COMP 705: Advanced Parallel Computing
HW 3: Jacobian lterative Solver for 2D Heat

Equation

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Due: 09/27/17
Updated: 09/19/17

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 2/15 Mary Thomas

Table of Contents

0 Problem 1: 2D Jacobian with Block-Block Decomposition, Row / Col
Communication (25 points)
o General Code Requirements
o Analysis Requirements

© Matlab code for visualizing heat propagation

© Problem 1: Extra Credit (10 points)

@ 2D Jacobian Overview - K. Tseng Solution

© Reading

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 £ Mary Thomas
Problem 1: 2D Jacobian with Block-Block Decomposition, Row / Col Communication (25 points)

General Code Requirements

General Code Requirements

@ Modify code to process command line arguments for:
o 2D processor distribution: P(pi, pj)
o where 1 <= p; <= NP;
o NP = p; x p;
o set default to be p; = p;
o 2D data distribution: N(n;, n;)

o where 1 <= n; <= M;
® M = nj*n;
o set default to be n; = n;
@ what is Mpax? Is it a function of the number of processors?
o Create routines for saving time slice of data (temperature).
@ Replace code in function neighbors to use MPI_Cart_Shift
@ Modify parallel code to use row or col communicators created using
MPI_Cart functions
@ You can choose to work with Kadin or Gropp code
@ Writeup results in lab report format.

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 £ Mary Thomas
Problem 1: 2D Jacobian with Block-Block Decomposition, Row / Col Communication (25 points)
Analysis Requirements

P1: Analysis

@ Compare serial to parallel.

o Measure speedup/efficiency (compare to fig in below)

o Capture time slice data to generate video (or show multiple images
on one page)

o Visualize heat propagation using Matlab, gnuplot, or other plotting
routines.

o Create video using images:

files=$(/bin/1ls Iter*png | sort -n); echo $files; convert -delay 50 -loop O $files iter2.gif

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 5/1¢ Mary Thomas
Problem 1: 2D Jacobian with Block-Block Decomposition, Row / Col Communication (25 points)
Analysis Requirements

Parallel Jacobian SOR solver Speedup

SOR solver for Laplace equation - Parallelized with kMP1

ﬁ L T L H H H
Bt
[=]
=
=
s 6
3
g
5 sk
1=}
=5
s 4
=
s
=3r
=]
= . v
-3
o al. B — - |deal
“ : — 512x512
: — 256%256
1 1 L L 1 T
1 2 3 4 5 B T 8

Mumber of processors

Figure shows the scalability of the MPI implementation of the
Laplace equation using SOR on an SGI Origin 2000
shared-memory multiprocessor.

Source: http://site.sci.hkbu.edu.hk/tdgc/tutorial.php

http://site.sci.hkbu.edu.hk/tdgc/tutorial.php

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 Mary Thomas
Problem 1: 2D Jacobian with Block-Block Decomposition, Row / Col Communication (25 points)
Analysis Requirements

Plotting time evolution plots without using animation

Sido:50 Sido:80

Series of figures used to show time evolution of water flowing past
a seamount.

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 £ Mary Thomas
Matlab code for visualizing heat propagation

Matlab code for visualizing heat propagation

Solution of Laplace equation using SOR and MPI

o Provided with code base. -
@ Requires modification for 1
file names (needs full path 9
to file):
define a HOME variable. L,
o "laplace.m” outputs image
shown on right. s

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 : Mary Thomas
Problem 1: Extra Credit (10 points)

P1: Extra Credit

o Compare performance of send/recv, Isend, Irecv, and sendrecv
collective communicator.

@ Compare serial Jacobi, ser JacobiSOR, parJacobi, parJacobiSOR.

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 9/15 Mary Thomas
2D Jacobian Overview - K. Tseng Solution

2D Laplacian - Heat Equation

Pu N Pu "
as T az=U
2D Laplacian: Oz dy
Boundary Conditions:
u(x,0) = sin(mx) O<=x<=1
u(x,1) = sin(mwx) e 0<x<1
u(ly) =0 O<=y<=1

Analytical solution: sin(mwx) e (0<x<1)(0<y<1).

COMP HW 3 Due: 7/17 Updated: 09/19/17 Mary Thomas
2D Jacobian Overview - K. Tseng Solution

Jacobi Iterative Scheme

Jacobi lteration - Finite Difference Approximation
Use Taylor Series expansion on uniform grid to yield
linear system of equations

1
2 _ —
\% Uujj = T [u,;+1,j + Uj-15 *+ Ujj+1 =+ Ujj-1 — 4uw-] =0

Uit
c=>u(l:m ,1:m) ''i ,j Current/Central
! for 1<=i<=m; 1<=j<=m ui-lj ui+1j
n => u(l:m ,2:m+1) ! i ,j+1 North (of Current) -411'-
e => u(2:m+l,1:m) ! i+l,j East (of Current) 1
w=> u(0:m-1,1:m) ! i-1,j West (of Current)
s =>u(l:m ,0:m-1) ! i ,j-1 South (of Current)
Ujj-1

Source: http://www.eng.utah.edu/~cs3200/notes/cs3200-Finite-Differences.pdf

http://www.eng.utah.edu/~cs3200/notes/cs3200-Finite-Differences.pdf

COMP 705

HW 3 Due: 09/27/17 Updated: 09/19/17 Mary Thomas

2D Jacobian Overview - K. Tseng Solution

SUBROUTINE bc(u, m)
PDE: Laplacian u = 0; 0<=x<=1; 0O<=y<=1
B.C.: u(x,0)=sin(pi*x);
u(x,1)=sin(pi*x)*exp(-pi); u(0,y)=u(1,y)=0
SOLUTION: u(x,y)=sin(pi*x)*exp(-pi*y)
IMPLICIT NONE
INTEGER m, j
REAL(real8), DIMENSION(O:m+1,0:m+1) :
REAL(real8), DIMENSION(:,:), POINTER
REAL(real8), DIMENSION(O:m+1) :: yO

yO = sin(
u = 0.0d0
u(:, 0)
u(:,m+1)
RETURN

END SUBROUTINE bc

3

Serial Jacobi lterative Scheme - Boundary Conditions

T2u=0 with ux, D)=sinfn =);uix,=sinfm e ™;
and u(0,y)=u(l =0 yields ul,y) = sinfnx)e™

B

jeme1

.141593%(/(j,j=0,m+1)/)/ (m+1))

! at x=0,1; all y plus initialize interiof
yo !at y = 0; all x
yO*exp(-3.141593) ! at y = 1; all x

Source: Kaden Notes: http://scv.bu.edu/~kadin/alliance/apply/solvers/

http://scv.bu.edu/~kadin/alliance/apply/solvers/

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 Mary Thomas
2D Jacobian Overview - K. Tseng Solution

Serial Jacobi Iterative Scheme - Boundary Conditions

! iterate until error below threshold
DO WHILE (gdel > tol)

| ; "
PROGRAM Jacobi ! increment iteration counter

USE serial_jacobi_module
REAL(real8), DIMENSION(:,:), POINTER :: c, n, e, w, s

iter = iter + 1
IF(iter > 5000) THEN
WRITE(*,*)’Iteration terminated (exceeds 5000)°’

write(#,*) ’Enter matrix size, m:’ STOP ! nonconvergent solution
" ENDIF
read(*,*)m :
| start timer, measured in seconds unew = (n + e+ w+ s)*0.25 ! new solution, Eq. 3
CALL cpu_time(start_time) gdel = MAXVAL(DABS(unew-c)) ! find local max error
| mem for unew, u IF(MOD(iter,10)==0) WRITE(¥,"(’iter,gdel:’,i6,612.4)")iter,gdel
ALLOCATE (unew(m,m), u(0:m+1,0:m+1)) ¢ = unew ! update interior u
ENDDO
¢ = u(lm ,im) !i ,j Current/Central))
CALL CPU_TIME(end_time) | stop timer

! for 1<=i<=m; 1<=j<=m

B ime =’ ime - ime,? ,
n=> u(lm 2D i ,j+1 North (of Current) PRINT *,’Total cpu time =’,end_time - start_time,’ x 1

PRINT *,’Stopped at iteration =’,iter

u(2:m+i,1:m) ! i+l,j East (of Current) s . _,
u(0:m-1,1:m) ! i-1,j West (of Current) PRINT *,°The maximum error =’,gdel
s =>u(l:m ,0:m-1) ! i ,j-1 South (of Current)
J write(40,"(3i5)")m,m,1
CALL bc(u, m) ! set up boundary values urite(41,"(6e13.4)")u

DEALLOCATE (unew, u)

END PROGRAM Jacobi

Source: Kaden Notes: http://scv.bu.edu/~kadin/alliance/apply/solvers/

http://scv.bu.edu/~kadin/alliance/apply/solvers/

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 Mary Thomas
2D Jacobian Overview - K. Tseng Solution

Parallel Jacobi Approach (in kadin code)

o Divide work evenly among processors (mxm/p),
o Divide work into P (number of PEs) horizontal strips
o Rewrite FD equation for solving u on PE k:
. PR P T

@ n is the iteration number
o Red cells hold solution at iteration (n + 1)

o Blue cells on top/bottom are the neighbor cells —; need to get them
from other processor

@ Green cells hold boundary conditions

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 Mary Thomas
2D Jacobian Overview - K. Tseng Solution

Ghost Cell Layout

process
k+1
/

j=m+1

process
k. —i~

i=a i = m+

Source: Kaden Notes: http://scv.bu.edu/~kadin/alliance/apply/solvers/

http://scv.bu.edu/~kadin/alliance/apply/solvers/

COMP 705: HW 3 Due: 09/27/17 Updated: 09/19/17 Mary Thomas
Reading

Reading

@ See papers listed in topics at:
https:
//edoras.sdsu.edu/~mthomas/f17.705/topics/iter_solv/
o Useful Gropp lterative Solvers and Advanced MPI Notes:

o Kjoldstad and Gropp (2010), " Ghost Cell Pattern”
o Gropp (2003), The 2-D Poisson Problem

https://edoras.sdsu.edu/~mthomas/f17.705/topics/iter_solv/
https://edoras.sdsu.edu/~mthomas/f17.705/topics/iter_solv/

	Problem 1: 2D Jacobian with Block-Block Decomposition, Row / Col Communication (25 points)
	General Code Requirements
	Analysis Requirements

	Matlab code for visualizing heat propagation
	Problem 1: Extra Credit (10 points)
	2D Jacobian Overview - K. Tseng Solution
	Reading

