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ODEs and PDEs

Time-evolving phenomena: IVP (Initial Value Problem), usually
Ordinary Differential Equations

Space-constraint phenomena: BVP (Boundary Value Problem),
usually Partial Differential Equations
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Ordinary Differential Equations




Simple Initial Value Problem

Newtons’ Second Law: F = ma

Acceleration depends linearly on the force exerted on the mass:
d d? F

a——U—= ——F=X =
dt dt? m

Write velocity as vector — first order derivative in time:

u(t) = (x(t),x (1)’

u implicitly depends on time, easier to solve:
u' (t) = f(u(t)), u(0) =w
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Numerical treatment of differential

equations
Initial value problem: u/(t) = f(t, u(t)), u(0) = uo, t>0

Boundary value problem:
u"(x) = f(x), x(0) = x0, x(1) =x1,  x€[0,1]

General assumption: f has higher derivatives.

IVP stability: solutions corresponding to different up values
converge as t — oo. Criterium:

> 0 unstable

3}
%f(t, u) = ¢ =0 neutrallystable
< 0 stable
Simple example: f(t,u) = —Au, then u(t) = uge™f;
stable if A >0
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Finite difference approximation
We turn the continuous problem into a discrete one, by looking at
finite time/space steps.

Assume all functions are sufficiently smooth, and use Taylor series:

At? AL
u(t + At) = u(t) + ' (t)At + u”(t)7 + u”’(t)T +..

This gives for u':

J(1) = EE AAtz —u1) | o(ar)

So we approximate

o(6) ~ u(t + AAtz — u(t)

and the “truncation error’ is O(At?).
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Finite differences 2
How does this help? In v’ = f(t, u) substitute

u(t + At) — u(t)

(t) — At
giving A ,
R O
or

u(t + At) = u(t) + At f(t, u(t))
Let t9 =0, typ1 =t + At =+ = (k+ 1)At, u(tx) = wk:
Ugy1 = Uk + At f(tk, Uk)

Discretization
‘Explicit Euler’ or ‘Euler forward’.

Does this compute something close to the true solution?
‘Discretization error’
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Some error analysis

Local Truncation Error: assume computed solution is exact at step k,
how wrong will we be at step k + 17

At?
u(tir1) = u(te) + U (t)At + u”(tk)7 I
v VAL
= u(t) + f(t u(t) At + 0" () -+
U1 = U+ F(te, ug) At
So
Levi = ukpr — u(tag)
e, AL
= uk = ute) + £tk uk) — £t u(te) — o (B) 5+
At?
= —u//(tk)7+...

Global error is first order method:
Ex ~ Sili = k (At2/2)) = (T — to/At) (At?/2!) ~ O(At)
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An Euler forward example

Consider f(t,u) = —Au, exact solution u(t) = uge™%;

stable if A >0
Explicit Euler scheme

k1 = Ug — Atdug = (1 = M)k = (1 — AAL) ug
Then

ur —0as k=
|1 —AAt <1
—1<1-)2At<1
—2 < =MAt <0
0 < At <2

At <2/

(A R

Conditionally stable
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Implicit Euler
Or ‘Euler backward’:

u(t — A = u(t) — (DAL + (DD 1
) = 0= le =80
Compute u/(t) = f(t, u(t)) as

u(t) —u(t — At)
A = ()

= u(t) = u(t — At) + Atf(t, u(t))
= Ukl = Uk + Atf(tk_H, uk+1)

+ " (t)At/2+ -

Implicit equation for 41!

_ 3
Let f(t, u).— —u?, then upy = u — Atu} 4
needs nonlinear solver
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Stability of Implicit Euler
Again the f(t,u) = —\u example:

Uyl = U — ANAtup
(1 + )\At)uk+1 = Uy

1 1 \*
Ykt1 = (1+>\At) Uk = <1+>\At> to

If A > 0 (stable equation), then uy — 0 for all values of A and At:
unconditionally stable.

Pro: larger time steps possible, no worries
Con: implicit equation needs to be solved
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Higher order methods

Runge-Kutta
Adams-Bashforth
Crank-Nicholson
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Boundary value problems

Consider u"(x) = f(x, u, ") for x € [a, b] where u(a) = u,,
u(b) = up in 1D and

—Unx(X) — 1y (X) = £(X) for x € Q = [0, 1]? with u(X) = up on 5Q.

(1)
in 2D.
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Approximation of 2nd order derivatives
Taylor series (write h for dx):

_ / 1 h? 1 h® (4) h* (5) °
u(x+h)y=u(x)+u(x)h+u (X)§ +u (x)y +u (X)E + u(x)

5 4
and

2 3 4 5
u(x —h)=u(x) — u'(x)h + u"(x)% — u’”(x)% + u(4)(x)% — u(s)(x)% 4+

Subtract:

uCx ) 4 ux — ) = 2u(x) + u” GO + o) T 4

so
ne oy u(x+h) —2u(x)+ u(x — h) o, \h*
u'(x) = = — a5+

Numerical scheme:

u(x + h) — 2u(x) + u(x — h) /
— = = f(x, u(x), u' (x))

(2nd order PDEs are very common!)
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This leads to linear algebra

Ul ) =20 U ) . )

Equally spaced points on [0, 1]: xx = kh where h =1/n, then

—Upq1 4 2up — Uy = W? f(xk,uk,up) fork=1,...,n—1
Written as matrix equation:

2 -1 u h2f1+U0
-1 2 -1 w | — h2f,
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Matrix properties

Very sparse, banded
Symmetric (only because 2nd order problem)

Sign pattern: positive diagonal, nonpositive off-diagonal
(true for many second order methods)

Positive definite (just like the continuous problem)
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Initial Boundary value problem
Heat conduction in a rod T(x, t) for x € [a, b], t > O:

2

5 T(x,t) = q(x,t)

0
7T(X, t) — 0667

ot

Initial condition: T(x,0) = To(x)
Boundary conditions: T(a, t) = T,(t), T(b,t) = Tp(t)
Material property: « > 0 is thermal diffusivity

Forcing function: q(x, t) is externally applied heating.

The equation u”(x) = f above is the steady state.
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Discretization
Space discretization: xp = a, x, = b, Xj11 = x; + Ax
Time discretiation: tp = 0, txyr1 = tx + At
Let Tj" approximate T (x;, tx)

Space:

T(xi—1,t) —2T(x;,t) + T(xjx1,t
T(Xj,l’)—a (J 1 ) A(;z) (J+1 ):q(><j,t)

ot
Explicit time stepping:

k+1 k k k k
T T 2T T

S+ qx
At Ax? J
Implicit time stepping:
k+1 _ Tk k+1 _ ppk+l k+1
TR oTE TR et TR
At Ax? J
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Computational form: explicit

alt
Ax2
This has an explicit form:

7-jk+1 _ 7}/( (Tk _27;/( + 7-/;-1) +Atqjk

At
TH = (14 520) TF 4 Atk
~ ( * Ax2 )~ +Aalg
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Computational form: implicit

k1 At K kK \_ Tk K
Tj 2 (T = 2T+ Tiy) = Tj + Atg;

This has an implicit form:

At
(/ - L;XZ K) TF = TF 4 Atgk

Needs to solve a linear system in every time step
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Stability of explicit scheme

Let g = 0; assume Tj" = [kel™; for stability we require |3| < 1:

At
TR = Tk S (Tk —2TF+ Thy)
Rty geits +_jf3§(5kew@_1__zﬁkew@-+_5kem@41)
= /8 — aAt[l( IEAX fEAx) o 1]
At
= 1+2 Ax ——5 (cos(fAx) — 1)
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To get || < 1:
e 2981 (cos(¢Ax) — 1) < 0: automatic
. 2‘3—&5(cos(ﬁAx) —1) > —2: needs Zi—ézt < 1, that is
Ax?

At < —
2a

big restriction on size of time steps
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Stability of implicit scheme

k+1 alt k1 _pTk+l | Thily k
T R T T T = T
= l@k+leiZAx _ Zﬁ2 (ﬁk+1 ilxj_1 25k+1eilxj- + Bk+1eilxj-+1) — IBkeiZXj
_ alt
=Bt = 1+2A 2(1—cos(€Ax))
5 = 1
© 1+ 29211 — cos((Ax))

Noting that 1 — cos(¢Ax) > 0, the condition | 3] < 1 always satisfied:
method always stable.
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Sparse matrix in 2D case

Sparse matrices so far were tridiagonal: only in 1D case.
Two-dimensional: —u — 1y, = f on unit square [0, 1]?

Difference equation:
4u(x,y) —u(x+h,y) —u(x—h,y) = u(x,y + h) = u(x,y — h) = h*f(x,y)

. L] . .

2
n

k+n

k=1 Kk _k+1

k-n
n+1 n+2 2n
) . . L[] . L]
. L] . . . L[] . L]
1 2 n-1 n
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Sparse matrix from 2D equation

4 -1 1] -1 1]}
1 4 -1
o
0 -1 4 0 -1
-1 ) 4 -1 -1
-1 1 4 1 ~1
) T T ) )
k—n k—1 k k+1 -1 k+n
-1 -1 4
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