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Abstract— The current paper presents a numerical
technigue in solving the 3D heat conduction equation. The
Finite Volume method is used in the discretisation scheme.
Gauss's theorem has also been employed for solving the
integral parts of the general heat conduction equation in
solving problems of steady and unsteady states. The
proposed technique is  applicable to  unstructured
(tetrahedral) elements for dealing with domains of complex
geometries,  The validation cases of the developed.,
FORTRAN based, heat conduction code in 1D, 2D and 3D
representations have  been  reviewed with a  grid
independence check. Comparisons to the available exact
solution and a commercial software solver are attached to
the manuscript.
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I.  INTRODUCTION

The heat conduction problems are very common
industrial cases. HC code is developed to solve the heat
conduction equation. The governing equation is solved for
a control volume, shown in “Fig. 17, with no internal heat
generation as:

pC E + 6 . a= 0 (1)
In (1), T is the temperature value given in (K)and p C
represent density and heat capacity with units

(kg m™*) & (W kg~*K ™) respectively. § is the heat flux
in three components, as a vector value, which is given by
Fourier’s law as:

—kVT 11)
The numerical solution of (1) is further described in the

following section.
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Equation (1) can be discretised, over a control volume,
as shown in “Fig. 17, by the applicaticn of the variational
method [1] and [2]:

FINITE VOLUME METHOD

aT - <
pCfEdV=fV-(kW)dV;k=Conn.
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Figure 1.

The 2D view of a vertex centered control volune (the shaded
arca)

fa—rdv=afi7-wdv (2)
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Where the diffusivity @
LHS of (2) takes the form of:

oT oT
J ¢ iy A

fc (with units m2s~1). The

(2.1)

This term can be solved using the finite difference
(forward) explicit scheme:
aT T(+M at T(
ot - At
[t is worth mentioning that in the case of a steady state,
-g—: refers to the residuals (change of temperature) over the
time steps At [2]). This means in a steady state at
t~1,:—:—b 0 [3]. The RHS of (2) can be solved using
Gauss’s (divergence) theorem [3] and [4 as:

(2.2)

Where n is the outward normal vector. By substituting
the terms (2.1) and (2.2) into (2), the heat conduction
equation takes the form of:

aft'7~é1‘dv=a ff'r-ﬁds
v oy
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Where the weight at the boundary of the control
volume for each edge is dS =n'dS . T is the average
temperature gradient at the boundary of the control
volume @V located at the midpoint, as shown in figure
(1), i.e

- VT +VT,

Pr=—- _—¢ (3.1)

2

Equation (3.1) gives the temperature gradient at the
boundary of the control volume, by considering linear
distribution of gradient along the edge. Similarly,
T = TetTe [3] and [5]. The gradient temperature
components are also calculated using Gauss’'s

(divergence) thecrem at the control velume boundary
points (midpoints) as:

E)

IR

= 1 aSmiiy
T =2 frds )
cav

Or in a matrix format, (4) can be re-written as:

1 N
vrc=7c‘ZI:TAs,

Equation (3) can be re-written in a matrix format as:

N
THY T a,-

g Z(VT- A3),

t=1
Or further simplified to:
N
T =Tt 1) (FT- 45), ©)
=1

Where 8 =M—Vc, i is index of neighbor nodes in that

cell (around nede ¢) and N is number of neighbor nodes
around that cell central node. Low values of f within this
range will keep a bound to the amplified errors between
initial and updated values. The value of B is the control
parameter of the equation. Von Neumann condition of
stability leads to a restriction over the values of stability
factors [3] as:

1 1 1 1
0(“‘—2 +A_y2 +'A72)Ats—z
Or simplified to:
0 <¢1(A—)2Ats3
v 2

Where, A represents the boundary area of the control
volume ¥, which is a scalar value given by A=
JAx2Ay? + Ax2Az2 + Ay?AzZ and V is the control
volume given by V=AxAyAz, with the units m? and m*
respectively. The range of time steps can be expressed by:
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v
o<Ac52a(A) (5.1)

Tests over the value At were carried out within the
range given in (5.1). The test was applied on a simple
geometry, given in appendix B, with the following grid
densities: ~390,~13000,~91000 and ~500,000 nodes.
With finer grids At tends to be smaller to @ minimum of
~0.5 5. At becomes bigger with coarser meshes to ~65.
Higher values of At in the tests resulted in unstable
solutions. Hence, it is essensial to assume & fixed small
value of At in order to avoid developing unstable
solutions with coarse grids by assuming At=05s
regardless to the grid sizes. Also, in (5) the temperature is
updated from the given initial guess and boundary
conditions. Hence, it is necessary to choose the
appropriate initial guess. This can be set within the given
range of boundary conditions. Equation (5) is applied at
each cell central node (indexed c in figure 1) for solving
2D and 3D problems.

[II. BOUNDARY CONDITIONS

There are two major types of boundary conditions
applied, either given boundary temperature (Dirichlet) or
given heat flux (Neumann) boundary conditions. There
can be a case of a mix of these two types of boundary
conditions. Further details about these types are given in
the following sections.

A.  Dirichlet boundary condition

When the temperature is imposed at the boundary, a
Dirichlet boundary cendition is applied. Hence the
temperature values at the boundary nodes will be replaced
by the prescribed values of temperature T over that

boundary, i.e.

T=T

However, the temperature gradient is still needed in
(3.1) and thereafter (3) in order to find the temperatures at
the adjacent nodes.

B. Neumann boundary conditions

In this type of boundary conditions, the normal
temperature gradient (as a function of heat flux) is
imposed at the boundary. The heat conduction flux is
given by Fourier’s law as: g, = —k VT. At the boundary,
the normal heat flux from both sides is balanced as:

Ge'n =gy
Where, 71 is the normal vector components at that
boundary node, g, is the heat flux components that
conducted from internal nedes towards the centre of the

boundary cell and g, is the prescribed heat flux from
outside the domain normal to the boundary, which can be



convection (qy = h ATyy), fixed heat flux (g =const.),
or adiabatic (gy = 0). Therefore,

kVT-n:+q » =0 (6)

The boundary temperature gradient has two

components normal F, and tangential f-:,. Equation (6) is
subject to the normal boundary fluxes only. The tangential
portion of the flux is automatically set to zero [S]. It is
therefore important te calculate the tangential temperature
gradient. The tangential gradient is unknown but it can be
decomposed from the tangent gradient of neighbor nodes
[2]. At the boundary, the temperature gradient can be
decomposed as:

VT = E +F, ™

Te overcome the complexity of determining the
tangential vectors, the tangential temperature gradient is
decomposed from the estimated gradient as,

(7.1)

Where: ﬁT, represents the estimated value of VT,
which is defined as the rate of heat exchange (divided by
k) per unit volume of the surface [2]. It is important to
distinguish between A1, given in (6) and (7.1), which is the
average inward normal vector at the boundary.

ﬁl=ﬁTg+(iTg‘aﬁ

VT, =0T

The estimated gradient ﬁT, is calculated from the
assumed control volume at the boundary by creating a
mirror cell to close that control volume, as shown in “Fig.
2". When the weights and the volume are doubled for that
control volume (4) will be called again, with adding the
boundary temperature distribution effect, for computing

ﬁT,as:
lnﬂfﬂ.’m
A

Where, Aa is the boundary area of that node within the
connected boundary elements and A refers to the total
surface area of that boundary node. The gradient in (7.2)
takes into account tangential derivatives accurately, but
not the normal ones. However, with Neumann boundary
type it is only important to get the right tangential
component because the normal one is already specified by
the imposed normal heat flux, in (6), as:

D =
k

1

VT, = Vb

(7.2)

E=-

(7.3)
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b: central vertex of boundary cell
fi: normal vector
t: tangential vector
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Figure 2. A 2D view ofa boundary cell showing the normal and
tangential vectors

By substituting (7.1) and (7.3) into (7), the (corrected)
temperature gradient at the surface is:

= —%’ W4PT, + (PT. - 7) 7 ®)

In order to find the temperature at the boundary, the
heat flux term is added to (5) for closing the boundary
control volume. Equation (3) at the beundary will
become:

- X
Te+st - Tt +pZ(f’T- AS), + Z(% Aa);

1=1 =1

Where j is index of boundary elements and K is the
number of boundary elements of that control volume. Aa
is the boundary area of each boundary element. The
temperature gradient VT, given in (8), can be substituted
inte (9) in order to find the temperature at the boundary.
Although “Fig. 17and “Fig. 2" of the control velume show
2D views for simplifications, the discretised formats, (5)
and (9), of the heat conduction eguation are
straightforwardly applicable to 3D problems.

©)

V.
The solution, derived in previous sections, has been
validated against the available exact sclution for 1D and
2D cases. The mesh generated for this case is unstructured
tetrahedral element type. In 3D case, the validation was
carried out against ANSYS (commercial Computation
Fluid Dynamics solver). A grid independence check was
carried out for a wide range of node numbers of:
~390,13000 & 91000 nodes, as shown in “Fig. 3".

VALIDATION CASES
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Figure 3. 3D view of the tetrahedral meshes used in testing HC code
for the 3D case. (A) ~390 nodes (B) ~13000 nodes (C) ~91,000 nodes

A. 1D case

In 1D case, the temperature distribution (heat
conduction) equation can be derived to:

T=0CGz+(

Where temperature varies only in z-direction. C; & €,
are constants. A fixed temperature (Dirichlet) boundary
condition is specified at both ends of the domain as,
Atz=0,T=400K andatz=1,T = 300 K. The other
sides of the domain were assumed perfectly adiabatic. The
analytical (exact) solution of this case becomes:

T=-100 (2) + 400

Where 0 £z < 1. The given solution of this case
compared to the analytical sclution and ANSYS is shown
in appendix (A).

B. 2D case

In 2D case, geometry of a plate, with dimensions1 X
1% 0.2 m*, was used for validation. The following types
of boundary conditions have been prescribed: at x~0 and
x=1, T~ 0;at y=0, T = 0; at y=0.5, T=sin(mx/L) and at
z=0 and z~1, adiabatic surfaces (g=0). This case has
been introduced for the availability of the exact solution
[6] and [7], as:

sinh(m y/L)

sinh(mw H/L)
Where, L is the length of that cross section (L = 1m)

and H is the hight (H = 1m). An excellent agreement

with the analytical solution is approved by HC code, as

illustrated in diagrams of appendix (B).

C. 3D case

The validation is made, in 3D, for the geometry of a
rectangular stainless steel rod, of the dimensions0.5X

T(x,y) = sin(mw x/L)
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0.5 X 1m3, which is used for 1D case, with thermal
conductivityk = 15.1 W m~! K1, as shown in figure 3.
The boundary conditions applied on this case are: At x=
025m,y=025mé&z=0, T=300K; At x= 0, y= 0 & z=
1 m, fixed heat flux (g = 800 W m™%). The commercial
engineering software (ANSYS) is used for comparison
with HC due to the difficulty of providing analytical
solution for such a 3D case. The results of HC cede have
shown good agreement with ANSYS solver, as illustrated
in diagrams of appendix (C).

V.

The finite volume vertex centered scheme has been
applied in discretising the heat conduction equation to
examine the temperature profile of any domain. The
integral format of the equation is solved using Gauss’s
theorem. The FORTRAN based heat conduction (HC)
code is been developed and validated in using
unstructured hybrid grids with edge-based calculations.
The results, obtained for 1D, 2D and 3D cases, have been
assessed with the exact and numerical (commercial)
solutions. The predicted temperature profiles given by HC
code are in excellent agreement with the available
standard solutions. While the code is computaticnally
efficient, further work improvement in the code is
possible by imposing radiation boundary condition in
comparison to the effect of other types of boundary
conditions. Also, a conjugate heat transfer type of
boundary conditions is under consideration.

CONCLUSIONS
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APPENDIX (A): 1D CASE

Figure 4. 3D view of the geometry showing the | D temperature profile
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Figure 5.

ANSYS & Analytical solutions
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Figure 6. Comparison of HC results vs. ANSYS & Analytical solutions

for 1D case

APPENDIX (B): 2D case
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Figure 7. 3D and 2D (at z=0.1) views of the tetrahedral mesh used for

solving the 2D case
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Figure 8. 2D temperature profile at the section z=0.1 for a HC with a

mesh density of ~730 nodes (at section z=0.1) in a comparison with the

exact solution
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Figure 9. Temperature distribution in y-direction & 2=0.1 and x=0.5 of
HC (with ~740 nodes) vs. the analytical solution
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Figure 10. Grid independence check for the 2D case, over a range of
node numbers from ~240 to ~2,000 nodes at the section 2=0.1, in y-
direction

MC
Araiytical

4 (1]
=)

Figure 11. Temperature distribution in x-direction at 2=0.1 and v=0.5 of
HC (with ~740 nodes) vs. the analytical solution
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Figure 12. Grid independence check for the 2D case, over a range of

node numbers from ~240to ~2,000 nodes, at section 2=0.1, in x-

direction

APPENDIX (C): 3D CASE
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Figure 13. The 3D color bands of HC temperature profile for a mesh of

~13500 nodes
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Figure 14. HC and ANSYS color bands of temperature profile at section

x=0.25
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Figure 15, HC and ANSYS color bands of wemperature profile at section
r=N§
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Figure 16, Temperature distribution in z-direction of the 3D case for HC
(with two grid densities) vs. ANSYS, at x=025m, v=025m
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Figure 17. Temperature distribution in y-direction of the 3D case for HC
{with two grid densities) vs. ANSYS atx=025m, 2= 0.5 m
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Figure 18. Gnd independence check for the 3D case, over a range of
node numbers from ~390 to ~91,000 nodes in z-direction
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