The 2-D Poisson Problem

William D. Gropp*

In this chapter we briefly describe how an approximate sotutd a simple
partial differential equation can be found when using paralomputing. This
chapter will allow us to illustrate the issues of parallglg an application and
contrast the two major approaches.

1 TheMathematical Model

The Poisson problem is a simple elliptic partial differahgquation. The Poisson
problem occurs in many physical problems, including fluidivflelectrostatics,
and equilibrium heat flow. In two dimensions, the Poissotbfem is given by the
following equations:

Pulz,y) | PFulz,y)
Oz? Oy?
u(z,y) = g¢g(z,y)onthe boundary (2)

= f(x,y)inthe interior 1)

To compute an approximation solution to this problem, werdefi discrete
mesh of pointgz;, y;) on which we will approximate:. To keep things simple,
we will assume that the mesh is uniformly spaced in bothutlaedsy directions,
and that the distance between adjancent mesh poihtstiat is,z;+1 — z; = h
andy;+1 — y; = h. We can then use a simple centered-difference approximatio
to the derivatives in Equation 2 [IK66] to get

w1, yy) — 2u(@i, yy) + w(wio1, y;)
h2
UL, Yy - 2u iy Yi) + ules, Y-
(]+1) (h2]) (J 1) :f(%yj) (3)

I

at each pointz;,y;) of the mesh. To simplify rest of the discussion, we will
replaceu(z;, y;) by u; ;.

*Mathematics and Computer Science Division, Argonne Nalfibaboratory, Argonne, IL 60439

real u(0:n,0:n), unewm(0:n,0:n), f(1l:n, 1:n), h

I Code to initialize f, u(0,*), u(n:*), u(*,0), and
I u(*,n) with g

h=1.0/ n
do k=1, maxiter
do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) +u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h* h=*f(i,j))
enddo

enddo

I code to check for convergence of unew to u.

I Make the new value the old value for the next iteration

U = unew

enddo

Figure 1: Sequential version of the Jacobi algorithm

2 A SimpleAlgorithm

Many numerical methods have been developed for approxigaltie solution of
the partial differential equation in Equation 2 and for sotythe approximation
in Equation 3. In this section we will describe a very simgdigosithm so that we
can concentrate on the issues related to the parallel veddithe algorithm. In
practice, the algorithm we describe here should not be udedever, many of the
more modern algorithms use the same approach to achieviéefiana.

The algorithm that we will use is called tlacobi Method. This method is an
iterative approach for solving Equation 3 that can be wmitie

Uﬁ;lzz % (U§+1J +‘Uf—1J +'Uﬁj+1'+’uﬁj_1 —'hZij)- (4)
This equation defines the value ofz;, y;) at thek + 1st step in terms of at the
kth step; it also ignores the boundary conditions.

We can translate this into a simple Fortran program by dedithre array
u(0: n, 0: n) to hold«* andunew(0: n, 0: n) to hold «**'. This is shown
in Figure 1; details of initialization and convergence ilmghave been left out.

In the next two sections we will look at two different apprbas to making this
a parallel program.

7 O 0000000 Ghost Cells
SRR N N N N X N
50900080000 ¢eeoes0e
EE X X X XX N SN N X N N X Ne
F1O0000000 ROOGOGSSSSO
2200000 eeo ©e0000000
F10 0000 e 8O0 M
0 00000000

TUYSRIRRN

(@) (b)

Figure 2: Simple decomposition of the mesh across proce®sat(a) shows the
entire mesh, divided among three processes. Open circesspond to points on
the boundary. Part (b) shows the part of this array owned bys#tond process;
the grey circles represent the ghost or halo cells.

3 Message-Passing and the Distributed Memory Model

One of the two major classes of parallel programming modelhé distrbuted
memory model, as discussed in Sectith In this model, a parallel program is
made up of many processes, each of which has its own add@ss apd (usually)
variables. Because each process has its own address gpaci@) steps must be
taken to communication information between processes. diiee most widely
used approachesiigessage passing. In message passing, information is communi-
cated between processes by sending messages using a tiwegyproach where
both the sender and the receiver make subroutine calls aogarfor the transfer
of data between them. Variables in one process are not lji@atessible by any
other process.

In creating a parallel program for this programming modet first question
to ask is: what data structures in my program mustliseributed or partitioned
among these processes? In our example, in order to achigyeaaallelism, each
process must do part of the computationuofew. This suggests that we should
distributeu, unew, andf . One such partition is shown in Figure 2(a). The part of
the distributed data structure that is held by a particulacess is said to bewned
by that process.

Note that the code to comput@ew(i , j) requiresu(i,j+1) andu(i,j -

1) . This means that in addition to the parttondunewthat each process has (as
part of the decomposition), it also needs a small amount taf flam its neighbor-
ing processes. This data is usually copied into a slighthaexied array that holds
both the part of the distributed array manageddi@ned) by a process witlghost

or halo points that hold the values of these neighbors. This is shiowigure 2(b).

A process gets these values by communicating with its neighb

The code in Figure 3 shows the distributed memory, messagsipy version
of our original code in Figure 1.

The values off s andj e are the values of for the bottom and top of the
part ofu owned by a process. The routiM®l _Sendr ecv is part of the MPI
message-passing standard [Mes94], and both sends aneegedata. In this case,
the first call sends the valua¢ 1: n- 1, j s) to the process below or down, where
itisreceived intau(1: n-1,j e+l).

Note that though each process has variapkg e, u, and so on, these are all
different variables (precisely, they are different memory locatjons

There are many other ways to describe the communicationeaiefed this al-
gorithm and algorithms like it. See [GLS99, Chapter 4] forrendetails.

4 The Single Name-Space Distributed-M emory Model

High Performance Fortran (HPF) [KE93] provides an extension of Fortran (For-
tran 90) to distributed-memory parallel environments. ikimthe message-passing
model, a single variable may be declared as distributedsac processes. For
example, rather than declaring the part of theariable owned by each process, in
HPF, the program simply declarasn the same way as for the sequential program,
and adds an HP#Hirective that describes how the variable should be distributed
across the processes. All communication required to aaeeigghbor values is
handled for the programmer by the HPF compiler. The HPF garsf the Jacobi
iteration is shown in Figure 4.

Variables that are not specifically distributed by the pamgmer with an HPF
directive behave just like variables in the message-pggsibngram: each process
has a separate version of the variable. For example, thabtali is in a different
memory location on each process (even though we give it tine salue).

Note also that the details of the distribution are contlg HPF: theBLOCK
distribution is specifically defined by HPF and does not dyanttch the decom-
position shown in Figure 2. For valuesmthat are much greater than the number
of processes (the only case where parallelism makes ang)sdmsvever, the HPF
choice is as good as any.

An advantage of HPF is that by changing the single line

use npi

real u(0:n,js-1:je+l), unew(0:n,js-1:je+l)

real f(1:n-1, js:je), h

i nteger nbr_down, nbr_up, status(MPl_STATUS SIZE), ierr

I Code to initialize f, u(0,*), u(n:*), u(*,0), and
I u(*,n) with g

h=1.0/ n
do k=1, maxiter
I Send down

call MPI_Sendrecv(u(l,js), n-1, MPI_REAL, nbr_down, k &
u(l,je+l), n-
MPI _REAL, nbr_up, k, &
MPI _COMM WORLD, status, ierr)
I Send up
call MPI_Sendrecv(u(l,je), n-1, MPI_REAL, nbr_up, k+1, &
u(l,js-1), n-
MPlI _REAL, nbr_down, k+1,&
MPI _COMM WORLD, status, ierr)
do j=js, je
do i=1, n-1
unew(i,j) = 0.25 * (u(i+1,j) +u(i-1,j) + &
u(i,j+1) +u(i,j-1) - &
h*h* f(i,j))
enddo
enddo
I code to check for convergence of unew to u.
I Make the new value the old value for the next iteration
u = unew
enddo

Figure 3: Message-passing version of Figure 1

real u(0:n,0:n), unew(0:n,0:n), f(0:n, 0:n), h
I HPF$ DI STRI BUTE u(: , BLOCK)
I HPF$ ALI GN unew WTH u
IHPF$ ALIGN f WTH u

I Code to initialize f, u(0,*), u(n:*), u(*,O0),
I and u(*,n) with g

h =10/ n
do k=1, nmxiter
unew(1l:n-1,1:n-1) = 0.25 * &
(u(2:n,1:n-1) + u(0:n-2,1:n-1) + &
u(l:n-1,2:n) + u(1l:n-1,0:n-2) - &
h* h*f(l:n-1,1:n-1))
I code to check for convergence of unew to u.

I Mbke the new value the old value for the next iteration
u = unew
enddo

Figure 4: HPF version of the Jacobi algorithm

| HPF$ DI STRI BUTE u(: , BLOCK)
to
| HPF$ DI STRI BUTE u(BLOCK, BLOCK)

we can change the distribution of the arrays to that showngare 5.

We call this the single name-space, distributed memory imst=use all com-
munication between processes is handled with variables)i that are declared
globally, that is, they are declared as if they were accéssiball processes. This
allows many programs to be written so that they are very sind the sequential
version of the same program. In fact, the program in Figurereirly identical to
Figure 1, particularly if thé andj loops in Figure 1 are replaced with the Fortran
90 array expression used in Figure 4.

5 The Shared Memory Model

The shared memory model, in contrast to the distributed nmgmmodel, has only
one process but multiple threads. All threads can acce'sefathe memory of the

Well, nearly all.

=7 00 0000O0O0
EReE X X X X X Xe
ElNoR X X X X X Xe
00000000
2 000000 eO0
2 000 0eee ol
EleR X X X X X Xe
=0 00000000
O « N M < 1O O I~

Figure 5: Decomposition of the mesh across a two-dimensarmay of four pro-
cesses, corresponding to an HPF BLOCK,BLOCK distribution.

process. This means that there is only single version of eaGhble. This is very
convenient; in some cases, a parallel, shared memory vedifigure 1 looks
exactly the same: the compiler may be able to create a plavalision directly
from the sequential code.

However, it can be helpful, both in terms of code clarity ahe generation of
efficient parallel code, to include some code that desctibeslesired parallelism.
One method that was designed for this kind of code is OpenMiedd]. The
OpenMP version is shown in Figure 6.

See Sectior?? for a more detailed discussion of OpenMP. A complete Open-
MPI code for the Jacobi example is available at the OpenMPsiteljope].

6 Comments

This section has described very briefly the steps requireshvygtarallelizing code
to approximate the solution of a partial differential edqoat While the algorithm
used in this discussion is inefficient by modern standaitus,approach to par-
allelism is very similar to what is needed by state-of-thiea@proaches for both
implicit and explicit solution methods. Sectio8 and?? in this book discuss
more modern techniques.

Because of the simplicity of the algorithm and the dataestmes in this exam-
ple, these examples are very simple and do not address the isgres that can
arise in more complex situations, such as unstructuredgdgnamic (run-time)

real u(0:n,0:n), unewm(0:n,0:n), f(1:n-1, 1:n-1), h

I Code to initialize f, u(0,*), u(n:*), u(*,O0),
I and u(*,n) with g

h=1.0/n
do k=1, maxiter
I $omp paralle
I $omp do
do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) +u(i-1,j) + &
u(i,j+1) +u(i,j-1) - &
h*h* f(i,j))
enddo
enddo
I $omp enddo
I code to check for convergence of unew to u.

I Make the new value the old value for the next iteration
u = unew
I $omp end paralle
enddo

Figure 6: OpenMP (shared memory) version of the Jacobi dlgor

real u(0:n,0:n), unew(0:n,0:n), twonorm

oL
twonorm= 0.0

do j=1, n-1
do i=1, n-1
twonorm = twonorm + (unew(i,j) - u(i,j))**2
enddo
enddo
twonorm = sqrt (twonorm
if (twonorm.le. tol) ! ... declare convergence

Figure 7: Sequential code to compute the two-norm of thedifice between two
iterations of the Jacobi algorithm

allocation and management of data structures, and morelegrdpta dependen-
cies between shared data-structures (either betweengseser threads). Some of
these issues are discussed in more detail in SecHarsven the convergence test,
a necessary part of this algorithm that we have left out fiowpdicity, requires care,
since the result is a single value that all processes/tereadtribute to and that
must be available to all processes. Computing this scakatdycorrectly requires
care; each of the programming models illustrated aboveigesvspecial features
to handle this and similar problems. These are discussdabindxt section.
Another discussion that focuses on some of the more subtless particularly
for the shared memory case is given in [Pfi98]. Suggestionstfoosing between
different approaches to expressing parallel programs iaesgn Sectior??.

7 Adding Global Operations

In the examples above, the code to check for convergenceeftasut. This al-
lowed us to concentrate on how to compute with an array Oisteed across many
processes or processors. For computations such as a cengerggest, a single
value is needed by all processes or threads. In this seati®enliscuss how each
approach to parallel computing provides this operation.

A simple convergence test is to compute the two-norm of tlierdnce be-
tween two successive iterations. In the serial case, thiseaaccomplished with
the code shown in Figure 7.

use npi
real u(0:n,js-1:je+l), unew(0:n,js-1:je+l), twonorm
i nteger ierr

twonorm|local = 0.0
do j=js, je
do i=1, n-1
twonorm | ocal = twonorm|local + &
(unew(i,j) - u(i,j))**2
enddo
enddo

call MPI_Allreduce(twonormlocal, twonorm 1, &

MPI _REAL, MPlI_SUW MPlI_COWM WORLD, ierr)
twonorm = sqrt (twonorm
if (twonorm.le. tol) ! ... declare convergence

Figure 8: Message-passing version of Figure 7

7.1 Collectiveoperationsin MPI

In the MPI case, computing the two norm of the differencaipéw andu re-
quires two steps. First, the sum of the squares of the diffae of the local part of
unew andu are computed. These are then combined with the contribsifrom
all of the other processes and summed together. Becauseéhation of combin-
ing values from many processes is common and important, aoduse efficient
implementations of this operation can require very syssgeeific code and al-
gorithms, MPI provides a special routind?l _Al | r educe, to combine a value
from each process and return to all processes the result.igbhown in Figure 8.
This operation is called aeduction because it combines values from many

sources into a single value. MPI provides many routines éonmunication and
computation on a collection of processes; these are catléettive operations.

7.2 Reductionsin HPF

Fortran 90 and hence HPF contain built-in functions for cating the sum of all
of the values in an array. In HPF, these functions work wisttributed arrays, so
the code is very simple, as shown in Figure 9.

10

real u(0:n,0:n), unew(0:n,0:n), twonorm
I HPF$ DI STRI BUTE u(: , BLOCK)
I HPF$ ALIGN unew with u
IHPF$ ALIGN f with u

b
twonorm = sqrt (&
sum((unew(1l:n-1,1:n-1) - u(l:n-1,1:n-
1))**2))

if (twonorm.le. tol) ! ... declare convergence
enddo

Figure 9: HPF version of the convergence test for the Jadgbrithm

7.3 Reductionsin OpenMP

The approach taken in OpenMP is somewhat different fromithetPF. Just like
MPI, OpenMP recognizes that reductions are a common oparath OpenMP,
you can indicate that the result of a variable is to be formed beduction with a
particular operator. This is shown in Figure 10.

The effect of the educt i on(+: t wonor n) statementis to cause the OpenMP
compiler to create a separate, private versiohwbdnor min each thread. When
the enclosing scope ends, OpenMP combines the contrilsiti@ach thread using
the specified operation to form the final value.

This code also illustrates the directipe i vat e to create a variable that is
private to each thread (i.e., not shared). Without thisdalive, the value of d-

i ff added to the thread-private valuetafonor mcould come from the “wrong”
thread.

7.4 Final Comments

All of these approaches to finding the two-norm exploit theoasativity of real
arithmetic. Unfortunately, computers don’t use real nurapthey use an approx-
imation called floating-point numbers. Operations with filog-point number are
nearly but not exactly associative. (See any introductogkon Numerical Anal-
ysis.) Because of this lack of associativity, the value coteg by these methods
may be different. In a well-designed algorithm, the diffeze will be small (in
relative terms). However, this difference can sometimesrexpected and hence
confusing.

11

real u(0:n,0:n), unew(0:n,0:n), twonorm

b,
twonorm = 0.0

I $onp parall el
'$onp do private(ldiff) reduction(+:twonorm
do j=1, n-1
do i=1, n-1

[diff = (unew(i,j) - u(i,j))**2
twonorm = twonorm + | diff
enddo
enddo
! $onp enddo
' $onp end parall el
twonorm = sqrt (twonorm
enddo

Figure 10: OpenMP (shared memory) version of the convergtast for the Jacobi
algorithm

8 Unstructured Meshes

The preceeding sections have focused on regular meshesseetteese provide
the simplist code examples. Many computations, howevbr,ae unstructured
meshes, such as that in Figure 11.

Parallelizing a code that uses an unstructured mesh foliogisilar path to
parallelizing a structured-mesh code. For MPI, the firgh &&eo partition the grid.
For parallel finite element calculations, it is necessarpddition the mesh across
the processors in such a way that each processor’s work $oladlanced and the
communication between processors is minimized. There argyrdifferent ways
to partition meshes, and if done naively, the result can baefficient parallel
implementation. Consider a simple example using lineardigiements on an un-
structured, triangular mesh. In this case, the amount okwaesociated with each
element is the same and communication is required to treimgéemation to near-
est neighbor elements that have been assigned to a differecéssor. Thus to
meet our partitioning objective of assigning equal work tgpeocessors while si-
multaneously minimizing communication costs, we mustgsain equal number
of elements to the processors and minimize the number giroffessor neighbor-
ing elements. In Figure 12, we show the results of two parnitig strategies for

12

Figure 11: A simple unstructured grid

a triangular mesh. In the left figure, we sort the elementshieyytcoordinant of
their centroid and assign an equal number of elements to @dclur processors.
In the right figure, we sort the elements in thalirection and make one cut that
divides the set of elements in half. Each subset of elemsitheh sorted in the-
direction and divided so that they have again been equaltyibluted to each of the
four processors. Although both partitioning strategidsaibee the work load, their
communication patterns are quite different. For exampbesier processor P3;
the communication required for this processor is indicdtgthe shaded elements
in each figure. There are roughly twice the number of off-pssor neighbors in
the first partitioning which will result in larger communtéan costs and a less
efficient parallel implementation.

Many techniques have been developed for partitioning nesee Chapte??
for more information.

Once the mesh has been partitioned, neighbor data must bednbo@tween
processes just as it was in the structure-mesh case. WithtkiBrequires roughly
the same routines, though the appropriate data must bergdtinem the unstructured-
mesh data structure, communicated to the neighboring pspafd scattered to the
appropriate ghostcells. MPI also provides a way to combieestatter and gather
operations with the communication through the use of MPagakes, though few
MPI implementations have made these efficient.

13

P3 P4

P4

P3

P2

P1

P1 P2

Figure 12: The results of partitioning an unstructured mesimg two different
strategies

' HPF$ DI STRI BUTE ugat her (*, BLOCK)

HPF$ ALI GN uscatter W TH ugat her
real ugather(n,2), uscatter(n,?2)
I ... gather data into ugather(:, myprocess)
uscatter(:, myprocess) = ugather(:, neighbor)

Figure 13: Using HPF arrays to communicate data from procesghbor to the
calling process.

In HPF, similar steps must be used, since itis no longer ptes use HPF par-
titioning directives to partition the unstructured meston@nunication of neighbor
data between processes can be managed by using a comnamaradly as shown
in Figure 13.

In this example, each process semddata items. In an unstructured mesh
computation, the number of neighbor data values needegnsitiably be different
for each neighboring process. With a little more work, eatpss can arrange to
communicate exactly the correct amount of data.

Since OpenMP is a fully shared-memory model, it is unnecgdeaexplicitly
communicate any data. An unstructured mesh often has aesiogp (over all
mesh cells), rather than nested loops over each coordimatetidn; further, the
mesh data is often accessed through indirect addressingXel ADD(K)) rather
thanA(K)). Partitioning the mesh and introducing an outer loop olverdartitions

14

can help the OpenMP compiler generate efficient code. Rauitilg the mesh also
helps in maintaining memory locality, which is critical fperformance. To reduce
the performance consequencedaée sharing, it may also be necessary to make
copies of the neighboring data, similar to the gather/scateps that are required
for MPIl and HPF.

Acknowledgment

Thanks to Lori Freitag for the unstructured mesh examplethediscussion of par-
titioning. This work was supported in part by the Mathenmati¢tnformation, and
Computational Sciences Division subprogram of the OfficAdfanced Scientific
Computing Research, U.S. Department of Energy, under @ciritv-31-109-Eng-
38.

References

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum.Using MPI:
Portable Parallel Programming with the Message Passing Interface, 2nd
edition. MIT Press, Cambridge, MA, 1999.

[IK66] E. Isaacson and H. B. KellerAnalysis of Numerical Methods. Wiley,
New York, 1966.

[KLST93] Charles H. Koelbel, David B. Loveman, Robert S. Schreil@uy
L. Steele Jr., and Mary E. ZoseThe High Performance Fortran Hand-
book. MIT Press, Cambridge, MA, 1993.

[Mes94] Message Passing Interface Forum. MPI: A MessagsiRa Inter-
face standard. International Journal of Supercomputer Applications,
8(3/4):165-414,1994.

[ope] http://www.openmp.org/index.cgi?samples+sasijaeobi.html.

[ope97] OpenMP Fortran Application Program Interface, su@n 1.0.
htt p: // www. opennp. or g, October 1997.

[Pfi98] Gregory F. Pfister.In Search of Clusters. Prentice Hall PTR, second
edition, 1998.

15

