
Ordinary and partial differential equations

Victor Eijkhout

335/394 fall 2011

ODEs and PDEs

Time-evolving phenomena: IVP (Initial Value Problem), usually
Ordinary Differential Equations

Space-constraint phenomena: BVP (Boundary Value Problem),
usually Partial Differential Equations

2

Ordinary Differential Equations

3

Simple Initial Value Problem

Newtons’ Second Law: F = ma

Acceleration depends linearly on the force exerted on the mass:

a =
d

dt
u =

d2

dt2
x =

F

m

Write velocity as vector → first order derivative in time:
u (t) = (x (t) , x ′ (t))t

u implicitly depends on time, easier to solve:
u′ (t) = f (u (t)) , u (0) = u0

4

Numerical treatment of differential
equations

Initial value problem: u′(t) = f (t, u(t)), u(0) = u0, t > 0

Boundary value problem:
u′′(x) = f (x), x(0) = x0, x(1) = x1, x ∈ [0, 1]

General assumption: f has higher derivatives.

IVP stability: solutions corresponding to different u0 values
converge as t →∞. Criterium:

∂

∂u
f (t, u) =

> 0 unstable

= 0 neutrallystable

< 0 stable

Simple example: f (t, u) = −λu, then u(t) = u0e
−λt ;

stable if λ > 0

5

Finite difference approximation
We turn the continuous problem into a discrete one, by looking at
finite time/space steps.

Assume all functions are sufficiently smooth, and use Taylor series:

u(t + ∆t) = u(t) + u′(t)∆t + u′′(t)
∆t2

2!
+ u′′′(t)

∆t3

3!
+ · · ·

This gives for u′:

u′(t) =
u(t + ∆t)− u(t)

∆t
+ O(∆t2)

So we approximate

u′(t) ≈ u(t + ∆t)− u(t)

∆t

and the “truncation error” is O(∆t2).

6

Finite differences 2
How does this help? In u′ = f (t, u) substitute

u′(t)→ u(t + ∆t)− u(t)

∆t
giving

u(t + ∆t)− u(t)

∆t
= f (t, u(t))

or
u(t + ∆t) = u(t) + ∆t f (t, u(t))

Let t0 = 0, tk+1 = tk + ∆t = · · · = (k + 1)∆t, u(tk) = uk :

uk+1 = uk + ∆t f (tk , uk)

Discretization
‘Explicit Euler’ or ‘Euler forward’.

Does this compute something close to the true solution?
‘Discretization error’

7

Some error analysis
Local Truncation Error: assume computed solution is exact at step k,
how wrong will we be at step k + 1?

u(tk+1) = u(tk) + u′(tk)∆t + u′′(tk)
∆t2

2!
+ · · ·

= u(tk) + f (tk , u(tk))∆t + u′′(tk)
∆t2

2!
+ · · ·

uk+1 = uk + f (tk , uk)∆t

So

Lk+1 = uk+1 − u(tk+1)

= uk − u(tk) + f (tk , uk)− f (tk , u(tk))− u′′(tk)
∆t2

2!
+ · · ·

= −u′′(tk)
∆t2

2!
+ · · ·

Global error is first order method:
Ek ≈ ΣkLk ≈ k

(
∆t2/2!

)
≈ (T − t0/∆t)

(
∆t2/2!

)
≈ O(∆t)

8

An Euler forward example
Consider f (t, u) = −λu, exact solution u(t) = u0e

−λt ;
stable if λ > 0

Explicit Euler scheme

uk+1 = uk −∆tλuk = (1− λ∆t)uk = (1− λ∆t)ku0

Then

uk → 0 as k →∞
⇔ |1− λ∆t| < 1

⇔ −1 < 1− λ∆t < 1

⇔ −2 < −λ∆t < 0

⇔ 0 < λ∆t < 2

⇔ ∆t < 2/λ

Conditionally stable

9

Implicit Euler
Or ‘Euler backward’:

u(t −∆t) = u(t)− u′(t)∆t + u′′(t)
∆t2

2!
+ · · ·

so

u′(t) =
u(t)− u(t −∆t)

∆t
+ u′′(t)∆t/2 + · · ·

Compute u′(t) = f (t, u(t)) as

u(t)− u(t −∆t)

∆t
= f (t, u(t))

⇒ u(t) = u(t −∆t) + ∆tf (t, u(t))

⇒ uk+1 = uk + ∆tf (tk+1, uk+1)

Implicit equation for uk+1!

Let f (t, u) = −u3, then uk+1 = uk −∆tu3
k+1

needs nonlinear solver

10

Stability of Implicit Euler

Again the f (t, u) = −λu example:

uk+1 = uk − λ∆tuk+1

(1 + λ∆t)uk+1 = uk

uk+1 =
(

1
1+λ∆t

)
uk =

(
1

1+λ∆t

)k
u0

If λ > 0 (stable equation), then uk → 0 for all values of λ and ∆t:
unconditionally stable.

Pro: larger time steps possible, no worries
Con: implicit equation needs to be solved

11

Higher order methods

Runge-Kutta
Adams-Bashforth
Crank-Nicholson

12

Boundary value problems

Consider u′′(x) = f (x , u, u′) for x ∈ [a, b] where u(a) = ua,
u(b) = ub in 1D and

−uxx(x̄)− uyy (x̄) = f (x̄) for x ∈ Ω = [0, 1]2 with u(x̄) = u0 on δΩ.
(1)

in 2D.

13

Approximation of 2nd order derivatives
Taylor series (write h for δx):

u(x + h) = u(x) + u′(x)h+ u′′(x)
h2

2!
+ u′′′(x)

h3

3!
+ u(4)(x)

h4

4!
+ u(5)(x)

h5

5!
+ · · ·

and

u(x − h) = u(x)− u′(x)h+ u′′(x)
h2

2!
− u′′′(x)

h3

3!
+ u(4)(x)

h4

4!
− u(5)(x)

h5

5!
+ · · ·

Subtract:

u(x + h) + u(x − h) = 2u(x) + u′′(x)h2 + u(4)(x)
h4

12
+ · · ·

so

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
− u(4)(x)

h4

12
+ · · ·

Numerical scheme:

−u(x + h)− 2u(x) + u(x − h)

h2
= f (x , u(x), u′(x))

(2nd order PDEs are very common!)

14

This leads to linear algebra

−u(x + h)− 2u(x) + u(x − h)

h2
= f (x , u(x), u′(x))

Equally spaced points on [0, 1]: xk = kh where h = 1/n, then

−uk+1 + 2uk − uk−1 = h2 f (xk , uk , u
′
k) for k = 1, . . . , n − 1

Written as matrix equation: 2 −1
−1 2 −1

. . .
. . .

. . .

u1

u2
...

 =

h2f1 + u0

h2f2
...

15

Matrix properties

• Very sparse, banded

• Symmetric (only because 2nd order problem)

• Sign pattern: positive diagonal, nonpositive off-diagonal
(true for many second order methods)

• Positive definite (just like the continuous problem)

16

Initial Boundary value problem
Heat conduction in a rod T (x , t) for x ∈ [a, b], t > 0:

∂

∂t
T (x , t)− α ∂2

∂x2
T (x , t) = q(x , t)

• Initial condition: T (x , 0) = T0(x)

• Boundary conditions: T (a, t) = Ta(t), T (b, t) = Tb(t)

• Material property: α > 0 is thermal diffusivity

• Forcing function: q(x , t) is externally applied heating.

The equation u′′(x) = f above is the steady state.

17

Discretization
Space discretization: x0 = a, xn = b, xj+1 = xj + ∆x
Time discretiation: t0 = 0, tk+1 = tk + ∆t
Let T k

j approximate T (xj , tk)

Space:

∂

∂t
T (xj , t)− α

T (xj−1, t)− 2T (xj , t) + T (xj+1, t)

∆x2
= q(xj , t)

Explicit time stepping:

T k+1
j − T k

j

∆t
− α

T k
j−1 − 2T k

j + T k
j+1

∆x2
= qkj

Implicit time stepping:

T k+1
j − T k

j

∆t
− α

T k+1
j−1 − 2T k+1

j + T k+1
j+1

∆x2
= qk+1

j

18

Computational form: explicit

T k+1
j = T k

j +
α∆t

∆x2
(T k

j−1 − 2T k
j + T k

j+1) + ∆tqkj

This has an explicit form:

T˜ k+1 =

(
I +

α∆t

∆x2

)
T˜ k + ∆tq˜k

19

Computational form: implicit

T k+1
j − α∆t

∆x2
(T k

j−1 − 2T k
j + T k

j+1) = T k
j + ∆tqkj

This has an implicit form:(
I − α∆t

∆x2
K

)
T˜ k+1 = T˜ k + ∆tq˜k

Needs to solve a linear system in every time step

20

Stability of explicit scheme

Let q ≡ 0; assume T k
j = βke i`xj ; for stability we require |β| < 1:

T k+1
j = T k

j +
α∆t

∆x2
(T k

j−1 − 2T k
j + T k

j+1)

⇒ βk+1e i`xj = βke i`xj +
α∆t

∆x2
(βke i`xj−1 − 2βke i`xj + βke i`xj+1)

⇒ β = 1 + 2
α∆t

∆x2
[
1

2
(e i`∆x + e−`∆x)− 1]

= 1 + 2
α∆t

∆x2
(cos(`∆x)− 1)

21

βk+1

βk
= 1 + 2

α∆t

∆x2
(cos(`∆x)− 1)

To get |β| < 1:

• 2α∆t
∆x2 (cos(`∆x)− 1) < 0: automatic

• 2α∆t
∆x2 (cos(`∆x)− 1) > −2: needs 2α∆t

∆x2 < 1, that is

∆t <
∆x2

2α

big restriction on size of time steps

22

Stability of implicit scheme

T k+1
j − α∆t

∆x2
(T k+1

j1
− 2T k+1

j + T k+1
j+1) = T k

j

⇒ βk+1e i`∆x − α∆t

∆x2
(βk+1e i`xj−1 − 2βk+1e i`xj + βk+1e i`xj+1) = βke i`xj

⇒ β−1 = 1 + 2
α∆t

∆x2
(1− cos(`∆x))

β =
1

1 + 2α∆t
∆x2 (1− cos(`∆x))

Noting that 1− cos(`∆x) > 0, the condition |β| < 1 always satisfied:
method always stable.

23

Sparse matrix in 2D case
Sparse matrices so far were tridiagonal: only in 1D case.

Two-dimensional: −uxx − uyy = f on unit square [0, 1]2

Difference equation:
4u(x , y)−u(x +h, y)−u(x−h, y)−u(x , y +h)−u(x , y −h) = h2f (x , y)

24

Sparse matrix from 2D equation

4 −1 ∅ −1 ∅
−1 4 1 −1

. . .
. . .

. . .
. . .

. . .
. . . −1

. . .

∅ −1 4 ∅ −1
−1 ∅ 4 −1 −1

−1 −1 4 −1 −1

↑
. . . ↑ ↑ ↑ ↑

k − n k − 1 k k + 1 −1 k + n
−1 −1 4

. . .
. . .

25

	Ordinary Differential Equations

