to facilitate
simpler boundary condition (code) implementations.

Parallel Algorithm for the Jacobi
Scheme

• For the obvious reason of better load-balancing, we will
divide the amount of work, in this case proportional to the
grid size, evenly among the processes (m x m / p). For
convenience, m' = m/p is defined as the number of cells
in the y-direction for each process. Next, Equation 3 is
restated for a process k as follows:
Equation 6:

where v denotes the local solution corresponding to the
process k with m'=m/p.

1,,0;,,1;,,1

;
4

,,,,
,1

,
1,1,,1,1

-=¢==

+++
@

-+-++

pkmjmi

uuuu
u

knknknkn
kn

ji
jijijiji

!!!

Parallel Algorithm for the Jacobi
Scheme

• The figure below
depicts the grid of
a typical process k,
as well as part of
the adjoining grids
of k-1, k+1.

Figure 8.10. The grid of a typical process k as
well as part of adjoining grids of k-1, k+1

Parallel Algorithm for the Jacobi
Scheme

• The red cells represent process k's grid cells for which
the solution u is sought through Equation 6.

• The blue cells on the bottom row represent cells
belonging to the first row (j = 0) of cells of process k-1.

• The blue cells on the top row represent the last row (j =
m') of cells of process k+1.

• It is important to note that the u at the blue cells of k
belong to adjoining processes (k-1 and k+1) and hence
must be "imported" via MPI message passing routines.
Similarly, process k's first and last rows of cells must be
"exported" to adjoining processes for the same reason.

Parallel Algorithm for the Jacobi
Scheme

• For i = 1 and i = m, Equation 6 again requires an extra cell beyond these
two locations. These cells contain the prescribed boundary conditions
(u(0,y) = u(1,y) = 0) and are colored green to distinguish them from the red
and blue cells.

• Note that no message passing operations are needed for these green cells
as they are fixed boundary conditions and are known a priori.

• From the standpoint of process k, the blue and green cells may be
considered as additional "boundary" cells around it. As a result, the range of
the strip becomes (0:m+1,0:m'+1).

• Physical boundary conditions are imposed on its green cells, while u is
imported to its blue "boundary" cells from two adjoining processes. With the
boundary conditions in place, Equation 6 can be applied to all of its interior
points.

• Concurrently, all other processes proceed following the same procedure. It
is interesting to note that the grid layout for a typical process k is completely
analogous to that of the original undivided grid. Whereas the original
problem has fixed boundary conditions, the problem for a process k is
subjected to variable boundary conditions.

Parallel Algorithm for the Jacobi
Scheme

• These boundary conditions can be stated
mathematically as
Equation 7:

() ()

() ()
()
() 10;,,1j ;0,1

10;,,1j ;0,0

1;1,0,i ;sin1,

1;1,0,i ;

10;1,0,i ;

10;1,0,i ;

10;1,0,i ;

0;1,0,i ;

0;1,0,i ;sin0,

,

,

,

1,,

1,,

1,,

1,,

1,,

,

,1

,0

1,

,0,

,0,

1,1,

,0,

1,1,

0,

-££¢===

-££¢===

-=+===

-=+==

-<<+==

-<<+==

-<<+==

=+==

=+===

+

+¢

¢

¢

+¢

¢

+¢

-

-

-

+

-

+

pkmyuv

pkmyuv

pkmexxuv

pkmvv

pkmvv

pkmvv

pkmvv

kmvv

kmxxuv

j
kn

j
kn

x
ii

kn

knkn

knkn

knkn

knkn

knkn

ii
kn

jm

j

mi

mii

mii

imi

mii

imi

i

!

!

!

!

!

!

!

!

!

p

p

Parallel Algorithm for the Jacobi
Scheme

• Note that the interior points of u and v are related
by the relationship
Equation 8:

• Note that Cartesian topology is not employed in
this implementation but will be used later in the
parallel SOR example with the purpose of
showing alternative ways to solve this type of
problems.

10;,,1;,,1i ;,
,/, -<<¢===´+ pkmjmvu knn
jipmkji !!

Parallel Jacobi Iterative Scheme

• A parallel implementation of the Jacobi Scheme (based
on a serial implementation) as applied to the Laplace
equation is included below. Note that:
– System size, m, is determined at run time.
– Boundary conditions are handled by subroutine bc.
– Subroutine neighbors provides the process number ABOVE and

BELOW the current process. These numbers are needed for
message passing (subroutine update_bc_2). If ABOVE or
BELOW is "-1", its at process 0 or p-1. No message passing will
be needed in that case.

– Subroutine update_bc_2 updates the blue cells of current and
adjoining processes simultaneously by MPI routine that pairs
send and receive, MPI_Sendrecv, for subsequent iteration.

– Subroutine update_bc_1 can be used in place of update_bc_2 as
an alternative message passing method

Parallel Jacobi Iterative Scheme

• Subroutine printmesh may be used to print local solution for tiny
cases (like 4x4)

• Pointer arrays c, n, e, w, and s point to the solution space, u. They
are used to avoid unnecessary memory usage as well as to improve
readability.

• MPI_Allreduce is used to collect global error from all participating
processes to determine whether further interation is required. This is
somewhat costly to do in every iteration. Can improve performance
by calling this routine only once in a while. There is a small price to
pay; the solution may have converged between MPI_Allreduce calls.
See parallel SOR implementation on how to reduce MPI_Allreduce
calls.

• This scheme is very slow to converge and is not used in practice.
However, it serves to demonstrate parallel concepts.

Parallel Jacobi Iterative Scheme

• A parallel implementation of the Jacobi Scheme
(based on a serial implementation) as applied to
the Laplace equation is included below.

pjacobi.c

#include "solvers.h"
#include "mpi.h"

INT main(INT argc, CHAR *argv[]) {
/********** MAIN PROGRAM *********************************
* Solve Laplace equation using Jacobi iteration method *
* Kadin Tseng, Boston University, August, 2000 *
***/

INT iter, m, mi, mp, k, p, below, above;
REAL del, gdel;
CHAR line[80];
REAL **v, **vt, **vnew;

MPI_Init(&argc, &argv); /* starts MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &k); /* get current process id */
MPI_Comm_size(MPI_COMM_WORLD, &p); /* get # procs from env or */

pjacobi.c

if(k == 0) {
fprintf(OUTPUT,"Enter size of interior points, mi :\n");
(void) fgets(line, sizeof(line), stdin);
(void) sscanf(line, "%d", &mi);
fprintf(OUTPUT,"mi = %d\n",mi);

}
MPI_Bcast(&mi, 1, MPI_INT, 0, MPI_COMM_WORLD);
m = mi + 2; /* total is interior points plus 2 b.c. points */
mp = mi/p+2;

v = allocate_2D(m, mp); /* allocate mem for 2D array */
vt = allocate_2D(mp, m);
vnew = allocate_2D(mp, m);

gdel = 1.0;
iter = 0;

pjacobi.c

bc(m, mp, v, k, p); /* initialize and define B.C. for v */
transpose(m, mp, v, vt); /* solve for vt */

/* driven by need of update_bc_2 */
replicate(mp, m, vt, vnew); /* vnew = vt */
neighbors(k, p, -1, &below, &above); /* domain borders */

while (gdel > TOL) { /* iterate until error below threshold */
iter++; /* increment iteration counter */

if(iter > MAXSTEPS) {
fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);
fprintf(OUTPUT,")\n");
return (0); /* nonconvergent solution */

}
/* compute new solution according to the Jacobi scheme */

update_jacobi(mp, m, vt, vnew, &del); /* compute new vt */
if(iter%INCREMENT == 0) {

MPI_Allreduce(&del, &gdel, 1, MPI_DOUBLE,
MPI_MAX, MPI_COMM_WORLD); /* find global max error */

if(k == 0) {
fprintf(OUTPUT,"iter,del,gdel: %6d, %lf %lf\n",iter,del,gdel);

}
}
update_bc_2(mp, m, vt, k, below, above); /* update b.c. */

}

pjacobi.c

if (k == 0) {
fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
fprintf(OUTPUT,"The maximum error = %f\n",gdel);

}

/* write v to file for use in MATLAB plots */
transpose(mp, m, vt, v);
write_file(m, mp, v, k, p);

MPI_Barrier(MPI_COMM_WORLD);

free(v); free(vt); free(vnew); /* release allocated arrays */

return (0);
}

Parallel Jacobi Iterative Scheme

• In addition, there are two modules needed in connection with the above:
• Some utilities – please refer to the slides before
• MPI-related utilities
/* begin MODULE mpi_module */
#include "solvers.h"
#include "mpi.h"

INT update_bc_2(INT mp, INT m, REAL **vt, INT k, INT below, INT above) {
MPI_Status status[6]; /* SGI doesn't define MPI_STATUS_SIZE */

MPI_Sendrecv(vt[mp-2]+1, m-2, MPI_DOUBLE, above, 0,
vt[0]+1, m-2, MPI_DOUBLE, below, 0,
MPI_COMM_WORLD, status);

MPI_Sendrecv(vt[1]+1, m-2, MPI_DOUBLE, below, 1,
vt[mp-1]+1, m-2, MPI_DOUBLE, above, 1,
MPI_COMM_WORLD, status);

return (0);
}

/* end MODULE mpi_module */

Successive Over Relaxation (SOR)

• While the Jacobi iteration scheme is very simple and easily
parallelizable, its slow convergent rate renders it impractical for any
"real world" applications. One way to speed up the convergent rate
would be to "over predict" the new solution by linear extrapolation.
This leads to the Successive Over Relaxation (SOR) scheme
shown below:
1. Make initial guess for ui,j at all interior points (i,j).
2. Define a scalar wn (0 < wn < 2).
3. Apply Equation 3 to all interior points (i,j) and call it u'i,j.
4. un+1

i,j = wn u'i,j + (1 - wn) un
i,j.

5. Stop if the prescribed convergence threshold is reached, otherwise
continue to the next step.

6. un
i,j = un+1

i,j.
7. Go to Step 2.

Successive Over Relaxation (SOR)

• Note that in the above setting
wn = 1 recovers the Jacobi
scheme while wn< 1
underrelaxes the solution.
Ideally, the choice of wn should
provide the optimal rate of
convergence and is not
restricted to a fixed constant.
As a matter of fact, an effective
choice of wn, known as the
Chebyshev acceleration, is
defined as

() radius spectral theis
12

1 where

2qn
4/1

1

2 n
4/1

1

1n
2/1

1

0n 0

2

1
2

1
2

2

÷÷
ø

ö
çç
è

æ
+

-=

ï
ï
ï
ï
ï

î

ïï
ï
ï
ï

í

ì

>=
-

=
-

=
-

=

=

-

m

for
p

for
p

for
p

for

q

n

pr

w

w

w

Successive Over Relaxation (SOR)

• We can further speed up
the rate of convergence
by using u at time level
n+1 for any or all terms on
the right hand side of
Equation 6 as soon as
they become available.
This is the essence of the
Gauss-Seidel scheme. A
conceptually similar red-
black scheme will be used
here. This scheme is best
understood visually by
painting the interior cells
alternately in red and
black to yield a
checkerboard-like pattern
as shown in Figure 8.11.

Figure 8.11. Checkerboard-like pattern
depicting a parallel SOR red-black scheme.

Successive Over Relaxation (SOR)

• By using this red-black group identification strategy and applying the five-
point finite-difference stencil to a point (i,j) located at a red cell, it is
immediately apparent that the solution at the red cell depends only on its
four immediate black neighbors to the north, east, west, and south (by
virtue of Equation 6). On the contrary, a point (i,j) located at a black cell
depends only on its north, east, west, and south red neighbors.

• In other words, the finite-difference stencil in Equation 6 effects an
uncoupling of the solution at interior cells such that the solution at the red
cells depends only on the solution at the black cells and vice versa.

• In a typical iteration, if we first perform an update on all red (i,j) cells, then
when we perform the remaining update on black (i,j) cells, the red cells that
have just been updated could be used. Otherwise, everything that we
described about the Jacobi scheme applies equally well here; i.e., the
green cells represent the physical boundary conditions while the solutions
from the first and last rows of the grid of each process are deposited into
the blue cells of respective process grids to be used as the remaining
boundary conditions.

Serial SOR Iterative Scheme

• A single-process implementation of the SOR
Scheme as applied to the Laplace equation is
given below. Note that
– Program is written in C.
– System size, m, is determined at run time.
– Boundary conditions are handled by subroutine bc.
– This scheme converges much more rapidly than the

Jacobi Scheme, especially when coupled with a
Checbyshev acceleration.

ssor.c

#include "solvers.h"
INT main() {
/***************MAIN PROGRAM *************************************
* Solve Laplace equation using Successive Over Relaxation *
* and Chebyshev Acceleration (see Numerical Recipe for detail) *
* Kadin Tseng, Boston University, August, 2000 *
***/

INT m, mi, mp, iter; CHAR line[10];
REAL omega, rhoj, rhojsq, delr, delb, gdel;
REAL **u;

fprintf(OUTPUT,"Enter size of interior points, mi :");
(void) fgets(line, sizeof(line), stdin);
(void) sscanf(line, "%d", &mi);
fprintf(OUTPUT,"mi = %d\n",mi);

m = mi + 2;
gdel = 1.0; iter = 0; mp = m/P;
rhoj = 1.0 - PI*PI*0.5/m/m;
rhojsq = rhoj*rhoj;

ssor.c

u = allocate_2D(m, mp); /* allocate space for 2D array u */

bc(m, mp, u, K, P); /* initialize and define B.C. for u */

omega = 1.0;
update_sor(m, mp, u, omega, &delr, 'r');
omega = 1.0/(1.0 - 0.50*rhojsq);
update_sor(m, mp, u, omega, &delb, 'b');

while (gdel > TOL) { /* iterate until error below threshold */
iter++; /* increment iteration counter */
omega = 1.0/(1.0 - 0.25*rhojsq*omega);
update_sor(m, mp, u, omega, &delr, 'r');
omega = 1.0/(1.0 - 0.25*rhojsq*omega);
update_sor(m, mp, u, omega, &delb, 'b');
gdel = (delr + delb)*4.0;

ssor.c

if(iter%INCREMENT == 0) {
fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega);

}
if(iter > MAXSTEPS) {

fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);
fprintf(OUTPUT,")\n");
return (0); /* nonconvergent solution */

}
}

fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
fprintf(OUTPUT,"The maximum error = %f\n",gdel);

/* write u to file for use in MATLAB plots */
write_file(m, mp, u, K, P);

return (0);
}

Parallel SOR Red-black Scheme

• The parallel aspect of the
Jacobi scheme can be used
verbatim for the SOR
scheme. Figure 8.11, as
introduced in the previous
section on the single-thread
SOR scheme, may be used
to represent the layout for a
typical thread "k" of the
SOR scheme.

• As before, the green boxes
denote boundary cells that
are prescribed while the
blue boxes represent
boundary cells whose
values are updated at each
iteration by way of message
passing.

Figure 8.11. Checkerboard-like pattern
depicting a parallel SOR red-black scheme.

Parallel SOR Red-black Scheme

• A multi-threaded implementation of the SOR
Scheme as applied to the Laplace equation is
given below. Note that
– Program is written in C.
– System size, m, is determined at run time.
– Boundary conditions are handled by subroutine bc.
– This scheme converges much more rapidly than the

Jacobi Scheme, especially when coupled with a
Checbyshev acceleration.

psor.c

#include "solvers.h"
#include "mpi.h"

INT main(INT argc, CHAR *argv[]) {
/***************MAIN PROGRAM *************************************
* Solve Laplace equation using Successive Over Relaxation *
* and Chebyshev Acceleration (see Numerical Recipe for detail) *
* Kadin Tseng, Boston University, August, 2000 *
***/

INT iter, m, mi, mp, p, k, below, above;
REAL omega, rhoj, rhojsq, del, delr, delb, gdel;
CHAR line[80], red, black;
MPI_Comm grid_comm;
INT me, iv, coord[1], dims, periods, ndim, reorder;
REAL **v, **vt;

MPI_Init(&argc, &argv); /* starts MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &k); /* get current process id */
MPI_Comm_size(MPI_COMM_WORLD, &p); /* get # procs from env or */

psor.c

periods = 0; ndim = 1; reorder = 0; red = 'r'; black = 'b';

if(k == 0) {
fprintf(OUTPUT,"Enter size of interior points, mi :\n");
(void) fgets(line, sizeof(line), stdin);
(void) sscanf(line, "%d", &mi);
fprintf(OUTPUT,"mi = %d\n",mi);
m = mi + 2; /* total is mi plus 2 b.c. points */

}
MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
mp = (m-2)/p+2;

v = allocate_2D(m, mp); /* allocate mem for 2D array */
vt = allocate_2D(mp, m);

gdel = 1.0;
iter = 0;
rhoj = 1.0 - PI*PI*0.5/m/m;
rhojsq = rhoj*rhoj;

psor.c

/* create cartesian topology for matrix */
dims = p;
MPI_Cart_create(MPI_COMM_WORLD, ndim, &dims,

&periods, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &me);
MPI_Cart_coords(grid_comm, me, ndim, coord);
iv = coord[0];
bc(m, mp, v, iv, p); /* set up boundary conditions */
transpose(m, mp, v, vt); /* transpose v into vt */

replicate(mp, m, vt, v);
MPI_Cart_shift(grid_comm, 0, 1, &below, &above);

omega = 1.0;
update_sor(mp, m, vt, omega, &delr, red);
update_bc_2(mp, m, vt, iv, below, above);
omega = 1.0/(1.0 - 0.50*rhojsq);
update_sor(mp, m, vt, omega, &delb, black);
update_bc_2(mp, m, vt, iv, below, above);

psor.c

while (gdel > TOL) {
iter++; /* increment iteration counter */
omega = 1.0/(1.0 - 0.25*rhojsq*omega);
update_sor(mp, m, vt, omega, &delr, red);
update_bc_2(mp, m, vt, iv, below, above);
omega = 1.0/(1.0 - 0.25*rhojsq*omega);
update_sor(mp, m, vt, omega, &delb, black);
update_bc_2(mp, m, vt, iv, below, above);
if(iter%INCREMENT == 0) {

del = (delr + delb)*4.0;
MPI_Allreduce(&del, &gdel, 1, MPI_DOUBLE,
MPI_MAX, MPI_COMM_WORLD); /* find global max error */
if (k == 0) {

fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega);
}

}
if(iter > MAXSTEPS) {

fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);
fprintf(OUTPUT,")\n");
return (1); /* nonconvergent solution */

}
}

psor.c

if (k == 0) {
fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
fprintf(OUTPUT,"The maximum error = %f\n",gdel);

}

/* write v to file for use in MATLAB plots */
transpose(mp, m, vt, v); /* transpose v into vt */
write_file(m, mp, v, k, p);

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

return (0);
}

Scalability Plot of SOR

• The plot in Figure
8.12 below shows
the scalability of the
MPI implementation
of the Laplace
equation using SOR
on an SGI Origin
2000 shared-
memory
multiprocessor.

Figure 8.12. Scalability plot using SOR on an
SGI Origin 2000.

END

