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Preface 
Welcome to Designing and Building Parallel Programs ! My goal in this book is to provide a 
practitioner's guide for students, programmers, engineers, and scientists who wish to design and 
build efficient and cost-effective programs for parallel and distributed computer systems. I cover 
both the techniques used to design parallel programs and the tools used to implement these 
programs. I assume familiarity with sequential programming, but no prior exposure to parallel 
computing.  

Designing and Building Parallel Programs promotes a view of parallel programming as an 
engineering discipline, in which programs are developed in a methodical fashion and both cost and 
performance are considered in a design. This view is reflected in the structure of the book, which 
is divided into three parts. The first part, Concepts, provides a thorough discussion of parallel 
algorithm design, performance analysis, and program construction, with numerous examples to 
illustrate fundamental principles. The second part, Tools, provides an in-depth treatment of four 
parallel programming tools: the parallel languages Compositional C++ (CC++), Fortran M (FM), 
and High Performance Fortran (HPF), and the Message Passing Interface (MPI) library. HPF and 
MPI are standard parallel programming systems, and CC++ and FM are modern languages 
particularly well-suited for parallel software engineering. Part II also describes tools for collecting 
and analyzing performance data. The third part, Resources surveys some fundamental parallel 
algorithms and provides many pointers to other sources of information.  

How to Use This Book 
In writing this book, I chose to decouple the presentation of fundamental parallel programming 
concepts from the discussion of the parallel tools used to realize these concepts in programs. This 
separation allowed me to present concepts in a tool-independent manner; hence, commonalities 
between different approaches are emphasized, and the book does not become a manual for a 
particular programming language.  

However, this separation also has its dangers. In particular, it may encourage you to think that the 
concepts introduced in Part I can be studied independently of the practical discipline of writing 
parallel programs. This assumption would be a serious mistake. Parallel programming, like most 
engineering activities, is best learned by doing. Practical experience is essential! Hence, I 
recommend that chapters from Parts I and II be studied concurrently. This approach will enable 
you to acquire the hands-on experience needed to translate knowledge of the concepts introduced 
in the book into the intuition that makes a good programmer. For the same reason, I also 
recommend that you attempt as many of the end-of-chapter exercises as possible.  

Designing and Building Parallel Programs can be used as both a textbook for students and a 
reference book for professionals. Because the hands-on aspects of parallel programming are so 
important, professionals may find it useful to approach the book with a programming problem in 
mind and make the development of a solution to this problem part of the learning process. The 
basic materials have been classroom tested. For example, I have used them to teach a two-quarter 
graduate-level course in parallel computing to students from both computer science and 
noncomputer science backgrounds. In the first quarter, students covered much of the material in 
this book; in the second quarter, they tackled a substantial programming project. Colleagues have 



used the same material to teach a one-semester undergraduate introduction to parallel computing, 
augmenting this book's treatment of design and programming with additional readings in parallel 
architecture and algorithms.  
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Terminology 
 All logarithms in this book are to base 2; hence should be read as .  

 The notation is used in the formal sense: A problem has size if and only if there exists 
some constant c and some minimum problem size such that for all , 
size .  

Various symbols are assumed to have the following conventional meanings, unless stated 
otherwise.  

 

 



Part I: Concepts 
The first part of this book comprises four chapters that deal with the design of parallel programs. 
Chapter 1 briefly introduces parallel computation and the importance of concurrency, scalability, 
locality, and modularity in parallel algorithm design. It also introduces the machine model and 
programming model used when developing parallel algorithms in subsequent chapters.  

Chapter 2 presents a design methodology for parallel programs whereby the design process is 
divided into distinct partition, communication, agglomeration, and mapping phases. It introduces 
commonly used techniques and shows how these apply to realistic problems. It also presents 
design checklists for each phase. Case studies illustrate the application of the design methodology.  

Chapter 3 describes how to analyze the performance of parallel algorithms and parallel programs, 
and shows how simple performance models can be used to assist in the evaluation of both design 
alternatives and program implementations. It also shows how performance models can account for 
characteristics of realistic interconnection networks.  

Finally, Chapter 4 considers the issues that arise when parallel algorithms are combined to develop 
larger programs. It reviews the basic principles of modular design and discusses how these apply 
to parallel programs. It also examines different approaches to the composition of parallel program 
modules and shows how to model the performance of multicomponent programs.  

1 Parallel Computers and Computation 
 In this chapter, we review the role of parallelism in computing and introduce the parallel machine 
and programming models that will serve as the basis for subsequent discussion of algorithm 
design, performance analysis, and implementation.  

After studying this chapter, you should be aware of the importance of concurrency, scalability, 
locality, and modularity in parallel program design. You should also be familiar with the idealized 
multicomputer model for which we shall design parallel algorithms, and the computation and 
communication abstractions that we shall use when describing parallel algorithms.  

1.1 Parallelism and Computing 
 A parallel computer is a set of processors that are able to work cooperatively to solve a 
computational problem. This definition is broad enough to include parallel supercomputers that 
have hundreds or thousands of processors, networks of workstations, multiple-processor 
workstations, and embedded systems. Parallel computers are interesting because they offer the 
potential to concentrate computational resources---whether processors, memory, or I/O bandwidth-
--on important computational problems.  

Parallelism has sometimes been viewed as a rare and exotic subarea of computing, interesting but 
of little relevance to the average programmer. A study of trends in applications, computer 
architecture, and networking shows that this view is no longer tenable. Parallelism is becoming 
ubiquitous, and parallel programming is becoming central to the programming enterprise.  



1.1.1 Trends in Applications 
As computers become ever faster, it can be tempting to suppose that they will eventually become 
``fast enough'' and that appetite for increased computing power will be sated. However, history 
suggests that as a particular technology satisfies known applications, new applications will arise 
that are enabled by that technology and that will demand the development of new technology. As 
an amusing illustration of this phenomenon, a report prepared for the British government in the 
late 1940s concluded that Great Britain's computational requirements could be met by two or 
perhaps three computers. In those days, computers were used primarily for computing ballistics 
tables. The authors of the report did not consider other applications in science and engineering, let 
alone the commercial applications that would soon come to dominate computing. Similarly, the 
initial prospectus for Cray Research predicted a market for ten supercomputers; many hundreds 
have since been sold.  

Traditionally, developments at the high end of computing have been motivated by numerical 
simulations of complex systems such as weather, climate, mechanical devices, electronic circuits, 
manufacturing processes, and chemical reactions. However, the most significant forces driving the 
development of faster computers today are emerging commercial applications that require a 
computer to be able to process large amounts of data in sophisticated ways. These applications 
include video conferencing, collaborative work environments, computer-aided diagnosis in 
medicine, parallel databases used for decision support, and advanced graphics and virtual reality, 
particularly in the entertainment industry. For example, the integration of parallel computation, 
high-performance networking, and multimedia technologies is leading to the development of video 
servers, computers designed to serve hundreds or thousands of simultaneous requests for real-time 
video. Each video stream can involve both data transfer rates of many megabytes per second and 
large amounts of processing for encoding and decoding. In graphics, three-dimensional data sets 
are now approaching volume elements (1024 on a side). At 200 operations per element, a 
display updated 30 times per second requires a computer capable of 6.4  operations per 
second.  

Although commercial applications may define the architecture of most future parallel computers, 
traditional scientific applications will remain important users of parallel computing technology. 
Indeed, as nonlinear effects place limits on the insights offered by purely theoretical investigations 
and as experimentation becomes more costly or impractical, computational studies of complex 
systems are becoming ever more important. Computational costs typically increase as the fourth 
power or more of the ``resolution'' that determines accuracy, so these studies have a seemingly 
insatiable demand for more computer power. They are also often characterized by large memory 
and input/output requirements. For example, a ten-year simulation of the earth's climate using a 
state-of-the-art model may involve  floating-point operations---ten days at an execution speed 
of floating-point operations per second (10 gigaflops). This same simulation can easily 
generate a hundred gigabytes (  bytes) or more of data. Yet as Table 1.1 shows, scientists can 
easily imagine refinements to these models that would increase these computational requirements 
10,000 times.  



   
Table 1.1: Various refinements proposed to climate models, and the increased computational 
requirements associated with these refinements. Altogether, these refinements could increase 
computational requirements by a factor of between and . 

In summary, the need for faster computers is driven by the demands of both data-intensive 
applications in commerce and computation-intensive applications in science and engineering. 
Increasingly, the requirements of these fields are merging, as scientific and engineering 
applications become more data intensive and commercial applications perform more sophisticated 
computations.  

1.1.2 Trends in Computer Design 
The performance of the fastest computers has grown exponentially from 1945 to the present, 
averaging a factor of 10 every five years. While the first computers performed a few tens of 
floating-point operations per second, the parallel computers of the mid-1990s achieve tens of 
billions of operations per second (Figure 1.1). Similar trends can be observed in the low-end 
computers of different eras: the calculators, personal computers, and workstations. There is little to 
suggest that this growth will not continue. However, the computer architectures used to sustain 
this growth are changing radically---from sequential to parallel.  



   
Figure 1.1: Peak performance of some of the fastest supercomputers, 1945--1995. The exponential 
growth flattened off somewhat in the 1980s but is accelerating again as massively parallel 
supercomputers become available. Here, ``o'' are uniprocessors, ``+'' denotes modestly parallel 
vector computers with 4--16 processors, and ``x'' denotes massively parallel computers with 
hundreds or thousands of processors. Typically, massively parallel computers achieve a lower 
proportion of their peak performance on realistic applications than do vector computers.  

 The performance of a computer depends directly on the time required to perform a basic operation 
and the number of these basic operations that can be performed concurrently. The time to perform 
a basic operation is ultimately limited by the ``clock cycle'' of the processor, that is, the time 
required to perform the most primitive operation. However, clock cycle times are decreasing 
slowly and appear to be approaching physical limits such as the speed of light (Figure 1.2). We 
cannot depend on faster processors to provide increased computational performance.  



   
Figure 1.2: Trends in computer clock cycle times. Conventional vector supercomputer cycle times 
(denoted ``o'') have decreased only by a factor of 3 in sixteen years, from the CRAY-1 (12.5 
nanoseconds) to the C90 (4.0). RISC microprocessors (denoted ``+'') are fast approaching the 
same performance. Both architectures appear to be approaching physical limits.  

To circumvent these limitations, the designer may attempt to utilize internal concurrency in a chip, 
for example, by operating simultaneously on all 64 bits of two numbers that are to be multiplied. 
However, a fundamental result in Very Large Scale Integration (VLSI) complexity theory says that 
this strategy is expensive. This result states that for certain transitive computations (in which any 
output may depend on any input), the chip area A and the time T required to perform this 
computation are related so that must exceed some problem-dependent function of problem 
size. This result can be explained informally by assuming that a computation must move a certain 
amount of information from one side of a square chip to the other. The amount of information that 
can be moved in a time unit is limited by the cross section of the chip, . This gives a transfer 
rate of , from which the relation is obtained. To decrease the time required to move the 
information by a certain factor, the cross section must be increased by the same factor, and hence 
the total area must be increased by the square of that factor.  

This result means that not only is it difficult to build individual components that operate 
faster, it may not even be desirable to do so. It may be cheaper to use more, slower components. 
For example, if we have an area of silicon to use in a computer, we can either build 

components, each of size A and able to perform an operation in time T, or build a single 
component able to perform the same operation in time T/n. The multicomponent system is 
potentially n times faster.  

Computer designers use a variety of techniques to overcome these limitations on single computer 
performance, including pipelining (different stages of several instructions execute concurrently) 
and multiple function units (several multipliers, adders, etc., are controlled by a single instruction 
stream). Increasingly, designers are incorporating multiple ``computers,'' each with its own 
processor, memory, and associated interconnection logic. This approach is facilitated by advances 



in VLSI technology that continue to decrease the number of components required to implement a 
computer. As the cost of a computer is (very approximately) proportional to the number of 
components that it contains, increased integration also increases the number of processors that can 
be included in a computer for a particular cost. The result is continued growth in processor counts 
(Figure 1.3).  

   
Figure 1.3: Number of processors in massively parallel computers (``o'') and vector 
multiprocessors (``+''). In both cases, a steady increase in processor count is apparent. A similar 
trend is starting to occur in workstations, and personal computers can be expected to follow the 
same trend.  

1.1.3 Trends in Networking 
 Another important trend changing the face of computing is an enormous increase in the 
capabilities of the networks that connect computers. Not long ago, high-speed networks ran at 1.5 
Mbits per second; by the end of the 1990s, bandwidths in excess of 1000 Mbits per second will be 
commonplace. Significant improvements in reliability are also expected. These trends make it 
feasible to develop applications that use physically distributed resources as if they were part of the 
same computer. A typical application of this sort may utilize processors on multiple remote 
computers, access a selection of remote databases, perform rendering on one or more graphics 
computers, and provide real-time output and control on a workstation.  

 We emphasize that computing on networked computers (``distributed computing'') is not just a 
subfield of parallel computing. Distributed computing is deeply concerned with problems such as 
reliability, security, and heterogeneity that are generally regarded as tangential in parallel 
computing. (As Leslie Lamport has observed, ``A distributed system is one in which the failure of 
a computer you didn't even know existed can render your own computer unusable.'') Yet the basic 
task of developing programs that can run on many computers at once is a parallel computing 



problem. In this respect, the previously distinct worlds of parallel and distributed computing are 
converging.  

1.1.4 Summary of Trends 
This brief survey of trends in applications, computer architecture, and networking suggests a 
future in which parallelism pervades not only supercomputers but also workstations, personal 
computers, and networks. In this future, programs will be required to exploit the multiple 
processors located inside each computer and the additional processors available across a network. 
Because most existing algorithms are specialized for a single processor, this situation implies a 
need for new algorithms and program structures able to perform many operations at once. 
Concurrency becomes a fundamental requirement for algorithms and programs.  

This survey also suggests a second fundamental lesson. It appears likely that processor counts will 
continue to increase---perhaps, as they do in some environments at present, by doubling each year 
or two. Hence, software systems can be expected to experience substantial increases in processor 
count over their lifetime. In this environment, scalability ---resilience to increasing processor 
counts---is as important as portability for protecting software investments. A program able to use 
only a fixed number of processors is a bad program, as is a program able to execute on only a 
single computer. Scalability is a major theme that will be stressed throughout this book.  

1.2 A Parallel Machine Model 
The rapid penetration of computers into commerce, science, and education owed much to the early 
standardization on a single machine model, the von Neumann computer. A von Neumann 
computer comprises a central processing unit (CPU) connected to a storage unit (memory) (Figure 
1.4). The CPU executes a stored program that specifies a sequence of read and write operations on 
the memory. This simple model has proved remarkably robust. Its persistence over more than forty 
years has allowed the study of such important topics as algorithms and programming languages to 
proceed to a large extent independently of developments in computer architecture. Consequently, 
programmers can be trained in the abstract art of ``programming'' rather than the craft of 
``programming machine X'' and can design algorithms for an abstract von Neumann machine, 
confident that these algorithms will execute on most target computers with reasonable efficiency.  

   
Figure 1.4: The von Neumann computer. A central processing unit (CPU) executes a program 
that performs a sequence of read and write operations on an attached memory.  

Our study of parallel programming will be most rewarding if we can identify a parallel machine 
model that is as general and useful as the von Neumann sequential machine model. This machine 
model must be both simple and realistic: simple to facilitate understanding and programming, and 



realistic to ensure that programs developed for the model execute with reasonable efficiency on 
real computers.  

1.2.1 The Multicomputer 
A parallel machine model called the multicomputer fits these requirements. As illustrated in Figure 
1.5, a multicomputer comprises a number of von Neumann computers, or nodes, linked by an 
interconnection network. Each computer executes its own program. This program may access local 
memory and may send and receive messages over the network. Messages are used to communicate 
with other computers or, equivalently, to read and write remote memories. In the idealized 
network, the cost of sending a message between two nodes is independent of both node location 
and other network traffic, but does depend on message length.  

   
Figure 1.5: The multicomputer, an idealized parallel computer model. Each node consists of a von 
Neumann machine: a CPU and memory. A node can communicate with other nodes by sending 
and receiving messages over an interconnection network.  

A defining attribute of the multicomputer model is that accesses to local (same-node) memory are 
less expensive than accesses to remote (different-node) memory. That is, read and write are less 
costly than send and receive. Hence, it is desirable that accesses to local data be more frequent 
than accesses to remote data. This property, called locality, is a third fundamental requirement for 
parallel software, in addition to concurrency and scalability. The importance of locality depends 
on the ratio of remote to local access costs. This ratio can vary from 10:1 to 1000:1 or greater, 
depending on the relative performance of the local computer, the network, and the mechanisms 
used to move data to and from the network.  

1.2.2 Other Machine Models 



   
Figure 1.6: Classes of parallel computer architecture. From top to bottom: a distributed-memory 
MIMD computer with a mesh interconnect, a shared-memory multiprocessor, and a local area 
network (in this case, an Ethernet). In each case, P denotes an independent processor.  

 We review important parallel computer architectures (several are illustrated in Figure 1.6) and 
discuss briefly how these differ from the idealized multicomputer model.  

The multicomputer is most similar to what is often called the distributed-memory MIMD (multiple 
instruction multiple data) computer. MIMD means that each processor can execute a separate 
stream of instructions on its own local data; distributed memory means that memory is distributed 
among the processors, rather than placed in a central location. The principal difference between a 
multicomputer and the distributed-memory MIMD computer is that in the latter, the cost of 
sending a message between two nodes may not be independent of node location and other network 
traffic. These issues are discussed in Chapter 3. Examples of this class of machine include the IBM 
SP, Intel Paragon, Thinking Machines CM5, Cray T3D, Meiko CS-2, and nCUBE.  

Another important class of parallel computer is the multiprocessor, or shared-memory MIMD 
computer. In multiprocessors, all processors share access to a common memory, typically via a 



bus or a hierarchy of buses. In the idealized Parallel Random Access Machine (PRAM) model, 
often used in theoretical studies of parallel algorithms, any processor can access any memory 
element in the same amount of time. In practice, scaling this architecture usually introduces some 
form of memory hierarchy; in particular, the frequency with which the shared memory is accessed 
may be reduced by storing copies of frequently used data items in a cache associated with each 
processor. Access to this cache is much faster than access to the shared memory; hence, locality is 
usually important, and the differences between multicomputers and multiprocessors are really just 
questions of degree. Programs developed for multicomputers can also execute efficiently on 
multiprocessors, because shared memory permits an efficient implementation of message passing. 
Examples of this class of machine include the Silicon Graphics Challenge, Sequent Symmetry, and 
the many multiprocessor workstations.  

A more specialized class of parallel computer is the SIMD (single instruction multiple data) 
computer. In SIMD machines, all processors execute the same instruction stream on a different 
piece of data. This approach can reduce both hardware and software complexity but is appropriate 
only for specialized problems characterized by a high degree of regularity, for example, image 
processing and certain numerical simulations. Multicomputer algorithms cannot in general be 
executed efficiently on SIMD computers. The MasPar MP is an example of this class of machine.  

Two classes of computer system that are sometimes used as parallel computers are the local area 
network (LAN), in which computers in close physical proximity (e.g., the same building) are 
connected by a fast network, and the wide area network (WAN), in which geographically 
distributed computers are connected. Although systems of this sort introduce additional concerns 
such as reliability and security, they can be viewed for many purposes as multicomputers, albeit 
with high remote-access costs. Ethernet and asynchronous transfer mode (ATM) are commonly 
used network technologies.  

1.3 A Parallel Programming Model 
The von Neumann machine model assumes a processor able to execute sequences of instructions. 
An instruction can specify, in addition to various arithmetic operations, the address of a datum to 
be read or written in memory and/or the address of the next instruction to be executed. While it is 
possible to program a computer in terms of this basic model by writing machine language, this 
method is for most purposes prohibitively complex, because we must keep track of millions of 
memory locations and organize the execution of thousands of machine instructions. Hence, 
modular design techniques are applied, whereby complex programs are constructed from simple 
components, and components are structured in terms of higher-level abstractions such as data 
structures, iterative loops, and procedures. Abstractions such as procedures make the exploitation 
of modularity easier by allowing objects to be manipulated without concern for their internal 
structure. So do high-level languages such as Fortran, Pascal, C, and Ada, which allow designs 
expressed in terms of these abstractions to be translated automatically into executable code.  

 Parallel programming introduces additional sources of complexity: if we were to program at the 
lowest level, not only would the number of instructions executed increase, but we would also need 
to manage explicitly the execution of thousands of processors and coordinate millions of 
interprocessor interactions. Hence, abstraction and modularity are at least as important as in 
sequential programming. In fact, we shall emphasize modularity as a fourth fundamental 
requirement for parallel software, in addition to concurrency, scalability, and locality.  



1.3.1 Tasks and Channels 

   
Figure 1.7: A simple parallel programming model. The figure shows both the instantaneous state 
of a computation and a detailed picture of a single task. A computation consists of a set of tasks 
(represented by circles) connected by channels (arrows). A task encapsulates a program and local 
memory and defines a set of ports that define its interface to its environment. A channel is a 
message queue into which a sender can place messages and from which a receiver can remove 
messages, ``blocking'' if messages are not available.  

 We consider next the question of which abstractions are appropriate and useful in a parallel 
programming model. Clearly, mechanisms are needed that allow explicit discussion about 
concurrency and locality and that facilitate development of scalable and modular programs. Also 
needed are abstractions that are simple to work with and that match the architectural model, the 
multicomputer. While numerous possible abstractions could be considered for this purpose, two fit 
these requirements particularly well: the task and channel. These are illustrated in Figure 1.7 and 
can be summarized as follows:  



   
Figure 1.8: The four basic task actions. In addition to reading and writing local memory, a task 
can send a message, receive a message, create new tasks (suspending until they terminate), and 
terminate.  

1. A parallel computation consists of one or more tasks. Tasks execute concurrently. The 
number of tasks can vary during program execution.  

2. A task encapsulates a sequential program and local memory. (In effect, it is a virtual von 
Neumann machine.) In addition, a set of inports and outports define its interface to its 
environment.  

3. A task can perform four basic actions in addition to reading and writing its local memory 
(Figure 1.8): send messages on its outports, receive messages on its inports, create new 
tasks, and terminate.  

4. A send operation is asynchronous: it completes immediately. A receive operation is 
synchronous: it causes execution of the task to block until a message is available.  

5.  Outport/inport pairs can be connected by message queues called channels. Channels can 
be created and deleted, and references to channels (ports) can be included in messages, so 
connectivity can vary dynamically.  

6.  Tasks can be mapped to physical processors in various ways; the mapping employed does 
not affect the semantics of a program. In particular, multiple tasks can be mapped to a 
single processor. (We can also imagine a single task being mapped to multiple processors, 
but that possibility is not considered here.)  

 The task abstraction provides a mechanism for talking about locality: data contained in a task's 
local memory are ``close''; other data are ``remote.'' The channel abstraction provides a mechanism 
for indicating that computation in one task requires data in another task in order to proceed. (This 
is termed a data dependency). The following simple example illustrates some of these features.  

 



 
Example .  Bridge Construction: 

 Consider the following real-world problem. A bridge is to be assembled from girders being 
constructed at a foundry. These two activities are organized by providing trucks to transport 
girders from the foundry to the bridge site. This situation is illustrated in Figure 1.9(a), with the 
foundry and bridge represented as tasks and the stream of trucks as a channel. Notice that this 
approach allows assembly of the bridge and construction of girders to proceed in parallel without 
any explicit coordination: the foundry crew puts girders on trucks as they are produced, and the 
assembly crew adds girders to the bridge as and when they arrive.  

   
Figure 1.9: Two solutions to the bridge construction problem. Both represent the foundry and the 
bridge assembly site as separate tasks, foundry and bridge. The first uses a single channel on 
which girders generated by foundry are transported as fast as they are generated. If foundry 
generates girders faster than they are consumed by bridge, then girders accumulate at the 
construction site. The second solution uses a second channel to pass flow control messages from 
bridge to foundry so as to avoid overflow.  

A disadvantage of this scheme is that the foundry may produce girders much faster than the 
assembly crew can use them. To prevent the bridge site from overflowing with girders, the 
assembly crew instead can explicitly request more girders when stocks run low. This refined 
approach is illustrated in Figure 1.9(b), with the stream of requests represented as a second 
channel. The second channel can also be used to shut down the flow of girders when the bridge is 
complete.  

 

We now examine some other properties of this task/channel programming model: performance, 
mapping independence, modularity, and determinism. 

Performance. Sequential programming abstractions such as procedures and data structures are 
effective because they can be mapped simply and efficiently to the von Neumann computer. The 
task and channel have a similarly direct mapping to the multicomputer. A task represents a piece 
of code that can be executed sequentially, on a single processor. If two tasks that share a channel 



are mapped to different processors, the channel connection is implemented as interprocessor 
communication; if they are mapped to the same processor, some more efficient mechanism can be 
used.  

 Mapping Independence. Because tasks interact using the same mechanism (channels) regardless 
of task location, the result computed by a program does not depend on where tasks execute. 
Hence, algorithms can be designed and implemented without concern for the number of processors 
on which they will execute; in fact, algorithms are frequently designed that create many more tasks 
than processors. This is a straightforward way of achieving scalability : as the number of 
processors increases, the number of tasks per processor is reduced but the algorithm itself need not 
be modified. The creation of more tasks than processors can also serve to mask communication 
delays, by providing other computation that can be performed while communication is performed 
to access remote data.  

Modularity. In modular program design, various components of a program are developed 
separately, as independent modules, and then combined to obtain a complete program. Interactions 
between modules are restricted to well-defined interfaces. Hence, module implementations can be 
changed without modifying other components, and the properties of a program can be determined 
from the specifications for its modules and the code that plugs these modules together. When 
successfully applied, modular design reduces program complexity and facilitates code reuse.  

   
Figure 1.10: The task as building block. (a) The foundry and bridge tasks are building blocks 
with complementary interfaces. (b) Hence, the two tasks can be plugged together to form a 
complete program. (c) Tasks are interchangeable: another task with a compatible interface can be 
substituted to obtain a different program.  

The task is a natural building block for modular design. As illustrated in Figure 1.10, a task 
encapsulates both data and the code that operates on those data; the ports on which it sends and 
receives messages constitute its interface. Hence, the advantages of modular design summarized in 
the previous paragraph are directly accessible in the task/channel model.  



Strong similarities exist between the task/channel model and the popular object-oriented 
programming paradigm. Tasks, like objects, encapsulate data and the code that operates on those 
data. Distinguishing features of the task/channel model are its concurrency, its use of channels 
rather than method calls to specify interactions, and its lack of support for inheritance.  

Determinism. An algorithm or program is deterministic if execution with a particular input always 
yields the same output. It is nondeterministic if multiple executions with the same input can give 
different outputs. Although nondeterminism is sometimes useful and must be supported, a parallel 
programming model that makes it easy to write deterministic programs is highly desirable. 
Deterministic programs tend to be easier to understand. Also, when checking for correctness, only 
one execution sequence of a parallel program needs to be considered, rather than all possible 
executions.  

The ``arms-length'' interactions supported by the task/channel model makes determinism relatively 
easy to guarantee. As we shall see in Part II when we consider programming tools, it suffices to 
verify that each channel has a single sender and a single receiver and that a task receiving on a 
channel blocks until a receive operation is complete. These conditions can be relaxed when 
nondeterministic interactions are required.  

In the bridge construction example, determinism means that the same bridge will be constructed 
regardless of the rates at which the foundry builds girders and the assembly crew puts girders 
together. If the assembly crew runs ahead of the foundry, it will block, waiting for girders to 
arrive. Hence, it simply suspends its operations until more girders are available, rather than 
attempting to continue construction with half-completed girders. Similarly, if the foundry produces 
girders faster than the assembly crew can use them, these girders simply accumulate until they are 
needed. Determinism would be guaranteed even if several bridges were constructed 
simultaneously: As long as girders destined for different bridges travel on distinct channels, they 
cannot be confused.  

1.3.2 Other Programming Models 
In subsequent chapters, the task/channel model will often be used to describe algorithms. 
However, this model is certainly not the only approach that can be taken to representing parallel 
computation. Many other models have been proposed, differing in their flexibility, task interaction 
mechanisms, task granularities, and support for locality, scalability, and modularity. Here, we 
review several alternatives.  

 Message passing. Message passing is probably the most widely used parallel programming model 
today. Message-passing programs, like task/channel programs, create multiple tasks, with each 
task encapsulating local data. Each task is identified by a unique name, and tasks interact by 
sending and receiving messages to and from named tasks. In this respect, message passing is really 
just a minor variation on the task/channel model, differing only in the mechanism used for data 
transfer. For example, rather than sending a message on ``channel ch,'' we may send a message to 
``task 17.'' We study the message-passing model in more detail in Chapter 8, where we discuss the 
Message Passing Interface. In that chapter, we explain that the definition of channels is a useful 
discipline even when designing message-passing programs, because it forces us to conceptualize 
the communication structure of a parallel program.  



The message-passing model does not preclude the dynamic creation of tasks, the execution of 
multiple tasks per processor, or the execution of different programs by different tasks. However, in 
practice most message-passing systems create a fixed number of identical tasks at program startup 
and do not allow tasks to be created or destroyed during program execution. These systems are 
said to implement a single program multiple data (SPMD) programming model because each task 
executes the same program but operates on different data. As explained in subsequent chapters, the 
SPMD model is sufficient for a wide range of parallel programming problems but does hinder 
some parallel algorithm developments.  

Data Parallelism. Another commonly used parallel programming model, data parallelism, calls for 
exploitation of the concurrency that derives from the application of the same operation to multiple 
elements of a data structure, for example, ``add 2 to all elements of this array,'' or ``increase the 
salary of all employees with 5 years service.'' A data-parallel program consists of a sequence of 
such operations. As each operation on each data element can be thought of as an independent task, 
the natural granularity of a data-parallel computation is small, and the concept of ``locality'' does 
not arise naturally. Hence, data-parallel compilers often require the programmer to provide 
information about how data are to be distributed over processors, in other words, how data are to 
be partitioned into tasks. The compiler can then translate the data-parallel program into an SPMD 
formulation, thereby generating communication code automatically. We discuss the data-parallel 
model in more detail in Chapter 7 under the topic of High Performance Fortran. In that chapter, 
we show that the algorithm design and analysis techniques developed for the task/channel model 
apply directly to data-parallel programs; in particular, they provide the concepts required to 
understand the locality and scalability of data-parallel programs.  

Shared Memory. In the shared-memory programming model, tasks share a common address space, 
which they read and write asynchronously. Various mechanisms such as locks and semaphores 
may be used to control access to the shared memory. An advantage of this model from the 
programmer's point of view is that the notion of data ``ownership'' is lacking, and hence there is no 
need to specify explicitly the communication of data from producers to consumers. This model can 
simplify program development. However, understanding and managing locality becomes more 
difficult, an important consideration (as noted earlier) on most shared-memory architectures. It can 
also be more difficult to write deterministic programs.  

1.4 Parallel Algorithm Examples 
We conclude this chapter by presenting four examples of parallel algorithms. We do not concern 
ourselves here with the process by which these algorithms are derived or with their efficiency; 
these issues are discussed in Chapters 2 and 3, respectively. The goal is simply to introduce 
parallel algorithms and their description in terms of tasks and channels.  

The first two algorithms described have an SPMD structure, the third creates tasks dynamically 
during program execution, and the fourth uses a fixed number of tasks but has different tasks 
perform different functions.  

1.4.1 Finite Differences 



   
Figure 1.11: A parallel algorithm for the one-dimensional finite difference problem. From top to 
bottom: the one-dimensional vector X, where N=8 ; the task structure, showing the 8 tasks, each 
encapsulating a single data value and connected to left and right neighbors via channels; and the 
structure of a single task, showing its two inports and outports.  

We first consider a one-dimensional finite difference problem, in which we have a vector of 
size N and must compute , where  

 

That is, we must repeatedly update each element of X, with no element being updated in step t+1 
until its neighbors have been updated in step t.  

A parallel algorithm for this problem creates N tasks, one for each point in X. The i th task is given 
the value and is responsible for computing, in T steps, the values . Hence, 

at step t, it must obtain the values and from tasks i-1 and i+1. We specify this data 
transfer by defining channels that link each task with ``left'' and ``right'' neighbors, as shown in 
Figure 1.11, and requiring that at step t, each task i other than task 0 and task N-1  

1. sends its data on its left and right outports,  

2. receives and from its left and right inports, and  
3. uses these values to compute .  

Notice that the N tasks can execute independently, with the only constraint on execution order 
being the synchronization enforced by the receive operations. This synchronization ensures that no 
data value is updated at step t+1 until the data values in neighboring tasks have been updated at 
step t. Hence, execution is deterministic.  

1.4.2 Pairwise Interactions 



   
Figure 1.12: Task structures for computing pairwise interactions for N=5. (a) The unidirectional 
ring used in the simple, nonsymmetric algorithm. (b) The unidirectional ring with additional 
channels used to return accumulated values in the symmetric algorithm; the path taken by the 
accumulator used for task 0 is shown as a solid line.  

 Our second example uses a similar channel structure but requires a more complex communication 
algorithm. Many problems require the computation of all N(N-1) pairwise interactions , 

, between N data, . Interactions may be symmetric, in which case 
and only N(N-1)/2 interactions need be computed. For example, in 

molecular dynamics we may require the total force vector acting on each atom , defined as 
follows:  

 

Each atom is represented by its mass and Cartesian coordinates. denotes the mutual 
attraction or repulsion between atoms and ; in this example, , so 
interactions are symmetric.  

A simple parallel algorithm for the general pairwise interactions problem might create N tasks. 
Task i is given the datum and is responsible for computing the interactions . 
One might think that as each task needs a datum from every other task, N(N-1) channels would be 
needed to perform the necessary communications. However, a more economical structure is 
possible that uses only N channels. These channels are used to connect the N tasks in a 
unidirectional ring (Figure 1.12(a)). Hence, each task has one inport and one outport. Each task 
first initializes both a buffer (with the value of its local datum) and an accumulator that will 
maintain the result of the computation. It then repeatedly  

1. sends the value contained in its buffer on its outport,  
2. receives a datum on its inport into its buffer,  
3. computes the interaction between this datum and its local datum, and  
4. uses the computed interaction to update its local accumulator.  

This send-receive-compute cycle is repeated N-1 times, causing the N data to flow around the ring. 
Every task sees every datum and is able to compute all N-1 interactions involving its datum. The 
algorithm involves N-1 communications per task.  



It turns out that if interactions are symmetric, we can halve both the number of interactions 
computed and the number of communications by refining the communication structure. Assume 
for simplicity that N is odd. An additional N communication channels are created, linking each 
task to the task offset around the ring (Figure 1.12(b)). Each time an interaction is 
computed between a local datum and an incoming datum , this value is accumulated not 
only in the accumulator for but also in another accumulator that is circulated with . After 

steps, the accumulators associated with the circulated values are returned to their home task 
using the new channels and combined with the local accumulators. Hence, each symmetric 
interaction is computed only once: either as on the node that holds or as on 
the node that holds .  

1.4.3 Search 
 The next example illustrates the dynamic creation of tasks and channels during program 
execution. Algorithm 1.1 explores a search tree looking for nodes that correspond to ``solutions.'' 
A parallel algorithm for this problem can be structured as follows. Initially, a single task is created 
for the root of the tree. A task evaluates its node and then, if that node is not a solution, creates a 
new task for each search call (subtree). A channel created for each new task is used to return to 
the new task's parent any solutions located in its subtree. Hence, new tasks and channels are 
created in a wavefront as the search progresses down the search tree (Figure 1.13).  

   



   
Figure 1.13: Task structure for the search example. Each circle represents a node in the search 
tree and hence a call to the search procedure. A task is created for each node in the tree as it is 
explored. At any one time, some tasks are actively engaged in expanding the tree further (these are 
shaded in the figure); others have reached solution nodes and are terminating, or are waiting for 
their offspring to report back with solutions. The lines represent the channels used to return 
solutions.  

1.4.4 Parameter Study 
 In so-called embarrassingly parallel problems, a computation consists of a number of tasks that 
can execute more or less independently, without communication. These problems are usually easy 
to adapt for parallel execution. An example is a parameter study, in which the same computation 
must be performed using a range of different input parameters. The parameter values are read from 
an input file, and the results of the different computations are written to an output file.  

   
Figure 1.14: Task structure for parameter study problem. Workers (W) request parameters from 
the input task (I) and send results to the output task (O). Note the many-to-one connections: this 
program is nondeterministic in that the input and output tasks receive data from workers in 
whatever order the data are generated. Reply channels, represented as dashed lines, are used to 
communicate parameters from the input task to workers.  

If the execution time per problem is constant and each processor has the same computational 
power, then it suffices to partition available problems into equal-sized sets and allocate one such 
set to each processor. In other situations, we may choose to use the task structure illustrated in 
Figure 1.14. The input and output tasks are responsible for reading and writing the input and 
output files, respectively. Each worker task (typically one per processor) repeatedly requests 
parameter values from the input task, computes using these values, and sends results to the output 
task. Because execution times vary, the input and output tasks cannot expect to receive messages 



from the various workers in any particular order. Instead, a many-to-one communication structure 
is used that allows them to receive messages from the various workers in arrival order.  

The input task responds to a worker request by sending a parameter to that worker. Hence, a 
worker that has sent a request to the input task simply waits for the parameter to arrive on its reply 
channel. In some cases, efficiency can be improved by prefetching, that is, requesting the next 
parameter before it is needed. The worker can then perform computation while its request is being 
processed by the input task.  

 Because this program uses many-to-one communication structures, the order in which 
computations are performed is not necessarily determined. However, this nondeterminism affects 
only the allocation of problems to workers and the ordering of results in the output file, not the 
actual results computed.  

1.5 Summary 
This chapter has introduced four desirable attributes of parallel algorithms and software: 
concurrency, scalability, locality, and modularity. Concurrency refers to the ability to perform 
many actions simultaneously; this is essential if a program is to execute on many processors. 
Scalability indicates resilience to increasing processor counts and is equally important, as 
processor counts appear likely to grow in most environments. Locality means a high ratio of local 
memory accesses to remote memory accesses (communication); this is the key to high 
performance on multicomputer architectures. Modularity ---the decomposition of complex entities 
into simpler components---is an essential aspect of software engineering, in parallel computing as 
well as sequential computing.  

The multicomputer parallel machine model and the task/channel programming model introduced 
in this chapter will be used in subsequent discussion of parallel algorithm design, analysis, and 
implementation. The multicomputer consists of one or more von Neumann computers connected 
by an interconnection network. It is a simple and realistic machine model that provides a basis for 
the design of scalable and portable parallel programs. A programming model based on tasks and 
channels simplifies the programming of multicomputers by providing abstractions that allow us to 
talk about concurrency, locality, and communication in a machine-independent fashion, and by 
providing a basis for the modular construction of parallel programs.  

Exercises 
Exercises 6--10 require you to describe a parallel algorithm. You should describe the task/channel 
structure created by the algorithm and provide a definition for each task, including its interface 
(inports and outports), its local data, and the actions it performs.  

1. If today's workstations execute at operations per second, and performance increases at a 
rate of 25 percent per year, how long will it be before we have workstations capable of 

operations per second? ?  
2. A climate model requires floating point operations for a ten-year simulation. How long 

would this computation take at floating point operations per second (10 Mflops)?  



3. A climate model generates bytes of data in a ten-day simulation. How fast must data be 
transferred to secondary storage? What transfer rate is required if we are to search this data 
in ten minutes?  

4. Consider a three-dimensional chip. Demonstrate that chip volume V and computation time 
T are related as , just as area A and computation time are related as in a two-
dimensional chip.  

5. Execute the parallel algorithm described in Section 1.4.1 by hand for N=4, and satisfy 
yourself that execution is deterministic.  

6.  Adapt the parallel algorithm of Section 1.4.1 to deal with a two-dimensional finite 
difference problem in which the value of each point in a two-dimensional grid of size N 

N is updated as follows:  

 

7. Describe a variant of the parallel algorithm of Section 1.4.2 that allows for the case when N 
is even.  

8. Describe a parallel algorithm for Hoare's quicksort algorithm [153] based on the parallel 
divide-and-conquer strategy employed in Section 1.4.3.  

9. Describe a task/channel structure for a parallel database system in which M concurrently 
executing users can generate requests to read and write data located in N databases and 
requests to access different databases can be handled concurrently. You must use less than 
M.N channels.  

Extend this structure to allow a user to request that a set of read and write operations be 
performed as an atomic operation, that is, without read or write operations generated by 
other tasks intervening.  

10.  Extend the parallel algorithms of Sections 1.4.1 and 1.4.3 to provide for the loading of 
initial data values in from disk and the writing out of the solutions to disk.  

Chapter Notes 
Kauffman and Smarr [169] discuss the impact of high-performance computing on science. Levin 
[189] and several U.S. government reports [232,233,215] describe the so-called Grand Challenge 
problems that have motivated recent initiatives in high-performance computing. The 
computational requirements in Table 1.1 are derived from the project plan for the CHAMMP 
climate modeling program, which has adapted a range of climate models for execution on parallel 
computers [287]. Dewitt and Gray [79] discuss developments in parallel databases. Lawson [186] 
discusses industrial real-time applications of parallel computing. Worlton [299], Meindl [201], and 
Hennessy and Joupp [147] discuss trends in processor design and sequential and parallel computer 
architecture. Ullman [286] provides a succinct explanation of the complexity results.  

Goldstine and von Neumann [121] provide an early exposition of the von Neumann computer. 
Bailey [22] explains how this model derived from the automation of algorithms performed 
previously by ``human computers.'' He argues that highly parallel computers are stimulating not 
only new algorithmic approaches, but also new ways of thinking about problems. Many 
researchers have proposed abstract machine models for parallel computing [67,99,288]. Snyder 
[268] explains why the multicomputer is a good choice. Early parallel computers with a 



multicomputer-like architecture include the Ultracomputer [252] and the Cosmic Cube [254]. 
Athas and Seitz [18] and Seitz [255] discuss developments in this area. Almasi and Gottlieb [11] 
and Hwang [156] provide good introductions to parallel computer architectures and 
interconnection networks. Hillis [150] describes SIMD computers. Fortune and Wylie [99] and 
Jájá [157] discuss the PRAM model. Comer [63] discusses LANs and WANs. Kahn [162] 
describes the ARPANET, an early WAN. The chapter notes in Chapter 3 provide additional 
references on parallel computer architecture.  

The basic abstractions used to describe parallel algorithms have been developed in the course of 
many years of research in operating systems, distributed computing, and parallel computation. The 
use of channels was first explored by Hoare in Communicating Sequential Processes (CSP) [154] 
and is fundamental to the occam programming language [231,280]. However, in CSP the task and 
channel structure is static, and both sender and receiver block until a communication has 
completed. This approach has proven too restrictive for general-purpose parallel programming. 
The task/channel model introduced in this chapter is described by Chandy and Foster [102], who 
also discuss the conditions under which the model can guarantee deterministic execution [51].  

 Seitz [254] and Gropp, Lusk, and Skjellum [126] describe the message-passing model (see also 
the chapter notes in Chapter 8). Ben Ari [32] and Karp and Babb [165] discuss shared-memory 
programming. Hillis and Steele [151] and Hatcher and Quinn [136] describe data-parallel 
programming; the chapter notes in Chapter 7 provide additional references. Other approaches that 
have generated considerable interest include Actors [5], concurrent logic programming [107], 
functional programming [146], Linda [48], and Unity [54]. Bal et al. [23] provide a useful survey 
of some of these approaches. Pancake and Bergmark [218] emphasize the importance of 
deterministic execution in parallel computing. 

2 Designing Parallel Algorithms 
Now that we have discussed what parallel algorithms look like, we are ready to examine how they 
can be designed. In this chapter, we show how a problem specification is translated into an 
algorithm that displays concurrency, scalability, and locality. Issues relating to modularity are 
discussed in Chapter 4.  

Parallel algorithm design is not easily reduced to simple recipes. Rather, it requires the sort of 
integrative thought that is commonly referred to as ``creativity.'' However, it can benefit from a 
methodical approach that maximizes the range of options considered, that provides mechanisms 
for evaluating alternatives, and that reduces the cost of backtracking from bad choices. We 
describe such an approach and illustrate its application to a range of problems. Our goal is to 
suggest a framework within which parallel algorithm design can be explored. In the process, we 
hope you will develop intuition as to what constitutes a good parallel algorithm.  

After studying this chapter, you should be able to design simple parallel algorithms in a 
methodical fashion and recognize design flaws that compromise efficiency or scalability. You 
should be able to partition computations, using both domain and functional decomposition 
techniques, and know how to recognize and implement both local and global, static and dynamic, 
structured and unstructured, and synchronous and asynchronous communication structures. You 
should also be able to use agglomeration as a means of reducing communication and 
implementation costs and should be familiar with a range of load-balancing strategies.  



2.1 Methodical Design 
Most programming problems have several parallel solutions. The best solution may differ from 
that suggested by existing sequential algorithms. The design methodology that we describe is 
intended to foster an exploratory approach to design in which machine-independent issues such as 
concurrency are considered early and machine-specific aspects of design are delayed until late in 
the design process. This methodology structures the design process as four distinct stages: 
partitioning, communication, agglomeration, and mapping. (The acronym PCAM may serve as a 
useful reminder of this structure.) In the first two stages, we focus on concurrency and scalability 
and seek to discover algorithms with these qualities. In the third and fourth stages, attention shifts 
to locality and other performance-related issues. The four stages are illustrated in Figure 2.1 and 
can be summarized as follows:  

1. Partitioning. The computation that is to be performed and the data operated on by this 
computation are decomposed into small tasks. Practical issues such as the number of 
processors in the target computer are ignored, and attention is focused on recognizing 
opportunities for parallel execution.  

2. Communication. The communication required to coordinate task execution is determined, 
and appropriate communication structures and algorithms are defined.  

3. Agglomeration. The task and communication structures defined in the first two stages of a 
design are evaluated with respect to performance requirements and implementation costs. 
If necessary, tasks are combined into larger tasks to improve performance or to reduce 
development costs.  

4. Mapping. Each task is assigned to a processor in a manner that attempts to satisfy the 
competing goals of maximizing processor utilization and minimizing communication costs. 
Mapping can be specified statically or determined at runtime by load-balancing algorithms.  



   
Figure 2.1: PCAM: a design methodology for parallel programs. Starting with a problem 
specification, we develop a partition, determine communication requirements, agglomerate tasks, 
and finally map tasks to processors.  

 The outcome of this design process can be a program that creates and destroys tasks dynamically, 
using load-balancing techniques to control the mapping of tasks to processors. Alternatively, it can 
be an SPMD program that creates exactly one task per processor. The same process of algorithm 
discovery applies in both cases, although if the goal is to produce an SPMD program, issues 
associated with mapping are subsumed into the agglomeration phase of the design.  

Algorithm design is presented here as a sequential activity. In practice, however, it is a highly 
parallel process, with many concerns being considered simultaneously. Also, although we seek to 
avoid backtracking, evaluation of a partial or complete design may require changes to design 
decisions made in previous steps.  

The following sections provide a detailed examination of the four stages of the design process. We 
present basic principles, use examples to illustrate the application of these principles, and include 
design checklists that can be used to evaluate designs as they are developed. In the final sections of 
this chapter, we use three case studies to illustrate the application of these design techniques to 
realistic problems.  



2.2 Partitioning 
 The partitioning stage of a design is intended to expose opportunities for parallel execution. 
Hence, the focus is on defining a large number of small tasks in order to yield what is termed a 
fine-grained decomposition of a problem. Just as fine sand is more easily poured than a pile of 
bricks, a fine-grained decomposition provides the greatest flexibility in terms of potential parallel 
algorithms. In later design stages, evaluation of communication requirements, the target 
architecture, or software engineering issues may lead us to forego opportunities for parallel 
execution identified at this stage. We then revisit the original partition and agglomerate tasks to 
increase their size, or granularity. However, in this first stage we wish to avoid prejudging 
alternative partitioning strategies.  

A good partition divides into small pieces both the computation associated with a problem and the 
data on which this computation operates. When designing a partition, programmers most 
commonly first focus on the data associated with a problem, then determine an appropriate 
partition for the data, and finally work out how to associate computation with data. This 
partitioning technique is termed domain decomposition. The alternative approach---first 
decomposing the computation to be performed and then dealing with the data---is termed 
functional decomposition. These are complementary techniques which may be applied to different 
components of a single problem or even applied to the same problem to obtain alternative parallel 
algorithms.  

In this first stage of a design, we seek to avoid replicating computation and data; that is, we seek to 
define tasks that partition both computation and data into disjoint sets. Like granularity, this is an 
aspect of the design that we may revisit later. It can be worthwhile replicating either computation 
or data if doing so allows us to reduce communication requirements.  

2.2.1 Domain Decomposition 
 In the domain decomposition approach to problem partitioning, we seek first to decompose the 
data associated with a problem. If possible, we divide these data into small pieces of 
approximately equal size. Next, we partition the computation that is to be performed, typically by 
associating each operation with the data on which it operates. This partitioning yields a number of 
tasks, each comprising some data and a set of operations on that data. An operation may require 
data from several tasks. In this case, communication is required to move data between tasks. This 
requirement is addressed in the next phase of the design process.  

The data that are decomposed may be the input to the program, the output computed by the 
program, or intermediate values maintained by the program. Different partitions may be possible, 
based on different data structures. Good rules of thumb are to focus first on the largest data 
structure or on the data structure that is accessed most frequently. Different phases of the 
computation may operate on different data structures or demand different decompositions for the 
same data structures. In this case, we treat each phase separately and then determine how the 
decompositions and parallel algorithms developed for each phase fit together. The issues that arise 
in this situation are discussed in Chapter 4.  

Figure 2.2 illustrates domain decomposition in a simple problem involving a three-dimensional 
grid. (This grid could represent the state of the atmosphere in a weather model, or a three-



dimensional space in an image-processing problem.) Computation is performed repeatedly on each 
grid point. Decompositions in the x, y, and/or z dimensions are possible. In the early stages of a 
design, we favor the most aggressive decomposition possible, which in this case defines one task 
for each grid point. Each task maintains as its state the various values associated with its grid point 
and is responsible for the computation required to update that state.  

   
Figure 2.2: Domain decompositions for a problem involving a three-dimensional grid. One-, two-, 
and three-dimensional decompositions are possible; in each case, data associated with a single 
task are shaded. A three-dimensional decomposition offers the greatest flexibility and is adopted 
in the early stages of a design.  

2.2.2 Functional Decomposition 
 Functional decomposition represents a different and complementary way of thinking about 
problems. In this approach, the initial focus is on the computation that is to be performed rather 
than on the data manipulated by the computation. If we are successful in dividing this computation 
into disjoint tasks, we proceed to examine the data requirements of these tasks. These data 
requirements may be disjoint, in which case the partition is complete. Alternatively, they may 
overlap significantly, in which case considerable communication will be required to avoid 
replication of data. This is often a sign that a domain decomposition approach should be 
considered instead.  

 While domain decomposition forms the foundation for most parallel algorithms, functional 
decomposition is valuable as a different way of thinking about problems. For this reason alone, it 
should be considered when exploring possible parallel algorithms. A focus on the computations 
that are to be performed can sometimes reveal structure in a problem, and hence opportunities for 
optimization, that would not be obvious from a study of data alone.  

As an example of a problem for which functional decomposition is most appropriate, consider 
Algorithm 1.1. This explores a search tree looking for nodes that correspond to ``solutions.'' The 
algorithm does not have any obvious data structure that can be decomposed. However, a fine-
grained partition can be obtained as described in Section 1.4.3. Initially, a single task is created for 
the root of the tree. A task evaluates its node and then, if that node is not a leaf, creates a new task 
for each search call (subtree). As illustrated in Figure 1.13, new tasks are created in a wavefront 
as the search tree is expanded.  



   
Figure 2.3: Functional decomposition in a computer model of climate. Each model component 
can be thought of as a separate task, to be parallelized by domain decomposition. Arrows 
represent exchanges of data between components during computation: the atmosphere model 
generates wind velocity data that are used by the ocean model, the ocean model generates sea 
surface temperature data that are used by the atmosphere model, and so on.  

 Functional decomposition also has an important role to play as a program structuring technique. A 
functional decomposition that partitions not only the computation that is to be performed but also 
the code that performs that computation is likely to reduce the complexity of the overall design. 
This is often the case in computer models of complex systems, which may be structured as 
collections of simpler models connected via interfaces. For example, a simulation of the earth's 
climate may comprise components representing the atmosphere, ocean, hydrology, ice, carbon 
dioxide sources, and so on. While each component may be most naturally parallelized using 
domain decomposition techniques, the parallel algorithm as a whole is simpler if the system is first 
decomposed using functional decomposition techniques, even though this process does not yield a 
large number of tasks (Figure 2.3). This issue is explored in Chapter 4. 

2.2.3 Partitioning Design Checklist 
 The partitioning phase of a design should produce one or more possible decompositions of a 
problem. Before proceeding to evaluate communication requirements, we use the following 
checklist to ensure that the design has no obvious flaws. Generally, all these questions should be 
answered in the affirmative.  

1. Does your partition define at least an order of magnitude more tasks than there are 
processors in your target computer? If not, you have little flexibility in subsequent design 
stages.  

2. Does your partition avoid redundant computation and storage requirements? If not, the 
resulting algorithm may not be scalable to deal with large problems.  

3. Are tasks of comparable size? If not, it may be hard to allocate each processor equal 
amounts of work.  

4. Does the number of tasks scale with problem size? Ideally, an increase in problem size 
should increase the number of tasks rather than the size of individual tasks. If this is not the 
case, your parallel algorithm may not be able to solve larger problems when more 
processors are available.  

5. Have you identified several alternative partitions? You can maximize flexibility in 
subsequent design stages by considering alternatives now. Remember to investigate both 
domain and functional decompositions.  



Answers to these questions may suggest that, despite careful thought in this and subsequent design 
stages, we have a ``bad'' design. In this situation it is risky simply to push ahead with 
implementation. We should use the performance evaluation techniques described in Chapter 3 to 
determine whether the design meets our performance goals despite its apparent deficiencies. We 
may also wish to revisit the problem specification. Particularly in science and engineering 
applications, where the problem to be solved may involve a simulation of a complex physical 
process, the approximations and numerical techniques used to develop the simulation can strongly 
influence the ease of parallel implementation. In some cases, optimal sequential and parallel 
solutions to the same problem may use quite different solution techniques. While detailed 
discussion of these issues is beyond the scope of this book, we present several illustrative 
examples of them later in this chapter.  

2.3 Communication 
 The tasks generated by a partition are intended to execute concurrently but cannot, in general, 
execute independently. The computation to be performed in one task will typically require data 
associated with another task. Data must then be transferred between tasks so as to allow 
computation to proceed. This information flow is specified in the communication phase of a 
design.  

Recall from Chapter 1 that in our programming model, we conceptualize a need for 
communication between two tasks as a channel linking the tasks, on which one task can send 
messages and from which the other can receive. Hence, the communication associated with an 
algorithm can be specified in two phases. First, we define a channel structure that links, either 
directly or indirectly, tasks that require data (consumers) with tasks that possess those data 
(producers). Second, we specify the messages that are to be sent and received on these channels. 
Depending on our eventual implementation technology, we may not actually create these channels 
when coding the algorithm. For example, in a data-parallel language, we simply specify data-
parallel operations and data distributions. Nevertheless, thinking in terms of tasks and channels 
helps us to think quantitatively about locality issues and communication costs.  

The definition of a channel involves an intellectual cost and the sending of a message involves a 
physical cost. Hence, we avoid introducing unnecessary channels and communication operations. 
In addition, we seek to optimize performance by distributing communication operations over many 
tasks and by organizing communication operations in a way that permits concurrent execution.  

 In domain decomposition problems, communication requirements can be difficult to determine. 
Recall that this strategy produces tasks by first partitioning data structures into disjoint subsets and 
then associating with each datum those operations that operate solely on that datum. This part of 
the design is usually simple. However, some operations that require data from several tasks usually 
remain. Communication is then required to manage the data transfer necessary for these tasks to 
proceed. Organizing this communication in an efficient manner can be challenging. Even simple 
decompositions can have complex communication structures.  

 In contrast, communication requirements in parallel algorithms obtained by functional 
decomposition are often straightforward: they correspond to the data flow between tasks. For 
example, in a climate model broken down by functional decomposition into atmosphere model, 
ocean model, and so on, the communication requirements will correspond to the interfaces 



between the component submodels: the atmosphere model will produce values that are used by the 
ocean model, and so on (Figure 2.3).  

In the following discussion, we use a variety of examples to show how communication 
requirements are identified and how channel structures and communication operations are 
introduced to satisfy these requirements. For clarity in exposition, we categorize communication 
patterns along four loosely orthogonal axes: local/global, structured/unstructured, static/dynamic, 
and synchronous/asynchronous.  

•  In local communication, each task communicates with a small set of other tasks (its 
``neighbors''); in contrast, global communication requires each task to communicate with 
many tasks.  

•  In structured communication, a task and its neighbors form a regular structure, such as a 
tree or grid; in contrast, unstructured communication networks may be arbitrary graphs.  

•  In static communication, the identity of communication partners does not change over 
time; in contrast, the identity of communication partners in dynamic communication 
structures may be determined by data computed at runtime and may be highly variable.  

•  In synchronous communication, producers and consumers execute in a coordinated 
fashion, with producer/consumer pairs cooperating in data transfer operations; in contrast, 
asynchronous communication may require that a consumer obtain data without the 
cooperation of the producer. 

2.3.1 Local Communication 
 A local communication structure is obtained when an operation requires data from a small number 
of other tasks. It is then straightforward to define channels that link the task responsible for 
performing the operation (the consumer) with the tasks holding the required data (the producers) 
and to introduce appropriate send and receive operations in the producer and consumer tasks, 
respectively.  

 For illustrative purposes, we consider the communication requirements associated with a simple 
numerical computation, namely a Jacobi finite difference method. In this class of numerical 
method, a multidimensional grid is repeatedly updated by replacing the value at each point with 
some function of the values at a small, fixed number of neighboring points. The set of values 
required to update a single grid point is called that grid point's stencil. For example, the following 
expression uses a five-point stencil to update each element of a two-dimensional grid X :  

   

This update is applied repeatedly to compute a sequence of values , , and so on. The 

notation denotes the value of grid point at step t.  



   
Figure 2.4: Task and channel structure for a two-dimensional finite difference computation with 
five-point update stencil. In this simple fine-grained formulation, each task encapsulates a single 
element of a two-dimensional grid and must both send its value to four neighbors and receive 
values from four neighbors. Only the channels used by the shaded task are shown.  

Let us assume that a partition has used domain decomposition techniques to create a distinct task 
for each point in the two-dimensional grid. Hence, a task allocated the grid point must 
compute the sequence  

      
This computation requires in turn the four corresponding sequences  
  

     
  

     
  

     
  

     
which are produced by the four tasks handling grid points , , , and , that 
is, by its four neighbors in the grid. For these values to be communicated, we define channels 
linking each task that requires a value with the task that generates that value. This yields the 
channel structure illustrated in Figure 2.4. Each task then executes the following logic:  
  
   for t=0 to T-1 

    send  to each neighbor 

    receive , , ,  from neighbors 

    compute  using Equation 2.1 

   endfor 

 



We observed earlier that the best sequential and parallel solutions to a problem may use different 
techniques. This situation arises in finite difference problems. In sequential computing, Gauss-
Seidel update strategies are often preferred over Jacobi strategies because they allow solutions of 
comparable accuracy to be obtained using fewer iterations. In a Gauss-Seidel scheme, elements are 
updated in a particular order so that the computation of each element can use the most up-to-date 
value of other elements. For example, the Jacobi update of Equation 2.1 may be reformulated as 

follows (notice the use of values and ):  

   

While Jacobi schemes are trivial to parallelize (all grid points can be updated concurrently), this is 
not the case for all Gauss-Seidel schemes. For example, the update scheme of Equation 2.2 allows 
only an average of around N/2 points within an N N grid to be updated concurrently. Fortunately, 
many different Gauss-Seidel orderings are possible for most problems, and we are usually free to 
choose the ordering that maximizes available parallelism. In particular, we can choose to update 
first the odd-numbered elements and then the even-numbered elements of an array. Each update 
uses the most recent information, yet the updates to the odd-numbered points are independent and 
can proceed concurrently, as can the updates to the even-numbered points. This update strategy 
yields what is referred to as a red-black algorithm, since the points can be thought of as being 
colored as on a chess board: either red (odd) or black (even); points of the same color can be 
updated concurrently. Figure 2.5 illustrates both the Gauss-Seidel scheme of Equation 2.2 and a 
red-black scheme, and shows how the latter scheme increases opportunities for parallel execution.  

   
Figure 2.5: Two finite difference update strategies, here applied on a two-dimensional grid with a 
five-point stencil. In both figures, shaded grid points have already been updated to step t+1 ; 
unshaded grid points are still at step t. The arrows show data dependencies for one of the latter 
points. The figure on the left illustrates a simple Gauss-Seidel scheme and highlights the five grid 
points that can be updated at a particular point in time. In this scheme, the update proceeds in a 
wavefront from the top left corner to the bottom right. On the right, we show a red-black update 
scheme. Here, all the grid points at step t can be updated concurrently.  

This example indicates the important role that choice of solution strategy can play in determining 
the performance of a parallel program. While the simple Gauss-Seidel update strategy of Equation 
2.2 may be appropriate in a sequential program, it is not ideal on a parallel computer. The Jacobi 
update strategy is efficient on a parallel computer but is inferior numerically. The red-black 
scheme combines the advantages of both approaches. 



2.3.2 Global Communication 

   
Figure 2.6: A centralized summation algorithm that uses a central manager task (S) to sum N 
numbers distributed among N tasks. Here, N=8, and each of the 8 channels is labeled with the 
number of the step in which they are used.  

 A global communication operation is one in which many tasks must participate. When such 
operations are implemented, it may not be sufficient simply to identify individual 
producer/consumer pairs. Such an approach may result in too many communications or may 
restrict opportunities for concurrent execution. For example, consider the problem of performing a 
parallel reduction operation, that is, an operation that reduces N values distributed over N tasks 
using a commutative associative operator such as addition:  

 

Let us assume that a single ``manager'' task requires the result S of this operation. Taking a purely 
local view of communication, we recognize that the manager requires values , , etc., from 
tasks 0, 1, etc. Hence, we could define a communication structure that allows each task to 
communicate its value to the manager independently. The manager would then receive the values 
and add them into an accumulator (Figure 2.6). However, because the manager can receive and 
sum only one number at a time, this approach takes time to sum N numbers---not a very 
good parallel algorithm!  

 This example illustrates two general problems that can hinder efficient parallel execution in 
algorithms based on a purely local view of communication:  

1. The algorithm is centralized : it does not distribute computation and communication. A 
single task (in this case, the manager task) must participate in every operation.  

2. The algorithm is sequential : it does not allow multiple computation and communication 
operations to proceed concurrently.  

We must address both these problems to develop a good parallel algorithm.  

Distributing Communication and Computation. 

We first consider the problem of distributing the computation and communication associated with 
the summation. We can distribute the summation of the N numbers by making each task i, 0<i<N-
1, compute the sum:  

 



   
Figure 2.7: A summation algorithm that connects N tasks in an array in order to sum N numbers 
distributed among these tasks. Each channel is labeled with the number of the step in which it is 
used and the value that is communicated on it.  

The communication requirements associated with this algorithm can be satisfied by connecting the 
N tasks in a one-dimensional array (Figure 2.7). Task N-1 sends its value to its neighbor in this 
array. Tasks 1 through N-2 each wait to receive a partial sum from their right-hand neighbor, add 
this to their local value, and send the result to their left-hand neighbor. Task 0 receives a partial 
sum and adds this to its local value to obtain the complete sum. This algorithm distributes the N-1 
communications and additions, but permits concurrent execution only if multiple summation 
operations are to be performed. (The array of tasks can then be used as a pipeline, through which 
flow partial sums.) A single summation still takes N-1 steps.  

Uncovering Concurrency: Divide and Conquer. 

Opportunities for concurrent computation and communication can often be uncovered by applying 
a problem-solving strategy called divide and conquer. To solve a complex problem (such as 
summing N numbers), we seek to partition it into two or more simpler problems of roughly 
equivalent size (e.g., summing N/2 numbers). This process is applied recursively to produce a set 
of subproblems that cannot be subdivided further (e.g., summing two numbers). The strategy is 
summarized in Algorithm 2.1. The divide-and-conquer technique is effective in parallel computing 
when the subproblems generated by problem partitioning can be solved concurrently. For example, 
in the summation problem, we can take advantage of the following identity ( , n an 
integer):  

 

The two summations on the right hand side can be performed concurrently. They can also be 
further decomposed if n>1, to give the tree structure illustrated in Figure 2.8. Summations at the 
same level in this tree of height can be performed concurrently, so the complete 
summation can be achieved in rather than N steps.  



   

   
Figure 2.8: Tree structure for divide-and-conquer summation algorithm with N=8. The N 
numbers located in the tasks at the bottom of the diagram are communicated to the tasks in the 
row immediately above; these each perform an addition and then forward the result to the next 
level. The complete sum is available at the root of the tree after steps.  

In summary, we observe that in developing an efficient parallel summation algorithm, we have 
distributed the N-1 communication and computation operations required to perform the summation 
and have modified the order in which these operations are performed so that they can proceed 
concurrently. The result is a regular communication structure in which each task communicates 
with a small set of neighbors.  

2.3.3 Unstructured and Dynamic Communication 



   
Figure 2.9: Example of a problem requiring unstructured communication. In this finite element 
mesh generated for an assembly part, each vertex is a grid point. An edge connecting two vertices 
represents a data dependency that will require communication if the vertices are located in 
different tasks. Notice that different vertices have varying numbers of neighbors. (Image courtesy 
of M. S. Shephard.)  

The examples considered previously are all of static, structured communication, in which a task's 
communication partners form a regular pattern such as a tree or a grid and do not change over 
time. In other cases, communication patterns may be considerably more complex. For example, in 
finite element methods used in engineering calculations, the computational grid may be shaped to 
follow an irregular object or to provide high resolution in critical regions (Figure 2.9). Here, the 
channel structure representing the communication partners of each grid point is quite irregular and 
data-dependent and, furthermore, may change over time if the grid is refined as a simulation 
evolves.  

 Unstructured communication patterns do not generally cause conceptual difficulties in the early 
stages of a design. For example, it is straightforward to define a single task for each vertex in a 
finite element graph and to require communication for each edge. However, unstructured 
communication complicates the tasks of agglomeration and mapping. In particular, sophisticated 
algorithms can be required to determine an agglomeration strategy that both creates tasks of 



approximately equal size and minimizes communication requirements by creating the least number 
of intertask edges. Algorithms of this sort are discussed in Section 2.5.1. If communication 
requirements are dynamic, these algorithms must be applied frequently during program execution, 
and the cost of these algorithms must be weighed against their benefits.  

2.3.4 Asynchronous Communication 
The examples considered in the preceding section have all featured synchronous communication, 
in which both producers and consumers are aware when communication operations are required, 
and producers explicitly send data to consumers. In asynchronous communication, tasks that 
possess data (producers) are not able to determine when other tasks (consumers) may require data; 
hence, consumers must explicitly request data from producers.  

   
Figure 2.10: Using separate ``data tasks'' to service read and write requests on a distributed data 
structure. In this figure, four computation tasks (C) generate read and write requests to eight data 
items distributed among four data tasks (D). Solid lines represent requests; dashed lines represent 
replies. One compute task and one data task could be placed on each of four processors so as to 
distribute computation and data equitably.  

This situation commonly occurs when a computation is structured as a set of tasks that must 
periodically read and/or write elements of a shared data structure. Let us assume that this data 
structure is too large or too frequently accessed to be encapsulated in a single task. Hence, a 
mechanism is needed that allows this data structure to be distributed while supporting 
asynchronous read and write operations on its components. Possible mechanisms include the 
following.  

1.  The data structure is distributed among the computational tasks. Each task both performs 
computation and generates requests for data located in other tasks. It also periodically 
interrupts its own computation and polls for pending requests.  

2. The distributed data structure is encapsulated in a second set of tasks responsible only for 
responding to read and write requests (Figure 2.10).  

3. On a computer that supports a shared-memory programming model, computational tasks 
can access shared data without any special arrangements. However, care must be taken to 
ensure that read and write operations on this shared data occur in the proper order.  

 Each strategy has advantages and disadvantages; in addition, the performance characteristics of 
each approach vary from machine to machine. The first strategy can result in convoluted, 
nonmodular programs because of the need to intersperse polling operations throughout application 
code. In addition, polling can be an expensive operation on some computers, in which case we 
must trade off the cost of frequent polling against the benefit of rapid response to remote requests. 
The second strategy is more modular: responsibility for the shared data structure is encapsulated in 



a separate set of tasks. However, this strategy makes it hard to exploit locality because, strictly 
speaking, there are no local data: all read and write operations require communication. Also, 
switching between the computation and data tasks can be expensive on some machines.  

2.3.5 Communication Design Checklist 
 Having devised a partition and a communication structure for our parallel algorithm, we now 
evaluate our design using the following design checklist. As in Section 2.2.3, these are guidelines 
intended to identify nonscalable features, rather than hard and fast rules. However, we should be 
aware of when a design violates them and why. 

1. Do all tasks perform about the same number of communication operations? Unbalanced 
communication requirements suggest a nonscalable construct. Revisit your design to see 
whether communication operations can be distributed more equitably. For example, if a 
frequently accessed data structure is encapsulated in a single task, consider distributing or 
replicating this data structure.  

2. Does each task communicate only with a small number of neighbors? If each task must 
communicate with many other tasks, evaluate the possibility of formulating this global 
communication in terms of a local communication structure, as was done in the pairwise 
interactions algorithm of Section 1.4.2 and the summation algorithm of Section 2.3.2.  

3. Are communication operations able to proceed concurrently? If not, your algorithm is 
likely to be inefficient and nonscalable. Try to use divide-and-conquer techniques to 
uncover concurrency, as in the summation algorithm of Section 2.3.2.  

4. Is the computation associated with different tasks able to proceed concurrently? If not, your 
algorithm is likely to be inefficient and nonscalable. Consider whether you can reorder 
communication and computation operations. You may also wish to revisit your problem 
specification, as was done in moving from a simple Gauss-Seidel to a red-black algorithm 
in Section 2.3.1.  

2.4 Agglomeration 
 In the first two stages of the design process, we partitioned the computation to be performed into a 
set of tasks and introduced communication to provide data required by these tasks. The resulting 
algorithm is still abstract in the sense that it is not specialized for efficient execution on any 
particular parallel computer. In fact, it may be highly inefficient if, for example, it creates many 
more tasks than there are processors on the target computer and this computer is not designed for 
efficient execution of small tasks.  

In the third stage, agglomeration, we move from the abstract toward the concrete. We revisit 
decisions made in the partitioning and communication phases with a view to obtaining an 
algorithm that will execute efficiently on some class of parallel computer. In particular, we 
consider whether it is useful to combine, or agglomerate, tasks identified by the partitioning phase, 
so as to provide a smaller number of tasks, each of greater size (Figure 2.11). We also determine 
whether it is worthwhile to replicate data and/or computation.  



   
Figure 2.11: Examples of agglomeration. In (a), the size of tasks is increased by reducing the 
dimension of the decomposition from three to two. In (b), adjacent tasks are combined to yield a 
three-dimensional decomposition of higher granularity. In (c), subtrees in a divide-and-conquer 
structure are coalesced. In (d), nodes in a tree algorithm are combined.  

The number of tasks yielded by the agglomeration phase, although reduced, may still be greater 
than the number of processors. In this case, our design remains somewhat abstract, since issues 
relating to the mapping of tasks to processors remain unresolved. Alternatively, we may choose 
during the agglomeration phase to reduce the number of tasks to exactly one per processor. We 
might do this, for example, because our target parallel computer or program development 
environment demands an SPMD program. In this case, our design is already largely complete, 
since in defining P tasks that will execute on P processors, we have also addressed the mapping 
problem. In this section, we focus on general issues that arise when increasing task granularity. 
Specific issues relating to the generation of SPMD programs are discussed in Section 2.5.  

Three sometimes-conflicting goals guide decisions concerning agglomeration and replication: 
reducing communication costs by increasing computation and communication granularity, 
retaining flexibility with respect to scalability and mapping decisions, and reducing software 
engineering costs. These goals are discussed in the next three subsections.  



2.4.1 Increasing Granularity 
In the partitioning phase of the design process, our efforts are focused on defining as many tasks as 
possible. This is a useful discipline because it forces us to consider a wide range of opportunities 
for parallel execution. We note, however, that defining a large number of fine-grained tasks does 
not necessarily produce an efficient parallel algorithm.  

One critical issue influencing parallel performance is communication costs. On most parallel 
computers, we have to stop computing in order to send and receive messages. Because we 
typically would rather be computing, we can improve performance by reducing the amount of time 
spent communicating. Clearly, this performance improvement can be achieved by sending less 
data. Perhaps less obviously, it can also be achieved by using fewer messages, even if we send the 
same amount of data. This is because each communication incurs not only a cost proportional to 
the amount of data transferred but also a fixed startup cost. These issues are discussed in detail in 
Chapter 3, where we use analytic models to quantify communication costs.  

In addition to communication costs, we may need to be concerned with task creation costs. For 
example, the performance of the fine-grained search algorithm illustrated in Figure 1.13, which 
creates one task for each search tree node, is sensitive to task creation costs.  



   
Figure 2.12: Effect of increased granularity on communication costs in a two-dimensional finite 
difference problem with a five-point stencil. The figure shows fine- and coarse-grained two-
dimensional partitions of this problem. In each case, a single task is exploded to show its outgoing 
messages (dark shading) and incoming messages (light shading). In (a), a computation on an 

grid is partitioned into tasks, each responsible for a single point, while in (b) the 
same computation is partioned into tasks, each responsible for 16 points. In (a), 

communications are required, 4 per task; these transfer a total of 256 data values. In 
(b), only communications are required, and only data values are 
transferred.  

Surface-to-Volume Effects. 

If the number of communication partners per task is small, we can often reduce both the number of 
communication operations and the total communication volume by increasing the granularity of 
our partition, that is, by agglomerating several tasks into one. This effect is illustrated in Figure 
2.12. In this figure, the reduction in communication costs is due to a surface-to-volume effect. In 
other words, the communication requirements of a task are proportional to the surface of the 



subdomain on which it operates, while the computation requirements are proportional to the 
subdomain's volume. In a two-dimensional problem, the ``surface'' scales with the problem size 
while the ``volume'' scales as the problem size squared. Hence, the amount of communication 
performed for a unit of computation (the communication/computation ratio) decreases as task size 
increases. This effect is often visible when a partition is obtained by using domain decomposition 
techniques.  

 A consequence of surface-to-volume effects is that higher-dimensional decompositions are 
typically the most efficient, other things being equal, because they reduce the surface area 
(communication) required for a given volume (computation). Hence, from the viewpoint of 
efficiency it is usually best to increase granularity by agglomerating tasks in all dimensions rather 
than reducing the dimension of the decomposition. This issue is explored quantitatively in 
Example 3.4 in Chapter 3.  

The design of an efficient agglomeration strategy can be difficult in problems with unstructured 
communications, such as the finite element problem of Figure 2.9. Specialized techniques that can 
be used in such cases are discussed in Section 2.5.1.  

Replicating Computation. 

 We can sometimes trade off replicated computation for reduced communication requirements 
and/or execution time. For an example, we consider a variant of the summation problem presented 
in Section 2.3.2, in which the sum must be replicated in each of the N tasks that contribute to the 
sum.  

   
Figure 2.13: Using an array (above) and a tree (below) to perform a summation and a broadcast. 
On the left are the communications performed for the summation (s); on the right, the 
communications performed for the broadcast (b). After or steps, respectively, the 
sum of the N values is replicated in each of the N tasks.  

A simple approach to distributing the sum is first to use either a ring- or tree-based algorithm to 
compute the sum in a single task, and then to broadcast the sum to each of the N tasks. The 
broadcast can be performed using the same communication structure as the summation; hence, the 
complete operation can be performed in either 2(N-1) or steps, depending on which 
communication structure is used (Figure 2.13).  

These algorithms are optimal in the sense that they do not perform any unnecessary computation 
or communication. However, there also exist alternative algorithms that execute in less elapsed 



time, although at the expense of unnecessary (replicated) computation and communication. The 
basic idea is to perform multiple summations concurrently, with each concurrent summation 
producing a value in a different task.  

 We first consider a variant of the array summation algorithm based on this idea. In this variant, 
tasks are connected in a ring rather than an array, and all N tasks execute the same algorithm so 
that N partial sums are in motion simultaneously. After N-1 steps, the complete sum is replicated 
in every task. This strategy avoids the need for a subsequent broadcast operation, but at the 
expense of redundant additions and unnecessary communications. However, the 
summation and broadcast complete in N-1 rather than 2(N-1) steps. Hence, the strategy is faster if 
the processors would otherwise be idle waiting for the result of the summation.  

The tree summation algorithm can be modified in a similar way to avoid the need for a separate 
broadcast. That is, multiple tree summations are performed concurrently so that after steps 
each task has a copy of the sum. One might expect this approach to result in additions and 
communications, as in the ring algorithm. However, in this case we can exploit redundancies in 
both computation and communication to perform the summation in just operations. 
The resulting communication structure, termed a butterfly, is illustrated in Figure 2.14. In each of 
the stages, each task receives data from two tasks, performs a single addition, and sends the 
result of this addition to two tasks in the next stage. 

   
Figure 2.14: The butterfly communication structure can be used to sum N values in steps. 
Numbers located in the bottom row of tasks are propagated up through intermediate stages, 
thereby producing the complete sum in each task in the top row.  



   
Figure 2.15: The communication structures that result when tasks at different levels in a tree or 
butterfly structure are agglomerated. From top to bottom: a tree, a butterfly, and an equivalent 
representation of the butterfly as a hypercube. In each case, N=8, and each channel is labeled 
with the step in which it is used for communication.  

Avoiding Communication. 

Agglomeration is almost always beneficial if analysis of communication requirements reveals that 
a set of tasks cannot execute concurrently. For example, consider the tree and butterfly structures 
illustrated in Figures 2.8 and 2.14. When a single summation problem is performed, only tasks at 
the same level in the tree or butterfly can execute concurrently. (Notice, however, that if many 
summations are to be performed, in principle all tasks can be kept busy by pipelining multiple 
summation operations.) Hence, tasks at different levels can be agglomerated without reducing 
opportunities for concurrent execution, thereby yielding the communication structures represented 
in Figure 2.15. The hypercube structure shown in this figure is a fundamental communication 
structure that has many applications in parallel computing. It is discussed in greater detail in 
Chapter 11.  

2.4.2 Preserving Flexibility 
It is easy when agglomerating tasks to make design decisions that limit unnecessarily an 
algorithm's scalability. For example, we might choose to decompose a multidimensional data 
structure in just a single dimension, reasoning that this provides more than enough concurrency for 
the number of processors available. However, this strategy is shortsighted if our program must 
ultimately be ported to larger parallel computers. It may also lead to a less efficient algorithm, as 
discussed in Section 2.4.1.  



The ability to create a varying number of tasks is critical if a program is to be portable and 
scalable. As discussed in Chapter 1, good parallel algorithms are designed to be resilient to 
changes in processor count. This flexibility can also be useful when tuning a code for a particular 
computer. If tasks often block waiting for remote data, it can be advantageous to map several tasks 
to a processor. Then, a blocked task need not result in a processor becoming idle, since another 
task may be able to execute in its place. In this way, one task's communication is overlapped with 
another task's computation. This technique, termed overlapping computation and communication, 
is discussed in Chapter 3.  

A third benefit of creating more tasks than processors is that doing so provides greater scope for 
mapping strategies that balance computational load over available processors. As a general rule of 
thumb, we could require that there be at least an order of magnitude more tasks than processors. 
This issue is discussed in the next section.  

The optimal number of tasks is typically best determined by a combination of analytic modeling 
and empirical studies. Flexibility does not necessarily require that a design always create a large 
number of tasks. Granularity can be controlled by a compile-time or runtime parameter. What is 
important is that a design not incorporate unnecessary limits on the number of tasks that can be 
created.  

2.4.3 Reducing Software Engineering Costs 
So far, we have assumed that our choice of agglomeration strategy is determined solely by a desire 
to improve the efficiency and flexibility of a parallel algorithm. An additional concern, which can 
be particularly important when parallelizing existing sequential codes, is the relative development 
costs associated with different partitioning strategies. From this perspective, the most interesting 
strategies may be those that avoid extensive code changes. For example, in a code that operates on 
a multidimensional grid, it may be advantageous to avoid partitioning altogether in one dimension, 
if doing so allows existing routines to be reused unchanged in a parallel program.  

Frequently, we are concerned with designing a parallel algorithm that must execute as part of a 
larger system. In this case, another software engineering issue that must be considered is the data 
distributions utilized by other program components. For example, the best algorithm for some 
program component may require that an input array data structure be decomposed in three 
dimensions, while a preceding phase of the computation generates a two-dimensional 
decomposition. Either one or both algorithms must be changed, or an explicit restructuring phase 
must be incorporated in the computation. Each approach has different performance characteristics. 
These issues are discussed in Chapter 4.  

2.4.4 Agglomeration Design Checklist 
 We have now revised the partitioning and communication decisions developed in the first two 
design stages by agglomerating tasks and communication operations. We may have agglomerated 
tasks because analysis of communication requirements shows that the original partition created 
tasks that cannot execute concurrently. Alternatively, we may have used agglomeration to increase 
computation and communication granularity and/or to decrease software engineering costs, even 
though opportunities for concurrent execution are reduced. At this stage, we evaluate our design 
with respect to the following checklist. Several of these questions emphasize quantitative 



performance analysis, which becomes more important as we move from the abstract to the 
concrete; this topic is addressed in Chapter 3.  

1. Has agglomeration reduced communication costs by increasing locality? If not, examine 
your algorithm to determine whether this could be achieved using an alternative 
agglomeration strategy.  

2. If agglomeration has replicated computation, have you verified that the benefits of this 
replication outweigh its costs, for a range of problem sizes and processor counts?  

3. If agglomeration replicates data, have you verified that this does not compromise the 
scalability of your algorithm by restricting the range of problem sizes or processor counts 
that it can address?  

4. Has agglomeration yielded tasks with similar computation and communication costs? The 
larger the tasks created by agglomeration, the more important it is that they have similar 
costs. If we have created just one task per processor, then these tasks should have nearly 
identical costs.  

5. Does the number of tasks still scale with problem size? If not, then your algorithm is no 
longer able to solve larger problems on larger parallel computers.  

6. If agglomeration eliminated opportunities for concurrent execution, have you verified that 
there is sufficient concurrency for current and future target computers? An algorithm with 
insufficient concurrency may still be the most efficient, if other algorithms have excessive 
communication costs; performance models can be used to quantify these tradeoffs.  

7. Can the number of tasks be reduced still further, without introducing load imbalances, 
increasing software engineering costs, or reducing scalability? Other things being equal, 
algorithms that create fewer larger-grained tasks are often simpler and more efficient than 
those that create many fine-grained tasks.  

8. If you are parallelizing an existing sequential program, have you considered the cost of the 
modifications required to the sequential code? If these costs are high, consider alternative 
agglomeration strategies that increase opportunities for code reuse. If the resulting 
algorithms are less efficient, use performance modeling techniques to estimate cost 
tradeoffs.  

2.5 Mapping 
 In the fourth and final stage of the parallel algorithm design process, we specify where each task 
is to execute. This mapping problem does not arise on uniprocessors or on shared-memory 
computers that provide automatic task scheduling. In these computers, a set of tasks and associated 
communication requirements is a sufficient specification for a parallel algorithm; operating system 
or hardware mechanisms can be relied upon to schedule executable tasks to available processors. 
Unfortunately, general-purpose mapping mechanisms have yet to be developed for scalable 
parallel computers. In general, mapping remains a difficult problem that must be explicitly 
addressed when designing parallel algorithms.  

Our goal in developing mapping algorithms is normally to minimize total execution time. We use 
two strategies to achieve this goal:  

1. We place tasks that are able to execute concurrently on different processors, so as to 
enhance concurrency.  

2. We place tasks that communicate frequently on the same processor, so as to increase 
locality.  



Clearly, these two strategies will sometimes conflict, in which case our design will involve 
tradeoffs. In addition, resource limitations may restrict the number of tasks that can be placed on a 
single processor.  

The mapping problem is known to be NP -complete, meaning that no computationally tractable 
(polynomial-time) algorithm can exist for evaluating these tradeoffs in the general case. However, 
considerable knowledge has been gained on specialized strategies and heuristics and the classes of 
problem for which they are effective. In this section, we provide a rough classification of problems 
and present some representative techniques.  

   
Figure 2.16: Mapping in a grid problem in which each task performs the same amount of 
computation and communicates only with its four neighbors. The heavy dashed lines delineate 
processor boundaries. The grid and associated computation is partitioned to give each processor 
the same amount of computation and to minimize off-processor communication.  

Many algorithms developed using domain decomposition techniques feature a fixed number of 
equal-sized tasks and structured local and global communication. In such cases, an efficient 
mapping is straightforward. We map tasks in a way that minimizes interprocessor communication 
(Figure 2.16); we may also choose to agglomerate tasks mapped to the same processor, if this has 
not already been done, to yield a total of P coarse-grained tasks, one per processor.  

In more complex domain decomposition-based algorithms with variable amounts of work per task 
and/or unstructured communication patterns, efficient agglomeration and mapping strategies may 
not be obvious to the programmer. Hence, we may employ load balancing algorithms that seek to 
identify efficient agglomeration and mapping strategies, typically by using heuristic techniques. 
The time required to execute these algorithms must be weighed against the benefits of reduced 
execution time. Probabilistic load-balancing methods tend to have lower overhead than do 
methods that exploit structure in an application.  

The most complex problems are those in which either the number of tasks or the amount of 
computation or communication per task changes dynamically during program execution. In the 
case of problems developed using domain decomposition techniques, we may use a dynamic load-
balancing strategy in which a load-balancing algorithm is executed periodically to determine a 
new agglomeration and mapping. Because load balancing must be performed many times during 
program execution, local algorithms may be preferred that do not require global knowledge of 
computation state.  



Algorithms based on functional decomposition often yield computations consisting of many short-
lived tasks that coordinate with other tasks only at the start and end of execution. In this case, we 
can use task-scheduling algorithms, which allocate tasks to processors that are idle or that are 
likely to become idle.  

2.5.1 Load-Balancing Algorithms 
A wide variety of both general-purpose and application-specific load-balancing techniques have 
been proposed for use in parallel algorithms based on domain decomposition techniques. We 
review several representative approaches here (the chapter notes provide references to other 
methods), namely recursive bisection methods, local algorithms, probabilistic methods, and cyclic 
mappings. These techniques are all intended to agglomerate fine-grained tasks defined in an initial 
partition to yield one coarse-grained task per processor. Alternatively, we can think of them as 
partitioning our computational domain to yield one subdomain for each processor. For this reason, 
they are often referred to as partitioning algorithms.  

Recursive Bisection. 

 Recursive bisection techniques are used to partition a domain (e.g., a finite element grid) into 
subdomains of approximately equal computational cost while attempting to minimize 
communication costs, that is, the number of channels crossing task boundaries. A divide-and-
conquer approach is taken. The domain is first cut in one dimension to yield two subdomains. Cuts 
are then made recursively in the new subdomains until we have as many subdomains as we require 
tasks. Notice that this recursive strategy allows the partitioning algorithm itself to be executed in 
parallel.  

The most straightforward of the recursive bisection techniques is recursive coordinate bisection, 
which is normally applied to irregular grids that have a mostly local communication structure. This 
technique makes cuts based on the physical coordinates of grid points in the domain, at each step 
subdividing along the longer dimension so that if (for example) the cut is made along the x 
dimension, grid points in one subdomain will all have an x -coordinate greater than grid points in 
the other. This approach has the advantages of being simple and inexpensive. It also does a good 
job of partitioning computation. A disadvantage is that it does not optimize communication 
performance. In particular, it can generate long, skinny subdomains, which if an algorithm has 
significant local communication will result in more messages than will a decomposition that 
generates square subdomains.  

A variant of recursive bisection called unbalanced recursive bisection attempts to reduce 
communication costs by forming subgrids that have better aspect ratios. Instead of automatically 
dividing a grid in half, it considers the P-1 partitions obtained by forming unbalanced subgrids 
with 1/P and (P-1)/P of the load, with 2/P and (P-2)/P of the load, and so on, and chooses the 
partition that minimizes partition aspect ratio. This method increases the cost of computing the 
partition but can reduce communication costs. Plate 1  

shows a mapping onto 64 processors constructed by using unbalanced recursive bisection. In this 
instance, the grid in question is an irregular finite element mesh generated for a superconductivity 
simulation.  

 



 

Plate 1: The unbalanced recursive bisection algorithm, applied here to a superconductivity 
simulation in which increased computational load corresponds to an increased number of 
triangular elements in certain areas of the grid. The recursive partitioning yields sixty four 
subdomains, with for example the first partition descending vertically between subdomains 28 and 
5. Image courtesy of P. Plassmann.  

 

 Another technique, called recursive graph bisection, can be useful in the case of more complex 
unstructured grids, for example, finite element meshes. This technique uses connectivity 
information to reduce the number of grid edges crossing subdomain boundaries, and hence to 
reduce communication requirements. A grid is treated as a graph with N vertices (grid points) . 
The algorithm first identifies the two extremities of the graph, that is, the two vertices that are the 
most separated in terms of graph distance. (The graph distance between two vertices is the smallest 
number of edges that must be traversed to go between them.) Each vertex is then assigned to the 
subdomain corresponding to the closer extremity. Another algorithm called recursive spectral 
bisection is even better in many circumstances (see the chapter notes for references). Plate 2  

 shows a partition computed using the latter algorithm for the grid of Figure 2.9.  

 

 

Plate 2: The spectral bisection partitioning algorithm applied to a finite element mesh generated 
for an assembly part. Image courtesy of Z. Johan.  

 



   
Figure 2.17: Load balancing in a grid problem. Variable numbers of grid points are placed on 
each processor so as to compensate for load imbalances. This sort of load distribution may arise if 
a local load-balancing scheme is used in which tasks exchange load information with neighbors 
and transfer grid points when load imbalances are detected.  

Local Algorithms. 

 The techniques just described are relatively expensive because they require global knowledge of 
computation state. In contrast, local load-balancing algorithms compensate for changes in 
computational load using only information obtained from a small number of neighboring 
processors. For example, processors may be organized in a logical mesh; periodically, each 
processor compares its computational load with that of its neighbors in the mesh and transfers 
computation if the difference in load exceeds some threshold. Figure 2.17 and Plate 3  

show load distributions produced by such schemes.  

 

 

Plate 3: A dynamic, local load-balancing algorithm applied to a weather model. This shows the 
situation after grid points have migrated to compensate for a ``hot spot'' slightly to the left of the 
center of the grid. Image courtesy of J. Michalakes.  

 

Because local algorithms are inexpensive to operate, they can be useful in situations in which load 
is constantly changing. However, they are typically less good at balancing load than global 
algorithms and, in particular, can be slow to adjust to major changes in load characteristics. For 
example, if a high load suddenly appears on one processor, multiple local load-balancing 
operations are required before load ``diffuses'' to other processors.  



Probabilistic Methods. 

A particularly simple approach to load balancing is to allocate tasks to randomly selected 
processors. If the number of tasks is large, we can expect that each processor will be allocated 
about the same amount of computation. Advantages of this strategy are its low cost and scalability. 
Disadvantages are that off-processor communication is required for virtually every task and that 
acceptable load distribution is achieved only if there are many more tasks than there are 
processors. The strategy tends to be most effective when there is relatively little communication 
between tasks and/or little locality in communication patterns. In other cases, probabilistic 
methods tend to result in considerably more communication than do other techniques.  

Cyclic Mappings. 

 If we know both that computational load per grid point varies and that there is significant spatial 
locality in load levels, then a cyclic (or scattered, as it is sometimes called) mapping of tasks to 
processors can be appropriate. That is, each of P processors is allocated every P th task according 
to some enumeration of the tasks (Figure 2.18). This technique is a form of probabilistic mapping. 
The goal is that, on average, each processor will be allocated about the same computational load. 
The benefits of improved load balance may need to be weighed against increased communication 
costs due to reduced locality. Block cyclic distributions are also possible, in which blocks of tasks 
are allocated to processors.  

   
Figure 2.18: Using a cyclic mapping for load balancing in a grid problem, when executing on 12 
processors. Tasks mapped to a single processor are shaded. Notice that with this mapping, all 
communications are with tasks located on different processors (assuming a five-point stencil).  

2.5.2 Task-Scheduling Algorithms 
 Task-scheduling algorithms can be used when a functional decomposition yields many tasks, each 
with weak locality requirements. A centralized or distributed task pool is maintained, into which 
new tasks are placed and from which tasks are taken for allocation to processors. In effect, we 
reformulate the parallel algorithm so that what were originally conceived of as tasks become data 
structures representing ``problems,'' to be solved by a set of worker tasks, typically one per 
processor.  

The most critical (and complicated) aspect of a task-scheduling algorithm is the strategy used to 
allocate problems to workers. Generally, the chosen strategy will represent a compromise between 
the conflicting requirements for independent operation (to reduce communication costs) and global 
knowledge of computation state (to improve load balance). We discuss manager/worker, 
hierarchical manager/worker, and decentralized approaches.  



   
Figure 2.19: Manager/worker load-balancing structure. Workers repeatedly request and process 
problem descriptions; the manager maintains a pool of problem descriptions (p) and responds to 
requests from workers.  

Manager/Worker. 

Figure 2.19 illustrates a particularly simple task scheduling scheme that is nevertheless effective 
for moderate numbers of processors. This strategy was used previously in Section 1.4.4. A central 
manager task is given responsibility for problem allocation. Each worker repeatedly requests and 
executes a problem from the manager. Workers can also send new tasks to the manager for 
allocation to other workers. The efficiency of this strategy depends on the number of workers and 
the relative costs of obtaining and executing problems. Efficiency can be improved by prefetching 
problems so as to overlap computation and communication, and by caching problems in workers, 
so that workers communicate with the manager only when no problems are available locally.  

Hierarchical Manager/Worker. 

A variant of the manager/worker scheme divides workers into disjoint sets, each with a 
submanager. Workers request tasks from submanagers, which themselves communicate 
periodically with the manager and with other submanagers to balance load between the sets of 
processors for which they are responsible.  

Decentralized Schemes. 

 In completely decentralized schemes, there is no central manager. Instead, a separate task pool is 
maintained on each processor, and idle workers request problems from other processors. In effect, 
the task pool becomes a distributed data structure that is accessed by the different tasks in an 
asynchronous fashion. A variety of access policies can be defined. For example, a worker may 
request work from a small number of predefined ``neighbors'' or may select other processors at 
random. In a hybrid centralized/distributed scheme, requests are sent to a central manager, which 
allocates them to workers in a round-robin fashion. Notice that while this manager will certainly 
be a bottleneck on large numbers of processors, it will typically be accessed less frequently than 
will the manager in a manager/worker scheduler and hence is a more scalable construct.  

As noted in Section 2.3.4, access to a distributed data structure, such as the task pool maintained 
by a decentralized load-balancing scheme, can be provided in several different ways. Workers can 
be made responsible for both computing and managing the queue of problems. In this case, each 



worker must periodically poll to detect pending requests. Alternatively, computation and task pool 
management responsibilities can be encapsulated in separate tasks.  

Termination Detection. 

Task-scheduling algorithms require a mechanism for determining when a search is complete; 
otherwise, idle workers will never stop requesting work from other workers. This termination 
detection operation is straightforward in centralized schemes, because the manager can easily 
determine when all workers are idle. It is more difficult in decentralized algorithms, because not 
only is there no central record of which workers are idle, but also messages in transit may be 
carrying tasks even when all workers appear to be idle. See the chapter notes for references to 
termination-detection algorithms.  

2.5.3 Mapping Design Checklist 
 We have now completed our parallel algorithm design by specifying how tasks defined in 
previous design stages are mapped to processors. Our mapping decisions seek to balance 
conflicting requirements for equitable load distribution and low communication costs. When 
possible, we use a static mapping scheme that allocates each task to a single processor. However, 
when the number or size of tasks is variable or not known until runtime, we may use a dynamic 
load balancing scheme or reformulate the problem so that a task scheduling structure can be used 
to schedule computation.  

The following checklist can serve as a basis for an informal evaluation of the mapping design.  

1. If considering an SPMD design for a complex problem, have you also considered an 
algorithm based on dynamic task creation and deletion? The latter approach can yield a 
simpler algorithm (as will be illustrated in Section 2.7); however, performance can be 
problematic.  

2. If considering a design based on dynamic task creation and deletion, have you also 
considered an SPMD algorithm? An SPMD algorithm provides greater control over the 
scheduling of communication and computation, but can be more complex.  

3. If using a centralized load-balancing scheme, have you verified that the manager will not 
become a bottleneck? You may be able to reduce communication costs in these schemes by 
passing pointers to tasks, rather than the tasks themselves, to the manager.  

4. If using a dynamic load-balancing scheme, have you evaluated the relative costs of 
different strategies? Be sure to include the implementation costs in your analysis. 
Probabilistic or cyclic mapping schemes are simple and should always be considered, 
because they can avoid the need for repeated load-balancing operations.  

5. If using probabilistic or cyclic methods, do you have a large enough number of tasks to 
ensure reasonable load balance? Typically, at least ten times as many tasks as processors 
are required.  

We have now completed the design of one or more parallel algorithms designs for our problem. 
However, we are not quite ready to start writing code: several phases in the design process remain. 
First, we need to conduct some simple performance analyses in order to choose between 
alternative algorithms and to verify that our design meets performance goals. We should also think 
hard about the implementation costs of our designs, about opportunities for reusing existing code 



in their implementation, and about how algorithms fit into larger systems of which they may form 
a part. These issues are discussed in detail in Chapters 3 and 4.  

2.6 Case Study: Atmosphere Model 
 In the next three sections, we develop parallel algorithms for atmosphere modeling, VLSI design, 
and computational chemistry problems. These case studies are intended to illustrate both the 
design principles presented in the text and the stepwise process by which realistic parallel 
algorithms are developed.  

While the problems examined in these case studies are of considerable interest in their own right, 
our interest here is in their computational characteristics. The atmosphere modeling application is 
an example of a problem amenable to parallelization by using simple domain decomposition 
techniques. It is representative of a wide range of scientific and engineering computations. The 
VLSI design problem is an example of an irregular problem requiring load-balancing techniques. 
It is representative of many symbolic computing problems. Finally, the computational chemistry 
application is an example of a problem requiring asynchronous access to distributed data 
structures, a requirement that arises frequently in both numerical and symbolic computing.  

In each case study, we first briefly introduce the problem being solved and then develop parallel 
algorithms. We restrict the problem descriptions to essential computational issues and omit details 
that would add to the length of the presentation without illustrating new principles. In particular, 
we do not say much about why the underlying scientific or engineering problem is formulated in 
the way described, or about alternative problem formulations that might admit to alternative 
parallelization strategies. The chapter notes provide pointers to detailed treatments of these topics.  

2.6.1 Atmosphere Model Background 



   
Figure 2.20: The basic predictive equations used in atmospheric modeling, where and are 
latitude and longitude, z is height, u and v are horizontal components of velocity, p is pressure, is 
density, T is temperature, f is Coriolis force, g is gravity, F and Q are external forcing terms, is 
specific heat, and a is the earth's radius. 

 An atmosphere model is a computer program that simulates atmospheric processes (wind, clouds, 
precipitation, etc.) that influence weather or climate. It may be used to study the evolution of 
tornadoes, to predict tomorrow's weather, or to study the impact on climate of increased 
concentrations of atmospheric carbon dioxide. Like many numerical models of physical processes, 
an atmosphere model solves a set of partial differential equations, in this case describing the basic 
fluid dynamical behavior of the atmosphere (Figure 2.20). The behavior of these equations on a 
continuous space is approximated by their behavior on a finite set of regularly spaced points in that 
space. Typically, these points are located on a rectangular latitude-longitude grid of size 

, with in the range 15--30, , and in the range 50--500 (Figure 2.21). 
This grid is periodic in the x and y dimensions, meaning that grid point is viewed as being 
adjacent to and . A vector of values is maintained at each grid point, 
representing quantities such as pressure, temperature, wind velocity, and humidity.  



   
Figure 2.21: The three-dimensional grid used to represent the state of the atmosphere. Values 
maintained at each grid point represent quantities such as pressure and temperature.  

The atmosphere model performs a time integration to determine the state of the atmosphere at 
some future time, based on an initial state. This integration proceeds in a series of steps, with each 
step advancing the state of the computation by a fixed amount. We shall assume that the model 
uses a finite difference method (Section 2.3.1) to update grid values, with a nine-point stencil 
being used to compute atmospheric motion in the horizontal dimension, and a three-point stencil in 
the vertical (Figure 2.22).  

   
Figure 2.22: The finite difference stencils used in the atmosphere model. This figure shows for a 
single grid point both the nine-point stencil used to simulate horizontal motion and the three-point 
stencil used to simulate vertical motion.  

The finite difference computations are concerned with the movement, or fluid dynamics, of the 
atmosphere. In addition to these dynamics calculations, the atmosphere model includes algorithms 
used to simulate processes such as radiation, convection, and precipitation. These calculations are 
collectively termed physics and use a range of numerical methods of varying complexity. Data 
dependencies within physics computations are restricted to within vertical columns.  

Plate 4 illustrates one of the many phenomena that can be simulated using an atmospheric 
circulation model. This shows a potential temperature isosurface of two thunderstorm downdrafts 
that hit the ground as microbursts, then spread out and collide. The surfaces outline the boundaries 
of the cold downdrafted air. The collision region contains wind fields that are dangerous to landing 
aircraft. The grey tiles are 1-kilometer squares and the model domain is km with 50 m 
resolution.  

 

 



Plate 4: Potential temperature isosurface of two colliding thunderstorm microbursts. Image 
courtesy of J. Anderson.  

 

In summary, the atmosphere modeling example is primarily concerned with performing finite 
difference computations on a regular three-dimensional grid. In this respect, it is representative of 
a large class of scientific (numeric) computations. The simple, regular structure of the finite 
difference method makes it a useful pedagogical tool, and we shall use it repeatedly in the 
following chapters to illustrate issues in algorithm design and performance analysis.  

2.6.2 Atmosphere Model Algorithm Design 
 We now develop parallel algorithms for the atmosphere modeling problem, proceeding in the 
stepwise fashion presented in earlier sections.  

Partition. 

The grid used to represent state in the atmosphere model is a natural candidate for domain 
decomposition. Decompositions in the x, y, and/or z dimensions are possible (Figure 2.2). Pursuant 
to our strategy of exposing the maximum concurrency possible, we initially favor the most 
aggressive decomposition possible, which in this case defines a task for each grid point. This task 
maintains as its state the various values associated with its grid point and is responsible for the 
computation required to update that state at each time step. Hence, we have a total of 

tasks, each with data and computation per time step.  

Communication. 

 The design checklist of Section 2.2.3 does not suggest any obvious deficiencies in our partition 
design, so we proceed to consider communication requirements. We identify three distinct 
communications:  



   
Figure 2.23: Task and channel structure for a two-dimensional finite difference computation with 
nine-point stencil, assuming one grid point per processor. Only the channels used by the shaded 
task are shown.  

1. Finite difference stencils. If we assume a fine-grained decomposition in which each task 
encapsulates a single grid point, the nine-point stencil used in the horizontal dimension 
requires that each task obtain values from eight neighboring tasks. The corresponding 
channel structure is illustrated in Figure 2.23. Similarly, the three-point stencil used in the 
vertical dimension requires that each task obtain values from two neighbors.  

2. Global operations. The atmosphere model computes periodically the total mass of the 
atmosphere, in order to verify that the simulation is proceeding correctly. This quantity is 
defined as follows:  

 

where denotes the mass at grid point (i,j,k). This sum can be computed using one of 
the parallel summation algorithms presented in Section 2.4.1.  

3. Physics computations. If each task encapsulates a single grid point, then the physics 
component of the atmosphere model requires considerable communication. For example, 
the total clear sky (TCS) at level is defined as  

 

where level 0 is the top of the atmosphere and cld  is the cloud fraction at level i. This 
prefix product operation can be performed in steps using a variant of the hypercube 
algorithm of Section 2.4.1. In total, the physics component of the model requires on the 
order of 30 communications per grid point and per time step.  



Let us evaluate this design by using the checklist of Section 2.3.5. The communication associated 
with the finite difference stencil is distributed and hence can proceed concurrently. So is the 
communication required for the global communication operation, thanks to the distributed 
algorithm developed in Section 2.4.1. (We might also consider performing this global operation 
less frequently, since its value is intended only for diagnostic purposes.) The one component of 
our algorithm's communication structure that is problematic is the physics. However, we shall see 
that the need for this communication can be avoided by agglomeration.  

   
Figure 2.24: Using agglomeration to reduce communication requirements in the atmosphere 
model. In (a), each task handles a single point and hence must obtain data from eight other tasks 
in order to implement the nine-point stencil. In (b), granularity is increased to points, 
meaning that only 4 communications are required per task.  

Agglomeration. 

 Our fine-grained domain decomposition of the atmosphere model has created 
tasks: between and , depending on problem size. This is likely to be many 

more than we require and some degree of agglomeration can be considered. We identify three 
reasons for pursuing agglomeration:  

1. As illustrated in Figure 2.24, a small amount of agglomeration (from one to four grid 
points per task) can reduce the communication requirements associated with the nine-point 
stencil from eight to four messages per task per time step.  

2. Communication requirements in the horizontal dimension are relatively small: a total of 
four messages containing eight data values. In contrast, the vertical dimension requires 
communication not only for the finite difference stencil (2 messages, 2 data values) but 
also for various ``physics'' computations (30 messages). These communications can be 
avoided by agglomerating tasks within each vertical column.  

3. Agglomeration in the vertical is also desirable from a software engineering point of view. 
Horizontal dependencies are restricted to the dynamics component of the model; the 
physics component operates within individual columns only. Hence, a two-dimensional 
horizontal decomposition would allow existing sequential physics code to be reused in a 
parallel program without modification.  

This analysis makes it appear sensible to refine our parallel algorithm to utilize a two-dimensional 
horizontal decomposition of the model grid in which each task encapsulates at least four grid 



points. Communication requirements are then reduced to those associated with the nine-point 
stencil and the summation operation. Notice that this algorithm can create at most 

tasks: between and , depending on problem size. This number is likely to be 
enough for most practical purposes.  

Mapping. 

 In the absence of load imbalances, the simple mapping strategy illustrated in Figure 2.16 can be 
used. It is clear from the figure that in this case, further agglomeration can be performed; in the 
limit, each processor can be assigned a single task responsible for many columns, thereby yielding 
an SPMD program.  

This mapping strategy is efficient if each grid column task performs the same amount of 
computation at each time step. This assumption is valid for many finite difference problems but 
turns out to be invalid for some atmosphere models. The reason is that the cost of physics 
computations can vary significantly depending on model state variables. For example, radiation 
calculations are not performed at night, and clouds are formed only when humidity exceeds a 
certain threshold. The sort of variation in computational load that can result is illustrated in Plate 5.  

 

 

Plate 5: Load distribution in an atmosphere model with a 64X128 grid. The figure shows per-point 
computational load at a single time step, with the histogram giving relative frequency of different 
load values. The left-hand image shows a time step in which radiation time steps are performed, 
and the right-hand image an ordinary time step. Diurnal, land/ocean, and local variations are 
visible. Images courtesy of J. Michalakes.  

 



   
Figure 2.25: Load distribution in the physics component of an atmosphere model in the absence of 
load balancing. In the top part of the figure, shading is used to indicate computational load in 
each of processors. A strong spatial variation is evident. This effect is due to the night/day 
cycle (radiation calculations are performed only in sunlight); hence, there is a temporal variation 
also. The bottom part of the figure is a histogram showing the distribution of computation times, 
which vary by a factor of 5. These results were obtained by using a parallel version of the 
National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) on the 
512-processor Intel DELTA computer.  



   
Figure 2.26: Load distribution in the physics component of CCM2 when using a cyclic mapping. A 
comparison with Figure 2.25 shows that load imbalances are reduced significantly.  

 Empirical studies suggest that these load imbalances can reduce computational efficiency by 20 
percent or more (Figure 2.25; see also Plate 5).  

In many circumstances, this performance loss may be regarded as acceptable. However, if a model 
is to be used extensively, it is worthwhile to spend time improving efficiency. One approach is to 
use a form of cyclic mapping: for example, allocating each processor tasks from western and 
eastern and from northern and southern hemispheres. Figure 2.26 shows the reduction in load 
imbalance that can be achieved with this technique; this reduction must be weighed against the 
resulting increase in communication costs.  

2.6.3 Atmosphere Model Summary 
The design of a parallel atmosphere model has proved to be straightforward process, in that most 
design choices are clear-cut. A two-dimensional domain decomposition of the model grid results 
in a need for both local communication between tasks handling neighboring grid points and a 
parallel summation operation.  

One unanswered question concerns whether load-balancing algorithms should be incorporated into 
the model. Because load balancing adds to the complexity of the overall design, this decision 
requires both performance data (of the sort presented in Figure 2.25) and information about the 
expected use of the parallel model. Another question, addressed in Chapter 4, is how the 
atmosphere model will fit into a larger framework such as the climate model of Figure 2.3. 

2.7 Case Study: Floorplan Optimization 



Our second case study is an example of a highly irregular, symbolic problem. The solution that we 
develop incorporates a task scheduling algorithm. 

2.7.1 Floorplan Background 
VLSI is a process used to build electronic components such as microprocessors and memory chips 
comprising millions of transistors. The design of VLSI components is a computationally 
demanding process. Computers are used extensively to verify the correctness of a circuit design, to 
lay out a circuit in a two-dimensional area, and to generate the patterns used to test circuits once 
they have been fabricated. Many of these problems involve either an exhaustive or a heuristically 
guided search of a large space of possible solutions. Here, we consider a layout problem. The first 
stage of the VLSI design process typically produces a set of indivisible rectangular blocks called 
cells. In a second stage, interconnection information is used to determine the relative placements 
of these cells. In a third stage, implementations are selected for the various cells with the goal of 
optimizing the total area. It is the third stage, floorplan optimization, for which we shall develop a 
parallel algorithm. This is an important part of the design process, since the cost of a chip is 
usually dominated by its area.  

VLSI floorplan optimization can be explained by analogy with the problem of designing a kitchen. 
Assume that we have decided on the components the kitchen is to contain (this action is stage 1 of 
the VLSI design process) and how these components are to be arranged (stage 2). For example, we 
may wish to have a stove, refrigerator, table, and sink and may require that the stove be next to the 
refrigerator and the table next to the sink. Assume also that we can choose among several possible 
models for each of these components, with different models having different shapes but occupying 
the same floor area. In the floorplan optimization phase of our kitchen design, we select models so 
as make the best use of available floorspace.  

In VLSI, a floorplan is represented as a pair of polar graphs, conventionally called the and 
graphs. (A polar graph is a directed acyclic graph with a single source and a single sink. The 

term directed means that edges have a direction, and acyclic means that there are no cycles.) These 
graphs specify which cells are adjacent in the vertical and horizontal directions, respectively. Each 
arc denotes a cell, and nodes (other than the source and sink) link cells that must have touching 
edges.  

Although a cell has a fixed area, it may have several possible implementations with different 
aspect ratios. If we have N cells, and if cell has implementations, then the total number of 
possible floorplan configurations is  

 

For example, Figure 2.27 shows a floorplan optimization problem with three cells and six possible 
configurations.  



   
Figure 2.27: A floorplan optimization problem. The three cells A, B, and C, have 1, 3, and 2 
implementations each, respectively. In (a) are the alternative implementations. In (b) are the and 

graphs, which state that B must be above C, and that A must be to the left of B and C, 
respectively. In (c) are the alternative floorplans that satisfy the constraints; each is 
labeled with its area. The lowest area floorplan is constructed from A, B0, and C1 and has an area 
of 130.  



   
Figure 2.28: Solving a floorplan optimization problem. This is the search tree corresponding to 
the problem illustrated in Figure 2.27. Level 0 is the root. At level 1, an implementation has been 
chosen for A; the three level 2 subtrees represent the choices for B and the level 3 leaves the 
choices for C. The number in each tree node represents the area of the associated (partial) 
solution. The optimal configuration is (A,B0,C1) and has area 130.  

The problem then is to identify the configuration with the lowest area, where area is defined as the 
product of the maximum horizontal and vertical extents. This identification can be achieved by 
using a search algorithm to explore a search tree representing all possible configurations. As 
shown in Figure 2.28, level i of this tree corresponds to the situation in which implementations 
have been chosen for i cells. We can explore this search tree by using Algorithm 1.1. An initial 
call search(root) causes the entire tree to be visited, with the path used to get to each leaf node 
reported as a solution.  

 Algorithm 1.1 implements an exhaustive search that visits all nodes of the search tree. 
Unfortunately, this strategy is computationally infeasible for any but the smallest problems. For 
example, a problem with just 20 cells and 6 implementations per cell has a search space of 

nodes. Fortunately, the number of nodes explored can be reduced considerably by 
using a technique called branch-and-bound search. The basic idea is to keep track of the best 
(lowest area) solution found so far. Before ``expanding'' a node (that is, looking at its subtrees), we 
check whether the area of the partial configuration represented by that node is already greater than 
that of the best known solution. If so, we know that this node cannot yield a better solution, and 
the subtree rooted at that node can be abandoned, or pruned (Figure 2.29). This approach is 
specified as Algorithm 2.2, with the global variable A used to maintain a record of the best 
solution.  



   
Figure 2.29: Branch-and-bound search. This figure shows the nodes actually explored in the 
example problem, assuming a depth-first and left-to-right search strategy. The subtree rooted at 
the second node on level 2 is pruned because the cost of this node (170) is greater than that of the 
cheapest solution already found (130).  

   

On a sequential computer, the foreach in Algorithm 2.2 can examine each subtree in turn, thereby 
giving a depth-first search algorithm that explores the tree depth-first and left-to-right. In this case, 



pruning can reduce the number of nodes explored enormously. In one experiment reported in the 
literature, the number of nodes explored in a typical 20-cell problem was reduced from to 

. As we shall see, efficient pruning is a difficult problem in a parallel environment and, to a 
large extent, determines the structure of our parallel algorithm.  

In summary, the fundamental operation to be performed in the floorplan optimization problem is 
branch-and-bound search. This is an interesting algorithm from a parallel computing perspective 
because of its irregular computational structure: the size and shape of the search tree that must be 
explored are not known ahead of time. Also, the need for pruning introduces a need both to 
manage the order in which the tree is explored and to acquire and propagate global knowledge of 
computation state. In these respects this problem is typical of many algorithms in symbolic 
(nonnumeric) computing.  

2.7.2 Floorplan Algorithm Design 

Partition. 

 Algorithm 2.2, like Algorithm 1.1, has no obvious data structure to which we can apply domain 
decomposition techniques. Hence, we use a fine-grained functional decomposition in which each 
search tree node is explored by a separate task. As noted earlier, this means that new tasks will be 
created in a wavefront as the search progresses down the search tree, which will tend to be 
explored in a breadth-first fashion. Notice that only tasks on the wavefront can execute 
concurrently. We also need to address the issue of how to manage the A value, which must be 
accessed by all tasks. For now, we assume that it is encapsulated in a single task with which other 
tasks will communicate.  

A quick review using the design checklist of Section 2.2.3 reveals one deficiency in this design. 
The breadth-first exploration strategy is likely to decrease performance dramatically by delaying 
discovery of solution nodes and hence reducing the amount of pruning that occurs, thereby leading 
to considerable redundant computation. We must bear this issue in mind in subsequent design 
phases.  

Communication. 

 In a parallel implementation of simple search (Algorithm 1.1), tasks can execute independently 
and need communicate only to report solutions. In contrast, branch-and-bound search requires 
communication during execution in order to obtain and update the search bound A . In 
designing a communication structure to achieve this goal, we need to trade off the benefits of 
frequent accesses to a centralized A value (which tends to reduce the amount of the search tree 
that must be explored) against communication costs.  

One approach is to encapsulate responsibility for maintaining A in a centralized task, with 
which each task communicates when a solution is produced or a bound is required. This approach 
is simple and may even be efficient if communication is cheap, evaluating a node is expensive, and 
the number of processors is not too large. However, the centralized approach is inherently 
nonscalable. Since the manager must take a certain amount of time to process a request, the 
maximum rate at which it can service requests, and hence the maximum number of tasks that can 
execute concurrently, is bounded.  



Various refinements to this centralized scheme can be imagined. We can modify Algorithm 2.2 to 
check A only periodically, for example when a depth counter incremented on each recursive 
call is an integer multiple of a specified frequency parameter. Or, we can partition the tree into 
subtrees, each with its own A submanager, and organize periodic exchanges of information 
between these submanagers. For example, submanagers can perform broadcast operations when 
they discover significantly better solutions.  

Agglomeration. 

In the agglomeration phase of the design process we start to address practical issues relating to 
performance on target computers. In the floorplan optimization problem, this means we must 
address two potential deficiencies of the fine-grained algorithm that we have developed. The first 
will be familiar from earlier problems, that is, the cost of creating a large number of fine-grained 
tasks. This can be addressed using agglomeration, unless we believe that node evaluation is 
sufficiently expensive and task creation sufficiently cheap for the fine-grained algorithm to be 
efficient. For example, we can create one task for each search call in the foreach statement of 
Algorithm 2.2 until we reach a specified depth in the tree, and then switch to a depth-first strategy, 
thereby creating a single task that evaluates search calls in sequence (Figure 2.30). If the switch 
to depth-first search is performed at depth D and cell has implementations, then in the 

absence of pruning this technique creates tasks.  

   
Figure 2.30: Increasing granularity in a search problem. In this figure, we agglomerate by 
switching to a sequential search at level two in the search tree. A task is created for each subtree 
rooted at level two.  

The second potential deficiency is more subtle and relates to the scheduling of tasks rather than to 
their creation. In the absence of explicit programmer control, we can assume that the tasks created 
to evaluate search tree nodes will execute either in the order that they are created or perhaps in a 
random order. In either case, the search tree tends to be explored in a breadth-first fashion. This is 
undesirable because it tends to reduce the effectiveness of pruning and hence cause redundant 
computation. The solution to this problem is to control the order in which search tree nodes are 
explored. That is, we must implement a task-scheduling algorithm. Because this is really a 
mapping issue, we discuss it under ``Mapping.''  

Mapping. 

 Recall that when we use a task-scheduling strategy, tasks (search tree nodes) become ``problems'' 
to be executed by one of a smaller number of ``worker'' tasks, typically one per processor. 



Workers generate new search problems as they expand nodes, and request new search problems 
each time they complete previously assigned problems. Requests can be handled using a 
centralized or decentralized strategy.  

We can imagine a variety of alternative task-scheduling schemes for the floorplan optimization 
problem. One approach works in conjunction with the agglomeration scheme of Figure 2.30. A 
central manager first constructs a number of coarse-grained tasks, by exploring the search tree to 
depth D. These tasks are then assigned to idle workers in a demand-driven manner. Because each 
task can be represented by a short vector representing the path taken to its position in the tree, the 
data movement costs associated with this scheme are not high. Furthermore, because each 
processor executes one subtree at a time in a depth-first fashion, pruning is effective.  

An interesting variant of this approach combines elements of both redundant work and cyclic 
mapping to avoid the need for a central manager. Every worker expands the tree to depth D. Then, 
each worker takes responsibility for a disjoint subset of the tasks generated. (This subset could be 
identified using a cyclic allocation strategy, for example.) Only if a worker becomes idle does it 
ask other workers for tasks.  

A third strategy, more complex but also more general, is initially to allocate the root node to a 
single worker. Load balancing is then achieved by causing workers with empty queues to request 
problems from other workers. Each worker can then enforce a local depth-first search strategy, and 
hence increase the amount of pruning, by ordering its queue of search problems according to their 
depth in the tree. This method allows the worker to select problems far from the root for local 
execution and problems nearer to the root to hand to other workers.  

Our choice of task scheduling strategy will depend on characteristics of our problem and target 
computer and can be determined by analysis and experiment. Notice that the communication 
structures used for task scheduling can be integrated with those proposed earlier for maintaining A 

. For example, a central manager used for task scheduling can also maintain and distribute an 
up-to-date search bound with each task. In decentralized schemes, the worker tasks that execute 
search problems can broadcast improved search bound values to other workers.  

2.7.3 Floorplan Summary 
The parallel algorithm designed in this case study is certainly more complex, and perhaps less 
obvious, than that developed for the atmosphere model. It is clear from the start that functional 
decomposition techniques should be used to define tasks, that responsibility for maintaining A 

should be isolated from the rest of the computation, and that we can increase task granularity 
by switching from a parallel to a sequential evaluation strategy at a specified depth in the search 
tree. If we were concerned with parallelizing simple search, the design might be complete at this 
stage. However, the need to support pruning requires that we proceed with further refinements. In 
particular, we introduce a task-scheduling algorithm so that we can pursue depth-first search on 
each processor while exposing higher-level search tree nodes for idle workers. 

2.8 Case Study: Computational Chemistry 



 Our third case study, like the first, is from computational science. It is an example of an 
application that accesses a distributed data structure in an asynchronous fashion and that is 
amenable to a functional decomposition.  

2.8.1 Chemistry Background 
Computational techniques are being used increasingly as an alternative to experiment in chemistry. 
In what is called ab initio quantum chemistry, computer programs are used to compute 
fundamental properties of atoms and molecules, such as bond strengths and reaction energies, 
from first principles, by solving various approximations to the Schrödinger equation that describes 
their basic structures. This approach allows the chemist to explore reaction pathways that would be 
hazardous or expensive to explore experimentally. One application for these techniques is in the 
investigation of biological processes. For example, Plate 6  

shows a molecular model for the active site region in the enzyme malate dehydrogenase, a key 
enzyme in the conversion of glucose to the high-energy molecule ATP. This image is taken from a 
simulation of the transfer of a hydride anion from the substrate, malate, to a cofactor, nicotinamide 
adenine diphosphate. The two isosurfaces colored blue and brown represent lower and higher 
electron densities, respectively, calculated by using a combined quantum and classical mechanics 
methodology. The green, red, blue, and white balls are carbon, oxygen, nitrogen, and hydrogen 
atoms, respectively.  

Fundamental to several methods used in quantum chemistry is the need to compute what is called 
the Fock matrix, a two-dimensional array representing the electronic structure of an atom or 
molecule. This matrix, which is represented here as F, has size N N and is formed by evaluating 
the following summation for each element:  

   

where D is a two-dimensional array of size N N that is only read, not written, by this computation 
and the I represent integrals that are computed using elements i, j, k, and l of a read-only, one-
dimensional array A with elements. An integral can be thought of as an approximation to the 
repulsive force between two electrons.  



   

Because Equation 2.3 includes a double summation, apparently 2  integrals must be computed 
for each element of F, for a total of 2  integrals. However, in practice it is possible to exploit 
redundancy in the integrals and symmetry in F and reduce this number to a total of . When 
this is done, the algorithm can be reduced to the rather strange logic given as Algorithm 2.3. In 
principle, the calculation of each element of F requires access to all elements of D and A; 
furthermore, access patterns appear highly irregular. In this respect, the Fock matrix construction 
problem is representative of many numeric problems with irregular and nonlocal communication 
patterns.  

For the molecular systems of interest to chemists, the problem size N may be in the range 
. Because the evaluation of an integral is a fairly expensive operation, involving 
operations, the construction of the Fock matrix may require operations. In 

addition, most methods require that a series of Fock matrices be constructed, each representing a 
more accurate approximation to a molecule's electronic structure. These considerations have 
motivated a considerable amount of work on both efficient parallel algorithms for Fock matrix 
construction and improved methods that require the computation of less than integrals.  

2.8.2 Chemistry Algorithm Design 



Partition. 

Because the Fock matrix problem is concerned primarily with the symmetric two-dimensional 
matrices F and D, an obvious partitioning strategy is to apply domain decomposition techniques to 
these matrices to create N(N+1)/2 tasks, each containing a single element from each matrix ( , 

) and responsible for the operations required to compute its . This yields N(N+1)/2 tasks, 
each with data and each responsible for computing 2  integrals, as specified in Equation 
2.3.  

This domain decomposition strategy is simple but suffers from a significant disadvantage: it 
cannot easily exploit redundancy and symmetry and, hence, performs eight times too many 
integral computations. Because an alternative algorithm based on functional decomposition 
techniques is significantly more efficient (it does not perform redundant computation and does not 
incur high communication costs), the domain decomposition algorithm is not considered further.  

   
Figure 2.31: Functional decomposition of Fock matrix problem. This yields about data 
tasks, shown in the upper part of the figure, and computation tasks, shown in the lower part 
of the figure. Computation tasks send read and write requests to data tasks.  

Quite a different parallel algorithm can be developed by focusing on the computation to be 
performed rather than on the data structures manipulated, in other words, by using a functional 
decomposition. When redundancy is considered, one naturally thinks of a computation as 
comprising a set of integrals (the integral procedure of Algorithm 2.3), each requiring six D 
elements and contributing to six F elements. Focusing on these computations, we define 

``computation'' tasks, each responsible for one integral.  

Having defined a functional decomposition, we next need to distribute data structures over tasks. 
However, we see no obvious criteria by which data elements might be associated with one 
computation task rather than another: each data element is accessed by many tasks. In effect, the F, 
D, and A arrays constitute large data structures that the computation tasks need to access in a 
distributed and asynchronous fashion. This situation suggests that the techniques described in 
Section 2.3.4 for asynchronous communication may be useful. Hence, for now we simply define 
two sets of ``data'' tasks that are responsible only for responding to requests to read and write data 
values. These tasks encapsulate elements of the two-dimensional arrays D and F ( , ) and of 



the one-dimensional array A ( ), respectively. In all, our partition yields a total of approximately 
computation tasks and data tasks (Figure 2.31).  

Communication and Agglomeration. 

 We have now defined computation tasks and data tasks. Each computation task 
must perform sixteen communications: six to obtain D matrix elements, four to obtain A matrix 
elements, and six to store F matrix elements. As the computational costs of different integrals can 
vary significantly, there does not appear to be any opportunity for organizing these communication 
operations into a regular structure, as is advocated in Section 2.3.2.  

On many parallel computers, the cost of an integral will be comparable to the cost of a 
communication. Hence, communication requirements must be reduced by agglomeration. We 
describe two alternative strategies that can be used to achieve this goal. Their data requirements 
are illustrated in Figure 2.32.  

   
Figure 2.32: Agglomeration strategies for Fock matrix construction with N=P=5, for (a) the total 
replication algorithm and (b) the partial replication algorithm. In each case, the five tasks are 
shown with shading used to represent the portion of the symmetric D and F matrices allocated to 
each task. In (a), each matrix is replicated in each task. In (b), each task is given a single row and 
column; this corresponds to a factor of two replication.  

1. Total replication. Communication costs can be cut dramatically by replicating the F and D 
matrices in each of P tasks, one per processor of a parallel computer. Each task is given 
responsibility for 1/P of the integrals. Computation can then proceed in each task without any 
communication. The only coordination required is a final summation to accumulate partial F 
matrices. This can be achieved using a parallel vector reduction algorithm described in Section 
11.2.  

The technique of replicating data structures on each processor of a parallel computer is commonly 
used in parallel computing to reduce software engineering costs. It allows an existing sequential 
code to be adapted quickly for parallel execution, since there is no need to modify data structures. 
The principal disadvantage of the technique is that it is nonscalable. Because total memory 
requirements scale with the number of tasks created, the largest problem that can be solved is 
determined not by the total amount of memory in a parallel computer, but by the amount available 
in a single processor. For example, on a 512-processor computer with 16 MB of memory per 
processor, an implementation of the quantum chemistry code DISCO that uses this strategy cannot 
solve problems with N>400. In principle, it would be interesting to solve problems where N is 10 
times larger.  



   
Figure 2.33: Data requirements for integral clusters. Each task accesses three rows (and 
sometimes columns) of the D and F matrices.  

2. Partial replication. An alternative approach is as follows. First, we agglomerate computation in 
what seems an obvious way, namely, by making the inner loop of the procedure fock_build in 
Algorithm 2.3 into a task. This yields computation tasks, each responsible for 

integrals. Next, we examine the communication requirements of each such task. We find that 
there is considerable locality in the data required by these clusters of integrals: each cluster 
accesses the i th, j th, and k th row (and sometimes column) of D and F (Figure 2.33). To exploit 
this locality, we agglomerate data to create N data tasks, each containing a row/column pair of the 
two-dimensional arrays D and F and all of the one-dimensional array A. In this scheme, each 
element of D and F is replicated once, and A is replicated N times, so total storage requirements are 
increased from an average of N to 3N per task. Because of this replication, each computation task 
now requires data from just three data tasks. Hence, the number of messages is reduced from 

to . The total volume communicated remains . Because the cost of 
communicating a word is typically much less than the cost of computing an integral, this is an 
efficient parallel algorithm.  

Mapping. 

 The ``partial replication'' Fock matrix construction algorithm creates N data tasks and 
computation tasks. We use the notation (i j k) to identify the computation task responsible for 

computing the integrals I ; this task requires data from data tasks i, j, and k. To complete 
the parallel algorithm, we must define a mapping of data and computation tasks to processors.  

We assume processors. Since each data task will receive roughly the same number of 
requests, we allocate one data task to each processor. This leaves the problem of mapping 
computation tasks. We can imagine a variety of approaches:  

1. A simple mapping, in which task (i j k) is mapped to the same processor as data task i ; 
since each task communicates with data tasks i, j, and k, off-processor communication 
requirements are reduced by one third. A disadvantage of this strategy is that since both the 
number of integrals in a task and the amount of computation per integral can vary, different 
processors may be allocated different amounts of computation.  

2.  A probabilistic mapping, in which computation tasks are mapped to processors at random 
or using a cyclic strategy.  

3. A task-scheduling algorithm to allocate tasks to idle processors. Since a problem can be 
represented by three integers (i, j, k) and multiple problems can easily be agglomerated into 



a single message, a simple centralized scheduler can be used. (Empirical studies suggest 
that a centralized scheduler performs well on up to a few hundred processors.)  

4. Hybrid schemes in which, for example, tasks are allocated randomly to sets of processors, 
within which a manager/worker scheduler is used.  

The best scheme will depend on performance requirements and on problem and machine 
characteristics.  

2.8.3 Chemistry Summary 
We have developed two alternative parallel algorithms for the Fock matrix construction problem.  

1. The F and D matrices are replicated in each of N tasks. Integral computations are distributed 
among the tasks, and a summation algorithm is used to sum F matrix contributions 
accumulated in the different tasks. This algorithm is simple but nonscalable.  

2. The F, D, and A matrices are partitioned among N tasks, with a small amount of replication. 
Integral computations are agglomerated into tasks, each containing integrals. 
These tasks are mapped to processors either statically or using a task-scheduling scheme.  

This case study illustrates some of the tradeoffs that can arise in the design process. The first 
algorithm slashes communication and software engineering costs; however, it is not scalable. In 
contrast, the second algorithm has higher communication costs but is highly scalable: its memory 
requirements increase only with problem size, not the number of processors. To choose between 
the two algorithms, we need to quantify their parallel performance and then to determine the 
importance of scalability, by assessing application requirements and the characteristics of the 
target parallel computer.  

2.9 Summary 
 In this chapter, we have described a four-step approach to parallel algorithm design in which we 
start with a problem specification and proceed as follows:  

1. We first partition a problem into many small pieces, or tasks. This partitioning can be 
achieved by using either domain or functional decomposition techniques.  

2. Next, we organize the communication required to obtain data required for task execution. 
We can distinguish between local and global, static and dynamic, structured and 
unstructured, and synchronous and asynchronous communication structures.  

3. Then, we use agglomeration to decrease communication and development costs, while 
maintaining flexibility if possible.  

4. Finally, we map tasks to processors, typically with the goal of minimizing total execution 
time. Load balancing or task scheduling techniques can be used to improve mapping 
quality.  

We have also provided design checklists that can be used to evaluate designs as they are 
developed. These informal questions are intended to highlight nonscalable or inefficient features in 
designs.  



Successful application of this design methodology, together with the use of the performance 
modeling techniques described in Chapter 3, produces one or more parallel algorithms that balance 
in an appropriate fashion the potentially conflicting requirements for concurrency, scalability, and 
locality. The next stage in the design process is to consider how such algorithms fit into the larger 
context of a complete program. As we shall see in Chapter 4, additional concerns must be 
addressed at that level, which may require revisions to the designs of individual components. 
Agglomeration and mapping decisions are particularly prone to modification; therefore, we make 
these decisions last, when they can be most easily changed.  

Exercises 
Some of the exercises in this chapter ask you to design parallel algorithms; others ask you to 
implement algorithms described in the text or designed by you. It is important to attempt both 
types of problem. Your implementations should use one of the tools described in Part II.  

1.  The component labeling problem in image processing is defined as follows. We are given 
a two-dimensional array of pixels valued 0 or 1. The 1-pixels must be labeled in such a 
way that two pixels have the same label if and only if they are in the same connected 
component. Two 1-pixels are in the same connected component if there is a path of 
contiguous 1-pixels linking them together. Two pixels are contiguous if they are adjacent 
vertically or horizontally. Develop a parallel algorithm based on the following approach. 
First, each 1-pixel is assigned a unique label (for example, its address). Then, each 1-pixel 
is updated to contain the minimum of its current label and those of its four neighbors. The 
second step is repeated until all adjacent 1-pixels have the same label.  

2. Modify the algorithm in Exercise 1 to deal with the situation in which pixels are also 
contiguous when adjacent diagonally.  

3. Implement the algorithm developed in Exercise 1 and measure its performance for a 
variety of array sizes and processor counts.  

4. A compiler consists of six distinct stages. The tokenizer translates characters (input from 
one or more files) into tokens. The parser translates tokens into procedures. The 
canonicalizer translates procedures into a canonical form. The encoder translates 
procedures in this canonical form into low-level code. The optimizer rewrites this low-
level code. Finally, the assembler generates object code. Apply domain and functional 
decomposition techniques to obtain two different parallel algorithms for the compiler. 
Compare and contrast the scalability and expected efficiency of the two algorithms.  

5.  Design and implement a parallel algorithm for a 1-D finite-difference algorithm with a 
three-point stencil. Study the performance of the resulting program as a function of 
problem size and processor count, assuming one task per processor.  

6. Extend the algorithm and program developed in Exercise 5 to incorporate a simple 
convergence test: terminate execution when the difference between values computed at 
successive steps is less than a specified threshold for all grid points.  

7.  Design and implement parallel algorithms based on both 1-D and 2-D decompositions of a 
2-D finite-difference algorithm with a five-point stencil. Study the performance of the 
resulting programs as a function of problem size and processor count, assuming one task 
per processor.  

8. Using a parallel tool such as CC++ or Fortran M that supports multiple tasks per processor, 
study the performances of the programs developed in Exercises 5 and 7 for a fixed number 
of processors as the number of tasks is varied.  



9. Implement the various parallel summation algorithms described in Section 2.3.2, and study 
their performance as a function of problem size and processor count. Account for any 
differences.  

10.  Design parallel algorithms for the Gauss-Seidel method described in Section 2.3.1, for 
both 1-D and 2-D grids.  

11.  Implement the parallel Gauss-Seidel algorithms of Exercise 10. Quantify the available 
parallelism (a) in a single time step and (b) when performing T time steps in a pipelined 
fashion.  

12. The branch-and-bound search algorithm (Section 2.7) replicates the data defining the 
search problem on every processor. Is it worthwhile distributing these data? Explain.  

13.  An all-solutions search problem explores a search tree similar to that shown in Figure 2.28 
in its entirety without the benefit of pruning. A function is applied to each leaf-node to 
determine whether it is a solution, and solutions are collected. Develop a parallel algorithm 
for this problem. Initially, assume that the cost of a node evaluation is a constant and that 
the tree is of uniform and known depth; then relax these assumptions.  

14. A single-solution search is like the all-solutions search of Exercise 13, except that it 
terminates when a single solution is found. Develop a parallel algorithm for this problem.  

15.  Design a variant of the ``partial replication'' Fock matrix construction algorithm (Section 
2.8) that can execute on P processors, where P>N.  

16. Design a variant of the ``partial replication'' Fock matrix construction algorithm (Section 
2.8) that reduces communication requirements to less than two messages per task. 
Characterize the savings that can be achieved by this scheme as a function of available 
memory. Hint : Cache data.  

17.  Develop an analytic model for the maximum performance possible in a branch-and-bound 
search algorithm in which tasks poll a central manager for an up-to-date search bound.  

18. Implement the branch-and-bound search algorithm studied in Exercise 17 and compare its 
performance with that of your model. Propose and investigate refinements to the 
centralized algorithm.  

19. A deficiency of the parallel branch-and-bound search algorithm of Section 2.7 is that it 
does not provide a mechanism for informing workers when a search is complete. Hence, an 
idle worker will never stop requesting work from other workers. Design a mechanism that 
ensures that all workers cease execution some finite time after the last solution is reported.  

20. Discuss the circumstances under which a random mapping of tasks to processors might be 
expected to be effective in the branch-and-bound search problem. When might it be 
expected to be ineffective?  

21. Discuss the relative advantages and disadvantages of random and cyclic mappings of tasks 
to processors in the partial replication Fock matrix construction algorithm of Section 2.8.2.  

22. Educate yourself about the basic operations employed in a relational database, and design 
parallel algorithms that could be used to perform these operations when a database is 
distributed over the processors of a multicomputer.  

23. Without referring to Section 4.6, design parallel algorithms based on both 1-D and 2-D 
decompositions for the matrix multiplication problem, in which we compute C=A.B, where 

.  

Chapter Notes 
In this chapter, we have focused on the software engineering question of developing a parallel 
algorithm design from a given problem specification. We have assumed some familiarity with 
program design---from, for example, previous study in sequential programming. A classic article 



by Parnas and Clements [222] describes the benefits (and difficulties) of a rational design process. 
The chapter notes in Chapters 3 and 4 provide additional references to material on the related 
topics of performance analysis and modularity.  

Relatively few authors have addressed the particular problems that arise when designing 
algorithms for realistic scalable parallel computers. Numerous books discuss parallel algorithm 
design in the context of the idealized PRAM model; see, for example, Akl [8], Gibbons and Reitter 
[119], and JáJá [157]. However, these techniques are for the most part not directly applicable to 
multicomputers. The books by Fox et al. [111,113] and Kumar et al. [181] provide relevant 
material. Carriero and Gelernter [48] give an introduction to parallel program design in the Linda 
language. They distinguish between agenda, result, and specialist parallelism, which can be 
thought of as domain decomposition and two different forms of functional parallelism, 
respectively. See also the references in Chapter 12.  

 The mapping problem has received considerable attention in the computer science and scientific 
computing literature. Bokhari shows that it is NP -complete [39]. The recursive coordinate 
bisection algorithm is due to Berger and Bokhari [33], and the unbalanced recursive bisection 
algorithm is due to Jones and Plassmann [161]. A related algorithm is the recursive spectral 
bisection algorithm of Pothen, Simon, and Liou [230], which uses connectivity information to 
identify partitions of unstructured meshes with low communication requirements, at the cost of an 
eigenvalue computation. This algorithm has proven very effective, although more expensive than 
the other recursive algorithms. Simon [258] and Williams [293] compare different algorithms for 
partitioning unstructured meshes, including coordinate bisection, graph bisection, and spectral 
bisection. Barnard and Simon [28] describe a less expensive multilevel version of spectral 
bisection. The mesh in Figure 2.9 is generated using the finite octree technique of Shephard and 
Georges [256]. Fox et al. [111] and Nicol and Saltz [213] describe the use of cyclic 
decompositions. Lin and Keller [190] describe a local algorithm. The local algorithm described in 
the text is termed a receiver-initiated strategy. In an alternative sender-initiated strategy, workers 
with excess work send it to other workers. Tantawi and Towsley [279] compare sender-initiated 
and receiver-initiated strategies and show that the former gives better performance if workers are 
often idle and that the latter performs better when load is heavy. Other relevant papers include 
those by Berman and Snyder [34]; Chowdhury [61]; Cybenko [68]; Hac [131]; Heath, Rosenberg, 
and Smith [141]; Kumar, Grama, and Rao [180]; Lo [191]; and Sadayappan and Ercal [250]. 
Dijkstra, Feijen, and Gasteren [81], Rokusawa et al. [246], and Kumar et al. [179] describe 
distributed termination-detection algorithms. 

Real atmosphere models are of course more complex than the system considered in Section 2.6. 
Washington and Parkinson [292] provide a good introduction to the numerical methods and 
algorithms used in climate modeling on sequential computers. A workshop held at the European 
Center for Medium-range Weather Forecasting surveyed issues involved in executing weather and 
climate models on parallel computers [155]. The parallel version of the Community Climate 
Model is described by Drake et al. [86]. Michalakes [206] analyzes load imbalances in climate 
models and Foster and Toonen [109] describe load-balancing algorithms.  

Banerjee [26] describes parallel algorithms for VLSI design. Wimer et al. [294] and Arvindam et 
al. [17] describe branch-and-bound search algorithms and domain-specific optimizations that can 
improve performance on floorplanning problems. Reinefeld and Schnecke [243] describe the 
algorithm variant in which workers redundantly expand several tree levels before selecting nodes 
for local expansion. Kumar et al. [179,181,239] provide a wealth of material on the design, 
implementation, and analysis of parallel search algorithms. Quinn [234] also examines branch-



and-bound search and describes and analyzes the performance of four different load balancing 
strategies. For a general introduction to search algorithms, see Nilsson [214], Pearl [225], and 
Kumar and Kanal [164].  

Hehre et al. [142] provide an introduction to ab initio quantum chemistry. Feyereisen and Kendall 
[96] describe a replicated data algorithm for the Fock matrix construction problem. Colvin et al. 
[62] describe an algorithm based on domain decomposition techniques. An algorithm that uses 
distributed data structures and a centralized task scheduler is described by Harrison et al. 
[108,135].  

3 A Quantitative Basis for Design 
In parallel programming, as in other engineering disciplines, the goal of the design process is not 
to optimize a single metric such as speed. Rather, a good design must optimize a problem-specific 
function of execution time, memory requirements, implementation costs, maintenance costs, and 
so on. Such design optimization involves tradeoffs between simplicity, performance, portability, 
and other factors.  

Making informed design decisions about alternatives requires an understanding of their costs. In 
this chapter, we show how this understanding can be developed and formalized in mathematical 
performance models. These models can be used to compare the efficiency of different algorithms, 
to evaluate scalability, and to identify bottlenecks and other inefficiencies, all before we invest 
substantial effort in an implementation. Performance models can also be used to guide 
implementation efforts by showing where optimization is needed.  

After studying this chapter, you should know how to develop performance models for parallel 
algorithms and be able to use these models to evaluate scalability and to choose between 
alternative algorithms. You also should know how to obtain reliable empirical data and how to use 
this data to validate models and implementations. Further, you should understand how network 
topology can affect communication performance, and you should know how to account for these 
effects in your models. Finally, you should be able to recognize and account for factors other than 
performance, factors such as implementation costs, that influence design choices.  

3.1 Defining Performance 
The task of the software engineer is to design and implement programs that satisfy user 
requirements for correctness and performance. However, the ``performance'' of a parallel program 
is a complex and multifaceted issue. We must consider, in addition to the execution time and 
scalability of the computational kernels, the mechanisms by which data are generated, stored, 
transmitted over networks, moved to and from disk, and passed between different stages of a 
computation. We must consider costs incurred at different phases of the software life cycle, 
including design, implementation, execution, and maintenance. Hence, the metrics by which we 
measure performance can be as diverse as execution time, parallel efficiency, memory 
requirements, throughput, latency, input/output rates, network throughput, design costs, 
implementation costs, verification costs, potential for reuse, hardware requirements, hardware 
costs, maintenance costs, portability, and scalability.  



The relative importance of these diverse metrics will vary according to the nature of the problem at 
hand. A specification may provide hard numbers for some metrics, require that others be 
optimized, and ignore yet others. For example, the design specification for an operational weather 
forecasting system may specify maximum execution time (``the forecast must complete within 
four hours''), hardware costs, and implementation costs, and require that the fidelity of the model 
be maximized within these constraints. In addition, reliability is of particularly high importance, as 
may be scalability to future generations of computers.  

In contrast, a group of engineers developing a parallel database search program for their own 
occasional use may be happy with anything that runs faster than an existing sequential program 
but may be tightly constrained as to how long they can spend on implementation. Here, scalability 
is less critical, but the code should adapt easily to changes in both the database system and 
computer technologies.  

As a third example, consider an image-processing pipeline consisting of several concurrent stages, 
each performing a different transformation on a stream of images. Here, one may be concerned not 
with the total time required to process a certain number of images but rather with the number of 
images that can be processed per second (throughput) or the time that it takes a single image to 
pass through the pipeline (latency). Throughput would be important in a video compression 
application, while latency would be important if the program formed part of a sensor system that 
must react in real time to events detected in an image stream.  

In other situations, the ratio of execution time to system cost may be important. For example, 
consider a bank that spends two hours every night on its overloaded mainframe computer running 
an analysis program that searches for fraudulent transactions. A version that runs in six hours on a 
parallel computer at one-twentieth the cost is significantly more cost effective even though the 
total execution time is greater.  

Much of the material in the rest of this chapter is concerned with the modeling and measurement 
of just two aspects of algorithm performance: execution time and parallel scalability. We focus on 
these issues because they are frequently among the more problematic aspects of parallel program 
design and because they are the most easily formalized in mathematical models. However, these 
topics must be examined in the context of a broader design process that also addresses the other 
issues listed in this section.  

3.2 Approaches to Performance Modeling 
We introduce the topic of performance modeling by describing three techniques sometimes used to 
characterize the performance of parallel algorithms. We explain why each is inadequate for our 
purposes.  

3.2.1 Amdahl's Law 
 A common observation regarding parallel processing is that every algorithm has a sequential 
component that will eventually limit the speedup that can be achieved on a parallel computer. 
(Speedup, as we shall soon define more formally, is the ratio between execution time on a single 
processor and execution time on multiple processors.) This observation is often codified as 
Amdahl's law, which can be stated as follows: if the sequential component of an algorithm 



accounts for 1/s of the program's execution time, then the maximum possible speedup that can be 
achieved on a parallel computer is s. For example, if the sequential component is 5 percent, then 
the maximum speedup that can be achieved is 20.  

In the early days of parallel computing, it was widely believed that this effect would limit the 
utility of parallel computing to a small number of specialized applications. However, practical 
experience shows that this inherently sequential way of thinking is of little relevance to real 
problems. To understand why, let us consider a noncomputing problem. Assume that 999 of 1000 
workers on an expressway construction project are idle while a single worker completes a 
``sequential component'' of the project. We would not view this as an inherent attribute of the 
problem to be solved, but as a failure in management. For example, if the time required for a truck 
to pour concrete at a single point is a bottleneck, we could argue that the road should be under 
construction at several points simultaneously. Doing this would undoubtedly introduce some 
inefficiency---for example, some trucks would have to travel further to get to their point of work---
but would allow the entire task to be finished more quickly. Similarly, it appears that almost all 
computational problems admit parallel solutions. The scalability of some solutions may be limited, 
but this is due to communication costs, idle time, or replicated computation rather than the 
existence of ``sequential components.''  

 Amdahl's law can be relevant when sequential programs are parallelized incrementally. In this 
approach to parallel software development, a sequential program is first profiled to identify 
computationally demanding components. These components are then adapted for parallel 
execution, one by one, until acceptable performance is achieved. Amdahl's law clearly applies in 
this situation, because the computational costs of the components that are not parallelized provide 
a lower bound on the execution time of the parallel program. Therefore, this ``partial,'' or 
``incremental,'' parallelization strategy is generally effective only on small parallel computers. 
Amdahl's law can also be useful when analyzing the performance of data-parallel programs, in 
which some components may not be amenable to a data-parallel formulation (see Chapter 7).  

3.2.2 Extrapolation from Observations 
 Descriptions of parallel algorithms often characterize performance by stating something like the 
following:  

We implemented the algorithm on parallel computer X and achieved a speedup of 10.8 on 12 
processors with problem size N=100.  
Presumably, this single data point on a small number of processors is intended as a measure of 
algorithm quality. A speedup of 10.8 on 12 processors may or may not be regarded as ``good.'' 
However, a single performance measurement (or even several measurements) serves only to 
determine performance in one narrow region of what is a large multidimensional space, and is 
often a poor indicator of performance in other situations. What happens on 1000 processors? What 
if N=10 or N=1000 ? What if communication costs are ten times higher? Answering these 
questions requires a deeper understanding of the parallel algorithm.  

The following three equations emphasize the limitations of observations as a tool for 
understanding parallel performance. Each is a simple performance model that specifies execution 
time T as a function of processor count P and problem size N. In each case, we assume that the 
total computation performed by an optimal sequential algorithm scales as N+N .  



1. . This algorithm partitions the computationally demanding 
component of the algorithm but replicates the component on every processor. 

There are no other sources of overhead.  
2. . This algorithm partitions all the computation but introduces an 

additional cost of 100.  
3. . This algorithm also partitions all the computation but 

introduces an additional cost of .  

These algorithms all achieve a speedup of about 10.8 when P=12 and N=100. However, they 
behave differently in other situations, as illustrated in Figure 3.1. With N=100, all three algorithms 
perform poorly for larger P, although Algorithm (3) does noticeably worse than the other two. 
When N=1000, Algorithm (2) is significantly better than Algorithm (1) for larger P.  



   
Figure 3.1: Efficiency as a function of P for three different algorithms (described in the text). The 
upper figure is for N=100, and the lower figure is for N=1000. Notice the use of logarithmic 
scales. When N=100, Algorithms (1) and (2) are indistinguishable.  

3.2.3 Asymptotic Analysis 
 Textbooks frequently characterize the performance of parallel algorithms by stating something 
like the following:  

 Asymptotic analysis reveals that the algorithm requires time on processors.  



That is, there exists a constant c and minimum problem size such that for all , cost (N) 
on N processors. This relationship tells how cost varies with N when N and P are 

large.  

 While this information is interesting, it is often not directly relevant to the task of developing an 
efficient parallel program. Because it deals with large N and P, it ignores lower-order terms that 
may be significant for problem sizes and processor counts of practical interest. For example, the 
actual cost of an algorithm with asymptotic complexity of might be 10 N + N . The 
10 N component is larger for N<1024 and must be incorporated in a performance model if 
problems of interest are in this regime. A second deficiency of asymptotic analysis is that it says 
nothing about absolute cost. Asymptotic analysis would suggest that an algorithm with cost 1000 
N is superior to an algorithm with cost . However, the latter is faster for N<996, which 
again may be the regime of practical interest. A third deficiency is that such analyses frequently 
assume idealized machine models that are very different from the physical computers for which 
we develop programs. For example, they may assume the PRAM model, in which communication 
costs are assumed to be nil.  

Asymptotic analysis has a role to play in parallel program design. However, when evaluating 
asymptotic results, we must be careful to identify the machine model for which the results are 
obtained, the coefficients that are likely to apply, and the N and P regime in which the analyses 
hold.  

3.3 Developing Models 
 A good performance model, like a good scientific theory, is able to explain available observations 
and predict future circumstances, while abstracting unimportant details. Amdahl's law, empirical 
observations, and asymptotic analysis do not satisfy the first of these requirements. On the other 
hand, conventional computer system modeling techniques, which typically involve detailed 
simulations of individual hardware components, introduce too many details to be of practical use 
to parallel programmers. In the rest of this chapter, we introduce performance modeling techniques 
that provide an intermediate level of detail. These techniques are certainly not appropriate for all 
purposes: they are specialized for the multicomputer architecture and do not take into account, for 
example, cache behavior. However, they have been proven useful in a wide range of parallel 
algorithm design problems. The chapter notes provide references to other approaches.  

The performance models considered here specify a metric such as execution time T as a function 
of problem size N, number of processors P, number of tasks U, and other algorithm and hardware 
characteristics:  

 

We define the execution time of a parallel program as the time that elapses from when the first 
processor starts executing on the problem to when the last processor completes execution. This 
definition is not entirely adequate for a timeshared parallel computer but suffices for our purposes. 
During execution, each processor is computing, communicating, or idling, as illustrated in Figure 
3.2. , , and are the time spent computing, communicating, and idling, respectively, 
on the i th processor. Hence, total execution time T can be defined in two ways: as the sum of 
computation, communication, and idle times on an arbitrary processor j,  



 

or as the sum of these times over all processors divided by the number of processors P,  

 

   
Figure 3.2: Activity plot during execution of a parallel program on eight processors. Each 
processor spends its time computing, communicating, or idling. T is the total execution time.  

The latter definition is often more useful, since it is typically easier to determine the total 
computation and communication performed by a parallel algorithm rather than the time spent 
computing and communicating on individual processors.  

Thus, the goal is to develop mathematical expressions that specify execution time as functions of 
N, P, etc. These models should be as simple as possible, while providing acceptable accuracy. We 
use the following techniques to reduce model complexity.  

• We base our model on the idealized multicomputer parallel architecture model introduced 
in Chapter 1. Low-level hardware details such as memory hierarchies and the topology of 
the interconnection network are introduced only if there is evidence to suggest that they are 
important. (The latter issue is discussed in Section 3.7.)  

•  We use scale analysis to identify insignificant effects that can be ignored in the analysis. 
For example, if an algorithm consists of an initialization step followed by several thousand 
iterations of a computation step, then unless initialization is very expensive we consider 
only the computation step in our analysis.  

• We use empirical studies to calibrate simple models rather than developing more complex 
models from first principles.  



3.3.1 Execution Time 
We first examine the three components of total execution time: computation time, communication 
time, and idle time.  

Computation Time. 

The computation time of an algorithm (  is the time spent performing computation rather 
than communicating or idling. If we have a sequential program that performs the same 
computation as the parallel algorithm, we can determine by timing that program. Otherwise, 
we may have to implement key kernels.  

Computation time will normally depend on some measure of problem size, whether that size is 
represented by a single parameter N or by a set of parameters, , , ..., . If the parallel 
algorithm replicates computation, then computation time will also depend on the number of tasks 
or processors. In a heterogeneous parallel computer (such as a workstation network), computation 
time can vary according to the processor on which computation is performed.  

Computation time will also depend on characteristics of processors and their memory systems. For 
example, scaling problem size or number of processors can change cache performance or the 
effectiveness of processor pipelining. As a consequence, one cannot automatically assume that 
total computation time will stay constant as the number of processors changes.  

Communication Time. 

 The communication time of an algorithm ( ) is the time that its tasks spend sending and 
receiving messages. Two distinct types of communication can be distinguished: interprocessor 
communication and intraprocessor communication. In interprocessor communication, two 
communicating tasks are located on different processors. This will always be the case if an 
algorithm creates one task per processor. In intraprocessor communication, two communicating 
tasks are located on the same processor. For simplicity, we assume that interprocessor and 
intraprocessor communication costs are comparable. Perhaps surprisingly, this assumption is not 
unreasonable in many multicomputers, unless intraprocessor communication is highly optimized. 
This is because the cost of the memory-to-memory copies and context switches performed in a 
typical implementation of intraprocessor communication is often comparable to the cost of an 
interprocessor communication. In other environments, such as Ethernet-connected workstations, 
intraprocessor communication is much faster.  

In the idealized multicomputer architecture, the cost of sending a message between two tasks 
located on different processors can be represented by two parameters: the message startup time , 
which is the time required to initiate the communication, and the transfer time per (typically four-
byte) word , which is determined by the physical bandwidth of the communication channel 
linking the source and destination processors. As illustrated in Figure 3.3, the time required to 
send a message of size L words is then  

   



This idealized model of communication performance is adequate for many purposes but does 
break down in some situations. More detailed models are described in Section 3.7.  

   
Figure 3.3: Simple communication cost model: . In this plot of time versus 
message length, the slope of the line corresponds to the cost per word transferred and the y-
intercept to the message startup cost.  

Table 3.1 lists approximate values for and for some parallel computers. Because these values 
tend to change rapidly as hardware and systems software evolve, they should be verified before 
being used in performance models. Notice the considerable variation in both and values. 
Clearly, different computers have very different communication performance characteristics.  

The values in Table 3.1 were obtained either from the literature or by fitting Equation 3.1 to 
execution times measured for a small test program that sends messages back and forth between 
two processors. Figure 3.4 presents some representative experimental data obtained with this 
program. These times are for a single round trip and hence are twice those given by Equation 3.1. 
The impact of startup and per-word costs on communication time is clearly visible. Notice the 
irregularities in both Ethernet and Fiber Distributed Data Interconnect (FDDI) times for small 
messages, and the periodic jumps in Paragon times. These are due to details of the communication 
protocols and buffer management strategies used in communication libraries. Nevertheless, we see 
that Equation 3.1 is a reasonably accurate representation of message costs, particularly for larger 
messages.  

   
Table 3.1: Approximate machine parameters for some parallel computers, in microseconds ( sec). 
Some of these data provided by T. Dunigan. 



   
Figure 3.4: Round-trip time for a single message between two processors as a function of message 
length on Ethernet-connected workstations, FDDI-connected workstations, Intel Paragon, and 
IBM SP1. Data provided by W. Gropp.  

Notice that both the and terms are required in Equation 3.1. Asymptotically (for large L) only 
the term is important; yet as is generally much larger than , the term can dominate in 
applications that send mostly small messages.  

The values in Table 3.1 represent ``best achievable'' performance and in general may be used as a 
lower bound on communication costs when estimating performance. Applications with less regular 
or structured communication patterns may perform less well. In addition, the values in Table 3.1 
do not incorporate other costs such as buffer management associated with message passing. 
However, these additional costs are typically proportional to the number and size of messages 
communicated. Hence, it is generally possible, by fitting Equation 3.1 to empirical data, to obtain 
system- and algorithm-dependent values for and for which Equation 3.1 is valid for a large 
range of problem and machine sizes. This procedure is applied in several examples later in this 
chapter.  

Idle Time. 

 Both computation and communication times are specified explicitly in a parallel algorithm; hence, 
it is generally straightforward to determine their contribution to execution time. Idle time ( ) 
can be more difficult to determine, however, since it often depends on the order in which 
operations are performed.  

A processor may be idle due to lack of computation or lack of data. In the first case, idle time may 
be avoided by using load-balancing techniques such as those introduced in Section 2.5.1. In the 
second case, the processor is idle while the computation and communication required to generate 
remote data are performed. This idle time can sometimes be avoided by structuring a program so 
that processors perform other computation or communication while waiting for remote data. This 



technique is referred to as overlapping computation and communication, since local computation 
is performed concurrently with remote communication and computation (Figure 3.5). Such 
overlapping can be achieved in two ways. A simple approach is to create multiple tasks on each 
processor. When one task blocks waiting for remote data, execution may be able to switch to 
another task for which data are already available. This approach has the advantage of simplicity 
but is efficient only if the cost of scheduling a new task is less than the idle time cost that is 
avoided. Alternatively, a single task can be structured so that requests for remote data are 
interleaved explicitly with other computation.  

   
Figure 3.5: Overlapping computation with communication. Solid lines represent computation and 
dashed lines represent communication operations. In both (a) and (b), processor P1 generates a 
request to processor P2 at time t+2 and receives a reply at time t+8. In both cases, the cost of 
actually sending the message is assumed to be 1 time unit. In (a), P1 has no other useful work to 
do while waiting for the reply and hence is idle for five time units after sending the message. In 
(b), P1 switches to another task as soon the request is generated. As this task requires five time 
units to complete, P1 is never idle.  

 
Example .  Finite Difference:  

Throughout this chapter, we use a parallel finite difference algorithm similar to the atmosphere 
model considered in Section 2.6 to illustrate how performance models are developed and used. For 
simplicity, we assume a grid of size points, where Z is the number of points in the 
vertical dimension. Initially, we assume that this grid is decomposed in one horizontal dimension 
and partitioned among P tasks, with each task responsible for a subgrid of size . 
Each task performs the same computation on each grid point and at each time step. Because the 
parallel algorithm does not replicate computation, we can model computation time in a single time 
step as  

   

where is the average computation time at a single grid point.  

As in Section 2.6, we consider a nine-point stencil, meaning that each task must exchange 2 N Z 
data points with two neighboring tasks, for a total of two messages and 4 N Z data. (We assume 
that each processor is allocated at least a 2  N subgrid; if not, communications will be required 
with more than two neighbors. Hence, the performance model that we develop does not apply on 
more than N/2 processors.) The total communication cost, summed over P processors, is  



   

If P divides N and the amount of computation per grid point is a constant, idle time can be 
expected to be negligible in this example. In these circumstances, we can combine Equations 3.2 
and 3.3 to obtain the following performance model:  

   

 

3.3.2 Efficiency and Speedup 
 Execution time is not always the most convenient metric by which to evaluate parallel algorithm 
performance. As execution time tends to vary with problem size, execution times must be 
normalized when comparing algorithm performance at different problem sizes. Efficiency---the 
fraction of time that processors spend doing useful work---is a related metric that can sometimes 
provide a more convenient measure of parallel algorithm quality. It characterizes the effectiveness 
with which an algorithm uses the computational resources of a parallel computer in a way that is 
independent of problem size. We define relative efficiency as  

   

where is the execution time on one processor and is the time on P processors. The related 
quantity relative speedup,  

   

is the factor by which execution time is reduced on P processors:  

 The quantities defined by Equations 3.5 and 3.6 are called relative efficiency and speedup 
because they are defined with respect to the parallel algorithm executing on a single processor. 
They are useful when exploring the scalability of an algorithm but do not constitute an absolute 
figure of merit. For example, assume that we have a parallel algorithm that takes 10,000 seconds 
on 1 processor and 20 seconds on 1000 processors. Another algorithm takes 1000 seconds on 1 
processor and 5 seconds on 1000 processors. Clearly, the second algorithm is superior for P in the 
range 1 to 1000. Yet it achieves a relative speedup of only 200, compared with 500 for the first 
algorithm.  

When comparing two algorithms, it can be useful to have an algorithm-independent metric other 
than execution time. Hence, we define absolute efficiency and speedup, using as the baseline the 
uniprocessor time for the best-known algorithm. In many cases, this ``best'' algorithm will be the 
best-known uniprocessor (sequential) algorithm. From this point forward, we shall frequently use 
the terms efficiency and speedup without qualifying them as relative or absolute. However, the 
context will always make clear which is meant.  



 
Example .  Efficiency of Finite Difference Algorithm:  

 In the finite difference algorithm, , and so from Equation 3.4 we have the following 
model for efficiency in the absence of load imbalances and when P divides N :  

   

Because the uniprocessor algorithm is identical to the parallel algorithm when P=1, this equation 
represents absolute efficiency.  

3.4 Scalability Analysis 
Performance models of the type developed in preceding sections are tools that we can use to 
explore and refine a parallel algorithm design. These models can be used without further 
refinement to perform qualitative analyses of performance. For example, from Equations 3.4 and 
3.7 the following observations can be made about the finite difference algorithm: 

• Efficiency decreases with increasing P, , and .  
• Efficiency increases with increasing N, Z, and .  
• Execution time decreases with increasing P but is bounded from below by the cost of 

exchanging two array slices.  
• Execution time increases with increasing N, Z, , , and .  

These observations provide interesting insights into algorithm characteristics. However, they are 
not a sufficient basis for making design tradeoffs. This task requires quantitative results, which in 
turn require that we substitute machine-specific numeric values for the various parameters in 
performance models. In general, we seek to obtain these numeric values by empirical studies, as 
will be discussed in Section 3.5. Once augmented with empirical data, models can be used to 
answer questions such as the following.  

•  Does the algorithm meet design requirements (for execution time, memory requirements, 
etc.) on the target parallel computer?  

• How adaptable is the algorithm? That is, how well does it adapt to increases in problem 
size and processor counts? How sensitive is to machine parameters such as and ?  

• How does the algorithm compare with other algorithms for the same problem? What 
difference in execution time can be expected from different algorithms?  

It is important to remember that performance models are idealizations of more complex 
phenomena. Once an algorithm has been implemented, we are able to validate our models and 
hence increase our confidence in their quality. However, in the early stages of a design we must 
necessarily be cautious, especially if we are making quantitative predictions or if the target 
computer has an architecture very different from the idealized multicomputer.  

3.4.1 Scalability with Fixed Problem Size 



An important aspect of performance analysis is the study of how algorithm performance varies 
with parameters such as problem size, processor count, and message startup cost. In particular, we 
may evaluate the scalability of a parallel algorithm, that is, how effectively it can use an increased 
number of processors. One approach to quantifying scalability is to determine how execution time 
T and efficiency E vary with increasing processor count P for a fixed problem size and machine 
parameters. This fixed problem analysis allows us to answer questions such as, What is the fastest I 
can solve problem A on computer X ? and What is the greatest number of processors I can utilize if 
I want to maintain an efficiency of 50 percent? The latter question may be of interest if a computer 
is shared and there is a charge for each processor used.  

It is important to consider both E and T when evaluating scalability. While E will generally 
decrease monotonically with P, T may actually increase if the performance model includes a term 
proportional to a positive power of P. In such cases, it may not be productive to use more than 
some maximum number of processors for a particular problem size and choice of machine 
parameters.  

 
Example .  Scalability of Finite Difference:  

Figure 3.6 illustrates fixed problem analysis applied to the finite difference algorithm (Equations 
3.4 and 3.7). This figure plots T and E as a function of P and N, using machine parameters 
characteristic of a relatively fine-grained multicomputer. The computation cost sec has 
been obtained by experiment, as will be described in Example 3.5. Recall that because the 
algorithm requires each task to have at least two grid columns, at most 64 processors can be used 
productively when N=128 and 256 processors when N=512. Later in the chapter, we shall see how 
these predictions compare with observed performance.  

 



   
Figure 3.6: Scalability of the 1-D decomposition finite difference algorithm, as predicted by 
Equations 3.4 and 3.7 when sec, sec, sec, and Z=10 : (a) execution 
time as a function of P ; (b) efficiency as a function of P. Note that when N=128, only 64 
processors can be used productively.  

3.4.2 Scalability with Scaled Problem Size 
Large parallel computers are frequently used not only to solve fixed-size problems faster, but also 
to solve larger problems. This observation encourages a different approach to the analysis of 
algorithms called scaled problem analysis, whereby we consider not how E varies with P, but how 



the amount of computation performed must scale with P to keep E constant. This function of N is 
called an algorithm's isoefficiency function and can provide valuable insights into algorithm 
behavior. An algorithm with an isoefficiency function of is highly scalable, since the amount 
of computation needs to increase only linearly with respect to P to keep efficiency constant. In 
contrast, an algorithm with a quadratic or exponential isoefficiency function would be poorly 
scalable.  

Recall that efficiency E is defined as the ratio between execution time on a single processor and 
total execution time summed over P processors:  

 

Hence, to maintain constant efficiency E, the following relation must hold for increasing P :  

 

That is, uniprocessor time must increase at the same rate as total parallel time or, equivalently, the 
amount of essential computation must increase at the same rate as overheads due to replicated 
computation, communication, and idle time.  

Scaled problem analysis does not make sense for all problems. Real-time constraints, for example 
in weather forecasting, may require that computation be completed in a fixed amount of time. In 
other applications, scaling is not possible because of physical constraints on problem size. For 
example, in molecular modeling, the number of atoms in a molecule is fixed, as is the number of 
pixels in image-processing applications.  

 
Example .  Isoefficiency of Finite Difference Algorithms:  

We use isoefficiency analysis to examine the scalability of two parallel finite difference 
algorithms. Recall that the efficiency of an algorithm based on a 1-D decomposition of an 

grid is given by Equation 3.7. For constant efficiency, a function of P, when 
substituted for N, must satisfy the following relation for increasing P and constant E :  

 

The function N=P satisfies this requirement, and yields the following relation, which is valid for 
all except small P, when the term becomes significant:  

 

Because the finite difference computation operates on a square grid, scaling N with P causes the 
number of grid points and thus the amount of computation to scale as . Hence, we say that the 
isoefficiency function for this algorithm is , meaning that the amount of computation must 
increase as the square of the number of processors in order for constant efficiency to be 
maintained. Figure 3.7 illustrates why this is so.  



   
Figure 3.7: Scaling a finite difference algorithm based on a 1-D decomposition. In (a), N=8 and 
P=2. Each task has 32 grid points and must communicate with two neighbors. In (b), P is doubled 
while N stays the same. Total computation costs stay the same but communication costs double, so 
efficiency is reduced. In (c), both P and N are doubled, thereby increasing both computation costs 
and the component of communication costs by a factor of four; hence, efficiency remains the 
same.  

As a second example, consider a two-dimensional decomposition of the finite difference problem. 
Here, each task is responsible for points and must exchange 

points with each of four neighbors at each time step. Hence,  

   

For constant efficiency, a function of P, when substituted for N, must satisfy the following relation 
for increasing P :  

 

The function meets this requirement and gives the following relation which is valid for 
all values of P :  

 

Because total computation is again proportional to , the isoefficiency function is . This 
analysis shows that a 2-D decomposition is more scalable than a 1-D decomposition.  

This example illustrates a general rule: Higher-dimensional decompositions tend to be more 
efficient than lower-dimensional decompositions. To understand why, consider Equations 3.7 and 
3.8. While the 2-D decomposition sends slightly more messages (four instead of two), data volume 



is reduced by a factor of , from to . Total communication costs are reduced 
unless P and N are small or is much larger than .  

 

3.4.3 Execution Profiles 
If scalability analysis suggests that performance is poor on problem sizes and computers of 
interest, we can use models to identify likely sources of inefficiency and hence areas in which an 
algorithm can be improved.  

Poor performance may be due to excessive replicated computation, idle time, message startups, 
data transfer costs, or some combination of these factors. An important first step when attempting 
to improve an algorithm is to identify which of these factors is dominant. We can do this by 
computing an expected execution profile for the algorithm, indicating the contributions of these 
different factors to execution time as a function of N and/or P. This approach is illustrated in 
Figure 3.8 for the 1-D finite difference algorithm. The model predicts that when this algorithm is 
executed on a multicomputer with a single vertical layer (Z=1), data transfer costs dominate 
execution time when P is large; message startup costs are also significant. If the number of vertical 
levels is increased, message startup costs become negligible, and overall efficiency improves.  

   
Figure 3.8: Contributions of computation, message startup, and message transfer costs to total 
execution time in the 1-D finite difference algorithm, for N=512, Z=1, sec, 

sec, sec, and varying P. There is no replicated computation or idle time in this 
example.  

Cost information of this sort can be used to guide a redesign of an algorithm. Often, it may 
motivate us to reconsider decisions made earlier in the design process. For example, if replicated 
computation is reducing performance, then we may wish to reconsider an alternative algorithm, 



previously discarded, that avoids replicated computation at the expense of increased 
communication. Alternatively, high message startup costs may suggest further agglomeration so as 
to increase granularity. Similarly, if data transfer costs are high, we may seek to replicate 
computation or send more, smaller messages if doing so can reduce the total volume of data 
transferred.  

3.5 Experimental Studies 
 Discussion in preceding sections has emphasized analytic modeling of performance. Yet parallel 
programming is first and foremost an experimental discipline. The flexibility and ease of 
modification of software on the one hand, and the complexity of parallel computer systems on the 
other, mean that approaches to parallel program design based entirely on theory are rarely cost 
effective. The role of modeling is most often to assist in what is essentially an experimental 
process, by guiding experiment and explaining results.  

Experimental studies can be used in early design stages to determine values for parameters used in 
performance models, such as computation time per grid point, average depth of a search tree, 
message startup cost, and message transfer costs. They can also be used after programming begins, 
to compare observed and modeled performance.  

Next we review several sometimes subtle issues that can arise during experimental studies.  

3.5.1 Experimental Design 
 The first step in an experimental study is to identify the data that we wish to obtain. For example, 
when calibrating a performance model we may be interested in determining the execution time of 
a sequential version of our application as a function of problem size in order to determine . Or, 
we may need to measure the execution time of a simple message-passing testbed program in order 
to determine and .  

Normally, experiments are performed for a range of data points---different problem sizes and/or 
processor counts. By maximizing the number of data points obtained, we reduce the impact of 
errors in individual measurements. When empirical data are used to evaluate the quality of an 
implementation, a range of data points also allows us to estimate the accuracy of the model and to 
identify regimes in which it is inadequate.  

The next step in an experimental study is to design the experiments that will be used to obtain the 
required data. The critical issue here is to ensure that our experiments measure what we intend to 
measure. For example, if a program comprises an initialization step followed by a long series of 
iterations, and our performance model deals only with the cost of an iteration, then that is what we 
need to measure.  

3.5.2 Obtaining and Validating Experimental Data 
The principal challenge when performing experiments is to obtain accurate and reproducible 
results. Execution times can be obtained in various ways; which is best will depend on both our 
requirements and the facilities available on the target computer. A straightforward but potentially 
time-consuming approach is to incorporate code into our program that calls system timer routines 



to determine elapsed time. In principle, we should make these calls on every processor and then 
take the maximum time. However, we can often identify a reference processor that does not start 
or finish appreciably later or sooner than others, and measure times on this processor alone. 
Alternatively, we can use a profiling or tracing tool that obtains timing data automatically. We 
discuss specific tools in Chapter 9.  

Experiments should always be repeated to verify that results are reproducible. Generally, results 
should not vary by more than a small amount---2 or 3 percent is a lot if one is trying to fine-tune 
algorithms. Possible causes of variation include the following.  

•  A nondeterministic algorithm. Programs may use random numbers or may explore a 
search space or allocate work to processors in a time-dependent manner (as in the search 
algorithm of Section 2.7). Nondeterminism due to random numbers can be controlled by 
using a reproducible parallel generator (Chapter 10). Nondeterminism due to time-
dependent execution is more problematic. One solution is to perform a large number of 
trials. Another is to normalize execution times by dividing them by some measure of the 
amount of work done, such as search tree nodes visited.  

• An inaccurate timer. The timer used to obtain execution times may have limited resolution 
or be inaccurate. If resolution is limited, we can improve accuracy by increasing execution 
time, for example by performing more iterations or by solving the same problem several 
times. If the timer is inaccurate, we need to find another way to determine execution times.  

• Startup and shutdown costs. The time required for system management functions 
concerned with the acquisition of processors, loading of code, allocation of virtual 
memory, deallocation of processors, etc., can vary significantly according to the state of 
the system. Timings are often more accurate if these system-dependent components are 
excluded. Hence, we may start a timer after a program is loaded and stop it once a solution 
has been computed.  

• Interference from other programs. On a nondedicated machine, other users may compete 
for shared resources such as processors, network bandwidth, and I/O bandwidth. Timings 
may also be perturbed by system functions such as accounting and backups that execute 
occasionally. Note that competition can occur even when processors are dedicated to our 
application. For example, a computer in which processors are connected in a 2-D mesh 
(Section 3.7.2) may be partitioned into disjoint submeshs. Yet I/O requests generated by 
programs executing in one submesh may need to traverse our submesh to reach I/O 
devices, thereby consuming bandwidth.  

• Contention. On some computers, the time required for a communication operation can 
increase when several processors communicate at the same time. For example, an Ethernet-
connected LAN can carry only one message at a time, and senders must back off and 
resend when messages collide. An unfortunate schedule can result in repeated resendings, 
thereby increasing execution time. In Section 3.7, we describe advanced modeling 
techniques that can account for some such effects.  

• Random resource allocation. The operating system may use a random processor allocation 
strategy, which will affect execution times if communication costs depend on processor 
location in a network (see Section 3.7). If possible, the same allocation should be used for 
all experiments.  

Studies of variability in experimental results can help us to identify sources of error or uncertainty 
in our measurements. However, even when results are reproducible, we still have no assurance that 
they are correct. Confidence in our results can be increased by measuring the same thing several 
different ways and verifying that the results of these redundant measurements are consistent. For 



example, in addition to measuring the time taken in individual program components, we can 
measure the total time for the entire program.  

3.5.3 Fitting Data to Models 
 When experimental studies are performed for calibration purposes, we fit results to the function of 
interest to obtain values for unknown parameters. A fit can be performed graphically by plotting 
data points and estimating the fit. For example, if the function is  

 

we can plot the data points as a function of L and draw a straight line that fits these points. 
The slope of this line will be , and the intercept of the axis when L=0 will be .  

 Alternatively, and more accurately, we can perform a least-squares fit of the function with the 
data. (Mathematical packages such as Mathematica and Matlab incorporate fitting functions.) A 
least-squares fit involves a minimization of the sum of the squares of the differences between the 
observations, obs (i), and the corresponding function values, f (i) :  

 

For example, when fitting the function with observations of T for different values of N 
in order to determine the value , we minimize  

 

When fitting to execution times for different numbers of processors, the method just described 
gives less weight to the (presumably smaller) times on larger numbers of processors. Yet these are 
typically the times of greatest interest. Hence, we can use a scaled least-squares fit in which the 
difference between observation and function value is scaled by the observation, as follows:  

 

 
Example .  Determining Computation Time ( ):  

We consider the problem of determining the computation cost per grid point in the finite 
difference problem. Recall that we have modeled this cost as follows (Equation 3.2):  

 

In this equation, is the parameter that we wish to determine, and N is a value that we can vary 
while measuring performance. (For simplicity, we keep Z fixed.) Table 3.2 gives execution times 
measured on a Sun SPARC 2 workstation. Experiments were performed when the machine was 
idle but not in single-user mode; hence, there might have been a small amount of background 



activity. Each experiment was repeated three times so that we could study variability; the table 
also lists the means of each set of three values. The repeated experiments show little variation in 
total execution time.  

   
Table 3.2: Execution times in milliseconds for a single time step of the finite difference code on a 
Sun SPARC 2, with Z=10. 

   
Figure 3.9: Simple and scaled least-squares fits of the function to finite difference 
execution times on a Sun SPARC 2 workstation. Notice the use of logarithmic scales.  



   
Table 3.3: Execution times predicted for finite difference code on Sun SPARC 2, with Z=10 
(milliseconds). 

Figure 3.9 shows simple and scaled least-squares fits of Equation 3.2 to the data in Table 3.2. The 
two fits correspond to values of 0.0120 msec and 0.0112 msec, respectively. The execution times 
predicted by the two models are shown in Table 3.3. As expected, the simple fit is more accurate 
for larger N, while the scaled fit is better for smaller N ; both are good enough for most practical 
purposes. These results suggest that the hypothesized performance model, , is an 
adequate characterization of finite difference computation time.  

3.6 Evaluating Implementations 
Performance models also play an important role after a design is complete, when we start to write 
programs. Comparisons of observed and predicted execution times can provide valuable 
information about both an algorithm and its implementation.  

Even if considerable care is taken when designing and carrying out experiments, the idealized 
nature of our models means that observed and predicted execution times will seldom completely 
agree. Major discrepancies signify either that the model is incorrect or that the implementation is 
inadequate. In the first case, we can use the empirical results to determine where the model is 
deficient; this information in turn enables us to reassess the quantitative tradeoffs that we have 
used to justify design decisions. In the second case, we can use the model to identify areas in 
which the implementation can be improved.  

When faced with a substantial difference between modeled and observed execution times, our first 
step should be to check both the performance model and our experimental design to verify not 
only that the model and experiments are correct but that they are measuring the same thing.  

Our next step should be to obtain an execution profile of the parallel code. (In contrast to the 
execution profiles discussed in Section 3.4.3, this profile will be based on measured values.) The 
goal here is to obtain a more detailed view of program behavior, by measuring, for example, time 
spent in initialization, time spent in different phases of a computation, total idle time, and the total 
number and volume of messages communicated. Ideally, data will be obtained for a range of 
problem sizes and processor counts. Tables 3.4 and 3.5 show typical examples of execution profile 
data, in this case from a parallel computational chemistry code that incorporates the Fock matrix 
construction algorithm of Section 2.8 as a kernel. These data were obtained by using 
instrumentation inserted manually into the program.  



   
Table 3.4: A simple execution profile for a single step of a parallel computational chemistry code, 
here applied to a relatively small problem on an IBM SP computer. This code combines the Fock 
matrix construction algorithm of Chapter 2 (``fock'') with additional components. The profile 
shows both the time spent in different parts of the program for varying processor counts and the 
total execution time. Scalability is reasonably good, although it is evident that the routine diag has 
not been parallelized. The init routine does not scale well, but this cost is less important because 
the code is normally run for many steps. 

   
Table 3.5: A more detailed execution profile for the parallel code of Table 3.4. This gives call 
frequencies and execution times for various communication routines on each processor. For 
brevity, only the first 6 of 16 processors are shown. Instrumentation overhead increases total time 
from the 230 seconds of Table 3.4 to around 241 seconds. The get, accum, and put routines read 
and write data in distributed global arrays. A get operation, which blocks waiting for a response to 
a remote request, takes around 1.7 milliseconds on average. Since each data transfer is relatively 



small, and the IBM SP's is low, this time must include substantial idle time that could perhaps be 
overlapped with local computation. The second major source of communication cost is the 
barrier operation, which is used to ensure that all updates to a global array have completed 
before reading begins. We may wish to examine the program to determine whether we really need 
85 such operations per step. 

Once we have obtained an execution profile, we can compare it with the performance model to 
identify deficiencies in either the model or the implementation. In the following sections, we list 
several potential problems that may be revealed in an execution profile.  

3.6.1 Unaccounted-for Overhead 
 We first consider issues that may lead to observed execution times greater than predicted by a 
model. Most often, such a situation occurs because the performance model is incomplete: some 
aspect of an algorithm or its implementation was neglected as insignificant but proves in practice 
to contribute significantly to execution time.  

• Load imbalances. An algorithm may suffer from computation or communication 
imbalances that were not considered in the performance model. These problems may be 
revealed by a study of how costs vary across processors.  

• Replicated computation. Disparities between observed and predicted times can also signal 
deficiencies in the implementation. For example, we may have failed to parallelize some 
component, assuming that the cost of replicating its computation on every processor would 
be insignificant. On large numbers of processors, this assumption may not be valid. These 
sorts of problem can be detected by studying costs in different parts of a program and for 
varying numbers of processors.  

• Tool/algorithm mismatch. The tools used to implement the algorithms may introduce 
inefficiencies. For example, we may have designed an algorithm that creates multiple tasks 
per processor so as to overlap computation and communication. Yet the programming 
language or library used to implement the algorithm may not implement tasks efficiently.  

• Competition for bandwidth. Equation 3.1 may not be an adequate characterization of the 
communication network on which the program is executing. In particular, concurrent 
communications may compete for bandwidth, thereby increasing total communication 
costs. This issue is discussed in Section 3.7.  

3.6.2 Speedup Anomalies 
 An implementation may execute faster than predicted by a performance model. If this effect 
becomes more marked as the number of processors increases, this phenomenon is termed a 
speedup anomaly---the observed speedup is greater than predicted. Sometimes, we may see a 
speedup that is greater than linear, or superlinear. Situations in which this can occur include the 
following: 

• Cache effects. On most parallel computers, each processor has a small amount of fast 
memory (cache) and a larger amount of slower memory. When a problem is executed on a 
greater number of processors, more of its data can be placed in fast memory. As a result, 
total computation time ( ) will tend to decrease. If the reduction in from this 
cache effect offsets increases in and resulting from the use of additional 



processors, then efficiency will be greater than 1 and speedup will be superlinear. 
Similarly, the increased physical memory available in a multiprocessor may reduce the cost 
of memory accesses by avoiding the need for virtual memory paging.  

• Search anomalies. This phenomenon is encountered in some parallel search algorithms, 
such as the branch-and-bound search of Section 2.7. If a search tree contains solutions at 
varying depths, then multiple depth-first searches will, on average, explore fewer tree 
nodes before finding a solution than will a sequential depth-first search. Notice that in this 
case, the parallel algorithm executed is not the same as the sequential algorithm. In fact, the 
best uniprocessor algorithm may be one that pursues several searches concurrently.  

   
Figure 3.10: Speedup of an implementation of the 1-D finite difference algorithm with N=512 and 
Z=10 as measured on the Intel DELTA and as predicted by both a simple performance model that 
does not account for load imbalances and a more sophisticated model that does; both models 
assume sec and sec.  

 
Example .  Evaluating a Finite Difference Program:  

We consider the behavior of an implementation of the 1-D finite difference algorithm. Figure 3.10 
shows observed performance, performance predicted by Equation 3.4, and performance predicted 
by a refined model that we shall develop in the following. We present speedups rather than raw 
execution times in order to make results clearer for larger P. The predicted performance curves use 
machine parameter values obtained by a fitting process so as to take into account additional 
overheads not accounted for by the ``best possible'' parameter values of Table 3.1. A comparison 
of the two sets of parameter values ( sec versus 77 sec, sec versus 0.54 sec) 
indicates that the finite difference implementation incurs significant overhead. This suggests that 
there may be opportunities for optimization.  

Figure 3.10 shows that Equation 3.4 is inaccurate for N=512 and larger values of P. The observed 
speedup does not increase continuously, as predicted, but in a stepwise fashion. This observation 



suggests that the model is incorrect in assuming that some aspect of program performance varies 
continuously with P. Examining Equation 3.4, we see that only computation cost depends on P ; 
both the number of messages and message size per processor are constant and hence independent 
of P. The problem then becomes clear. Equation 3.4 assumes that each processor has N/P columns 
of the grid. In reality, P does not always divide N. More specifically, some tasks will be allocated 

grid points and others points. For example, if N=8, Z=1, and P=3, some 
will have and others grid points. Hence, while total computation costs are as 
given by Equation 3.4, the maximum computation costs on any processor are as follows:  

 

This uneven distribution of computation leads to idle time, since at each step processors with less 
computation will terminate before those with more. Total idle time is the difference between the 
maximum computation time and the mean computation times, multipled by the number of 
processors:  

 

Incorporating this idle time into Equation 3.4, we obtain the following more general performance 
model:  

   

The second predicted performance curve in Figure 3.10 is obtained using this refined model. 
Notice that the two models are equivalent when N is an integer multiple of P.  

3.7 A Refined Communication Cost Model 
Next we examine how the idealized communication cost model used in preceding sections can be 
extended to account for characteristics of realistic interconnection networks. We review a range of 
network architectures and develop a more detailed model of communication performance that 
takes into account the impact of competition for bandwidth on communication costs. This more 
detailed model is still idealized but can be significantly more accurate in some circumstances.  

3.7.1 Competition for Bandwidth 
 In the idealized multicomputer architecture introduced in Chapter 1, the time required to send a 
message from one processor to another is independent of both processor location and the number 
of other processors that may be communicating at the same time. These assumptions are reflected 
in the communication cost model, Equation 3.1:  

 



While accurate for many algorithms and on many architectures, this model can break down if a 
computer's interconnection network has properties different from the ideal, particularly if an 
application generates many messages. In these cases, it is necessary to develop a more detailed 
model of the interconnection network.  

Most interconnection networks use fewer than wires to connect N processors. Hence, they must 
include routing nodes, or switches, to route messages from a source processor to a destination. A 
switching node may block or reroute messages when several messages require access to the same 
wire at the same time. The number of wires that must be traversed in order to get from one 
processor to another is termed the distance between those two processors. (The distance is equal to 
the number of switches plus one.) The maximum distance from any processor to any other 
processor is termed the diameter of the network. The distance between two processors and the 
length of the wires connecting them are not normally significant factors in determining 
performance, although networks with long wires may be more expensive to build. (Wire length 
can be important in networks extending over tens to thousands of kilometers, where the speed of 
light---about sec per kilometer in optical fiber---places a lower limit on communication 
latency.)  

A factor that can have a significant impact on communication performance and which we study 
here in some depth is competition for bandwidth. Two processors may need to send data over the 
same wire at the same time. Typically, only one message can be transmitted simultaneously, so the 
other message will be delayed. However, for many practical purposes it suffices to think of the two 
processors as sharing the available bandwidth. Hence, we scale the data volume term of Equation 
3.1 by S, the number of processors needing to send concurrently over the same wire:  

   

The scaling factor reflects the idea that the effective bandwidth available to each processor is 1/S 
of the true bandwidth.  

Equation 3.10 does not account for additional contention costs that may be incurred if messages 
collide and must be retransmitted. (Network researchers have developed sophisticated simulation 
techniques to account for such effects.) However, experience shows that Equation 3.10 is 
sufficiently accurate for many practical purposes.  

The impact of competition for bandwidth is most severe in algorithms that execute synchronously, 
that is, algorithms in which all processors are sending and receiving messages at approximately the 
same time and in which processors cannot proceed with other computation while awaiting 
messages. The finite difference problem and many other SPMD algorithms have this property. In 
algorithms such as the search and Fock matrix construction algorithms described in Chapter 2, 
processors execute asynchronously and are less likely to compete for bandwidth.  

3.7.2 Interconnection Networks 
 The value S in Equation 3.10 can depend on properties of both the parallel algorithm and the 
underlying interconnection network. In the following discussion, we use two examples to illustrate 
how the communication patterns of a particular algorithm can be analyzed to determine an 
approximate value for S on different networks. We first consider properties of interconnection 
networks.  



Crossbar Switching Network. 

 A crossbar switch avoids competition for bandwidth by using  switches to connect N 
inputs to N outputs (Figure 3.11). In this case, S=1. Although highly nonscalable, crossbar 
switches are a popular mechanism for connecting small numbers of workstations, typically 20 or 
fewer. For example, the DEC GIGAswitch can connect up to 22 workstations. While larger 
crossbars can be constructed (for example, the Fujitsu VPP 500 uses a 224 224 crossbar to 
connect 224 processors), they are very expensive.  

   
Figure 3.11: A 4 4 nonblocking crossbar, used here to connect 4 processors. On the right, two 
switching elements are expanded; the top one is set to pass messages through and the lower one to 
switch messages. Notice that each processor is depicted twice, and that any pair of processors can 
communicate without preventing other processor pairs from communicating.  

Bus-based Networks. 

 In a bus-based network, processors share a single communication resource (the bus). A bus is a 
highly nonscalable architecture, because only one processor can communicate on the bus at a time. 
The competition factor S is equal to the number of processors trying to communicate 
simultaneously.  



   
Figure 3.12: A bus-based interconnection network, here used to implement a shared-memory 
parallel computer. Each processor (P) is connected to the bus, which in turn is connected to the 
global memory. A cache associated with each processor stores recently accessed memory values, 
in an effort to reduce bus traffic.  

 Buses are commonly used in shared-memory parallel computers to communicate read and write 
requests to a shared global memory. In principle, the use of a global memory in a shared-memory 
computer simplifies parallel programming by making locality a nonissue. However, as discussed 
in Section 1.2.2, most shared-memory parallel computers introduce caches in an attempt to reduce 
bus traffic; hence, locality continues to be important.  

   
Figure 3.13: An Ethernet LAN. Multiple computers are connected to a single Ethernet cable, 
which acts as a communication bus, carrying a single signal at a time.  

Ethernet. 

 The Ethernet network often used in LANs to connect workstations or personal computers at a 
departmental level is another example of a bus-based interconnect. As noted in Table 3.1, standard 
Ethernet can provide network bandwidths of up to about 1 Mbytes per second. All computers 
connected via an Ethernet share a single communication channel (Figure 3.13). A computer that 
needs to send must wait until the channel is idle, then send its message; if it detects a collision, it 
waits a while and then retransmits. Since a computer requires exclusive access to the entire 
channel when sending a message, any algorithm that requires more than one processor to 
communicate concurrently will suffer reduced effective bandwidth. Hence, the term S in Equation 
3.10 is, as in other bus-based networks, equal to the number of simultaneous senders. The impact 
of Ethernet bandwidth limitations on performance is illustrated in the examples that follow.  



   
Figure 3.14: A two-dimensional torus interconnection network. This is a 2-D mesh with end-
around connections so that each processor is connected to four neighbors.  

Mesh Networks. 

 A mesh network can be thought of as a crossbar switch (Figure 3.11) in which processors are 
associated with switching elements rather than being placed on the edge of the mesh. In a mesh 
network of dimension D, each nonboundary processor is connected to 2D immediate neighbors. 
Connections typically consist of two wires, one in each direction. Two- and three-dimensional 
meshes are commonly used in parallel computing. They have the advantage over some more 
sophisticated networks that they can be constructed in three-dimensional space without long wires. 
In a 2-D mesh, a message is communicated from processor (i,j) to processor (k,l) in 

steps. One-, two- and three-dimensional cubic meshes of P processors have 
diameters of P-1, , and and contain 2(P-1), , and 

wires, respectively. As illustrated in Figure 3.14, these diameters can be halved by 
extending a mesh with toroidal connections so that boundary processors are also connected with 
neighbors. However, the torus has two disadvantages. First, longer wires are needed for the end-
around connections in the 3-D case. (The need for longer wires can be avoided in a 2-D torus by 
folding the mesh.) Second, a subset of a torus is not a torus, so the benefits of the toroidal 
connections are lost if a torus-connected computer is partitioned among several users.  



   
Figure 3.15: Competition for bandwidth in a 1-D mesh. In (a), processors P0 and P1 
communicate and P2 and P3 communicate. Because the two communications use different wires, 
both can proceed concurrently. In (b), processors P0 and P2 communicate and P1 and P3 
communicate. The two communications must both traverse the wire connecting P1 and P2; hence, 
the two communications cannot proceed concurrently, and S=2. In (c), processors P0 and P2 
communicate and P3 and P1 communicate. Because each connection is bidirectional, the two 
communications can proceed concurrently.  

Competition for bandwidth in a mesh network occurs when two or more processors attempt to 
send over the same wire at the same time (Figure 3.15). The analysis used to determine S for a 
particular algorithm is illustrated in the examples that follow.  

   
Figure 3.16: Hypercubes of dimension zero through four. The processors in the cubes of 
dimension 1, 2, and 3 are labeled with integers, here represented as binary numbers. Notice that 
two processors are neighbors in dimension d if and only if their binary labels differ only in the d th 
place. Notice also that in a hypercube of dimension d, a message can be routed between any pair 
of processors in at most d hops.  



Hypercube Network. 

 The hypercube network was introduced in Section 2.4.1. As in the mesh, processors in a 
hypercube network are associated with switching elements. A d -dimensional hypercube connects 
each of processors to d other processors. A hypercube can be defined recursively as follows 
(Figure 3.16). A zero-dimensional hypercube is a single processor and a one-dimensional 
hypercube connects two zero-dimensional hypercubes. Generally, a hypercube of dimension d+1 
is constructed by connecting corresponding processors in two hypercubes of dimension d. As with 
the mesh, the competition-for-bandwidth factor S is algorithm dependent, although the greater 
number of wires in the hypercube means that competition for bandwidth tends to occur less often.  

The many interesting properties of hypercubes are beyond the scope of this book (but see Chapter 
11). However, we note that when labeled as shown in Figure 3.16, two processors are connected if 
and only if the binary representation of their labels differs in a single position. We exploit this 
property when specifying algorithms that use the hypercube communication structure. Another 
important feature of a hypercube is that it contains a mesh: it may be considered a mesh with 
additional, long-distance connections. The additional connectivity reduces the diameter to d and 
increases the number of available wires, particularly for nonlocal communication. A disadvantage 
of the hypercube interconnect from an engineering point of view is that it is more complex than 
the mesh. In particular, it requires more and longer wires, since a hypercube with dimension 
greater than three cannot be laid out in three-dimensional space so that wires connect only 
physically adjacent processors.  

   
Figure 3.17: Example multistage interconnection networks. Shaded circles represent processors 
and unshaded circles represent crossbar switches. The network on the left has k=2 and n=3 ; on 
the right, k=4 and n=2. The network can be constructed from unidirectional switches and links, in 
which case it is folded so that the processors on the left and right are the same. Alternatively, it 
can be constructed from bidirectional switches and links, in which case processors on the left and 
right are distinct.  

Multistage Interconnection Networks. 

In a multistage interconnection network (MIN), as in a crossbar, switching elements are distinct 
from processors. However, fewer than switches are used to connect P processors. Instead, 
messages pass through a series of switch stages. Figure 3.17 illustrates two MINs, which are 



representatives of a general class of networks characterized by parameters n and k. These networks 
are sometimes referred to as radix k, dimension n butterflies, or k -ary n -flies. Either n stages of 

unidirectional crossbar switches connect processors, or n stages of 
bidirectional crossbar switches connect processors. In the latter case, each link 

comprises two channels that carry data in opposite directions, and each crossbar switch can route 
data arriving on any of 2k inputs to any of 2k outputs. Notice that each stage of these networks 
connects P inputs with P outputs, although not every input is directly connected to every output in 
each stage.  

   
Figure 3.18: Communications in a bidirectional MIN. The communication indicated at (a) 
involves processors connected to the same crossbar; it takes just two hops and passes through a 
single switch. The communication at (b) takes three hops and passes through two switches.  

In a unidirectional MIN, all messages must traverse the same number of wires, and so the cost of 
sending a message is independent of processor location. In effect, all processors are equidistant. In 
a bidirectional MIN, the number of wires traversed depends to some extent on processor location, 
although to a lesser extent than in a mesh or hypercube (Figure 3.18).  

The fact that messages destined for different destinations may need to pass over the same wire 
means that MINs are not immune to competition for bandwidth. Nevertheless, a MIN connecting P 



processors typically provides P wires at each stage, so in principle we should be able to organize 
communications so that little competition occurs.  

 
Example .  Competition for Bandwidth in Finite Difference:  

 In the first of two examples, we consider the impact of competition for bandwidth in an algorithm 
with a high degree of locality: the one-dimensional finite difference algorithm examined in 
preceding sections. Recall from Equation 3.3 that according to the idealized model of Equation 
3.1, the per-processor communication costs for this algorithm are  

 

   
Figure 3.19: Speedup of finite difference code with N=512 and Z=5 as measured on Ethernet-
connected IBM RS6000 workstations and as predicted both by a simple performance model that 
does not take into account competition for bandwidth and by a more sophisticated model that 
does. Both models assume that sec and sec.  

Competition for bandwidth is not an issue on a mesh or hypercube because the one-dimensional 
ring-based communication structure of the finite difference problem can be embedded in these 
networks using only nearest-neighbor connections. On a bus-based network, only one of the P 
processors can communicate at one time; if we assume that in the communication phase of the 
algorithm, half the processors need to send at once (the other half are receiving), then S=P/2 and 
the communication volume term must be scaled by a factor of P/2, giving  

   

Figure 3.19 illustrates both the large impact that bandwidth limitations can have on the 
performance of even a simple algorithm such as finite difference and the improved accuracy of the 
refined performance model. The figure shows performance measured on Ethernet-connected 



workstations and as predicted by Equations 3.3 and 3.11. We see that the more sophisticated 
model is reasonably accurate.  

 
 

Example .  Competition for Bandwidth in Butterfly:  

 As a second example, we consider an algorithm in which P tasks use the butterfly (or hypercube) 
communication structure illustrated in Figure 2.14 to perform exchanges of N/P data. The 
summation algorithm described in Section 2.4.1 has this form. Other algorithms with similar 
characteristics are described in Chapter 11.  

Per-processor communication costs associated with this algorithm are, in the absence of 
competition for bandwidth,  

 

The algorithm can, of course, execute without competition for bandwidth on a crossbar switch. 
Somewhat less obviously, it can also execute without competition for bandwidth on a P -processor 
hypercube: Computation and communication can be organized so that each of the processors 
with which a processor must communicate is a neighbor on one of the hypercube links. On a bus-
based network, only one processor can communicate at a time; hence, as in the finite difference 
algorithm considered in Example 3.7, we assume S=P/2 and from Equation 3.10 we have  

 

   
Figure 3.20: Execution of the butterfly summation algorithm on an eight-processor, one-
dimensional mesh. Shading is used to highlight a single task and its communication partners, 
which are one, two, and four hops distant.  

On a mesh, the limited number of wires becomes an issue. For example, on a one-dimensional 
mesh of P processors, each processor generates messages that must traverse 1, 2, ..., hops in 
the p steps of the algorithm (Figure 3.20). These messages travel a total of 

hops. This represents the number of wires to which each processor 
requires exclusive access during execution of the summation. As a one-dimensional bidirectional 
mesh provides only 2(P-1) wires, we see that the parallel algorithm cannot possibly proceed in less 
than P/2 steps rather than steps as supposed previously. In fact, it can proceed in P/2 steps 
only if we can define a communication schedule that keeps all wires busy all the time. Hence, the 
following model represents a lower bound on communication costs:  

 



   
Figure 3.21: Performance of parallel FFT in a spectral transform code on a one-dimensional 
mesh in Intel DELTA and on Ethernet-connected RS/6000 processors. The simple models do not 
take into account competition for bandwidth; the refined models do, and give a better fit to 
observed performance.  

Figure 3.21 compares observed speedups with those predicted by the simple and bandwidth-
limited performance models on a one-dimensional mesh and on an Ethernet. These results are 
from an atmosphere modeling code that uses a parallel fast Fourier transform (FFT) to parallelize a 
numerical method called the spectral transform. The details of the numerical method are not 
important here; what is relevant is that at each step, the code must perform two butterfly 
communication operations (specifically, FFT) on a large array. Details of the two experiments are 
given in Table 3.6. (The term used on the DELTA is significantly smaller than in the finite 
difference code of Example 3.6; this reflects the fact that the communication code in the FFT 
implementation on the DELTA had been carefully optimized.)  

 

   
Table 3.6: Parameters for butterfly performance study (N in words, times in sec). 

3.8 Input/Output 
An important determinant of performance in many parallel programs is the time required to move 
data between memory and secondary storage, that is, the time required for input/output (I/O). 
Applications with substantial I/O requirements include the following.  



• Checkpoints. Many computations performed on parallel computers execute for extended 
periods. Periodic checkpointing of computation state is essential in order to reduce the cost 
of system failures. On large parallel computers, state can be large (many gigabytes).  

• Simulation data. Scientific and engineering simulations that compute the time evolution of 
physical systems periodically save system state for subsequent visualization or analysis. 
Some simulations can generate very large amounts of data---hundreds of gigabytes or more 
in a single run.  

• Out-of-core computation. Some programs must operate on data structures that are larger 
than available ``core'' memory. In principle, a virtual memory system can perform the 
necessary paging of data to and from disk. In practice, not all parallel computers provide 
virtual memory. Even when they do, application performance can often be enhanced by 
explicit management of data movement.  

• Data analysis. Many applications involve the analysis of large amounts of data. For 
example, climate model output or data from weather satellites may be searched for 
``extreme events'' such as high temperature values, a video database may be searched for 
specified images, and a database of credit card transactions may be searched for patterns of 
fraudulent use. These data analysis applications are particularly demanding from an I/O 
point of view, because relatively little computation is performed on each datum retrieved 
from disk.  

It is difficult to provide a general discussion of parallel I/O because different parallel computers 
have radically different I/O architectures and hence parallel I/O mechanisms. However, we can 
make several points that have wide applicability.  

We can often gain a reasonable understanding of the cost of an I/O operation by thinking of it as a 
communication from the processors that perform that operation to one or more disks. The cost of a 
disk I/O operation can be approximated by a startup cost and a per-word transfer cost in much the 
same way as an interprocessor communication. (However, the startup cost is typically much 
greater.) As in interprocessor communication, the keys to good performance are to maximize the 
utilization of available paths and to minimize startups.  

   
Figure 3.22: I/O architecture of an idealized parallel computer. P processors are connected by 
multiple I/O channels to D disks.  

If a computer has only a single disk or if multiple disks are connected to a single processor, little 
can be done to optimize I/O performance. However, in practice most parallel computers provide 
multiple paths from processors to disk, whether by providing distinct ``I/O nodes'' or by 
connecting disks directly to processors (Figures 3.22). On architectures of this sort, we seek to 
organize I/O operations so that multiple processors read and write concurrently, using multiple 



paths. Thus, centralized I/O strategies that cause data to pass through a single processor are 
unlikely to be efficient and are certainly not scalable.  

In addition to maximizing concurrency in I/O operations, we need to be concerned about the 
number of distinct read or write requests required to transfer data between disk and processor 
memory. This can often have a greater impact on I/O performance than can the amount of data 
transferred. The number of I/O requests depends partly on how data are distributed on disk and in 
memory. The distribution in memory will presumably be determined by the application; the 
distribution on disk either will be under programmer control or will be selected by the file system. 
Data may sometimes be ``striped'' (scattered) across available disks so as to reduce the probability 
of many processors attempting to read from the same disk simultaneously.  

If distributions on disk and in memory differ, then a large number of reads or writes may be 
required in order to achieve data transfer. This problem is analogous to what happens when 
transferring data structures between two parallel program components that require different 
distributions. As will be discussed in Chapter 4, at least two approaches are possible in this 
situation: we can modify one or both components to use different distributions, or we can 
explicitly redistribute data before or while transferring it. Because I/O requests tend to be more 
expensive than interprocessor communications, it is often better to perform an explicit 
redistribution of data in memory so as to minimize the number of I/O requests. This leads to a two-
phase access strategy, in which the data distributions used on disk and in memory are decoupled. 
The merits of these various approaches can be explored analytically with performance models.  

3.9 Case Study: Shortest-Path Algorithms 
 We conclude this chapter by using performance models to compare four different parallel 
algorithms for the all-pairs shortest-path problem. This is an important problem in graph theory 
and has applications in communications, transportation, and electronics problems. It is interesting 
because analysis shows that three of the four algorithms can be optimal in different circumstances, 
depending on tradeoffs between computation and communication costs.  

   
Figure 3.23: A simple directed graph, G, and its adjacency matrix, A.  

The all-pairs shortest-path problem involves finding the shortest path between all pairs of vertices 
in a graph. A graph G=(V,E) comprises a set V of N vertices, , and a set E V of edges 
connecting vertices in V. In a directed graph, each edge also has a direction, so edges and 



, , are distinct. A graph can be represented as an adjacency matrix A in which each 
element (i,j) represents the edge between element i and j. if there is an edge ; 
otherwise, =0 (Figure 3.23).  

A path from vertex to vertex is a sequence of edges , , ..., from E in 
which no vertex appears more than once. For example, , is a path from vertex 1 to 
vertex 0 in Figure 3.23. The shortest path between two vertices and in a graph is the path that 
has the fewest edges. The single-source shortest-path problem requires that we find the shortest 
path from a single vertex to all other vertices in a graph. The all-pairs shortest-path problem 
requires that we find the shortest path between all pairs of vertices in a graph. We consider the 
latter problem and present four different parallel algorithms, two based on a sequential shortest-
path algorithm due to Floyd and two based on a sequential algorithm due to Dijkstra. All four 
algorithms take as input an N N adjacency matrix A and compute an N N matrix S, with the 
length of the shortest path from to , or a distinguished value ( ) if there is no path.  

3.9.1 Floyd's Algorithm 

   

Floyd's all-pairs shortest-path algorithm is given as Algorithm 3.1. It derives the matrix S in N 
steps, constructing at each step k an intermediate matrix I(k) containing the best-known shortest 
distance between each pair of nodes. Initially, each is set to the length of the edge , if 
the edge exists, and to otherwise. The k th step of the algorithm considers each in turn and 
determines whether the best-known path from to is longer than the combined lengths of the 
best-known paths from to and from to . If so, the entry is updated to reflect the shorter 
path (Figure 3.24). This comparison operation is performed a total of times; hence, we can 
approximate the sequential cost of this algorithm as , where is the cost of a single 
comparison operation.  



   
Figure 3.24: The fundamental operation in Floyd's sequential shortest-path algorithm: Determine 
whether a path going from to via is shorter than the best-known path from to .  

Parallel Floyd 1. 

The first parallel Floyd algorithm is based on a one-dimensional, rowwise domain decomposition 
of the intermediate matrix I and the output matrix S. Notice that this means the algorithm can use 
at most N processors. Each task has one or more adjacent rows of I and is responsible for 
performing computation on those rows. That is, it executes the following logic.  

  
   for k = 0 to N-1 

    for i = local_i_start to local_i_end 

     for j = 0 to N-1 

      (k+1) = min( (k), (k)+ (k)) 

     endfor 

    endfor 

   endfor 

   
Figure 3.25: Parallel version of Floyd's algorithm based on a one-dimensional decomposition of 
the I matrix. In (a), the data allocated to a single task are shaded: a contiguous block of rows. In 
(b), the data required by this task in the k th step of the algorithm are shaded: its own block and 
the k th row.  



In the k th step, each task requires, in addition to its local data, the values , , ..., , that 
is, the k th row of I (Figure 3.25). Hence, we specify that the task with this row broadcast it to all 
other tasks. This communication can be performed by using a tree structure in steps. Because 
there are N such broadcasts and each message has size N, the cost is  

   

Notice that each task must serve as the ``root'' for at least one broadcast (assuming ). Rather 
than defining P binary tree structures, it suffices to connect the P tasks using a hypercube structure 
(Chapter 11), which has the useful property of allowing any node to broadcast to all other nodes in 

steps.  

Parallel Floyd 2. 

An alternative parallel version of Floyd's algorithm uses a two-dimensional decomposition of the 
various matrices. This version allows the use of up to processors and requires that each task 
execute the following logic.  

   for k = 0 to N-1 

    for i = local_i_start to local_i_end 

     for j = local_j_start to local_j_end 

      (k+1) = min( (k), (k)+ (k)) 

     endfor 

    endfor 

   endfor 

   
Figure 3.26: Parallel version of Floyd's algorithm based on a two-dimensional decomposition of 
the I matrix. In (a), the data allocated to a single task are shaded: a contiguous submatrix. In (b), 
the data required by this task in the k th step of the algorithm are shaded: its own block, and part 
of the k th row and column.  



In each step, each task requires, in addition to its local data, values from two tasks located 
in the same row and column of the 2-D task array (Figure 3.26). Hence, communication 
requirements at the k th step can be structured as two broadcast operations: from the task in each 
row that possesses part of column k to all other tasks in that row, and from the task in each column 
that possesses part of row k to all other tasks in that column.  

In each of N steps, values must be broadcast to the tasks in each row and column, and 
the total cost is  

   

Notice that each task must serve as the ``root'' node for at least one broadcast to each task in the 
same row and column of the 2-D task array. These communication requirements can be satisfied 
by connecting tasks in the same row or column in a hypercube structure.  

3.9.2 Dijkstra's Algorithm 
 Dijkstra's single-source shortest-path algorithm computes all shortest paths from a single vertex, 

. It can also be used for the all-pairs shortest-path problem, by the simple expedient of applying 
it N times---once to each vertex , ..., .  

Dijkstra's sequential single-source algorithm is given as Algorithm 3.2. It maintains as T the set of 
vertices for which shortest paths have not been found, and as the shortest known path from to 
vertex . Initially, T=V and all . At each step of the algorithm, the vertex in T with the 
smallest d value is removed from T. Each neighbor of in T is examined to see whether a path 
through would be shorter than the currently best-known path (Figure 3.27).  

   



   
Figure 3.27: The comparison operation performed in Dijkstra's single-source shortest-path 
algorithm. The best-known path from the source vertex to vertex is compared with the path that 
leads from to and then to .  

An all-pairs algorithm executes Algorithm 3.2 N times, once for each vertex. This involves 
comparisons and takes time F, where is the cost of a single comparison in Floyd's 

algorithm and F is a constant. Empirical studies show that F 1.6; that is, Dijkstra's algorithm is 
slightly more expensive than Floyd's algorithm.  

Parallel Dijkstra 1. 

The first parallel Dijkstra algorithm replicates the graph in each of P tasks. Each task executes the 
sequential algorithm for N/P vertices. This algorithm requires no communication but can utilize at 
most N processors. Because the sequential Dijkstra algorithm is F times slower than the sequential 
Floyd algorithm, the parallel algorithm's execution time is  

 

Parallel Dijkstra 2. 

The second parallel Dijkstra algorithm allows for the case when P>N. We define N sets of P/N 
tasks. Each set of tasks is given the entire graph and is responsible for computing shortest paths for 
a single vertex (Figure 3.28). Within each set of tasks, the vertices of the graph are partitioned. 
Hence, the operation Find with minimum  

requires first a local computation to find the local vertex with minimum d and second a reduction 
involving all P/N tasks in the same set in order to determine the globally minimum . The 
reduction can be achieved by using the butterfly communication structure of Section 2.4.1, in 

steps. Hence, as the reduction is performed N times and involves two values, the total 
cost of this algorithm is  

 



   
Figure 3.28: The second parallel Dijkstra algorithm allocates P/N tasks to each of N 
instantiations of Dijkstra's single-source shortest-path algorithm. In this figure, N=9 and P=36, 
and one set of P/N=4 tasks is shaded.  

3.9.3 Shortest-Path Algorithms Summary 
 Table 3.7 summarizes the performance models developed for the four all-pairs shortest-path 
algorithms. Clearly, Floyd 2 will always be more efficient that Floyd 1. Both algorithms have the 
same computation costs and send the same number of messages, but Floyd 2 communicates 
considerably less data. On the other hand, Floyd 1 is easier to implement. Algorithms Dijkstra 1 
and 2 will be more efficient than Floyd 2 in certain circumstances. For example, Dijkstra 1 is more 
efficient than Floyd 2 if P N and  

 

   
Table 3.7: Performance of four parallel shortest-path algorithms. 

 In addition to these factors, we must consider the fact that algorithms Dijkstra 1 and Dijkstra 2 
replicate the graph P and P/N times, respectively. This replication may compromise the scalability 
of these algorithms. Also, the cost of replicating an originally distributed graph must be considered 
if (as is likely) the shortest-path algorithm forms part of a larger program in which the graph is 
represented as a distributed data structure.  

Clearly, the choice of shortest-path algorithm for a particular problem will involve complex 
tradeoffs between flexibility, scalability, performance, and implementation complexity. The 
performance models developed in this case study provide a basis for evaluating these tradeoffs. 



3.10 Summary 
In this chapter, we have seen how to develop mathematical performance models that characterize 
the execution time, efficiency, and scalability of a parallel algorithm in terms of simple parameters 
such as problem size, number of processors, and communication parameters. We have also seen 
how these models can be used throughout the parallel program design and implementation cycle:  

• Early in the design process, we characterize the computation and communication 
requirements of our parallel algorithms by building simple performance models. These 
models can be used to choose between algorithmic alternatives, to identify problem areas 
in the design, and to verify that algorithms meet performance requirements.  

• Later in the design process, we refine our performance models and conduct simple 
experiments to determine unknown parameters (such as computation time or 
communication costs) or to validate assumptions. The refined models can be used to 
increase our confidence in the quality of our design before implementation.  

• During implementation, we compare the performance of the parallel program with its 
performance model. Doing this can help both to identify implementation errors and to 
improve the quality of the model.  

A performance model gives information about one aspect of an algorithm design: its expected 
parallel performance. We can use this information, when it is combined with estimates of 
implementation cost, etc., to make informed choices between design alternatives.  

Exercises 
The exercises in this chapter are designed to provide experience in the development and use of 
performance models. When an exercise asks you to implement an algorithm, you should use one 
of the programming tools described in Part II.  

1. Discuss the relative importance of the various performance metrics listed in Section 3.1 
when designing a parallel floorplan optimization program for use in VLSI design.  

2. Discuss the relative importance of the various performance metrics listed in Section 3.1 
when designing a video server that uses a parallel computer to generate many hundreds of 
thousands of concurrent video streams. Each stream must be retrieved from disk, decoded, 
and output over a network.  

3.  The self-consistent field (SCF) method in computational chemistry involves two 
operations: Fock matrix construction and matrix diagonalization. Assuming that 
diagonalization accounts for 0.5 per cent of total execution time on a uniprocessor 
computer, use Amdahl's law to determine the maximum speedup that can be obtained if 
only the Fock matrix construction operation is parallelized.  

4. You are charged with designing a parallel SCF program. You estimate your Fock matrix 
construction algorithm to be 90 percent efficient on your target computer. You must choose 
between two parallel diagonalization algorithms, which on five hundred processors achieve 
speedups of 50 and 10, respectively. What overall efficiency do you expect to achieve with 
these two algorithms? If your time is as valuable as the computer's, and you expect the 
more efficient algorithm to take one hundred hours longer to program, for how many hours 
must you plan to use the parallel program if the more efficient algorithm is to be 
worthwhile?  



5. Some people argue that in the future, processors will become essentially free as the cost of 
computers become dominated by the cost of storage and communication networks. Discuss 
how this situation may affect algorithm design and performance analysis.  

6. Generate an execution profile similar to that in Figure 3.8 for an implementation of a 
parallel finite difference algorithm based on a 2-D decomposition. Under which 
circumstances will message startups contribute more to execution time than will data 
transfer costs?  

7. Derive expressions that indicate when a 2-D decomposition of a finite difference 
computation on an grid will be superior to a 1-D decomposition and when a 3-
D decomposition will be superior to a 2-D decomposition. Are these conditions likely to 
apply in practice? Let sec, sec, sec, and P=1000. For what 
values of N does the use of a 3-D decomposition rather than a 2-D decomposition reduce 
execution time by more than 10 percent?  

8. Adapt the analysis of Example 3.4 to consider 1-D and 2-D decompositions of a 2-D grid. 
Let N=1024, and fix other parameters as in Exercise 7. For what values of P does the use 
of a 2-D decomposition rather than a 1-D decomposition reduce execution time by more 
than 10 percent?  

9. Implement a simple ``ping-pong'' program that bounces messages between a pair of 
processors. Measure performance as a function of message size on a workstation network 
and on one or more parallel computers. Fit your results to Equation 3.1 to obtain values for 

and . Discuss the quality of your results and of the fit.  
10. Develop a performance model for the program constructed in Exercise 5 in Chapter 2 that 

gives execution time as a function of N, P, , , and . Perform empirical studies to 
determine values for , , and on different parallel computer systems. Use the results of 
these studies to evaluate the adequacy of your model.  

11. Develop performance models for the parallel algorithms developed in Exercise 10 in 
Chapter 2. Compare these models with performance data obtained from implementations of 
these algorithms.  

12. Determine the isoefficiency function for the program developed in Exercise 10. Verify this 
experimentally.  

13. Use the ``ping-pong'' program of Exercise 9 to study the impact of bandwidth limitations 
on performance, by writing a program in which several pairs of processors perform 
exchanges concurrently. Measure execution times on a workstation network and on one or 
more parallel computers. Relate observed performance to Equation 3.10.  

14. Implement the parallel summation algorithm of Section 2.4.1. Measure execution times as 
a function of problem size on a network of workstations and on one or more parallel 
computers. Relate observed performance to the performance models developed in this 
chapter.  

15. Determine the isoefficiency function for the butterfly summation algorithm of Section 
2.4.1, with and without bandwidth limitations.  

16. Design a communication structure for the algorithm Floyd 2 discussed in Section 3.9.1.  
17. Assume that a cyclic mapping is used in the atmosphere model of Section 2.6 to 

compensate for load imbalances. Develop an analytic expression for the additional 
communication cost associated with various block sizes and hence for the load imbalance 
that must exist for this approach to be worthwhile.  

18. Implement a two-dimensional finite difference algorithm using a nine-point stencil. Use 
this program to verify experimentally the analysis of Exercise 17. Simulate load imbalance 
by calling a ``work'' function that performs different amounts of computation at different 
grid points.  



19. Assume that , , and sec. Use the performance models summarized 
in Table 3.7 to determine the values of N and P for which the various shortest-path 
algorithms of Section 3.9 are optimal.  

20. Assume that a graph represented by an adjacency matrix of size is distributed among P 
tasks prior to the execution of the all-pairs shortest-path algorithm. Repeat the analysis of 
Exercise 19 but allow for the cost of data replication in the Dijkstra algorithms.  

21. Extend the performance models developed for the shortest-path algorithms to take into 
account bandwidth limitations on a 1-D mesh architecture.  

22. Implement algorithms Floyd 1 and Floyd 2, and compare their performance with that 
predicted by Equations 3.12 and 3.13. Account for any differences.  

23. In so-called nondirect Fock matrix construction algorithms, the integrals of Equation 
2.3 are cached on disk and reused at each step. Discuss the performance issues that may 
arise when developing a code of this sort.  

24. The bisection width of a computer is the minimum number of wires that must be cut to 
divide the computer into two equal parts. Multiplying this by the channel bandwidth gives 
the bisection bandwidth. For example, the bisection bandwidth of a 1-D mesh with 
bidirectional connections is 2/ . Determine the bisection bandwidth of a bus, 2-D mesh, 3-
D mesh, and hypercube.  

   
Figure 3.29: Parallel matrix transpose of a matrix A decomposed by column, with P=4. 
The components of the matrix allocated to a single task are shaded black, and the 
components required from other tasks are stippled.  

25. An array transpose operation reorganizes an array partitioned in one dimension so that it is 
partitioned in the second dimension (Figure 3.29). This can be achieved in P-1 steps, with 
each processor exchanging of its data with another processor in each step. Develop a 
performance model for this operation.  

26. Equation 3.1 can be extended to account for the distance D between originating and 
destination processors:  

   

The time per hop typically has magnitude comparable to . Under what circumstances 
might the term be significant?  

27. Develop a performance model for the matrix transpose algorithm on a 1-D mesh that takes 
into account per-hop costs, as specified by Equation 3.14. Assume that and 

, and identify P and N values for which per-hop costs make a significant (>5 
percent) difference to execution time.  



28. Demonstrate that the transpose algorithm's messages travel a total of hops on a 
1-D mesh. Use this information to refine the performance model of Exercise 25 to account 
for competition for bandwidth.  

29. In the array transpose algorithm of Exercise 25, roughly half of the array must be moved 
from one half of the computer to the other. Hence, we can obtain a lower time bound by 
dividing the data volume by the bisection bandwidth. Compare this bound with times 
predicted by simple and bandwidth-limited performance models, on a bus, one-dimensional 
mesh, and two-dimensional mesh.  

30. Implement the array transpose algorithm and study its performance. Compare your results 
to the performance models developed in preceding exercises.  

Chapter Notes 
 The observation commonly referred to as Amdahl's law was first formulated in [12]. Asymptotic 
analysis of parallel algorithms is discussed in many computer science texts, such as those by Akl 
[8], Leighton [187], and Smith [267]. Cook [64] discusses problems for which no efficient parallel 
algorithms have been discovered.  

Many different approaches to performance modeling have been proposed, each appropriate for 
different purposes. See, for example, the papers by Culler et al. [67], Eager et al. [89], Flatt and 
Kennedy [97], Karp and Flatt [167], and Nussbaum and Agarwal [216]. Patel [224] discusses the 
modeling of shared-memory computers. The book by Kumar et al. [179] provides many example 
models and a more detailed treatment of the concept of isoefficiency. Gustafson et al. [129,130] 
introduce the concept of scaled speedup. Singh, Hennessy, and Gupta [259], Sun and Ni [274], and 
Worley [297,298] discuss various constraints on the scalability of parallel programs. Lai and Sahni 
[183] and Quinn and Deo [237] discuss speedup anomalies in search problems. Faber et al. [93] 
argue against the concept of superlinear speedup. Fromm et al. [115], Harrison and Patel [134], 
and Thomasian and Bay [284] use queuing models to study performance of parallel systems. 
Kleinrock [173] reviews techniques used for performance analysis of networks and discusses 
issues that arise in high-speed (gigabit/sec) WANs.  

The chapter notes in Chapter 1 provide references on parallel computer architecture. Feng [94] 
provides a tutorial on interconnection networks. Hypercube networks have been used in a variety 
of multicomputers such as the Cosmic Cube [254], nCUBE-2 [212], Intel iPSC, and Thinking 
Machines CM2 [281]. The Intel DELTA and Intel Paragon [276] use two-dimensional mesh 
networks. The Cray T3D and MIT J machine [72] use a three-dimensional torus. Adams, Agrawal, 
and Siegel [2] survey multistage interconnection networks, and Harrison [133] discusses the 
analytic modeling of these networks. Various forms of multistage network have been used in the 
BBN Butterfly [31], NYU Ultracomputer [123], IBM RP3 [226], and IBM SP [271]. The IBM SP 
uses a bidirectional multistage network constructed from 4 4 crossbars (a modified 4-ary n -fly) 
similar to that illustrated in Figure 3.18. Seitz [253,255] provides an introduction to 
multicomputers and their interconnection networks. Dally [69] discusses networks and the concept 
of bisection width, while Leighton [187] provides a more detailed and theoretical treatment. Dally 
and Seitz [70,71] discuss routing techniques. The material in Example 3.8 is based on work by 
Foster and Worley [110]. Ethernet was designed by Metcalfe and Boggs [205]; Shoch, Dalal, and 
Redell [257] describe its evolution.  

 Miller and Katz [208], Foster, Henderson, and Stevens [103], and Pool et al. [229] discuss the I/O 
requirements of scientific and engineering applications. Del Rosario and Choudhary [76] discuss 



problems and prospects for parallel I/O. Henderson, Nickless, and Stevens [145] discuss 
application I/O requirements and describe a flexible I/O architecture for parallel computers. Plank 
and Li [228] discuss checkpointing. Bordawekar, del Rosario, and Choudhary [41] explain the 
utility of a two-phase I/O strategy. A special issue of the Journal of Parallel and Distributed 
Computing [60] discusses various aspects of parallel I/O, as do Aggarwal and Vitter [4] and Katz, 
Gibson, and Patterson [168]. DeWitt and Gray [79] discuss parallel database machines. Gibson 
[120] examines the design and performance analysis of redundant disk arrays (RAID disks). 
Hennessy and Patterson [134] provide a good description of I/O system performance analysis and 
design.  

The parallel versions of Floyd's shortest-path algorithm [98] are due to Jenq and Sahni [158], 
while the parallel version of Dijkstra's single-source algorithm [80] is described by Paige and 
Kruskal [217]. Our analysis of these algorithms follows Kumar and Singh [182], who also present 
analyses that take into account bandwidth limitations on hypercube and two-dimensional mesh 
architectures. Bertsekas and Tsitsiklis [35] describe a pipelined variant of Floyd 2 that improves 
performance by allowing iterations to proceed concurrently, subject only to dataflow constraints. 
Aho, Hopcroft, and Ullman [7] and Cormen, Leiserson, and Rivest [65] provide good 
introductions to sequential graph algorithms. Quinn and Deo [236] and Das, Deo, and Prasad 
[73,74] describe parallel graph algorithms. Ranka and Sahni's [238] book on parallel algorithms 
for image processing and pattern recognition includes relevant material.  

4 Putting Components Together 
In previous chapters, we have focused on the problem of deriving efficient parallel algorithms for 
individual program components, such as search and finite difference computation. Yet complete 
programs may need to incorporate multiple parallel algorithms, each operating on different data 
structures and requiring different partitioning, communication, and mapping strategies for its 
efficient execution.  

Experience shows that the complexity that tends to arise when constructing large programs can be 
controlled by the application of modular design techniques. The key idea is to encapsulate 
complex or changeable aspects of a design inside separate program components, or modules, with 
well-defined interfaces indicating how each module interacts with its environment. Complete 
programs are developed by plugging together, or composing, these modules. Modular design can 
increase reliability and reduce costs by making it easier to build programs, change programs to suit 
changing requirements, and reuse components in new programs.  

Our goal in this chapter is to introduce some of the design issues that arise when developing large 
parallel programs. After studying this chapter, you should understand the basic principles and 
benefits of modular design. You should be familiar with the techniques used to apply modular 
design in parallel programs: what needs to be encapsulated in parallel program components, and 
the various ways in which components can be composed. You should also understand the 
performance issues that arise when composing parallel program components.  

4.1 Modular Design Review 
The basic idea underlying modular design is to organize a complex system (such as a large 
program, an electronic circuit, or a mechanical device) as a set of distinct components that can be 



developed independently and then plugged together. Although this may appear a simple idea, 
experience shows that the effectiveness of the technique depends critically on the manner in which 
systems are divided into components and the mechanisms used to plug components together. The 
following design principles are particularly relevant to parallel programming. 

Provide simple interfaces. 

Simple interfaces reduce the number of interactions that must be considered when verifying that a 
system performs its intended function. Simple interfaces also make it easier to reuse components 
in different circumstances. Reuse is a major cost saver. Not only does it reduce time spent in 
coding, design, and testing, but it also allows development costs to be amortized over many 
projects. Numerous studies have shown that reusing software is by far the most effective technique 
for reducing software development costs.  

As an example, a modular implementation of a climate modeling system (Figure 2.3) may define 
distinct modules concerned with atmosphere modeling, ocean modeling, etc. The interfaces to 
each module can comprise a small set of procedures that access boundary data, advance the 
simulation, and so on. Hence, there is no need for the user to become familiar with the 
implementation of the various modules, which collectively may comprise hundreds of procedures 
and tens of thousands of lines of code.  

Ensure that modules hide information. 

The benefits of modularity do not follow automatically from the act of subdividing a program. The 
way in which a program is decomposed can make an enormous difference to how easily the 
program can be implemented and modified. Experience shows that each module should 
encapsulate information that is not available to the rest of a program. This information hiding 
reduces the cost of subsequent design changes. For example, a module may encapsulate  

• related functions that can benefit from a common implementation or that are used in many 
parts of a system,  

• functionality that is likely to change during later design or deployment,  
• aspects of a problem that are particularly complex, and/or  
• code that is expected to be reused in other programs.  

Notice that we do not say that a module should contain functions that are logically related because, 
for example, they solve the same part of a problem. This sort of decomposition does not normally 
facilitate maintenance or promote code reuse.  

Use appropriate tools. 

While modular designs can in principle be implemented in any programming language, 
implementation is easier if the language supports information hiding by permitting the 
encapsulation of code and data structures. Fundamental mechanisms in this regard include the 
procedure (or subroutine or function) with its locally scoped variables and argument list, used to 
encapsulate code; the user-defined datatype, used to encapsulate data; and dynamic memory 
allocation, which allows subprograms to acquire storage without the involvement of the calling 
program. These features are supported by most modern languages (e.g., C++, Fortran 90, and Ada) 
but are lacking or rudimentary in some older languages (e.g., Fortran 77).  



Design checklist. 

The following design checklist can be used to evaluate the success of a modular design. As usual, 
each question should be answered in the affirmative.  

1. Does the design identify clearly defined modules?  
2. Does each module have a clearly defined purpose? (Can you summarize it in one 

sentence?)  
3. Is each module's interface sufficiently abstract that you do not need to think about its 

implementation in order to understand it? Does it hide its implementation details from 
other modules?  

4. Have you subdivided modules as far as usefully possible?  
5. Have you verified that different modules do not replicate functionality?  
6. Have you isolated those aspects of the design that are most hardware specific, complex, or 

otherwise likely to change?  

 
Example .  Database search:  

We use a simple example to illustrate how information hiding considerations can influence design. 
To search a database for records matching a specified search pattern, we must read the database, 
search the database, and write any matching records found. One possible decomposition of this 
problem defines input, search, and output modules with the following interfaces.  

   input(in_file, database) 

   search(database, search_pattern, matches) 

   output(out_file, database, matches) 

An examination of what must be done to read a database, perform a search, and so on could then 
lead us to define the procedures that comprise the input, search, and output modules.  

This design provides simple interfaces. However, all three modules depend on the internal 
representation used for the database, and hence must be modified if this representation is changed. 
In addition, each module probably duplicates database access functions.  

An alternative decomposition, driven by information hiding concerns, focuses on the internal 
representation of the database as something potentially complex, likely to change, and common to 
many components. Hence, this information is hidden in a single database module that provides 
operations such as the following.  

   read_record(file, id, record) 

   add_record(id, record, database) 

   get_record(id, record, database) 

   write_record(file, id, record) 



The rest of the program can now be written without knowing anything about how the database is 
implemented. To change the internal representation of the database, we need simply to substitute a 
different implementation of the database module, which furthermore is ideally suited for reuse in 
other applications.  

 

4.2 Modularity and Parallel Computing 
 The design principles reviewed in the preceding section apply directly to parallel programming. 
However, parallelism also introduces additional concerns. A sequential module encapsulates the 
code that implements the functions provided by the module's interface and the data structures 
accessed by those functions. In parallel programming, we need to consider not only code and data 
but also the tasks created by a module, the way in which data structures are partitioned and 
mapped to processors, and internal communication structures. Probably the most fundamental 
issue is that of data distribution.  

   
Figure 4.1: Three forms of parallel program composition. In each case, the program is shown 
executing on four processors, with each arrow representing a separate thread of control and 
shading denoting two different program components. In sequential composition, different program 
components execute in sequence on all processors. In parallel composition, different program 
components execute concurrently on different processors. In concurrent composition, different 
program components execute concurrently on the same processors.  

Another difference between sequential and parallel programming is that in the former, modules 
can be put together (composed) in just one way: sequentially. Execution of a program leads to a 
sequence of calls to functions defined in different modules. This is called sequential composition 



and can also be used in parallel programming, and indeed is fundamental to the SPMD 
programming model used in many parallel programs. However, we often need to compose 
program components in other ways (Figure 4.1). In parallel composition, different modules 
execute concurrently on disjoint sets of processors. This strategy can enhance modularity and 
improve scalability and locality. In concurrent composition, different modules execute 
concurrently on the same processors, with execution of a particular module enabled by the 
availability of data. Concurrent composition can both reduce design complexity and allow 
overlapping of computation and communication.  

We distinguish between sequential, parallel, and concurrent composition both because they are 
different ways of thinking about programs and because not all parallel programming tools support 
all three compositional forms. Data-parallel languages (such as HPF) tend to support only 
sequential composition. Message-passing libraries (such as MPI) typically support both sequential 
and parallel composition but not concurrent composition. Other languages and libraries (such as 
CC++ and Fortran M) support all three forms of composition.  

4.2.1 Data Distribution 
In Chapters 2 and 3, we showed that the distribution of a program's data structures among tasks 
and processors (that is, the way in which data structures are partitioned and mapped) is an 
important aspect of parallel algorithm design. We also showed how to design data distributions 
that maximize performance and/or minimize software engineering costs.  

 Data distribution can become a more complex issue in programs constructed from several 
components. Simply choosing the optimal distribution for each component may result in different 
modules using different data distributions. For example, one module may output an array data 
structure distributed by columns, while another expects its input to be distributed by rows. If these 
two modules are to be composed, then either the modules themselves must be modified to use 
different distributions, or data must be explicitly redistributed as they are passed from one 
component to the other. These different solutions can have different performance characteristics 
and development costs.  

Both performance tuning and program reuse are made easier if modules are designed to be data 
distribution neutral, that is, if they can deal with a variety of different data distributions. This 
neutrality can be achieved by specifying the distribution of a particular data structure as a runtime 
parameter or in the data structure itself. For example, the two modules referred to in the preceding 
paragraph could be defined to deal with arbitrary two-dimensional decompositions. The combined 
program could then utilize a decomposition by rows, a decomposition by columns, or (as a 
compromise) a two-dimensional decomposition.  

Designing a module to be data distribution neutral is not necessarily easy. In some cases, different 
data distributions may call for quite different algorithms. This issue is explored in more detail in 
Section 4.6.  

4.2.2 Sequential Composition 
In a parallel program constructed using only sequential composition, each processor inevitably 
executes the same program, which in turn performs a series of calls to different program 



components. These program components may themselves communicate and synchronize, but they 
cannot create new tasks. Hence, the entire computation moves sequentially from one parallel 
operation to the next.  

 As an example, consider the following program, which could be executed by each task in an 
SPMD finite difference program.  

   while (not done) do 

    finite_difference(localgrid, localmax) 

    global_maximum(localmax, globmax) 

    if(globmax < threshold) done = true 

   enddo 

This program is structured as a sequential composition of two procedure calls and a conditional 
statement. At each step, each task first calls the procedure finite_difference to advance the 
simulation on its part of the finite difference grid. This updates localgrid and returns a local 
error estimate, localmax. Next, each task calls global_maximum to obtain a global maximum 
error, which is used to determine whether the simulation has converged. On a parallel computer, 
both the finite_difference and global_maximum routines must perform communication (to 
exchange the data required by the finite difference stencil and to compute the global maximum, 
respectively), but this activity is hidden from the rest of the program.  

This example illustrates an important advantage of sequential composition and the SPMD model: 
the program executed by each process has a fairly straightforward sequential reading, and many 
sequential programming techniques can be used unchanged. For example, the procedures 
finite_difference and global_maximum can be defined in separate grid and reduction modules, 
both of which can encapsulate internal data structures (and communication structures).  

A second advantage of sequential composition is that if different modules use the same data 
distribution, no data movement (and hence no communication) is required at module interfaces. 
For example, the top-level structure of an SPMD climate modeling system could be as follows. 
Procedures from ocean and atmosphere modules are called repeatedly in an interleaved fashion, 
with data generated by the ocean module being passed to the atmosphere module and vice versa. 
Communication is required only within the two components.  

   initialize_ocn(ocn_grid) 

   initialize_atm(atm_grid) 

   while (not done) do 

    ocean(atm_grid, ocn_grid) 

    atmosphere(ocn_grid, atm_grid, done) 

   enddo 



As these examples show, a library intended for use in an SPMD programming environment can 
utilize an interface almost identical to that used in a comparable sequential library. The principal 
concerns are that library routines be able to deal with a variety of data distributions (that is, be data 
distribution neutral) and that parallel implementation details such as data structures and 
communication operations be hidden behind interfaces.  

   
Figure 4.2: A block cyclic distribution of a two-dimensional array of size 12 18 onto a processor 
array of size 3 3 (P=Q=3) with a block size of 2 3 (r=2, c=3). Array elements mapped to 
processor (0,0) are shaded.  

The simplicity of sequential composition and SPMD programming has stimulated some major 
parallel library development projects. One example, which we describe here to illustrate how data 
distribution neutral libraries are defined, is ScaLAPACK, a version of the popular LAPACK linear 
algebra library designed to execute on scalable parallel computers. ScaLAPACK supports a wide 
range of operations on dense and banded matrices, such as multiplication, transpose, and 
factorization. Its routines operate on data objects representing two-dimensional matrices 
decomposed by using a block cyclic distribution. The distribution of an array is specified by four 
parameters, P, Q, r, and c, where P and Q denote the number of processors and r and c the block 
size in each dimension (Figure 4.2). In principle, every routine can be called with any parameter 
values, so the programmer can experiment with alternative data distributions simply by changing 
parameters in a top-level program. This approach provides a high degree of mapping 
independence, in a manner evocative of the data distribution directives employed in the data-
parallel language High Performance Fortran (HPF) (Chapter 7). In practice, certain limitations are 
placed on allowable parameter values so as to simplify the software. For example, the LU 
factorization routine requires that blocks be square. Internally, ScaLAPACK routines may 
incorporate multiple parallel algorithms and select between these algorithms based on distribution, 
problem size, and machine size. However, these details are hidden from the user. Program 4.1 
illustrates the use of ScaLAPACK routines.  



   

Not surprisingly, sequential composition also has limitations as a program structuring technique 
for parallel programs. We examine some of these limitations in the subsections that follow. 

4.2.3 Parallel Composition 
Parallel composition can be viewed as a generalization of the SPMD programming model in which 
different parts of a computer execute different programs. (It can also be thought of as a special 
case of concurrent composition in which concurrently executing tasks are required to execute on 
disjoint sets of processors.) A parallel composition specifies which program components are to 
execute in which parts of the computer and how these components are to exchange data.  

In principle, any program expressed as a parallel composition can be converted to a sequential 
composition that interleaves the execution of the various program components appropriately. 
However, the use of parallel composition can enhance scalability and locality. For example, if two 
program components (such as the atmosphere and ocean model considered in the preceding 
section) can execute concurrently, then mapping them to disjoint sets of processors increases 
scalability by providing additional opportunities for parallel execution. If locality increases with 
granularity, then this parallel composition can also make more efficient use of cache, memory, and 
communication bandwidth than can a sequential composition of the same components. Parallel 
composition can also decrease total memory requirements by reducing the amount of code and 
data replicated on every processor.  

4.2.4 Concurrent Composition 



 Concurrent composition is the most general form of composition that we consider. A concurrent 
composition specifies the program components that are to execute concurrently, 
producer/consumer relationships between components, and the mapping of components to 
processors. Components then execute in a data-driven manner, meaning that they can be executed 
if the data that they require from other components are available. These ideas should be familiar 
from the discussion of the task/channel programming model in Chapter 1. In the terms of that 
model, a concurrent composition specifies a set of tasks, a set of channels connecting these tasks, 
and a mapping of tasks to processors.  

 Concurrent composition has both advantages and disadvantages relative to sequential and parallel 
composition. One important advantage is that it can facilitate information hiding and hence the 
development of modular programs. This is because the interfaces in a concurrent composition 
consist entirely of the channels connecting the various components. Internal implementation 
details concerning code, data structures, concurrency, and communication are hidden. Hence, 
program components can be designed and developed in isolation even when they need to execute 
on the same processors.  

 Concurrent composition can also simplify design by allowing decisions concerned with mapping 
and scheduling to be delayed or even avoided altogether. Because the semantics of a program 
specified by using concurrent composition are independent of how program components are 
mapped to processors, mapping decisions can be delayed until late in the design process, as 
recommended in Chapter 2. Because the execution schedule is determined by the availability of 
data, execution order need not be specified explicitly by the programmer.  

 A disadvantage of concurrent composition in some environments is the cost of a data-driven 
execution model. While compilers and runtime systems can do much to reduce costs incurred 
when switching between tasks, these costs can be significant if task switches occur frequently.  

   
Figure 4.3: A finite difference program can be structured as a concurrent composition of reduce 
and grid components. The first of these components is designed to perform reductions, while the 
second performs finite difference computation. An array of channels defines the interface between 
the two components, which encapsulate internal task and channel structures. The two components 
may execute on the same or different processors.  

 
Example .  Finite Difference Problem:  

Figure 4.3 shows how the finite difference program can be constructed as a concurrent 
composition of grid and reduce components. The grid module might create a set of tasks 



specified as follows. The arguments to_reduce and from_reduce are ports referencing channels 
that can be used to send data to and receive data from the reduce module, respectively.  

  procedure grid(to_reduce, from_reduce) 

  begin 

    while(not done) do       ! Repeat for each step 

   exchange_with_neighbors(grid) 

   compute(grid, localmax)   ! Local computation 

   send(to_reduce, localmax)   ! Dispatch request for reduction 

   other_computation(grid)   ! More local computation 

   receive(from_reduce, globmax)  ! Receive reduced value 

   if(globmax < threshold) done = true 

    enddo 

  end 

At each step, this code performs some computation before sending a message requesting a 
reduction operation, and then performs other computation before receiving the result. The other 
computation can be overlapped with the communication required for the reduction.  

 

4.2.5 Design Rules 
We conclude this section with a set of design rules that can be used to determine how to compose 
modules and which sorts of interfaces to design.  

1. Design modules to handle multiple data distributions. This feature can increase their 
reusability.  

2. Incorporate data distribution information in data structures rather than in module interfaces. 
This approach simplifies interfaces and maximizes opportunities for code reuse.  

3. Use sequential composition when designing for an SPMD programming system such as 
HPF or MPI.  

4. Consider sequential composition when program components cannot execute concurrently 
or need to share a lot of data.  

5. Consider concurrent composition if program components can execute concurrently, 
communication costs are high, and communication/computation overlap is possible.  

6. Consider parallel composition if memory is at a premium or if intracomponent 
communication costs are greater than intercomponent communication costs.  

4.3 Performance Analysis 



 When composing components to form programs, we also need to consider how to compose their 
performance models. For example, consider a program that combines two components a and b 
with performance models as follows:  

 

In the case of a sequential composition of a and b that does not require data redistribution, a 
performance model for the resulting program may sometimes be obtained simply by summing the 
components of and :  

 

In practice, the performance analysis of programs constructed from multiple modules is often 
complicated by the following factors. Fortunately, these complications can be accounted for by 
using the modeling techniques of Chapter 3.  

Increased computation. Data transfer between modules can require computation, thereby 
increasing total computation costs. Less frequently, the merging of two modules will allow us to 
reduce computation costs by eliminating operations that are common to both components.  

Reduced idle time. Recall that idle time represents time spent doing no useful work, either because 
a processor has completed its part of a computation early or because the processor is waiting for 
data. Idle time can be reduced in concurrent compositions if computation or communication in one 
module can proceed when other modules mapped to the same processors are idle.  

Increased communication. Composition often introduces a need for additional communication. In 
sequential composition, communication may be required to redistribute data structures at 
component boundaries. In parallel composition, communication is required to move data between 
modules executing on different processors.  

 Increased granularity. Parallel composition tends to increase computation and communication 
granularity within composed components, because each executes within a subset of available 
processors. This effect can improve overall performance.  

Load imbalances. Parallel composition can increase idle time if the computational resources 
allocated to different components do not allow the components to execute at equal rates. In this 
situation, one module will complete some phase of a computation before another and must then 
remain idle until the other module provides the data required to continue execution. This is a 
variant of the load-balancing problem discussed in Chapter 2.  

4.4 Case Study: Convolution 
 In the remainder of this chapter, we apply the modular design techniques discussed in preceding 
sections in three case studies. We start with an example from image processing, which we use to 
study design tradeoffs that can arise when constructing parallel programs from several 
components. We consider the problem of applying a series of convolution operations to a sequence 



of images. Images, represented as arrays of size N N, are input in pairs on streams A and B ; 
convolution generates a new array of the same size that is output on stream C (Figure 4.4). A 
single convolution operation involves the transformation of two input arrays using independent 
two-dimensional fast Fourier transforms (2-D FFTs), a pointwise multiplication of the two 
transformed arrays, and the transformation of the resulting array using an inverse 2-D FFT, 
thereby generating an output array. A 2-D FFT performs 1-D FFTs first on each row and then on 
each column of an array. A 1-D Fourier transform, , of a sequence of N values, 

, is given by  

 

where . The FFT exploits symmetry to perform this computation in steps, each 
involving operations.  

   
Figure 4.4: Dataflow diagram for an image-processing pipeline. Two streams of images, A and B, 
are passed through FFT modules and then into an inverse FFT module, which first multiplies them 
and then applies an inverse FFT.  

4.4.1 Components 
 We first consider the three components from which the convolution algorithm is constructed: 
forward 2-D FFT, multiplication, and inverse 2-D FFT. The pointwise multiplication is the 
simplest: Its communication requirements are zero as long as the arrays on which it operates have 
the same data distribution.  



   
Figure 4.5: Two parallel algorithms for computing a series of 2-D FFTs. In each case, the activity 
on each of four processors (P0--3) is shown over time, with arrows denoting communication and I 
and O denoting input and output operations. The algorithm illustrated in the upper part of the 
figure is a sequential composition of program components that perform 1-D FFTs, first on rows 
and then on columns of each input 2-D array; all-to-all communication is required to transpose 
the array after performing row FFTs and before performing column FFTs. In the second 
algorithm, data flow from a first set of processors performing row FFTs (P0, P1) to a second set 
performing column FFTs (P2, P3). Communication is required to move data from P0 and P1 to 
P2 and P3.  

A variety of parallel algorithms are possible for the forward and inverse 2-D FFTs. A fine-grained 
algorithm can exploit concurrency within the 1-D FFTs performed on individual rows and 
columns of the input array, at the cost of considerable communication. A more coarse-grained 
algorithm performs independent 1-D FFTs in parallel, thereby avoiding a need for communication 
within the 1-D FFTs, but requiring communication when moving from a row-based to a column-
based decomposition. We consider two algorithms based on the latter strategy. The first processes 
the input image stream sequentially, performing row FFTs and then column FFTs on each image 
in turn. The second algorithm pipelines the image stream, performing column FFTs for one image 
in parallel with the row FFTs for the next (Figure 4.5). These two algorithms are in effect 
sequential and parallel compositions, respectively, of code fragments that perform 1-D FFTs on 
the rows and columns of a two-dimensional array.  

 The first parallel algorithm is termed the transpose algorithm, since it performs a series of one-
dimensional transforms on P processors while the array is partitioned in one dimension, then 
transposes the array and performs transforms in the second dimension using the same processors. 
The transpose operation requires that each processor send one message of size to each of 
the P-1 other processors. Hence, total communication costs summed over P processors are  



   

 The second algorithm is termed the pipeline algorithm, since it partitions processors into two sets 
of size P/2 which perform FFTs on rows and columns, respectively. Each processor in the first set 
must communicate with each processor in the other set, for a total of messages. The entire 
array is communicated. Hence, total communication costs are  

   

Notice that communication costs are not necessarily distributed equally among processors in the 
second algorithm, since the sending and receiving processors form distinct groups. Nevertheless, 
Equations 4.1 and 4.2 give a rough idea of the relative performance of the two algorithms. The 
second algorithm sends significantly fewer messages and hence should be more efficient in 
situations in which message startup costs are dominant, for example, when N and/or are small or 
when P or are large. On the other hand, the first algorithm probably incurs lower data transfer 
costs and hence may be superior in other situations.  

4.4.2 Composing Components 
Having designed two alternative algorithms for the 2-D FFT, we now consider the parallel 
convolution algorithm proper. Its four components---two parallel 2-D FFTs, one matrix 
multiplication, and one inverse 2-D FFT (Figure 4.4)---can be combined using either sequential or 
parallel composition. If sequential composition is used, the parallel convolution algorithm can be 
represented as follows, with the fft and fft  calls invoking the transpose 2-D parallel FFT.  

   for each image 

    A  = fft(A) 

    B  = fft(B) 

    C  = A .B  

    C = fft (C ) 

   endfor 

If the input to this algorithm is decomposed appropriately (in one dimension, by rows), then 
because each FFT involves a transpose, total communication requirements are three times the cost 
of a single transpose:  

 

Notice that because the forward FFT operates first on rows and then on columns, the inverse FFT 
must operate first on columns and then on rows, so as to avoid the need for an additional transpose 
operation between the forward and inverse FFTs.  



If parallel composition is used, the three FFTs execute concurrently, each on one third of the 
available processors. (Because the multiplication involves rather than  
operations, we regard it as insignificant and compose it sequentially with the inverse FFT.) 
Communication costing is required to move data from the processors handling 
the forward FFTs to the processors handling the inverse FFT.  

The 2-D FFTs within the parallel composition can be implemented by using either the transpose or 
pipeline algorithms, yielding two algorithm variants. Costs are as specified by Equations 4.1 and 
4.2, except that each algorithm is executed three times, with P/3 rather than P processors involved 
in each execution. Combining these costs with the cost of the data movement between 
components, we obtain the following models.  

 

   
Table 4.1: Approximate total message counts and data volumes for three parallel convolution 
algorithms, summed over P processors and assuming that P is reasonably large. 

   
Figure 4.6: Performance of the sequential/transpose (Sequential) and parallel/transpose 
(Parallel) convolution algorithms on an IBM SP computer for different problem sizes and numbers 
of processors. The latter algorithm is more efficient for smaller problems and larger numbers of 
processors.  

The results of this brief analysis are summarized in Table 4.1. We see that the second and third 
algorithms perform fewer message startups but send more data. Hence, they can be expected to be 



more efficient on smaller problems and larger numbers of processors. This result can be confirmed 
experimentally, as illustrated in Figure 4.6. A flexible parallel program might incorporate all three 
algorithms and select the appropriate alternative at runtime. Of course, a programming tool that 
supports only sequential composition will allow only the first algorithm to be used.  

4.4.3 Convolution Problem Summary 
The convolution problem illustrates the design tradeoffs that can arise when constructing even 
relatively simple parallel programs. These tradeoffs can arise at multiple levels. First, we must 
identify candidate parallel algorithms for the component modules: in this case, the 2-D FFT. Then, 
we must decide how to compose these building blocks so as to construct a complete parallel 
algorithm. Aspects of the complete design in turn influence the techniques used within 
components, requiring for example that we operate on columns before rows in the inverse FFT. 
The performance analysis must take into account all these design decisions. 

4.5 Case Study: Tuple Space 
 In the second case study, we illustrate how concurrent composition allows us to define reusable 
program components that support asynchronous operations on distributed sets. Various types of set 
can be defined, each distinguished by the particular operations that it supports. Here, we consider 
the example of the tuple space, which forms the basis for the Linda parallel programming 
language.  

A tuple space is a collection of tuples ---terms with a key and zero or more arguments. Five 
operations are supported: insert (out), blocking read (rd), nonblocking read (rdp), blocking read 
and delete (in), and nonblocking read and delete (inp). An element can be updated by first 
deleting it and then reinserting a modified version of it. The insert operation provides a key and 
values for a new tuple's arguments, while the read and the read/delete operations specify the key 
and arity (number of arguments) of the tuple that is to be retrieved. Duplicate tuples are supported, 
so the element retrieved by a read or delete operation is not necessarily uniquely determined by the 
key and arity provided. The predicate operations inp and outp are guaranteed to locate a matching 
tuple if and only if it can be shown that a matching tuple must have been added to tuple space 
before the request was generated and that this tuple could not have been removed before the 
request was processed. Figure 4.7 shows the tuple space in action.  



   
Figure 4.7: A tuple space, here used to contain personnel data. Tasks can generate asynchronous 
requests to read (rd), remove (inp), and add (out) tuples.  

The tuple space abstraction is a good candidate for encapsulation in a module. It is a useful 
structure with a well-defined interface and hence is both likely to be reused and easy to 
modularize. We may also wish to modify its implementation in order to optimize performance on 
different parallel computers. Hence, we define a tuple space module suitable for concurrent 
composition. This encapsulates the representation of the tuple space and provides an interface 
comprising an array of channels on which can be sent messages representing the various types of 
request.  

4.5.1 Application 
We first illustrate the use of the tuple space module by showing how it can be used to implement a 
database search problem. We are given a file containing a set of search data, a target, and a routine 
that computes a numeric score for a single datum/target pair. We are required to identify the search 
datum that yields the highest score. This problem is prototypical of many database search 
problems. For example, the target may be a new genetic sequence and the database a collection of 
such sequences; in this case, a score is computed by a dynamic programming computation and 
reveals the degree to which two sequences are ``related.'' Alternatively, the target may be a 
description of a physical process and the database a collection of alternative parameter values; a 
score is then obtained by simulating the process using a set of parameter values.  

A straightforward solution to this programming problem is to create a single manager and a large 
number of workers, with all tasks having access to a shared tuple space (Figure 4.8). The logic 
executed by the manager and workers is summarized in Program 4.2. The manager makes a series 
of out requests to place the search data in the tuple space and then performs in operations to 
retrieve the results generated by workers. When all results have been retrieved, it signals the 
workers to terminate by placing stop tuples into tuple space, a technique known as a ``poison 
pill.'' Each worker repeatedly removes a search datum from tuple space, compares it with the 
target, and puts the resulting score back in tuple space. Notice that this was essentially the 
technique used to parallelize the parameter study problem in Section 1.4.4. However, here we use 
a standard module (tuple space) in our solution---a good example of code reuse.  



   
Figure 4.8: A database search program constructed by the concurrent composition of a tuple 
space module, a manager task, and multiple worker tasks.  

Notice that, because an in request blocks until a corresponding out request is processed by the 
tuple space, the order in which requests are generated by the manager and workers does not affect 
the result computed. In particular, workers can ``run ahead'' of the manager, generating in requests 
for which there are not yet any matching tuples.  



   

4.5.2 Implementation 

   
Figure 4.9: Two alternative implementation strategies for a tuple space module. The structure on 
the left uses a central server, while the structure on the right distributes the tuple space among 
multiple tasks using a hash function. Both structures provide the same interface, an array of 
channels.  

A variety of implementation strategies can be pursued for the tuple space module (Figure 4.9). 
One simple, although nonscalable, approach is to encapsulate the tuple space in a single task that 
maintains a set of tuples and a set of pending rd requests. Both sets can be represented by using 



hash tables. A hash function is applied to the key supplied with an out, rd, etc., operation, and the 
value returned is used to identify the hash bucket in which the associated element is stored.  

 The hashing approach is easily adapted to obtain a scalable parallel implementation. The first few 
bits of the hash value are used to determine the processor on which an item is located; the rest of 
the hash value locates the item within that processor. This strategy has the desirable property that 
no tuple space operation requires more than two communications: one to forward the request to the 
task in which the relevant tuple is located, and one to return a result. It also has the important 
attributes of being both highly concurrent and well balanced: if requests are generated in a 
distributed fashion and the hash function yields a balanced mapping of keys to processors, then 

accesses can proceed concurrently on P processors.  

4.6 Case Study: Matrix Multiplication 
 In our third case study, we use the example of matrix-matrix multiplication to illustrate issues that 
arise when developing data distribution neutral libraries. In particular, we consider the problem of 
developing a library to compute C = A.B, where A, B, and C are dense matrices of size N N. (A 
dense matrix is a matrix in which most of the entries are nonzero.) This matrix-matrix 
multiplication involves operations, since for each element of C, we must compute  

 

We wish a library that will allow each of the arrays A, B, and C to be distributed over P tasks in 
one of three ways: blocked by row, blocked by column, or blocked by row and column. This 
library may be defined with a subroutine interface suitable for sequential composition in an SPMD 
program or with a channel interface suitable for parallel or concurrent composition. The basic 
algorithmic issue remains the same: Does the library need to incorporate different algorithms for 
different distributions of A, B, and C, or should incoming data structures be converted to a 
standard distribution before calling a single algorithm?  

   
Figure 4.10: Matrix-matrix multiplication A.B=C with matrices A, B, and C decomposed in one 
dimension. The components of A, B, and C allocated to a single task are shaded black. During 
execution, this task requires all of matrix A (shown stippled).  

4.6.1 Parallel Matrix-Matrix Multiplication 
We start by examining algorithms for various distributions of A, B, and C. We first consider a one-
dimensional, columnwise decomposition in which each task encapsulates corresponding columns 
from A, B, and C. One parallel algorithm makes each task responsible for all computation 
associated with its . As shown in Figure 4.10, each task requires all of matrix A in order to 



compute its . data are required from each of P-1 other tasks, giving the following per-
processor communication cost:  

   

Note that as each task performs computation, if N P, then the algorithm will have to 
transfer roughly one word of data for each multiplication and addition performed. Hence, the 
algorithm can be expected to be efficient only when N is much larger than P or the cost of 
computation is much larger than .  

   
Figure 4.11: Matrix-matrix multiplication A.B=C with matrices A, B, and C decomposed in two 
dimensions. The components of A, B, and C allocated to a single task are shaded black. During 
execution, this task requires corresponding rows and columns of matrix A and B, respectively 
(shown stippled).  

Next, we consider a two-dimensional decomposition of A, B, and C. As in the one-dimensional 
algorithm, we assume that a task encapsulates corresponding elements of A, B, and C and that each 
task is responsible for all computation associated with its . The computation of a single element 

requires an entire row and column of A and B, respectively. Hence, as shown in Figure 
4.11, the computation performed within a single task requires the A and B submatrices allocated to 
tasks in the same row and column, respectively. This is a total of data, considerably 
less than in the one-dimensional algorithm.  



   
Figure 4.12: Matrix-matrix multiplication algorithm based on two-dimensional decompositions. 
Each step involves three stages: (a) an A submatrix is broadcast to other tasks in the same row; 
(b) local computation is performed; and (c) the B submatrix is rotated upwards within each 
column.  

To complete the second parallel algorithm, we need to design a strategy for communicating the 
submatrices between tasks. One approach is for each task to execute the following logic (Figure 
4.12):  

    set  

   for j=0 to  

    in each row i, the th task broadcasts 

    to the other tasks in the row 

    accumulate .  

    send  to upward neighbor 

   endfor 



Each of the steps in this algorithm involves a broadcast to tasks (for A') and a 
nearest-neighbor communication (for B'). Both communications involve data. Because the 
broadcast can be accomplished in steps using a tree structure, the per-processor 
communication cost is  

   

Notice that because every task in each row must serve as the root of a broadcast tree, the total 
communication structure required for this algorithm combines a hypercube (butterfly) structure 
within each row of the two-dimensional task mesh and a ring within each column.  

   
Figure 4.13: Reorganizing from a one-dimensional to a one-dimensional decomposition of a 
square matrix when P=16. Shading indicates one set of four tasks that must exchange data during 
the reorganization.  

4.6.2 Redistribution Costs 
Comparing Equations 4.3 with 4.4, we see that the two-dimensional decomposition yields the 
more efficient parallel algorithm. Does this mean that our parallel library should convert input 
arrays decomposed in one dimension to a two-dimensional decomposition before performing the 
matrix multiplication? To answer this question, we need to know the cost of the reorganization. 
The communication costs associated with the reorganization of a single array are as follows; each 
task exchanges data with other tasks, with each message having size (Figure 
4.13):  

 

If A, B, and C are all decomposed in one dimension, we must perform three such conversions. This 
gives a worst-case total communication cost for reorganization and multiplication using the two-
dimensional algorithm of  

 



Comparing this expression with Equation 4.3, we see that the algorithm that reorganizes data 
structures to a 2-D decomposition before performing the multiplication will be more efficient than 
an algorithm that does not, when  

 

This condition holds for all except small P. Hence, we conclude that our parallel matrix multiply 
library should convert to a two-dimensional decomposition before performing computation, as 
follows.  

  procedure matrix_multiply(A, B, C) 

  begin 

   if 1d_distributed(A) then reorg_to_2d(A) 

   if 1d_distributed(B) then reorg_to_2d(B) 

   2d_matrix_multiply(A, B, C) 

   if 1d_distributed(C) then reorg_to_1d(C) 

  end 

   
Figure 4.14: Layout of the A and B matrices in the systolic matrix-matrix multiplication algorithm 
for a task mesh. The arrows show the direction of data movement during execution of the 
systolic algorithm.  



4.6.3 A Systolic Algorithm 
We still have not said the last word about the ideal data distribution for matrix-matrix 
multiplication! An alternative algorithm allows the broadcast operations used in the preceding 
algorithm to be replaced with regular, nearest-neighbor (``systolic'') communications. However, 
data must be distributed among tasks in a different fashion. As before, we assume that A, B, and C 
are decomposed into submatrices. Each task (i,j) contains submatrices , , and 

, where . This data layout is illustrated in Figure 4.14.  

Computation proceeds in steps. In each step, contributions to C are accumulated in each task, 
after which values of A move down and values of B move right. The entire computation requires a 
total of messages per task, each of size , for a cost of  

 

Communication costs are less by a factor of about than in Equation 4.4. Again, this 
benefit must be weighed against the cost of converting matrices A, B, and C into the layout 
required by this algorithm. This analysis is left as an exercise. 

4.7 Summary 
Modular design techniques are fundamental to good software engineering practice. In this chapter, 
we have shown how these techniques can be applied to the design of parallel programs. The major 
points are as follows:  

1. The central tenets of modular design, such as simple interfaces and information hiding, 
apply in parallel programming just as in sequential programming.  

2. Data distribution is an important implementation detail that, if abstracted out of a module 
interface, can facilitate code reuse.  

3. It is useful to distinguish between sequential, parallel, and concurrent composition of 
parallel modules. Sequential composition is simple but inflexible. Parallel composition can 
be used to improve locality and scalability. Concurrent composition is the most general 
form.  

4. Performance models can be composed, but care must be taken to account for 
communication costs at interfaces, overlapping of computation and communication, and 
other factors.  

In Part II, we show how the modular design techniques introduced in this chapter can be applied 
when developing programs using a range of parallel programming tools.  

Exercises 
1. Discuss ways in which modular design techniques are used in the design of an automobile 

engine, house, or suspension bridge.  
2. Identify ways in which modularity ideas might apply to the management of an orchestra, 

educational institution, or company.  



3.  Develop analytic models for the maximum throughput (in requests processed per second) 
supported by the centralized and distributed tuple space implementations outlined in 
Section 4.5.  

4. Using a language that supports concurrent composition, such as CC++ \ or Fortran M, 
implement centralized and distributed tuple space modules. Study the performance of these 
modules in a simple parameter study problem, and relate performance to the models of 
Exercise 3.  

5. Discuss ways in which the database search algorithm of Section 4.5 could be modified to 
avoid the central bottleneck inherent in a single manager.  

6. An alternative parallel algorithm for the 2-D FFT considered in Section 4.4.1 assumes a 
fixed 2-D decomposition of data structures; hence, communication is required within each 
1-D FFT. Use a performance model to contrast this algorithm with those described in the 
text. Assume that the communication costs for a 1-D FFT algorithm operating on N points 

on P processors are .  
7.  A problem comprises two components, A and B. A can be solved in 1000 seconds on 

computer C1 and in 5000 seconds on computer C2 ; B requires 4000 and 2000 seconds on 
C1 and C2, respectively. The two computers are connected by a 1000-km optical fiber link 
that can transfer data at 100 MB/sec with a latency of 10 msec. The two components can 
execute concurrently but must transfer 10 MB of data 10,000 times during execution. Is it 
cheapest (in terms of computational resources consumed) to solve the problem on 
computer C1, on computer C2, or on both computers together?  

8. A problem similar to that of Exercise 7 is found to use fewer computational resources 
when run on the two networked computers than on either computer alone. Your public 
relations office proposes to promote this as an example of superlinear speedup. Do you 
agree?  

9. A climate model consists of an atmosphere and ocean model. At each step, the models both 
perform a finite difference computation and exchange five 2-D arrays. Develop 
performance models for two alternative parallel implementations, based on sequential and 
parallel composition respectively. Discuss the relative performance of the two 
implementations.  

10. Determine the problem size and processor count regimes in which each of the three 
convolution algorithms described in Example 4.4 would be faster, assuming machine 
parameters characteristic of (a) a multicomputer and (b) an Ethernet-connected LAN.  

11. The performance analysis of the pipelined algorithms considered in Section 4.4 did not 
take into account idle time incurred when starting up and shutting down pipelines. Refine 
the performance models to account for these costs. How many images must be processed 
before efficiency reaches 95 percent of that predicted in the absence of these costs?  

12. Execute by hand for N=P=4 the matrix multiplication algorithm based on a 2-D 
decomposition described in Section 4.6.1.  

13.  A simpler variant of the multiplication algorithm for matrices decomposed in two 
dimensions uses a ring rather than a tree for the broadcast operations. Use performance 
models to compare the two algorithm variants. (Note that a broadcast can be performed on 
a P -node bidirectional ring in approximately P/2 steps.)  

14. Extend the analysis and comparison of Exercise 13 to account for competition for 
bandwidth in a 2-D mesh architecture.  

15. Develop a performance model for the systolic matrix multiplication algorithm of Section 
4.6, and use this to identify regimes in which this algorithm is faster than the simpler 
algorithm based on regular 2-D decompositions. Account for data reorganization costs.  



16. Another matrix multiplication algorithm collects the matrices that are to be multiplied on a 
single processor. Use performance models to identify regimes in which this algorithm 
might be competitive. Conduct empirical studies to validate your analytic results.  

Chapter Notes 
The merits of modular design are described in landmark papers by Parnas [220,221,223] and Wirth 
[295]. The book by McConnell [198] provides an excellent survey of the software construction 
process. Booch [40] and Cox and Novobilski [66] provide good introductions to modularity and 
object-oriented programming. Milner [210], Hoare [154], and Chandy and Misra [54] provide 
abstract treatments of modularity and program composition in parallel programming. Foster and 
Taylor [107] explore the use of modular design techniques in concurrent logic programming. 
Mead and Conway [199] and Ullman [286] provide introductions to VLSI design, another area in 
which modular design techniques are used extensively.  

Gropp and Smith emphasize the importance of data distribution neutrality in the design of SPMD 
libraries [127]. This principle is applied extensively in their Portable Extensible Tools for 
Scientific computing (PETSc) package. ScaLAPACK is described by Choi, Dongarra, and Walker 
[59], Dongarra and Walker [85], and Dongarra, van de Geign, and Walker [84]. Dongarra, Pozo, 
and Walker [83] describe the C++ interface. Other parallel SPMD libraries include Lemke and 
Quinlan's [188] P++ library for grid applications, Skjellum's [262] Multicomputer Toolbox, and 
Thinking Machine's [283] CMSSL. Skjellum et al. [265] discuss the use of the MPI message-
passing standard to develop parallel libraries. A variety of other issues relating to parallel SPMD 
libraries are discussed in workshop proceedings edited by Skjellum [263,264].  

The tuple space module discussed in Section 4.5 forms the basis for the Linda parallel 
programming model of Carriero and Gelernter [47,48,49]. The tuple space used in Linda is more 
general than that described here. In particular, any field can be used as a key when retrieving 
tuples. The tuple space solution to the database search problem is based on a Linda program in 
[48]. The convolution problem and the performance results in Section 4.4 are taken from a paper 
by Foster et al. [101]. Foster and Worley [110] describe parallel algorithms for the fast Fourier 
transform.  

Part II: Tools 
The second part of this book comprises five chapters that deal with the implementation of parallel 
programs. In parallel as in sequential programming, there are many different languages and 
programming tools, each suitable for different classes of problem. Because it would be neither 
feasible nor useful to describe them all, we restrict our attention to four systems---Compositional 
C++ (CC++), Fortran M (FM), High Performance Fortran (HPF), and the Message Passing 
Interface (MPI)---and explain how each can be used to implement designs developed using the 
techniques of Part I. We also describe, in Chapter 9, tools that aid in the collection and analysis of 
performance data.  

Except where material is explicitly cross-referenced, each chapter in Part II is self-contained. 
Hence, it is quite feasible to base a practical study of parallel programming on just one of the four 
tools described here. However, while each of these tools is of broad utility, each also is most 



appropriate for different purposes, and we recommend that you become familiar with several 
systems.  

CC++, described in Chapter 5, is a small set of extensions to C++. These extensions provide the 
programmer with explicit control over locality, concurrency, communication, and mapping and 
can be used to build libraries that implement tasks, channels, and other basic parallel programming 
abstractions. Designs developed using the techniques of Part I are easily expressed as CC++ 
programs.  

FM, described in Chapter 6, is a small set of extensions to Fortran. These extensions provide 
explicit support for tasks and channels and hence can implement designs developed using the 
techniques of Part I directly. A distinguishing feature of FM is that programs can be guaranteed to 
be deterministic, meaning that two executions with the same input will produce the same output.  

HPF, described in Chapter 7, is an example of a data-parallel language and has emerged as a de 
facto standard for scientific and engineering computation. Parallelism is expressed in terms of 
array operations---statements that apply to many elements of an array at once. Communication 
operations are inferred by the compiler, and need not be specified by the programmer.  

MPI, described in Chapter 8, is a library of standard subroutines for sending and receiving 
messages and performing collective operations. Like HPF, MPI has emerged as a standard and 
hence supersedes earlier message-passing libraries such as PARMACS, p4, PVM, and Express. 

When building parallel programs, our choice of tool will depend on the nature of the problem to be 
solved. HPF is particularly appropriate for numeric algorithms based on regular domain 
decompositions (for example, finite difference computations). CC++ and FM are better suited for 
applications involving dynamic task creation, irregular communication patterns, heterogeneous 
and irregular computation structures, and concurrent composition. They can also be used to build 
data-parallel libraries for regular problems. MPI is a lower-level approach to parallel programming 
than CC++, FM, or HPF and is particularly appropriate for algorithms with a regular SPMD 
structure.  

CC++, FM, HPF, and MPI represent very different approaches to parallel programming. 
Nevertheless, we shall see that good design is independent of our choice of implementation 
language. The design techniques introduced in Part I apply regardless of language. Issues of 
concurrency, scalability, locality, and modularity must be addressed in any parallel program.  

5 Compositional C++  
In this chapter, we describe Compositional C++ (CC++), a small set of extensions to C++ for 
parallel programming. CC++ provides constructs for specifying concurrent execution, for 
managing locality, and for communication. It allows parallel programs to be developed from 
simpler components using sequential, parallel, and concurrent composition. Hence, algorithms 
designed using the techniques described in Part I can be translated into CC++ programs in a 
straightforward manner.  

Since the CC++ extensions are simple, we are able in this chapter to provide both a complete 
language description and a tutorial introduction to important programming techniques. We also 
provide a brief review of those C++ constructs used in this chapter, so as to make the presentation 



intelligible to readers familiar with C but not C++. In the process, we show how the language is 
used to implement various algorithms developed in Part I.  

After studying this chapter, you should be able to write simple CC++ programs. You should know 
how to create tasks; how to implement structured, unstructured, and asynchronous communication 
patterns; and how to control the mapping of tasks to processors. You should also know both how 
to write deterministic programs and when it is useful to introduce nondeterministic constructs. 
Finally, you should understand how CC++ supports the development of modular programs, and 
you should know how to specify both sequential and parallel composition.  

5.1 C++ Review 
We first review some of the basic C++ constructs used in the rest of this chapter, so as to make 
subsequent material understandable to readers familiar with C but not C++. Readers familiar with 
C++ can skip this section.  

With a few exceptions, C++ is a pure extension of ANSI C. Most valid ANSI C programs are also 
valid C++ programs. C++ extends C by adding strong typing and language support for data 
abstraction and object-oriented programming.  

5.1.1 Strong Typing and Memory Management 
ANSI standard C introduced function prototypes to the C language. A function prototype defines 
the type of each function argument and the function's return value (the function's signature). For 
example:  

/* A forward declaration to a_function */ 
int a_function(float b, double c); 
 
/* The definition of a_function */ 
int a_function(float b, double c) { 
 /* Function body */ 
} 

C++ requires that function prototypes be provided for all functions before they are used and 
enforces consistent function use between program files. Thus, it is possible to distinguish between 
functions that have the same name but different signatures. C++ uses this capability to allow 
function names to be overloaded. That is, more than one function can be defined with the same 
name; the compiler compares function call arguments with function signatures to determine which 
version to use.  

In C programs, the library routines malloc and free are used for dynamic memory allocation. 
C++ defines two additional operators, new and delete, as illustrated in the following code 
fragments.  

struct S {  
  /* Structure body */ 
}; 
 
S *sPtr = new S;     /* Allocate instance of S */ 
delete sPtr;         /* Delete instance of S */ 



 
int *iPtr = new int[25]; /* Allocate array of integers */ 
delete [] iPtr;     /* Delete array of integers */ 

Notice that new is given a description of the type of the data object to be allocated; it returns a 
pointer to dynamically allocated data of that type. The delete operator is used to release 
dynamically allocated storage. The programmer must indicate when an array of objects is being 
deleted.  

5.1.2 Classes 
 The most significant feature that C++ adds to C is the concept of classes. A class can be thought 
of as a generalization of a C structure. In C, a structure groups together data elements of various 
types under a single name; in C++, structures can also contain member functions. Like data 
elements of a C structure, member functions of a class can be accessed only through a reference to 
an object of the appropriate type. In C++, a class defines a scope in which names referring to 
functions and data can be defined. Classes can be introduced using the C keywords struct and 
union or the C++ keyword class.  



   

Program 5.1 illustrates various features of the C++ class mechanism. This program defines a class 
named Datum containing a data member x, a member function get_x, and two constructor 
functions. (Notice the C++ single-line comments; anything after a double slash // is a comment.) 
These terms are defined in the following discussion.  

The syntax Datum::get_x() is used to name a member function get_x of Datum. This name, 
called a quantified name, specifies that we are referring to a function defined in the scope of 
Datum. If we do not quantify the name, we are defining the global function get_x(), which is a 
different function. Notice that within the definition of Datum::get_x() we can refer to the data 
member x directly, because x and get_x are defined in the same scope. We also could incorporate 
the definition for function get_x directly in the class definition, as follows.  

public: 
  int get_x() { return x; } 
  ... 



 The two member functions named Datum are constructor functions for the Datum class. A 
constructor has the same name as the class to which it applies and, if defined, is called whenever 
an object of the appropriate type is created. Constructor functions are used to perform initialization 
and can be overloaded.  

The function test in Program 5.1 creates and uses three Datum objects, two of which are declared 
in the first two lines in the function body. Notice that the class name Datum can be used directly; in 
C we would have to write struct Datum. In the third line, the new operator is used to allocate the 
third Datum object.  

Because constructors have been defined for Datum, they will be called whenever Datum objects are 
created. The constructor with no arguments, called a default constructor, is called when a_datum 
is created, thereby initializing the field x of a_datum to zero. The declaration of another_datum 
and the new operator both specify an integer argument and hence use the second constructor, 
thereby initializing the variable x to 23 in these two cases.  

Recall that in C, the fields of a structure are accessed by using the dot operator 
(struct.fieldname), while the fields of a structure accessible via a pointer are accessed with the 
arrow operator (structptr->fieldname). As illustrated in the function test, these same 
mechanisms can be used to refer to the member functions of a C++ class.  

The C++ class mechanism also supports protection. Members of a C++ class can be designated as 
being either public or private. A public class member can be used without restriction by any 
program that has a reference to an instance of a class. Public data members can be read or written, 
and public member functions may be called. In contrast, private members can be accessed only 
from within the class object. Private data members can be accessed only by a class member 
function, and private member functions can be called only from within another member function 
of the class. For example, the variable x in the Datum class is a private variable and hence can be 
accessed by the member function get_x but cannot be referenced directly as a_datum.x.  

5.1.3 Inheritance 
The final C++ feature described here is inheritance. As in C, a class or structure can be included as 
a member of another class, hence defining a has-a relationship between the two classes. In C++, 
inheritance is used to create an alternative relationship between classes, an is-a relationship. If a 
class D inherits from class B, then all public members of B are also members of D. We say that D 
is derived from B, and that D is a derived class while B is a base class. D includes all public 
members of B and may also include additional members, which are defined in the usual way. We 
can view D as being a specialized version of a B, hence the is-a relationship.  

Program 5.2 illustrates the use of inheritance. The syntax for inheritance is to specify a list of base 
classes after the derived class name. The base class list is separated from the derived class name by 
a colon. The keywords public and private are associated with the base class names to specify 
whether the inherited members are to be public or private members of the derived class.  

Members of the base class can be redefined in the derived class. For example, in Program 5.2 class 
D redefines func2. When func2 is called from an object of type B, we access the version of func2 



defined in B. If func2 is called from an object of type D, we get the version of func2 defined in 
D.  

   

In some situations, we may want a base class to call functions that are defined in a derived class. 
This facility is supported by a C++ mechanism called virtual functions. A function declared virtual 
in a base class can be defined in a derived class. This feature, which allows a programmer to 
specialize a generic base class for a specific application, is used in Section 5.8.2 to build a reusable 
parallel library.  

5.2 CC++ Introduction 
CC++ is a general-purpose parallel programming language comprising all of C++ plus six new 
keywords. It is a strict superset of the C++ language in that any valid C or C++ program that does 
not use a CC++ keyword is also a valid CC++ program. The CC++ extensions implement six basic 
abstractions:  

1.  The processor object is a mechanism for controlling locality. A computation may 
comprise one or more processor objects. Within a processor object, sequential C++ code 
can execute without modification. In particular, it can access local data structures. The 
keyword global identifies a processor object class, and the predefined class proc_t 
controls processor object placement.  



2. The global pointer, identified by the type modifier global, is a mechanism for linking 
together processor objects. A global pointer must be used to access a data structure or to 
perform computation (using a remote procedure call, or RPC) in another processor object.  

3.  The thread is a mechanism for specifying concurrent execution. Threads are created 
independently from processor objects, and more than one thread can execute in a processor 
object. The par, parfor, and spawn statements create threads.  

4.  The sync variable, specified by the type modifier sync, is used to synchronize thread 
execution.  

5.  The atomic function, specified by the keyword atomic, is a mechanism used to control the 
interleaving of threads executing in the same processor object.  

6.  Transfer functions, with predefined type CCVoid, allow arbitrary data structures to be 
transferred between processor objects as arguments to remote procedure calls.  

These abstractions provide the basic mechanisms required to specify concurrency, locality, 
communication, and mapping.  

 
Example .  Bridge Construction:  

 Program 5.3 illustrates many CC++ features. It is an implementation of the bridge construction 
algorithm developed in Example 1.1. The program creates two tasks, foundry and bridge, and 
connects them with a channel. The channel is used to communicate a stream of integer values 
1..100 from foundry to bridge, followed by the value --1 to signal termination.  

While the concepts of task and channel are not supported directly in CC++, they can be 
implemented easily by using CC++ mechanisms. Hence, the main program creates two tasks by 
first using the new operator to create two processor objects and then using the par construct to 
create two threads, one per processor object. The two tasks engage in channel communication by 
invoking functions defined in a Channel class, which will be described in Section 5.11. A channel 
is declared in the main program and passed as an argument to foundry and bridge. These 
processes use access functions get_out_port and get_in_port to obtain pointers to out-port and 
in-port objects to which can be applied functions send and receive, respectively.  

 



   

5.3 Concurrency 



Next, we give a more complete description of CC++. The presentation is loosely structured 
according to the design methodology of Chapter 2. First, we describe how CC++ programs specify 
concurrent execution. Then, we explain how CC++ programs specify locality. Next, we explain 
how to specify various communication structures. Finally, we describe how CC++ programs 
specify mapping. Along the way, we also address the issues of modularity and determinism.  

A CC++ program, like a C++ program, executes initially as a single thread of control (task). 
However, a CC++ program can use par, parfor, and spawn constructs to create additional 
threads. A parallel block is distinguished from an ordinary C++ block by the keyword par, as 
follows. 

par { 
   statement1; 
   statement2; 
   ... 
   statementN; 
  } 

A parallel block can include any legal CC++ statement except for variable declarations and 
statements that result in nonlocal changes in the flow of control, such as return.  

Statements in a parallel block execute concurrently. For example, the following parallel block 
creates three concurrent threads: two workers and one master. 

par { 
  worker(); 
  worker(); 
  master(); 
} 

A parallel block terminates when all its constituent statements terminate; execution then proceeds 
to the next executable statement. Thus, in the preceding parallel block, the thread that executed the 
parallel block proceeds to the next statement only when both the master and the workers have 
terminated.  

A parallel for-loop creates multiple threads, all executing the same statements contained in the 
body of the for-loop. It is identical in form to the for-loop except that the keyword parfor replaces 
for. For example, the following code creates ten threads of control, each executing the function 
myprocess.  

parfor (int i=0; i<10; i++) { 
  myprocess(i); 
} 

Only the loop body of the parfor executes in parallel. Evaluation of the initialization, test, and 
update components of the statement follows normal sequential ordering. If the initialization 
section uses a locally declared variable (for example, int i), then each instance of the loop body 
has its own private copy of that variable.  

CC++ parallel constructs can be nested arbitrarily. Hence, the following code creates ten worker 
threads and one master.  



par { 
  master(); 
  parfor (int i=0; i<10; i++) 
   worker(i); 
} 

Finally, the spawn statement can be used to specify unstructured parallelism. This statement can be 
applied to a function to create a completely independent thread of control. The parent thread does 
not wait for the new thread to terminate execution, and cannot receive a return value from the 
called function. As we shall see in Section 5.10, one use for the spawn statement is to provide an 
efficient implementation of RPCs that do not require a return value.  

5.4 Locality 
In the task/channel programming model of Part I, the concepts of locality and concurrency are 
linked: a task is both a separate address space and a thread of control. In CC++, these two concepts 
are separated. Processor objects represent address spaces, and threads represent threads of control. 
Processor objects can exist independently of threads, and more than one thread can be mapped to a 
processor object.  

5.4.1 Processor Objects 
A processor object is defined by a C++ class declaration modified by the keyword global. A 
processor object is identical to a normal C++ class definition in all but two respects:  

1. Names of C++ ``global'' variables and functions (that is, names with file scope) refer to 
unique objects within different instances of a processor object. Hence, there is no sharing 
between processor object instances.  

2. Private members of a processor object need not be explicitly declared to be private. C++ 
``global'' functions and variables are defined implicitly to be private members of the 
processor object in which they occur.  

Processor object types can be inherited, and the usual C++ protection mechanisms apply, so 
private functions and data are accessible only from a processor object's member functions or from 
the member functions of derived objects. Hence, it is the member functions and data declared 
public that represent the processor object's interface.  

For example, the following code from Program 5.3 creates a processor object class Construction 
with public member functions foundry and bridge. The class ChannelUser is specified as a base 
class and provides access to channel operations (Section 5.11).  

global class Construction : public ChannelUser { 
public: 
  void foundry(Channel, int); 
  void bridge(Channel); 
}; 

5.4.2 Global Pointers 



A processor object is a unit of locality, that is, an address space within which data accesses are 
regarded as local and hence cheap. A thread executing in a processor object can access data 
structures defined or allocated within that processor object directly, by using ordinary C++ 
pointers.  

Processor objects are linked together using global pointers. A global pointer is like an ordinary 
C++ pointer except that it can refer to other processor objects or to data structures contained 
within other processor objects. It represents data that are potentially nonlocal and hence more 
expensive to access than data referenced by ordinary C++ pointers.  

A global pointer is distinguished by the keyword global. For example:  

float *global gpf;  // global pointer to a float 
char * *global gppc; // global pointer to pointer of type char 
C *global gpC;    // global pointer to an object of type C 

When the new statement is used to create an instance of a processor object, it returns a global 
pointer. For example, the statement  

Construction *global foundry_pobj = new Construction; 

from Program 5.3 creates a new processor object of type Construction and defines 
foundry_pobj to be a pointer to that object.  

5.4.3 Thread Placement 
By default, a CC++ thread executes in the same processor object as its parent. Computation is 
placed in another processor object via an RPC. A thread needs only a global pointer to another 
processor object to be able to invoke any of its public member functions. For example, in the 
following line from Program 5.3, bridge_pobj is a global pointer to the processor object on 
which the consumer is to execute, and bridge is a public member function of that object.  

bridge_pobj->bridge(); 

Remote procedure calls are discussed in more detail in Section 5.5 below.  

A single thread executing in a processor object implements what in Part I we termed a task. Many 
CC++ programs create exactly one thread per processor object, yielding computation structures 
like those described in Part I. We discuss situations in which it is useful to create more than one 
thread per processor object in Section 5.7.  

 
Example .  Search (I):  

Program 5.4 uses processor objects and the par construct to implement a prototypical tree-
structured computation. The program explores a binary tree recursively in the manner of 
Algorithm 1.1, creating a task (processor object + thread) for each tree node and returning the total 
number of leaf nodes that represent solutions. Notice the use of a parallel block to create the 
threads that search the two subtrees rooted at a nonleaf node. In this simple program, the tree is not 



represented by an explicit data structure; instead, a process's position in the tree is represented by 
an integer.  

 

   

 



5.5 Communication 
 CC++ does not provide low-level primitives for directly sending and receiving data between 
threads. Instead, threads communicate by operating on shared data structures. For example, one 
thread may append items to a shared list structure, from which another thread removes items; this 
implements a form of channel communication. CC++ mechanisms can be used to implement a 
wide variety of such communication structures.  

In this section, we first explain how global pointers are used to communicate data between 
processor objects. Then, we explain how sync variables and atomic functions are used to provide 
synchronization and mutual exclusion. Finally, we show how data transfer functions are used to 
communicate more complex data structures.  

5.5.1 Remote Operations 

   
Figure 5.1: Remote read and write operations. At the top of the figure, we show a global pointer 
gp located in processor object pobj1 referencing an integer length in processor object pobj2. 
The rest of the figure is a timeline depicting the activity in these two processor objects as a thread 
in pobj1 first writes and then reads length. The thread in pobj1 is shown as a solid line when 
active and as a dashed line when suspended waiting for a remote operation. The diagonal dashed 
lines represent communications.  

CC++ global pointers are used in the same way as C++ local pointers; the only difference is that 
we use them to operate on data or to invoke functions that may be located in other processor 
objects. Hence, the following code fragment first assigns to and then reads from the remote 
location referenced by the global pointer gp.  

global int *gp; 
int len2; 
*gp = 5; 
len2 = (*gp) * 2; 



As illustrated in Figure 5.1, these read and write operations result in communication.  

If we invoke a member function of an object referenced by a global pointer, we perform what is 
called a remote procedure call (RPC). An RPC has the general form  

<type> *global gp; 
result = gp->p(...) 

where gp is a global pointer of an arbitrary <type>, p(...) is a call to a function defined in the 
object referenced by that global pointer, and result is a variable that will be set to the value 
returned by p(...). An RPC proceeds in three stages:  

1. The arguments to the function p(...) are packed into a message, communicated to the 
remote processor object, and unpacked. The calling thread suspends execution.  

2. A new thread is created in the remote processor object to execute the called function.  
3. Upon termination of the remote function, the function return value is transferred back to 

the calling thread, which resumes execution.  

Basic integer types (char, short, int, long, and the unsigned variants of these), floats, doubles, 
and global pointers can be transferred as RPC arguments or return values without any user 
intervention. Structures, regular pointers, and arrays can be transferred with the aid of transfer 
functions, to be discussed later in this section.  

   



Program 5.5 uses RPCs to access a variable length located in another processor object; contrast 
this with the code fragment given at the beginning of this section, in which read and write 
operations were used for the same purpose. The communication that results is illustrated in Figure 
5.2.  

   
Figure 5.2: Using remote procedure calls to read and write a remote variable. At the top of the 
figure, we show a global pointer lp located in processor object pobj1 referencing processor 
object pobj2. The rest of the figure is a timeline depicting the activity in these two processor 
objects as a thread in pobj1 issues RPCs first to read and then to write the remote variable 
length. The thread in pobj1 is shown as a vertical solid or dashed line when active or suspended, 
waiting for a remote operation; the diagonal dashed lines represent communications. The solid 
vertical lines in pobj2 represent the threads created to execute the remote procedure calls.  

5.5.2 Synchronization 

   
Figure 5.3: Alternative synchronization mechanisms. On the left, the channel: a receiver blocks 
until a message is in the channel. On the right, the sync variable: a receiver blocks until the 
variable has a value.  

A producer thread can use an RPC to move data to a processor object in which a consumer thread 
is executing, hence effecting communication. However, we also require a mechanism for 
synchronizing the execution of these two threads, so that the consumer does not read the data 
before it is communicated by the producer. In the task/channel model of Part I, synchronization is 
achieved by making a consumer requiring data from a channel block until a producer makes data 
available. CC++ uses a different but analogous mechanism, the single assignment or sync variable 



(Figure 5.3). A sync variable is identified by the type modifier sync, which indicates that the 
variable has the following properties:  

1. It initially has a special value, ``undefined.''  
2. It can be assigned a value at most once, and once assigned is treated as a constant (ANSI C 

and C++ const).  
3. An attempt to read an undefined variable causes the thread that performs the read to block 

until the variable is assigned a value.  

We might think of a sync variable as an empty box with its interior coated with glue; an object 
cannot be removed once it has been placed inside.  

Any regular C++ type can be declared sync, as can a CC++ global pointer. Hence, we can write 
the following.  

sync int i;     // i is a sync integer 
sync int *j;    // j is a pointer to a sync integer 
int *sync k;    // k is a sync pointer to an integer 
sync int *sync l;  // l is a sync pointer to a sync integer 

 We use the following code fragment to illustrate the use of sync variables. This code makes two 
concurrent RPCs to functions defined in Program 5.5: one to read the variable length and one to 
write that variable.  

Length *global lp; 
int val; 
par { 
  val = lp->read_len(); 
  lp->write_len(42); 
} 

What is the value of the variable val at the end of the parallel block? Because the read and write 
operations are not synchronized, the value is not known. If the read operation executes before the 
write, val will have some arbitrary value. (The Length class does not initialize the variable 
length.) If the execution order is reversed, val will have the value 42.  

This nondeterminism can be avoided by modifying Program 5.5 to make the variable length a 
sync variable. That is, we change its definition to the following. sync int length;  

Execution order now does not matter: if read_len executes first, it will block until the variable 
length is assigned a value by write_len.  

 
Example .  Channel Communication:  

Global pointers and sync variables can be used to implement a variety of communication 
mechanisms. In this example, we use these constructs to implement a simple shared queue class. 
This class can be used to implement channel communication between two concurrently executing 
producer and consumer tasks: we simply allocate a queue object and provide both tasks with 
pointers to this object. We shall see in Section 5.11 how this Queue class can be encapsulated in 
the more convenient Channel class used in Program 5.3.  



Recall that a channel is a message queue to which a sender can append a sequence of messages 
and from which a receiver can remove messages. The only synchronization constraint is that the 
receiver blocks when removing a message if the queue is empty. An obvious CC++ representation 
of a message queue is as a linked list, in which each entry contains a message plus a pointer to the 
next message. Program 5.6 takes this approach, defining a Queue class that maintains pointers to 
the head and tail of a message queue represented as a list of IntQData structures. The data 
structures manipulated by Program 5.6 are illustrated in Figure 5.4.  

   



   
Figure 5.4: A message queue class, showing the internal representation of a queue as a linked list 
of IntQData structures (two are shown) with message values represented as sync values that are 
either defined (42) or undefined (<undef>). Producer and consumer tasks execute enqueue and 
dequeue operations, respectively.  

The Queue class provides enqueue and dequeue functions to add items to the tail of the queue and 
remove items from the head, respectively. The sync variable contained in the IntQData structure 
used to represent a linked list entry ensures synchronization between the enqueue and dequeue 
operations. The queue is initialized to be a single list element containing an undefined variable as 
its message.  

The first action performed by dequeue is to read the message value associated with the first entry 
in the queue. This read operation will block if the queue is empty, providing the necessary 
synchronization. If the queue is not empty, the dequeue function will read the queue value, delete 
the list element, and advance the head pointer to the next list element. Similarly, the enqueue 
function first allocates a new list element and links it into the queue and then sets the msg field of 
the current tail list element. Notice that the order in which these two operations are performed is 
important. If performed in the opposite order,  

tail->value = msg; 
tail->next = new IntQData; 

then a dequeue function call blocked on the list element tail->value and enabled by the 
assignment tail->value=msg could read the pointer tail->next before it is set to reference a 
newly created element.  

 

5.5.3 Mutual Exclusion 
The sync variable allows us to synchronize the transfer of data from a producer to a consumer. In 
other situations, we may wish to allow two threads to operate on the same nonsync data structure 
while ensuring that they do not interfere with each other's execution. For example, the enqueue 
and dequeue operations of Example 5.3 allow a single sender and receiver to communicate by 
enqueuing to and dequeuing from a shared queue. What if we want multiple senders to be able to 
append messages to the same queue? We cannot allow two producers to make concurrent calls to 



enqueue, as an arbitrary interleaving of two enqueue calls could have bizarre results. What we 
need is a mechanism to ensure that only one message can be enqueued at a time.  

This requirement is satisfied by CC++ 's atomic keyword. Member functions of an object can be 
declared atomic. This declaration specifies that the execution of such a function will not be 
interleaved with the execution of any other atomic function of the same object. For example, to 
allow multiple producers to append to the same queue, we would declare the enqueue function to 
be atomic, as follows.  

atomic void Queue::enqueue(int msg) { 
  tail->next = new IntQData; 
  tail->value = msg; 
  tail    = tail->next; 
} 

This ensures that even if multiple producers attempt to append to the same queue concurrently, the 
actual enqueue operations will occur in some sequential order and a valid queue will be generated.  

5.5.4 Data Transfer Functions 
In C++, declarations of the form  

ostream& operator<<(ostream&, const TYPE& obj_in); 
istream& operator>>(istream&, TYPE& obj_out);  

in the class ios of the iostream library define infix operators << and >>, which can be used to 
write and read data of a specified TYPE to and from files. These operators are predefined for simple 
types and can be provided by the programmer for more complex types. This facility enhances 
modularity by allowing a class definition to specify how its data structures should be read and 
written. A program can then read and write instances of that class without being aware of their 
internal structure.  

CC++ uses an analogous mechanism for communicating data structures between processor 
objects. Associated with every CC++ datatype is a pair of data transfer functions that define how 
to transfer that type to another processor object. The function  

CCVoid& operator<<(CCVoid&, const TYPE& obj_in);  

defines how TYPE should be packaged for communication. It is called automatically by the 
compiler whenever an object of TYPE needs to be transferred to another processor object, that is, 
whenever an RPC call takes an argument of that type or returns a value of that type. Similarly, the 
function  

CCVoid& operator>>(CCVoid&, TYPE& obj_out); 

defines how TYPE should be unpackaged. It is called by the compiler whenever an object of TYPE 
is received from another processor object. Upon termination of this call, obj_out will be a copy of 
the obj_in used as the argument to the operator << in the initial processor object.  



   



   
Figure 5.5: Using data transfer functions to communicate an instance of the user-defined type 
DVector between two processor objects. The global pointer gp is assumed to reference pobj2. The 
function << is used to package the data structure at the source, and the function >> is used to 
unpackage the data structure at the destination.  

The type CCVoid is a compiler-defined type analogous to the types istream and ostream used in 
the iostream library. Data transfer functions are generated automatically by the CC++ compiler 
for simple data types, but must be constructed by the programmer for local pointers, arrays, and 
structures that contain local pointers. For example, Program 5.7 shows both data transfer and 
iostream functions for a type DVector comprising a vector of doubles. These functions send 
(write) the vector length followed by the vector elements, and receive (read) these values in the 
same order. (The C++ qualifier friend names nonmember functions that can access a class's 
private variables.) Having defined these data transfer functions, we can make an RPC with a 
DVector as an argument, as follows; the vector will be transferred correctly, as illustrated in 
Figure 5.5.  

DVector V; 
V.elements = new double[2]; 
V.length = 2; 
V.elements[0] = 42.0; V.elements[1] = 17.0; 
gp->transfer(V); 

5.6 Asynchronous Communication 
 Recall that the need for asynchronous communication can arise when the tasks involved in a 
computation must access elements of a shared data structure in an unstructured manner (Section 
2.3.4). This requirement can be satisfied in CC++ in three different ways:  

1. The shared data structure can be encapsulated in a set of specialized data tasks to which 
read and write requests are directed by using channel operations.  

2. The shared data structure can be distributed among the computation tasks. As discussed in 
Section 2.3.4, each computation task must then poll periodically for pending requests. For 
example, we can extend the Queue class of Program 5.6 to support a poll operation. The 
IntQData structure is augmented with a full/empty field, which is initialized to empty 
when a list element is created and set to full when a data value is placed in the list element. 
The poll function simply checks the status of this field in the list element at the head of the 
queue.  

3. A third implementation approach exploits CC++ 's RPC mechanism more directly. The 
shared data structure is distributed among the computation tasks. However, rather than 
sending a message on a channel, a task accesses data in another processor object by making 
an RPC to an appropriate member function. (The get_x function of Program 5.1 is a 
simple example of the sort of RPC we might write.)  



The third approach is explored in a case study in Section 5.12.  

5.7 Determinism 
We noted in Section 1.3.1 that determinism can greatly simplify program development. CC++ 
does not provide any guarantees of deterministic execution: indeed, the basic execution model is 
highly nondeterministic, allowing as it does the interleaved execution of multiple threads in a 
single address space. Nevertheless, there are simple rules that, if followed, allow us to avoid 
unwanted deterministic interactions. In particular, a CC++ program is easily shown to be 
deterministic if it uses a task-based concurrency model (one thread per processor object) and if 
tasks interact only by using the channel library used in Program 5.3, with one sender and one 
receiver per channel.  

While a task/channel model ensures determinism, there are also circumstances in which it is 
advantageous to use CC++ constructs in more flexible ways. For example:  

1. Concurrent threads provide a mechanism for overlapping computation and communication. 
When one thread is suspended waiting for a communication, another thread can be 
executing. For example, the following code can perform computation while waiting for the 
remote datum, value.  

 par { 
   value = pobj->get_remote_value(); 
   perform_computation(); 
 } 
 use_remote_value(value); 

2. RPCs that read and write data structures in other processor objects can be used to 
implement a variety of asynchronous communication mechanisms; see, for example, 
Section 5.12.  

3. On a shared-memory computer, threads created in the same processor object can execute in 
parallel (on different processors), communicating by reading and writing shared data rather 
than sending and receiving data. This shared-memory programming model (Section 1.3.2) 
can improve performance relative to channel-based communication by reducing data 
movement and copying.  

These more general forms of concurrency and communication introduce the possibility of 
complex, nondeterministic interactions between concurrently executing threads. However, the risk 
of nondeterministic interactions can be reduced substantially by avoiding the use of global 
variables, by making shared data structures have the sync attribute, and by ensuring that accesses 
to nonsync shared data structures occur within atomic functions.  

5.8 Mapping 
 A parallel program defined in terms of CC++ constructs can be executed on both uniprocessor 
and multiprocessor computers. In the latter case, a complete program must also specify how the 
processor objects created by a CC++ program are mapped to processors. Recall from Chapter 2 
that this is an important part of parallel algorithm design.  



   
Figure 5.6: Mapping in CC++. First, threads are mapped to processor objects. Then, processor 
objects are mapped to physical processors.  

Mapping in CC++ is a two-stage process (Figure 5.6). First, threads are mapped to processor 
objects, and then processor objects are mapped to processors. The mapping of threads to processor 
objects can be one-to-one, in which case it is the mapping of processor objects to physical 
processors that is important. Alternatively, the mapping of processor objects to physical processors 
may be one-to-one, in which case it is the mapping of threads to processor objects that is 
important. If both mappings are one-to-one, then the mapping problem is straightforward.  

An important aspect of the second mapping stage, processor object placement, is that it influences 
performance but not correctness. Hence, we can develop a program on a uniprocessor and then 
tune performance on a parallel computer by changing placement decisions. This is consistent with 
the design methodology of Chapter 2, in which mapping is the fourth and final stage of the design 
process. The first mapping stage, thread placement, has this property only if threads do not share 
data structures.  

5.8.1 Processor Object Placement 
 By default, a newly created processor object is placed on the same processor as its creator. An 
alternative placement can be specified by using the placement argument to the new operator. In 
C++, this argument is used to position an object in memory space; in CC++, it can also be used to 
position a processor object in processor space. (It can also be used to specify where in a file 
system to find the code for a processor object; however, we do not discuss this facility here.) The 
location is specified by an implementation-dependent class named proc_t. The constructor 
functions proc_t and node_t defined in the CC++ library can be used to construct a placement 
structure with a specified processor name. These are used in the following code fragment, which 
creates a new processor object (of type MyClass) on a processor called mymachine.  

MyClass *global G; 
proc_t location(node_t("mymachine")); 
G = new (location) MyClass; 

The new statement creates a new processor object; the supplied proc_t object (location) 
specifies the machine name. To place the new processor object on a different processor, one need 
change only the second line of this code fragment, for example to the following.  



proc_t location(node_t("yourmachine")); 

As a further example, the following code creates 32 processor objects, placing each on a different 
processor of a multicomputer with nodes named sp#0, sp#1, ..., sp#31. Notice how parfor is 
used to create the different processor objects concurrently.  

MyClass *global G[32]; 
parfor (int i=0; i<31; i++) { 
  char node_name[256]; 
  sprintf(node_name,"sp#% 
  proc_t location(node_t(node_name)); 
  G[i] = new (location) MyClass; 
} 

Although simple, this code represents bad programming practice, in that it embeds information 
about the environment in which the program is executing. A better approach is to encapsulate 
mapping decisions in a separate class, for example, the class Mapping defined in Program 5.8. This 
class encapsulates two private variables (P and proc_names) that represent the environment in 
which a program is to execute. The member function initmap is used to initialize these variables. 
Two additional member functions, processor and random_p, return a proc_t object representing 
the ith processor and a randomly-selected processor, respectively. Finally, two data transfer 
functions (omitted for brevity) package and unpackage the node list associated with a mapping 
object, allowing a mapping to be passed as an argument when creating a new processor object. The 
use of the Mapping class is illustrated in the following example.  



   

 
Example .  Search (II):  

Recall that Program 5.4 explores a search tree in parallel by creating new threads to explore the 
subtrees rooted at each nonleaf node. Each thread executes in a new processor object. This 
program does not specify a mapping strategy for these processor objects. One strategy is to place 
each newly created processor object/thread pair on a processor selected at random. Program 5.9 
uses the Mapping class of Program 5.8 to implement this behavior. There are three significant 
differences between this program and Program 5.4. First, a global Mapping object is defined and 
initialized at the beginning of main to contain the names of the processors on which the program is 
to execute. These names are read from a file. Second, a constructor is provided for the processor 
object class Tree that copies the Mapping object to each new processor object as it is created. 



Third, one of the processor object allocation calls in the search function is augmented with a call 
to random_p, which returns a proc_t structure on a randomly selected processor.  

 

   

5.8.2 Mapping Threads to Processor Objects 



 An alternative approach to mapping in CC++ is to create a fixed number of processor objects onto 
which threads are then placed. This approach is often used in SPMD computations, in which case a 
single thread is mapped to each processor object. Another important application is in situations 
where a computation creates a large number of lightweight threads that interact only via global 
pointers. We can map these threads to a static number of processor objects, hence avoiding the 
overhead of creating a new processor object when creating a new thread; as the threads do not 
share local data structures, the mapping of threads to processor objects does not influence the 
result computed.  

Program 5.10 supports this general approach by defining a class POArray that can be used to 
create an array of processor objects of specified size and type. Each processor object is initialized 
to contain an array of pointers to the other processor objects, so that communication between the 
different processor objects can be achieved.  

The class POArray provides an initialization function, init, that creates the processor objects. The 
arguments to this function specify the number and names of the processors on which processor 
objects are to be created. The init function first makes repeated calls to create_pobj to create an 
array of processor objects with type POArrayNode. It then initializes these processor objects by 
calling the function init_pobj with a copy of the POArray object (accessed by the C++ keyword 
this) as an argument.  

We would like to be able to use POArray to create processor objects of arbitrary type. Hence, we 
use the keyword virtual and the notation =0 to declare create_pobj and init_pobj to be 
virtual functions. This means that these functions can be defined in classes derived from the 
classes POArrary and POArrayNode, respectively. To create an array of virtual functions of some 
type T, we simply derive new classes from POArray and POArrayNode and define the functions 
create_pobj and init_pobj in these classes to create and initialize new processor objects of type 
T. This mechanism is used in the following example and in Program 5.16, both of which use 
POArray for mapping.  



   

 
Example .  Coupled Climate Model:  

 A coupled climate modeling system comprising an ocean model and an atmosphere model can be 
structured as a parallel composition of the two component models, in which each model executes 
on one half of P processors. This structure is implemented in Program 5.11. Mapping is achieved 
using the POArray class of Program 5.10. The class AtmOcn is derived from POArray. It extends it 
by defining the virtual function create_pobj used by POArray to create a processor object, as 
well as the functions atmosphere and ocean that implement the atmosphere and ocean models. 
Similarly, the processor object class AtmOcnNode is derived from POArrayNode and defines the 
virtual function init_pobj that initializes an ocean/atmosphere model processor object, as well as 



the functions atm_proc and ocn_proc that will be executed in each processor object. The 
init_pobj function creates a local instance of the AtmOcn object passed as an argument, hence 
providing each processor object with access to the other processor objects.  

The main program first reads a list of processor names, nodes. Then, it creates two instances of the 
AtmOcn class (atm and ocn), and uses the member function init to create arrays of processor 
objects located on the lower P/2 and upper P/2 processors named in nodes, respectively. The 
AtmOcn objects are passed as arguments to the ocean and atmosphere model components, which 
use them to perform local mapping. The functions atmosphere and ocean initiate SPMD 
computation, placing a distinct instance of atm_proc (or ocn_proc) on each of the posize 
processor objects named in the AtmOcn object passed as an argument.  



   

The advantage of the structure employed in Program 5.11 is that mapping decisions are specified 
separately from other aspects of program logic. As a result, the same program can be structured as 
a concurrent composition, in which the ocean and atmosphere models execute concurrently on the 



same processors, simply by changing the calls to init in the main program, as shown in Program 
5.12.  

 

   

5.9 Modularity 
 Example 5.5 showed how CC++ constructs can be used to implement parallel and concurrent 
composition. The basic ideas are straightforward: each component of a multicomponent program 
is implemented as a distinct task. Each such task is passed an array of proc_t objects representing 
its computational resources. The task creates a distinct set of processor objects and performs 
mapping and communication with respect to these proc_t objects and processor objects.  

 In this section, we discuss the techniques used to implement sequential composition in CC++ 
programs. Recall that in sequential composition, different program components execute in 
sequence on all processors (Section 4.2.2). These program components may themselves 
communicate and synchronize, but they cannot create new tasks. Hence, each process executes the 
same program, and the entire computation moves sequentially from one parallel operation to the 
next. This is the single program multiple data (SPMD) programming model discussed in Section 
1.3.2.  

A CC++ implementation of an SPMD program comprises two components. The initialization 
component creates the processor objects in which computation will be performed and the 
communication structures (such as channels) required by the program components called in the 
sequential composition. The execution component performs the actual computation, using the 
structures created during the initialization phase. The execution component can be structured in 
two different ways (Figure 5.7). In the first approach, the top-level program is structured as a 
sequence of calls to routines that each use a parfor statement to create a thread on each processor 
object. In the second approach a single parfor statement creates a set of long-lived threads (one 
per processor object) that each make a sequence of calls to the various routines involved in the 



sequential composition. The first approach can lead to simpler programs, but the latter tends to be 
more efficient.  

   
Figure 5.7: Two alternative approaches to the implementation of sequential composition in 
CC++. The two figures are timelines, with the parent thread shown as a solid dark line when 
active and a dashed dark line when suspended. In both cases, an initialization phase creates the 
four processor objects in which computation will occur. In the first approach, a set of long-lived 
threads is then created; each of these threads executes both components before terminating. In the 
second approach, control returns to the parent thread after the first component executes; the 
parent thread then creates a new set of threads for the second component.  

 
Example .  Finite Difference:  

 We apply the two approaches to the SPMD finite difference computation used to illustrate 
sequential composition in Section 4.2.2. This computation is structured as a sequence of calls to a 
finite difference routine that performs nearest-neighbor communication and a reduction routine 
used to detect termination; the latter routine performs global communication.  

An implementation of this algorithm using the first approach is illustrated in Program 5.13. The 
execution component is structured as a while loop containing a sequential composition of parallel 
finite_difference and global_maximum routines. Concurrency and communication are 
encapsulated in these routines, which use parfor and other parallel constructs to create threads of 
control within the processor objects created in the initialization phase.  

The second approach is illustrated in Program 5.14. Here, a single parfor statement creates one 
thread of control in each processor object. This thread makes a sequence of calls to routines that 



call local finite_difference and global_maximum routines. The resulting program is more 
complex but potentially more efficient, as it avoids the cost of repeatedly creating and destroying 
the threads used to perform the SPMD computation.  

 

   



   

5.10 Performance Issues 
CC++ programs do not explicitly send and receive messages, but instead perform read and write 
operations on global pointers; make remote procedure calls; and use par, parfor, and spawn 
statements to create new threads of control. Nevertheless, the communication operations 
associated with a CC++ program can usually be determined easily. Normally, a read operation on 
a global pointer, a write operation on a global pointer, or an RPC all result in two communications: 
one to send the remote request and one to receive an acknowledgment or result. As noted in 
Chapter 3, the cost of each message can be specified with reasonable accuracy in terms of a startup 
cost and a per-word cost. It is necessary to distinguish between the communication costs incurred 
when communicating CC++ processes are located on different processors (interprocessor 
communication) or on the same processor (intraprocessor communication). Both these costs can 
depend significantly on implementation technology. Typically, interprocessor communication 
costs are similar to those in Table 3.1 in Chapter 3, and intraprocessor communication is cheaper. 
However, on some multicomputers with fast interprocessor communication and relatively low 
memory bandwidth, intraprocessor communication can actually be slower than interprocessor 
communication.  

The following issues must also be considered when examining the performance of CC++ 
programs.  

 Reading and writing global pointers. Reading or writing a global pointer normally involves two 
communications: one to send the read or write request, and one to return a result and/or signal 
completion. Hence, global pointers must be used with caution, particularly on computers where 



communication is expensive. If a data structure is referenced often, it may be worthwhile to move 
that data structure to where it is used most often, or to replicate it. If a task requires many data 
items from the same processor object, it may be better to use an RPC to transfer all the required 
data in a single message.  

Remote procedure calls. An RPC normally involves two communications: the first to transmit the 
procedure call and its data to the remote processor, and the second to signal completion and to 
return any result. In many situations, the return message is not required and hence represents 
overhead. This overhead can be avoided by using the spawn statement to create an asynchronous 
thread of control. For example, the performance of the following code from Program 5.15 below, 
which sends a value on a channel,  

void send(int val) { inport->enqueue(val); } 

can be improved in cases where one does not care when the send operation completes, by 
rewriting it to eliminate the reply, as follows.  

void send(int val) { spawn inport->enqueue(val); } 

Fairness. When two or more threads execute in the same processor object, CC++ guarantees that 
execution is fair: that is, that no thread that is not blocked waiting for data will be prevented 
indefinitely from executing. However, the time that a thread waits before executing can vary 
significantly depending on characteristics of both the application and a particular CC++ 
implementation. Hence, care must be taken if application performance depends on obtaining 
timely responses to remote requests.  

Remote operations. As a general principle, operations involving global objects (processor object 
creation, RPC, etc.) are more expensive than operations involving only local objects. However, the 
cost of these operations can vary significantly from machine to machine. An RPC is typically less 
expensive than a processor object creation, and a remote read or write operation is typically less 
expensive than an RPC. The first processor object creation on a processor is often significantly 
more expensive than subsequent processor object creation operations on the same processor.  

Compiler optimization. Because CC++ is a programming language rather than a library, a compiler 
may in some situations be able to reduce communication costs by eliminating replies, coalescing 
messages, or otherwise reorganizing a program to improve performance.  

5.11 Case Study: Channel Library 
In the first of two more substantial examples, we present an implementation of the channel library 
used in Program 5.3. This case study illustrates how CC++ can be used to develop libraries 
implementing particular programming paradigms: in this case, channel communication.  



   
Figure 5.8: Data structures used in the CC++ channel library. In addition to a queue, a channel 
comprises an OutPort object and an InPort object used to encapsulate pointers to the queue. 
Processes apply send and receive operations to the outport and inport, respectively.  

The channel library provides functions to create a channel, to extract pointers to inport and outport 
structures, and to send and receive messages. A channel is constructed from three basic data 
structures: the message queue itself and outport and inport objects used to contain pointers to the 
queue (Figure 5.8). The outport is created in the same processor object as the sender, while the 
inport and message queue are created in the same processor object as the receiver.  

The implementation, Program 5.15, defines the processor object ChannelUser and the classes 
Channel, InPort, and OutPort. The processor object provides functions create_inport and 
create_outport that create the inport and outport associated with a channel; any program 
wanting to use the channel library must include this processor object as a base class. Recall that 
this was done when defining the processor object Construction in Program 5.3.  

The Channel class provides three public member functions: the constructor Channel, which 
creates a new channel linking two specified processor objects; get_out_port, which returns a 
pointer to the channel's outport; and get_in_port, which returns a pointer to the channel's inport.  



   

The InPort class is derived from the Queue class of Program 5.6. It adds to the functions already 
defined in that class a new function receive, which simply dequeues a message from the queue. 



Finally, the OutPort class encapsulates a global pointer and provides a send function that invokes 
an enqueue operation on the message queue referenced by this pointer.  

5.12 Case Study: Fock Matrix Construction 
 Our second case study illustrates the use of RPCs to implement asynchronous access to a 
distributed data structure. Programs 5.16 and 5.17 sketch a CC++ implementation of the parallel 
Fock matrix construction algorithm of Section 2.8. Recall that in this algorithm, P computation 
tasks must be able to read and write distributed arrays. The programs presented here achieve this 
capability by distributing the arrays over a set of processor objects. Computation threads, created 
one per processor object, operate on the distributed array by invoking RPCs implementing 
operations such as accumulate and read.  

The distributed array itself is implemented by the class Fock and the processor object class 
FockNode, presented in Program 5.16. These are derived from the classes POArray and 
POArrayNode of Program 5.10, much as in the climate model of Program 5.11, and provide 
definitions for the virtual functions create_pobj and init_pobj. The derived classes defined in 
Program 5.16 are used to create the array of processor objects within which computation will 
occur. The data structures that implement the distributed array are allocated within these same 
processor objects, with each of the posize processor objects being assigned blocksize array 
elements. Notice how the initialization function for FockNode allocates and initializes the elements 
of the distributed array.  



   

For brevity, Program 5.16 implements only an accumulate operation. This function is defined in 
Program 5.17. Notice how it issues an RPC to a remote processor object (number 
index/blocksize) requesting an operation on a specified sequence of values. The function 
invoked by the RPC (accum_local) is an atomic function; this ensures that two concurrent 
accumulate operations do not produce meaningless results.  



Having defined the classes Fock and FockNode, the implementation of the rest of the ccode is 
fairly straightforward. We first create and initialize P processor objects of type FockNode, as 
follows.  

Fock darray(1024);   // 1024 is block size 
darray.init(P, nodes); // P and nodes as usual 

Then, we invoke on each processor object a task (fock_build) responsible for performing one 
component of the Fock matrix computation. Each such task makes repeated calls to accumulate to 
place the results of its computation into the distributed array.  

   

5.13 Summary 
In this chapter, we have learned about a programming language, CC++, that provides a small set of 
extensions to C++ for specifying concurrency, locality, communication, and mapping. CC++ does 
not support the task and channel abstractions of Part I directly, but its constructs can be used to 
build libraries that provide these abstractions. In keeping with the design methodology of Chapter 
2, CC++ allows mapping decisions to be changed independently of other aspects of a design. The 
performance modeling techniques of Chapter 3 and the modular design techniques of Chapter 4 
also apply directly. Table 5.1 summarizes the language constructs that have been introduced.  

The CC++ programs presented in this chapter tend to be more verbose than the equivalent Fortran 
M, High Performance Fortran, or Message Passing Interface programs to be presented in the 
chapters that follow. To a greater extent than these other systems, CC++ provides basic 
mechanisms that can be used to implement a variety of different parallel program structures. For 
example, we must implement a channel library in order to use channels in a CC++ program, and a 
processor object array library to create arrays of processor objects. Once these libraries have been 
written, however, they can be reused in many situations. This reuse is facilitated by the object-
oriented features of C++.  



   
Table 5.1: CC++ quick reference: the constructs described in this chapter, the section in which 
they are described, and programs that illustrate their use. 

Exercises 
1. Extend Program 5.4 to allow for nonbinary trees: that is, trees with an arbitrary number of 

subtrees rooted at each node.  
2.  Design and construct a CC++ implementation of the manager/worker structure used in the 

parameter study problem described in Section 1.4.4.  
3. Design and construct a decentralized version of the manager/worker structure developed in 

Exercise 2. Design and carry out experiments to determine when each version is more 
efficient.  

4. Design and implement a program that can be used to quantify CC++ processor object and 
thread creation costs, both within the same processor and on remote processors. Conduct 
experiments to measure these costs, and obtain estimates for and .  

5.  Implement and instrument the channel library presented in Section 5.11, and use this code 
to measure CC++ communication costs on various parallel computers.  

6. Modify the program developed in Exercise 5 to use spawn to implement the RPC used for 
a send operation, and conduct experiments to compare the performance of the two 
versions.  

7. Complete Program 5.13, using the channel library of Section 5.11 to perform 
communication.  

8. Complete Program 5.14, using the channel library of Section 5.11 to perform 
communication.  

9. Design and carry out experiments to compare the performance of the programs developed 
in Exercises 7 and 8.  

10. Use the POArray class of Program 5.10 to implement a version of Program 5.4 in which 
search tasks are implemented as threads mapped to a fixed number of processor objects.  

11. Extend the program developed in Exercise 7 to provide a 2-D decomposition of principal 
data structures.  

12. Extend the channel library presented in Section 5.11 to allow polling for pending 
messages.  

13. Extend the channel library presented in Section 5.11 to provide a merger that allows 
multiple senders on a channel.  

14. Implement a hypercube communication template (see Chapter 11). Use this template to 
implement simple reduction, vector reduction, and broadcast algorithms.  

15. Construct a CC++ implementation of the tuple space module described in Section 4.5. Use 
this module to implement the database search problem described in that section.  



Chapter Notes 
The C programming language was designed by Kernighan and Ritchie [170]. C++, which extends 
C in many respects, was designed by Stroustrup [92,270]. A book by Barton and Nackman [29] 
provides an introduction to C++ for scientists and engineers. Objective C [66] is another object-
oriented extension to C.  

 C* [281], Data-parallel C [136], and pC++ [38] are data-parallel C-based languages (see Chapter 
7). COOL [50] and Mentat [125] are examples of parallel object-oriented languages. Concurrent C 
[117] and Concert C [19] are parallel C-based languages; the latter supports both remote procedure 
call and send/receive communication mechanisms. C-Linda [48] augments C with primitives for 
creating processes and for reading and writing a shared tuple space (Section 4.5).  

CC++ was designed by Chandy and Kesselman [53]. The monograph A Tutorial for CC++  

[261] provides a tutorial and reference manual for the Caltech CC++ compiler. The sync or single-
assignment variable has been used in a variety of parallel languages, notably Strand [107] and 
PCN [55,105].  

6 Fortran M 
 In this chapter, we describe Fortran M (FM), a small set of extensions to Fortran for parallel 
programming. In FM, tasks and channels are represented explicitly by means of language 
constructs. Hence, algorithms designed using the techniques discussed in Part I can be translated 
into programs in a straightforward manner.  

Because Fortran M is a simple language, we are able in this chapter to provide both a complete 
language description and a tutorial introduction to important programming techniques. (Some 
familiarity with Fortran is assumed.) In the process, we show how the language is used to 
implement various algorithms developed in Part I.  

After studying this chapter, you should be able to write simple FM programs. You should know 
how to create tasks and channels, how to implement structured, unstructured, and asynchronous 
communication patterns, and how to control the mapping of tasks to processors. You should also 
know both how to guarantee deterministic execution and when it is useful to introduce 
nondeterministic constructs. Finally, you should understand how FM supports the development of 
modular programs, and know how to specify both sequential and parallel composition.  

6.1 FM Introduction 
Fortran M provides language constructs for creating tasks and channels and for sending and 
receiving messages. It ensures that programs are deterministic if specialized constructs are not 
used, and it provides the encapsulation properties needed for modular programming. Its mapping 
constructs affect performance but not correctness, thereby allowing mapping decisions to be 
modified without changing other aspects of a design. These features make it particularly easy to 
translate algorithms designed using the techniques of Part I into executable FM programs.  



 FM is a small set of extensions to Fortran. Thus, any valid Fortran program is also a valid FM 
program. (There is one exception to this rule: the keyword COMMON must be renamed to PROCESS 
COMMON. However, FM compilers usually provide a flag that causes this renaming to be performed 
automatically.) The extensions are modeled whenever possible on existing Fortran concepts. 
Hence, tasks are defined in the same way as subroutines, communication operations have a syntax 
similar to Fortran I/O statements, and mapping is specified with respect to processor arrays.  

The FM extensions are summarized in the following; detailed descriptions are provided in 
subsequent sections. In this chapter, FM extensions (and defined parameters) are typeset in UPPER 
CASE, and other program components in lower case.  

1. A task is implemented as a process. A process definition has the same syntax as a 
subroutine, except that the keyword PROCESS is substituted for the keyword subroutine. 
Process common data are global to any subroutines called by that process but are not 
shared with other processes.  

2. Single-producer, single-consumer channels and multiple-producer, single-consumer 
mergers are created with the executable statements CHANNEL and MERGER, respectively. 
These statements take new datatypes, called inports and outports, as arguments and define 
them to be references to the newly created communication structure.  

3. Processes are created in process blocks and process do-loops, and can be passed inports 
and outports as arguments.  

4. Statements are provided to SEND messages on outports, to RECEIVE messages on inports, 
and to close an outport (ENDCHANNEL). Messages can include port variables, thereby 
allowing a process to transfer to another process the right to send or receive messages on a 
channel or merger.  

5. Mapping constructs can be used to specify that a program executes in a virtual processor 
array of specified size and shape, to locate a process within this processor array, or to 
specify that a process is to execute in a subset of this processor array.  

6. For convenience, processes can be passed ordinary variables as arguments, as well as ports; 
these variables are copied on call and return, so as to ensure deterministic execution. 
Copying can be suppressed to improve performance.  

 The FM language design emphasizes support for modularity. Program components can be 
combined using sequential, parallel, or concurrent composition, as described in Chapter 4. In 
parallel and concurrent composition, the process serves as the basic building block. A process can 
encapsulate data, computation, concurrency, and communication; the ports and other variables 
passed as arguments define its interface to the rest of the program. The techniques used to 
implement sequential composition will be discussed in Section 6.9.  

FM extensions can be defined for both the simpler and more established Fortran 77 and the more 
advanced Fortran 90. For the most part, we use Fortran 77 constructs in this chapter, except when 
Fortran 90 constructs are significantly more concise.  

 
Example .  Bridge Construction:  

Program 6.1 illustrates many FM features. This is an implementation of the bridge construction 
algorithm developed in Example 1.1. The program creates two processes, foundry and bridge, 



and connects them with a channel. The channel is used to communicate a stream of integer values 
1..100 from foundry to bridge.  

   

This program comprises a main program and two process definitions. The main program creates a 
channel and instances of the processes foundry and bridge. It first declares two port variables, pi 
and po, that can be used to receive and send integer messages, respectively. The CHANNEL 
statement creates a channel and initializes pi and po to be references to this channel. The process 
block (PROCESSES/ ENDPROCESSES) creates the two concurrent processes, passing the port 
variables as arguments.  

The process definitions are distinguished by the PROCESS keyword. The foundry process uses the 
SEND statement to add a sequence of messages to the message queue associated with the channel 
referenced by po. The ENDCHANNEL statement terminates this sequence. The bridge process uses 
the RECEIVE statement to remove messages from this message queue until termination is detected.  

 



6.2 Concurrency 
We next give a more complete description of FM. The presentation is loosely structured according 
to the design methodology given in Chapter 2. First, we describe how FM programs define and 
create processes. Then, we explain how to specify various communication structures. Finally, we 
describe FM's mapping constructs. Along the way, we also address the issues of modularity and 
determinism.  

6.2.1 Defining Processes 
 The first step in the development of an FM program is typically to define the tasks from which a 
computation will be constructed. As noted in Example 6.1, a task is implemented in FM as a 
process. A process definition has the same syntax as a subroutine except that the keyword PROCESS 
is used in place of subroutine, and common data are labeled PROCESS COMMON to emphasize that 
they are common only to the process and any subroutines that it calls. Processes cannot share 
common data.  

 A process definition also defines the process's interface to its environment. A process's dummy 
arguments (formal parameters) are a set of typed port variables. (For convenience, conventional 
argument passing is also permitted between a process and its parent. This feature is discussed in 
Section 6.7.) A port variable declaration has the general form  

port_type (data_type_list) name_list  

 The port_type is OUTPORT or INPORT and specifies whether the port is to be used to send or 
receive data, respectively. The data_type_list is a comma-separated list of type declarations and 
specifies the format of the messages that will be sent on the port, much as a subroutine's dummy 
argument declarations define the arguments that will be passed to the subroutine.  

In Program 6.1, both pi and po are used to communicate messages comprising single integers. The 
following are examples of more complex message formats. In the second and third declaration, the 
names m and x have scope local to the port declaration. Notice how in the third declaration, the size 
of the array x is specified in the message.  

 INPORT (integer, real) p1      ! One integer, one real 

 INPORT (real x(128)) p2       ! Array of 128 reals 

 INPORT (integer m, real x(m)) p3  ! One integer (m); m reals 

The value of a port variable is initially a distinguished value  NULL and can be defined to be a 
reference to a channel by means of the CHANNEL, RECEIVE, MERGER, or MOVEPORT statements, to be 
defined in the following sections.  

6.2.2 Creating Processes 
 Having defined one or more processes, we next construct a concurrent computation by creating 
instances of these processes. An FM program executes initially as a single process. This process 



can both execute sequential Fortran code and use process block and process do-loop constructs to 
create additional processes. A process block has the general form  

  PROCESSES 
    statement_1 
    ...  
    statement_n 
  ENDPROCESSES 

where and the statements are process calls, process do-loops, and/or at most one subroutine 
call. A process call has the same syntax as a subroutine call except that the keyword PROCESSCALL 
is used in place of the keyword call.  

Statements in a process block execute concurrently. For example, the following parallel block 
creates three concurrent processes: two workers and a single process_master.  

  PROCESSES 
    PROCESSCALL worker(pi1) 
    PROCESSCALL worker(pi2) 
    PROCESSCALL process_master(po1,po2) 
  ENDPROCESSES 

A process block terminates when all constituent statements terminate; execution then proceeds to 
the next executable statement. Thus, the parent process in this example proceeds to the statement 
after the parallel block only when both the the master and the workers have terminated execution.  

A subroutine call in a parallel block allows the parent process to execute concurrently with the 
newly created processes. For example, the following variant of the preceding parallel block causes 
the current process to execute the subroutine subroutine_master concurrently with the two 
worker processes. Only two new processes are created, rather than three, and the subroutine can 
share common data with the calling process.  

  PROCESSES 
    PROCESSCALL worker(pi1) 
    PROCESSCALL worker(pi2) 
    call subroutine_master(po1,po2) 
  ENDPROCESSES 

A process do-loop creates multiple instances of the same process. It is identical in form to the do-
loop except that the keyword PROCESSDO is used in place of the keyword do and the body can 
include only a process do-loop or a process call. For example, the following code creates ten 
instances of myprocess.  

  PROCESSDO i = 1,10 
    PROCESSCALL myprocess 
  ENDPROCESSDO 

Process do-loops can be nested inside both process do-loops and process blocks. Hence, the 
following code creates ten worker processes and one master.  

    PROCESSES 
     PROCESSCALL master 
     PROCESSDO i = 1,10 



       PROCESSCALL worker 
     ENDPROCESSDO 
    ENDPROCESSES 

6.3 Communication 
 FM processes, like the tasks introduced in Part I, cannot share data directly. Instead, they 
coordinate their execution and exchange data by sending and receiving messages on single-
producer, single-consumer channels and multiple-producer, single-consumer mergers. Hence, the 
next step in program implementation after processes have been defined is to establish the channels 
and mergers needed for communication.  

In this section, we focus on the constructs and techniques used to specify structured, 
``synchronous'' communication operations (Section 2.3). In subsequent sections we examine both 
unstructured and asynchronous communication.  

6.3.1 Creating Channels 
 The basic building block from which communication structures are constructed is the channel, 
created by executing the CHANNEL statement. This statement has the general form  

CHANNEL(in= inport, out= outport)  

and both creates a new channel and defines inport and outport to be references to this channel, 
with inport able to receive messages and outport able to send messages. The two ports must be of 
the same type.  

Optional iostat= and err= specifiers can be used to detect error conditions, as in Fortran file 
input/output statements. An err= label specifier causes execution to continue at the statement with 
the specified label if an error occurs while creating the channel. An iostat= intval specifier 
causes the integer variable intval to be set to zero if no error occurs and to a nonzero value 
otherwise. If neither err= nor iostat= specifiers are provided, an error causes the FM 
computation to terminate.  

For succinctness, we use Fortran 90 array sections in the CHANNEL statement. An array section is 
like an array element but with a range rather than an index provided for one or more of its 
subscripts. A range is represented by a triplet with the following general form. lower-bound : 
upper-bound : stride  

Bounds can be omitted if the corresponding bounds of the array are required; a stride of 1 is 
assumed if stride is omitted. See Figure 7.1 in Chapter 7 for examples of array sections.  

Array sections provided in the in= and out= components of a CHANNEL statement must be 
conformant, that is, of the same size and shape. A channel is created for each pair of corresponding 
elements, as illustrated in Figure 6.1.  



   
Figure 6.1: Array sections and the FM CHANNEL statement. In (a), a single statement creates four 
channels and, for i=1..4, defines outport po(i) and inport pi(i) to reference the same channel. 
Hence, for example, a message sent on po(1) can be received on pi(1). In (b), two statements are 
used to define a ``staggered'' mapping of inports to outports, in which outport qo(mod(i,4)+1) 
and inport qi(i) reference the same channel. Therefore, a message sent on qo(1) can be received 
on qi(4).  

6.3.2 Sending Messages 
 A process sends a message by applying the SEND statement to an outport. Doing this adds the 
message to the message queue associated with the outport, with the outport declaration specifying 
the message format. For example, in the following code fragment the SEND statement sends a 
message consisting of the integer i followed by the first ten elements of the real array a.  

  OUTPORT (integer, real x(10)) po 
  ... 
  SEND(po) i, a 

A process sends a sequence of messages by repeated calls to SEND; it can also call ENDCHANNEL to 
send an end-of-channel (EOC) message. This usage is illustrated in Program 6.1, where the 
foundry process uses the SEND and ENDCHANNEL statements to send a total of 100 integer 
messages. ENDCHANNEL also sets the value of the outport variable to be NULL, thereby preventing 
further messages from being sent on that port.  



Like Fortran's write and endfile statements, SEND and ENDCHANNEL are nonblocking 
(asynchronous); that is, they complete immediately. Variables named in a SEND statement can be 
modified in subsequent statements, without affecting the send operation.  

An operation on an undefined port is treated as erroneous. Optional err= and iostat= specifiers 
(described in Section 6.3.1) can be included in SEND and ENDCHANNEL statements to indicate how 
to recover from this and other exceptional conditions.  

6.3.3 Receiving Messages 
A process receives a value by applying the RECEIVE statement to an inport. The inport declaration 
specifies the message format. For example, the bridge process in Program 6.1 makes repeated 
calls to the RECEIVE statement to receive a sequence of integer messages, detecting end-of-
sequence by using the iostat specifier. A RECEIVE statement is blocking (synchronous); that is, it 
does not complete until data is available. Hence, a consumer process such as bridge cannot ``run 
ahead'' of the corresponding producer.  

An array size can be included in a message, thereby allowing arrays of different sizes to be 
communicated on the same channel. For example, the following code fragment receives a message 
comprising the integer num followed by num real values. The incoming data are placed in array 
elements a(1,offset), a(1,offset+1), ..., a(1,offset+num-1).  

  INPORT (integer n, real x(n)) pi 
  integer num 
  real a(128, 128) 
  RECEIVE(pi) num, a(1,offset) 

An operation on an undefined port is treated as erroneous. A RECEIVE statement can include 
optional err= and iostat= specifiers to indicate how to recover from this and various exceptional 
conditions. In addition, an end= label specifier causes execution to continue at the statement with 
the specified label upon receipt of a end-of-channel message. This mechanism can be used to 
rewrite the bridge process of Program 6.1 as follows.  

  PROCESS bridge(pi)        ! Process definition 

   INPORT (integer) pi       ! Argument: inport 

   integer num              ! Local variable 

   do while(.true.)          ! While not done: 

    RECEIVE(port=pi, end=10) num   ! Receive message 

    call use_girder(num)    ! Process message 

   enddo               ! 

 10  end              ! End of process 

 
Example .  Ring Pipeline:  



Program 6.2 implements the ring-based pairwise interactions algorithm of Section 1.4.2. It 
comprises a main program and a process definition. The main program uses two channel 
statements to create P channels (Figure 6.1) and a process do-loop to create P processes. One 
inport and one outport are passed to each process as arguments, thereby connecting the processes 
in a unidirectional ring (Figure 6.2). The variables i and P are also passed to the processes as 
arguments; this capability is discussed in Section 6.7.  

The ringnode process's four arguments are a unique identifier, the total number of processes, and 
an inport and outport referencing channels from one neighbor and to the other neighbor in the ring. 
The process first initializes its local state and then performs n-1 send-receive-compute steps 
before terminating.  

 

   



   
Figure 6.2: FM implementation of three-process ring pipeline showing channel connections.  

 
Example .  Search:  

Program 6.3 implements a prototypical tree-structured computation. The program explores a 
binary tree recursively in the manner of Algorithm 1.1, creating a task for each tree node and 
returning the total number of leaf nodes that represent solutions. In this simple program, the tree is 
not represented by an explicit data structure; instead, a process's position in the tree is represented 
by an integer.  

The main program makes an initial call to the process tree. This process uses a process block to 
create recursively a set of 2n-1 (n a power of 2) processes connected in a binary tree of depth 

. Each process is connected to its parent by a channel; nonleaf processes also have channels 
from their two offspring. Notice the use of a subroutine call within a process block, as discussed in 
Section 6.2.2.  

 



   

6.4 Unstructured Communication 
 In the preceding section, we saw how channels are used to implement regular communication 
structures such as a ring and a tree. Next, we examine the techniques used to implement 
unstructured communication algorithms in which the identity of communication partners changes 
during program execution (Section 2.3.3). These patterns require many-to-one and many-to-many 
communication structures, which can be implemented using FM's MERGER construct. They can also 
require the dynamic creation of channels during program execution.  

6.4.1 Many-to-One Communication 
FM's MERGER statement creates a first-in/first-out message queue, just as CHANNEL does. Unlike 
CHANNEL, however, it allows multiple outports to reference this queue and hence defines a many-
to-one communication structure. Messages sent on any outport are appended to the queue, with the 
order of messages sent on each outport being preserved and any message sent on an outport 



eventually appearing in the queue. The MERGER statement has the general form MERGER(in= inport, 
out= outport_specifier)  

where an outport_specifier can be a single outport, a comma-separated list of outport_specifiers, 
or an array section from an outport array. The statement creates a new merger and associates the 
named inport and outports with this merger. The inport and the outports must be of the same type. 
Optional iostat= and err= specifiers can be used to detect error conditions, as in the CHANNEL 
statement.  

   
Figure 6.3: A many-to-one communication structure connecting four producer processes to a 
single consumer.  

The following code fragment implements a typical many-to-one communication structure. As 
illustrated in Figure 6.3, this uses a merger to connect four producer processes with a single 
consumer.  

  INPORT (integer) pi        ! Single inport 

  OUTPORT(integer) pos(4)      ! Four outports 

  MERGER(in=pi,out=pos(:))     ! Merger 

  PROCESSES             ! 

   call consumer(pi)        ! Single consumer 

   PROCESSDO i=1,4         ! 

    PROCESSCALL producer(pos(i))  ! Four producers 

   ENDPROCESSDO           ! 

  ENDPROCESSES            ! 



 
Example .  Manager/Worker:  

 As an additional example of many-to-one communication, we consider the manager/worker 
structure used in the parameter study problem described in Section 1.4.4. As illustrated in Figure 
1.14, this structure comprises one manager task, one output task, and multiple workers. The FM 
implementation (Programs 6.4 and 6.5) comprises a main program and two process definitions. 
The output process definition is not shown.  

   

The main program (Program 6.4) creates two mergers to implement the many-to-one 
communication structures connecting the workers to the manager and output tasks. It also creates 
NW channels to connect the manager to each worker.  

Each worker (Program 6.5) repeatedly requests a task descriptor from the manager, waits to 
receive this task descriptor, and executes the task represented by the descriptor. A worker 
terminates when the channel from the manager is closed. The manager repeatedly receives and 
replies to requests for task descriptors until no more tasks remain. A request comprises the 
identifier of the requesting worker, an integer in the range 1..NW. The manager responds to the 
request by sending a new task descriptor (generated by the function newtask, and represented by a 
real number) on the appropriate channel. When all task descriptors have been allocated, the 
manager signals termination by closing the channels to the workers.  



 

   

6.4.2 Many-to-Many Communication 



   
Figure 6.4: A many-to-many communication structure connecting four producer processes to 
three consumers. Each producer has an array of three outports, and each consumer has a single 
inport. Three mergers connect the outports with the inports.  

A many-to-many communication structure allows multiple senders to communicate with multiple 
receivers. This structure is just a generalization of the many-to-one structure and can be 
implemented in a similar fashion, by using multiple mergers. The following code fragment 
implements a typical many-to-many structure. As illustrated in Figure 6.4, this code uses three 
mergers to connect four producer processes with three consumers. Each producer has an array of 
three outports; messages sent on outport i are routed to consumer i. Each consumer has a single 
inport.  

 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa¯ \ 
  OUTPORT(integer) pos(3,4)      !  outports 

  INPORT (integer) pis(4)       ! 3 inports 

  do i=1,3                ! 3 mergers 

   MERGER(in=pis(i),out=pos(i,:))   ! 

  enddo                 ! 

  PROCESSES               ! 

   PROCESSDO i=1,4           ! 

    PROCESSCALL producer(pos(1,i))   ! 4 producers 

   ENDPROCESSDO             ! 

   PROCESSDO i=1,3            ! 

    PROCESSCALL consumers(pis(i))   ! 3 consumers 

   ENDPROCESSDO         ! 

  ENDPROCESSES          ! 



6.4.3 Dynamic Channel Structures 
 Port variables can be incorporated in messages, hence transferring the ability to send or receive on 
a channel from one process to another. A port that is to be used to communicate port values must 
have an appropriate type. For example, the following declaration specifies that inport pi will be 
used to receive integer outports.  

INPORT (OUTPORT (integer)) pi  

A receive statement applied to this port must specify as an argument an integer outport variable 
into which the incoming port is to be placed. For example, the following code fragment first 
declares an integer outport variable qo and then receives an outport of the same type into that 
variable.  

 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa¯ \ 
  INPORT (OUTPORT (integer)) pi  ! Inport 

  OUTPORT (integer) qo        ! Outport 

  RECEIVE(pi) qo          ! Receive outport 



   
Figure 6.5: Dynamic channel creation in the bridge construction problem. In (a), the bridge 
process creates a new channel. In (b), the new channel's outport is communicated to the foundry 
process. In (c), the new channel is used to return a datum (girder) to bridge. In (d), the 
communication is complete.  

Program 6.6 illustrates the transfer of ports in messages. This program implements a variant of the 
bridge construction program (Program 6.1) in which the bridge process makes explicit requests 
for data from the foundry process. Recall that in the original program, a stream of girders was 
communicated on a channel connecting foundry to bridge. In Program 6.6, things are reversed. A 
stream of requests is communicated on a channel connecting bridge to foundry. Each request 
comprises an outport that foundry uses to return a single data value to bridge. Hence, when 
bridge requires data, it creates a new channel, sends the outport to foundry, and waits for a reply 
on the inport (Figure 6.5). This implements a synchronous communication protocol: the producer 
(foundry) produces data at the rate specified by the consumer (bridge) and hence cannot ``run 
ahead'' of the consumer.  



   

 In this example, it would perhaps be simpler to specify the desired behavior by using static 
``request'' and ``data'' channels. With this structure, the producer sends a datum on the data 
channel each time it receives a request on the request channel. However, dynamic channels can be 
useful in more complex communication structures where a request must be routed through several 
intermediate steps before being serviced.  

6.5 Asynchronous Communication 



 Recall that the need for asynchronous communication can arise when the tasks involved in a 
computation must access elements of a shared data structure in an unstructured manner (Section 
2.3.4). One implementation approach is to encapsulate the data structure in a set of specialized 
data tasks to which read and write requests can be directed. This approach is easily implemented 
using FM constructs: for example, the process structure illustrated in Figure 6.4 could be used to 
connect four computation tasks with three data tasks.  

An alternative implementation approach is to distribute the shared data structure among the 
computation tasks. Individual computation tasks must then poll periodically for pending read and 
write requests. This approach is supported in FM by the PROBE statement, which allows a process 
to determine whether messages are pending on the channel or merger associated with an inport. 
This is a potentially nondeterministic operation, since the result returned by a PROBE statement can 
vary depending on the time at which it is executed. A PROBE statement has the general form  

PROBE(inport, empty= logical)  

and sets the logical variable named by the empty specifier to true if the channel is empty (meaning 
a RECEIVE on the inport would block) and to false otherwise.  

Optional iostat= and err= specifiers can be included in the control list; these are as in the 
Fortran inquire statement. Hence, applying a PROBE statement to an undefined port causes an 
integer variable named in an iostat specifier to be set to a nonzero value and causes execution to 
branch to a label provided in an err= specifier.  

Knowledge about send operations is presumed to take a nonzero but finite time to become known 
to a process probing an inport. Hence, a probe of an inport that references a nonempty channel 
may signal true if a value was only recently communicated. However, if applied repeatedly 
without intervening receives, PROBE will eventually signal false and will then continue to do so 
until values are received.  

The PROBE statement is useful whenever a process needs to interrupt local computation to handle 
communications that arrive at some unpredictable rate. For example, the following code might be 
used in an implementation of the branch-and-bound search algorithm of Section 2.7.  

  inport (T) requests      ! T an arbitrary type 

  logical eflag 

  do while (.true.)        ! Repeat: 

   call advance_local_search   ! Compute 

   PROBE(requests,empty=eflag)   ! Poll for requests 

   if(.not. eflag) call respond_to_requests 

  enddo 

This code fragment alternates between advancing a local search and responding to requests for 
search problems from other processes.  



   

The PROBE statement can also be used to receive data that arrive in a nondeterministic fashion from 
several sources. For example, Program 6.7 handles messages of types T1 and T2 received on ports 
data1 and data2, respectively. A disadvantage of this program is that if no messages are pending, 
it consumes resources by repeatedly probing the two channels. This busy waiting strategy is 
acceptable if no other computation can be performed on the processor on which this process is 
executing. In general, however, it is preferable to use a different technique. If T1=T2, we can 
introduce a merger to combine the two message streams, as follows. The handlemsgs2 process 
then performs receive operations on its single inport, blocking until data are available.  

  MERGER(in=datai, out=data1o, out=data2o) 
  PROCESSES 
    PROCESSCALL source1(data1o) 
    PROCESSCALL source2(data2o) 
    PROCESSCALL handlemsgs2(datai) 
  ENDPROCESSES 

6.6 Determinism 
An important property of FM is that programs that do not use the nondeterministic constructs 
MERGER or PROBE can be guaranteed to be deterministic even if tasks and channels are created and 
deleted and channels are reconnected dynamically. The compiler and/or runtime system signal 
nondeterministic execution of programs that do not use nondeterministic constructs. As noted in 
Section 1.3.1, determinism can greatly simplify program development.  

Individual FM processes execute deterministically. In addition, FM's send and receive operations 
maintain determinism as long as each channel has at most a single writer and a single reader. 
Hence, nondeterminism can arise only if an inport or outport is duplicated. This duplication would 



allow two or more processes to read or write the same channel, in which case the value retrieved 
from a channel with a receive operation would depend on the order in which different send and 
receive operations were executed. Situations in which this undesirable behavior could occur, and 
the FM mechanisms that avoid it, are as follows:  

1. A port occurs more than once in a process block or process do-loop. The compiler and/or 
runtime system detects this and signals an error.  

2. A port is communicated in a message and then used locally. The compiler generates code 
to invalidate a port that has been communicated. Hence, in the following code fragment the 
second send statement is erroneous and would be flagged as such either at compile time or 
at runtime.  

  OUTPORT (OUTPORT (real)) po    ! Interface port 

  OUTPORT (real) qo         ! Other port 

  SEND(po) qo    ! Send qo on po; invalidates qo 

  SEND(qo) x     ! Try to send on qo; error! 

3. A port occurs in an assignment statement. This situation is detected and flagged as an error 
by the compiler. The value of a port variable can be assigned to another port variable by 
using the MOVEPORT statement, but in this case the source port variable is invalidated. For 
example, the following code both sets p2 to the value of p1 and invalidates p1 by setting it 
to NULL.  

  INPORT (real) p1, p2     ! p1 and p2 are inports, type real 

  MOVEPORT(from=p1, to=p2)  ! Set p2 to p1; invalidate p1 

6.7 Argument Passing 
FM extends the basic task/channel model by allowing ordinary variables, as well as ports, to be 
passed as actual arguments in a process call. These values can be both read and modified inside the 
process, and updated values are available to the parent process when the process returns.  

This capability is not essential: a value can always be passed to a process by defining a channel, 
sending the value on the outport, and passing the inport to the process as an argument. A similar 
strategy can be used to return a value from a process. However, normal argument passing often 
produces more concise and easy-to-understand programs. See Program 6.8 for a comparison of the 
two approaches.  



   

6.7.1 Copying and Determinism 
If unrestricted, argument passing could compromise determinism. The result computed by a 
program that passed the same variable to two processes could depend on the order in which those 
processes executed. For example, the following code fragments could be nondeterministic if a call 
to proc modifies the argument x and this variable is used in subsequent computation.  

 PROCESSDO i = 1,2        PROCESSES 
  PROCESSCALL proc(i,x)        PROCESSCALL proc(1,x) 
 ENDPROCESSDO             PROCESSCALL proc(2,x) 
  ...               ENDPROCESSES 

FM semantics ensure deterministic execution in these situations. Variables named as process 
arguments in a process block or do-loop are passed by value; that is, they are copied. In the case of 
arrays, the number of values copied is determined by the dummy argument declaration in the 
called process. Values are also copied back upon termination of the process block or do-loop, in 
textual and do-loop order. These copy operations ensure deterministic execution even when 
concurrent processes update the same value. Hence, these code fragments are deterministic even if 
proc does modify its argument. In both cases, the value computed by the process proc(2,x) is 
used to update x.  

6.7.2 Avoiding Copying 



Copying variables on process call and return can be expensive. Sometimes this copying is not 
necessary; for example, if a variable is only read by a process, not modified, then there is no need 
to copy it on return. We can provide INTENT declarations for dummy arguments to specify when 
copying is not to be performed. Three INTENT declarations are supported, as follows.  

   ¯ INTENT(in)   var-list    ¯ : Copy on call only. 

   INTENT(out) var-list  : Copy on return only. 

   INTENT(inout) var-list : (Default) Copy on call and return. 

We note that FM and Fortran 90 intent declarations have slightly different semantics. In a Fortran 
90 subroutine, these declarations are assertions: intent(in) asserts that an argument is not 
written by the subroutine, and intent(out) asserts that the argument is not read. These assertions 
have no semantic content: a program with incorrect declarations is invalid. In contrast, INTENT 
declarations in an FM process have semantic content: they specify whether copying is to be 
performed, and they cannot be invalid.  

 
Example .  Ring Pipeline:  

We use a modified version of Program 6.2 to illustrate the use of INTENT declarations. Program 
6.9 extends Program 6.2 by incorporating statements that read input data and write output data. 
The inport and outport declarations and the CHANNEL statements are as in Program 6.2 and are not 
shown here. The main program uses routines ring_read and ring_write to read and write two-
dimensional arrays input and output, respectively. These arrays contain initial particle positions 
and final particle positions, respectively.  

   
Figure 6.6: Argument passing and INTENT declarations in the ring pipeline program. The parent 
process reads the input array, which is of size , from a file and passes one column to each of 
four ringnode processes. The ring processes communicate among themselves and compute a 
column of the output array; upon termination, this array is copied back to the parent, which 
writes it to a file.  



Argument passing is used to pass the appropriate components of these arrays to the subdomain 
processes, with INTENT declarations ensuring that input is copied only on call and output only 
on return (Figure 6.6). This centralized I/O strategy has the advantage of simplicity. A 
disadvantage on many computer systems is that it limits scalability, as the size of problem that can 
be solved is constrained by the need to fit the input and output arrays into a single processor's 
memory.  

 

   

6.8 Mapping 
 Process blocks and do-loops define concurrent processes; channels and mergers define how these 
processes communicate and synchronize. A parallel program defined in terms of these constructs 
can be executed on both uniprocessor and multiprocessor computers. In the latter case, a complete 
program must also specify how processes are mapped to processors. Recall from Chapter 2 that 
this is an important part of parallel algorithm design.  

FM provides three mapping constructs. The PROCESSORS declaration specifies the shape and 
dimension of a virtual processor array in which a program is assumed to execute, the LOCATION 
annotation maps processes to specified elements of this array, and the SUBMACHINE annotation 
specifies that a process should execute in a subset of the array. An important aspect of these 
constructs is that they influence performance but not correctness. Hence, we can develop a 
program on a uniprocessor and then tune performance on a parallel computer by changing 



mapping constructs. This is consistent with the PCAM design methodology discussed in Chapter 
2, in which mapping is the fourth and final stage of the design process.  

6.8.1 Virtual Computers 
FM's process placement constructs are based on the concept of a virtual computer, a collection of 
virtual processors that may or may not have the same topology as the physical computer(s) on 
which a program executes. For consistency with Fortran concepts, an FM virtual computer is an N 
-dimensional array, and the constructs that control the placement of processes within this array are 
modeled on Fortran's array manipulation constructs.  

The PROCESSORS declaration is used to specify the shape and size of the (implicit) processor array 
on which a process executes. This declaration is similar in form and function to the array 
DIMENSION statement. It has the general form PROCESSORS(I ,...,I ),  

where and the I  have the same form as the arguments to a DIMENSION statement. See Figure 
6.7 for some examples.  

   
Figure 6.7: Three different PROCESSORS configurations, all involving 16 processors.  

The PROCESSORS declaration in the main (top-level) program specifies the shape and size of the 
virtual processor array on which that program is to execute. The mapping of these virtual 
processors to physical processors is specified at load time. This mapping may be achieved in 
different ways on different computers. Usually, there is a one-to-one mapping of virtual processors 
to physical processors. However, it can sometimes be useful to have more virtual processors than 
physical processors, for example, if a multicomputer program is being developed on one 
processor. The mapping of virtual processors to physical processors is not defined in FM, but is 
typically specified using a configuration file or command line arguments.  

A PROCESSORS declaration in a process definition specifies the shape and size of the virtual 
processor array on which that particular process is to execute. As with a regular array passed as an 
argument, this processor array cannot be larger than that declared in its parent, but it can be 
smaller or of a different shape.  



6.8.2 Process Placement 
The LOCATION annotation is similar in form and function to an array reference. It has the general 
form LOCATION(I , ..., I )  

where and the I  have the same form as the indices in an array reference, and specifies the 
processor on which the annotated process is to execute. The indices must not reference a processor 
array element that is outside the bounds specified by the PROCESSORS declaration provided in the 
process or subroutine in which the annotation occurs.  

The following code fragment shows how the ring pipeline code of Program 6.2 might be extended 
to specify process placement. The PROCESSORS declaration indicates that this program is to execute 
in a virtual computer with P processors, while the LOCATION annotation placed on the process call 
specifies that each ringnode process is to execute on a separate virtual processor.  

   program ring       ! 

   parameter(P=3)      ! 

   PROCESSORS(P)       ! Three virtual processors 

   ...            ! 

   PROCESSDO i = 1,P     ! Each process on a processor 

    PROCESSCALL ringnode(i, P, pi(i), po(i)) LOCATION(i) 

   ENDPROCESSDO       ! 

6.8.3 Submachines 
A SUBMACHINE annotation is similar in form and function to an array section passed as an 
argument to a subroutine. It has the general form SUBMACHINE(I , ..., I )  

where and the arguments I  have the same form as an array section and denote a set of 
processors in the current virtual computer. The annotated process executes in a new virtual 
computer comprising just these virtual processors. The PROCESSORS declaration in the process 
definition should agree in size and shape.  

The SUBMACHINE annotation allows us to create ``subcomputers,'' each comprising a subset of 
available processors, and hence to control resource allocation in programs comprising multiple 
components.  

 
Example .  Coupled Climate Model:  

 A coupled climate modeling system comprising an ocean model and an atmosphere model can be 
structured as a parallel composition of the two component models. This organization is illustrated 
in Figure 6.8(a) and can be specified as follows.  



  parameter(P=4) 
  PROCESSORS(P,2*P) 
  ... 
  PROCESSES 
    PROCESSCALL atmosphere(...) SUBMACHINE(1:P, 1:P) 
    PROCESSCALL ocean(...)   SUBMACHINE(1:P, P+1:2*P) 
  ENDPROCESSES 

The ocean and atmosphere processes are invoked in disjoint virtual computers of size P P; 
hence, both process definitions should incorporate a declaration PROCESSORS(P,P). In some 
situations, it may be more efficient to structure the coupled model as a concurrent composition of 
the two components, as illustrated in Figure 6.8 (b). This effect can be achieved by changing the 
PROCESSORS declaration to PROCESSORS(P,P) and omitting the SUBMACHINE annotations. No 
change to the component programs is required.  

 

   
Figure 6.8: Alternative mapping strategies in climate model. In (a), the two components are 
mapped to disjoint sets of processors. In (b), they are mapped to the same processors.  

 
Example .  Search:  

The following code fragment shows how virtual computers and the SUBMACHINE annotation can be 
used to control mapping in Program 6.3.  

  PROCESS tree(id, n, toparent) 

  PROCESSORS(n)          ! Size of my computer 

  ... 

  PROCESSES            ! Create children 

   PROCESSCALL tree(id, n/2, lo) SUBMACHINE(1:n/2) 

   PROCESSCALL tree(id+n/2, n/2, ro) SUBMACHINE(1+n/2:n) 

   call nonleaf(id, li, ri, toparent) 

  ENDPROCESSES 



Recall that Program 6.3 creates a set of 2n-1 (n a power of 2) processes connected in a binary tree 
of depth . As illustrated in Figure 6.9, mapping can be achieved by using SUBMACHINE 
annotations to place processes located at the same depth in the tree on different processors 
(assuming that at least n processors are available).  

 

   
Figure 6.9: Using submachines to control mapping in a tree-based algorithm executing on four 
processors. The figures shows both the nodes in the process tree (circles) and the virtual computer 
in which each process executes (the shaded portion of the original four-processor virtual 
computer).  

6.9 Modularity 
Example 6.6 showed how FM constructs can be used to implement parallel and concurrent 
composition. The basic ideas are straightforward. A process (task) is defined for each component 
of a multicomponent program. These processes are then composed using a process block, with 
channels and/or mergers connecting ports in the different components. Mapping constructs control 
resource allocation and hence determine whether program components execute on the same or 
different processors.  

In this section, we discuss the techniques used to implement sequential composition in FM 
programs. Recall that in sequential composition, different program components execute in 
sequence on all processors (Section 4.2.2). These program components may themselves 
communicate and synchronize, but they cannot create new tasks. Hence, each process executes the 
same program, and the entire computation moves sequentially from one parallel operation to the 
next. This is the SPMD programming model discussed in Section 1.3.2.  

An FM implementation of an SPMD program comprises two components: initialization and 
execution. The initialization component creates the SPMD process structure and the 
communication structures (channels and mergers) required by the program components called in 
the sequential composition. The initialization typically comprises some channel and merger 
creation code followed by a process do-loop that creates one process per processor, with the 
appropriate ports passed as arguments.  

The execution component implements the program executed by each process created by the 
process do-loop. This program comprises a sequence of calls to the program components involved 



in the sequential composition. These components can perform internal communication using the 
communication structure established during the setup phase of the computation.  

The important point to understand about this structure is that once appropriate communication 
structures have been defined in the initialization phase, sequential composition can be used 
directly in the main body of the program, without any special constructs.  

 
Example .  Sequential Composition:  

 We consider the SPMD finite difference computation used to illustrate sequential composition in 
Section 4.2.2. This computation is structured as a sequence of calls to a finite difference routine 
that performs nearest-neighbor communication and a reduction routine used to detect termination; 
the latter routine performs global communication. The basic logic executed by each process in this 
computation is as follows, where localgrid is the local component of the grid data structure.  

  subroutine node 

  real localgrid(N,N/P) 

  while(.not. done) do 

   call finite_difference(localgrid, localmax) 

   call global_maximum(localmax, globmax) 

   if(globmax .lt. threshold) done = .true. 

  enddo 

  end 

Programs 6.10 and 6.11 implement the initialization and execution components of an FM 
implementation of this program. Because the program components invoked in the sequential 
composition perform both nearest-neighbor and hypercube communication, the initialization code 
first creates channels implementing these two communication structures. (The function xor is used 
as in Algorithm 11.1.) Then, a process do-loop creates P instances of the node process, passing 
each instance the appropriate ports.  

The execution code comprises the process node, which calls first the procedure 
finite_difference and then the procedure global_maximum. These procedures use the ports 
passed as arguments to perform internal communication.  

The various port variables passed as arguments in the execution component make for a rather 
clumsy program. The program can be made tidier by storing the ports in PROCESS COMMON with a 
series of MOVEPORT calls prior to calling user code. Each process can then execute the simpler code 
presented at the beginning of this example.  

 



   



   

 
Example .  Message-passing Library:  

 The initialization code in Program 6.10 defined a separate communication structure for each 
component in the sequential composition. In this example, we present an alternative approach in 
which the initialization component of an SPMD program creates a single, general-purpose 



communication structure that can be used to perform any communication. In effect, we implement 
a message-passing library that provides similar functionality to the MPI library described in 
Chapter 8. We also use this example to show how port variables can be stored in PROCESS COMMON 
to simplify program interfaces.  

Program 6.12 is a skeleton message-passing library that implements just simple send and receive 
functions. The main program first creates P mergers to implement a fully connected network, and 
then creates P node processes, passing each a single inport and P outports. The node process 
stashes the inport and outports in PROCESS COMMON and then calls the subroutine compute, which 
performs the actual computation. The PROCESS COMMON is defined as follows (file 
mp_stashed.com).  

 C    File "mp_stashed.com" 

   PROCESS COMMON /stashed/ stashed_inp, stashed_outp 

   INPORT (integer n, character x(n)) stashed_inp 

   OUTPORT (integer n, character x(n)) stashed_outp(P) 

 This initialization code makes it possible for the rest of the program to call mp_send and 
mp_receive routines to send and receive messages to and from other processes.  

 



   

6.10 Performance Issues 



Because FM provides a direct implementation of the task/channel programming model, the 
performance analysis techniques developed in Chapter 3 can be applied directly to FM programs. 
Normally, a send on an outport results in a single communication. As noted in Chapter 3, the cost 
of each message can be specified with reasonable accuracy in terms of a startup cost and a per-
word cost. It is necessary to distinguish between the communication costs incurred when 
communicating processes are located on different processors (interprocessor communication) or 
on the same processor (intraprocessor communication). Both these costs can depend significantly 
on implementation technology. Typically, interprocessor communication costs are similar to those 
in Table 3.1 in Chapter 3, and intraprocessor communication is cheaper. However, on some 
multicomputers with fast interprocessor communication and relatively low memory bandwidth, 
intraprocessor communication can actually be slower than interprocessor communication.  

The following issues must also be considered when examining the performance of FM programs.  

Process creation. Process creation and deletion costs will only be a significant contributor to total 
execution time if a program creates and destroys many processes. These costs are influenced by 
the location of the created process (remote creation is typically more expensive than local creation) 
and by the number and size of process arguments (arguments must be copied upon call and return: 
see Section 6.7). In addition, a compiler may implement FM processes as heavyweight Unix 
processes, in which case process creation is relatively expensive, or as lightweight threads, in 
which case process creation is cheap.  

Fairness. When two or more processes execute on the same processor, FM guarantees that 
execution is fair: that is, that no process that is not blocked waiting for data will be prevented 
indefinitely from executing. However, the time that a process waits before executing can vary 
significantly depending on characteristics of both the application and a particular FM 
implementation. Hence, care must be taken if application performance depends on obtaining 
timely responses to remote requests.  

Compiler optimization. Because FM is a programming language rather than a library, a compiler 
may in some situations be able to reduce communication costs by coalescing messages or 
otherwise reorganizing a program to improve performance.  

6.11 Case Study: Fock Matrix Construction 
 Programs 6.13 and 6.14 sketch an FM implementation of the parallel Fock matrix construction 
algorithm of Section 2.8. Recall that in this algorithm, P computation tasks must be able to read 
and write two large distributed data structures. This capability is achieved by encapsulating these 
data structures in separate data tasks. Each computation task repeatedly generates requests for data 
values and then performs computation. The FM program implements computation and data tasks 
as compute and data processes, respectively, and connects these processes using a many-to-many 
communication structure, as illustrated in Figure 6.10. This structure uses P mergers to link P P 
outports (To) with P inports (Ti). Each process is given an array of P outports, one connected to 
each merger. In Programs 6.13 and 6.14, P=128, and 1024 data values are allocated to P data tasks 
in a blocked fashion.  



   
Figure 6.10: FM implementation of the Fock matrix problem, with P=3. Each of the P compute 
processes has an array of P outports connected via mergers with P data processes.  

For brevity, the FM programs presented here implement only an accumulate operation. A compute 
process wanting to accumulate a value to address addr sends a message containing an offset (the 
integer mod(addr,ND)) and the value to be accumulated (a real) on outport number addr/ND. 
Notice that the compute and data processes are similar in structure to the manager and worker of 
Program 6.5.  

   



   

6.12 Summary 
In this chapter, we have discussed a programming language, Fortran M, that provides a direct and 
complete implementation of the task/channel programming model described in Part I. Fortran M 
incorporates language constructs for defining tasks and channels. In keeping with the design 
methodology discussed Chapter 2, it allows mapping decisions to be changed independently of 
other design aspects. The performance modeling techniques given in Chapter 3 and the modular 
design techniques given in Chapter 4 also apply directly. Table 6.1 summarizes the language 
constructs that have been introduced.  



   
Table 6.1: FM quick reference: the constructs described in this chapter, with an outline of their 
syntax, the section in which they are described, and the programs that illustrate their use. 

Exercises 
1.  Complete Programs 6.10 and 6.11. Modify each program to allow for fixed instead of 

periodic boundary conditions. Implement them on a parallel computer, and compare their 
performances with those predicted by the performance models developed in Chapter 3.  

2. Extend the programs developed in Exercise 1 to provide a 2-D decomposition of the 
principal data structures.  

3. Complete Programs 6.4 and 6.5 and conduct experiments to study their performance.  
4. A disadvantage of Program 6.4 is that a worker is idle while waiting for a task to arrive 

from the manager. This problem can be avoided by having the worker generate a request 
for the next task before processing the task just received. Write a variant of Program 6.4 
based on this idea. Compare the performance of the two programs.  

5. Design and implement a decentralized variant of the manager/worker structure described in 
Example 6.4. Design and carry out experiments to determine when this code is more 
efficient than the centralized code presented in the text.  

6. Write programs that can be used to quantify process creation and communication costs on a 
uniprocessor and on a networked or parallel computer system. Conduct experiments to 
measure these costs, and obtain estimates for and .  

7. Write programs that implement two-way communication (a) by using a pair of channels 
and (b) with a single channel and dynamically-created reply channels. Compare the 
performance of the two programs on a parallel computer. Draw conclusions regarding the 
relative costs of the two mechanisms as implemented in your FM compiler.  

8. Implement a variant of Programs 6.4 and 6.5 in which dynamically created reply channels, 
rather than a static network of reply channels, are used to return tasks to workers.  

9. Extend Program 6.10 to use INTENT declarations to pass input and output arrays to and 
from subdomain processes.  



10. Develop a program that receives data of different types from two sources, without busy 
waiting. Hint : Use additional channels to communicate type information.  

11. Show how the functionality provided by the PROBE statement can be implemented by using 
a merger. Hint : A process sends a distinguished message to itself when it wants to check 
for pending input.  

12. Extend Program 6.13 to implement read requests.  
13. Complete Program 6.12, extend it to support message tags (Chapter 8), and use the 

resulting program to implement the symmetric pairwise interactions algorithm of Section 
1.4.2.  

14. Using the code in Programs 6.10 and 6.11 as a basis, implement a hypercube 
communication template (see Chapter 11). Use this template to implement simple 
reduction, vector reduction, and broadcast algorithms.  

15. Construct an FM implementation of the tuple space module described in Section 4.5. Use 
this module to implement the database search problem described in that section.  

Chapter Notes 
Fortran was one of the first computer programming languages and, despite its age, continues to be 
widely used in science and engineering. An ongoing modernization process slowly introduces 
features found in more modern languages. The result is the ANSI standards Fortran 77 and Fortran 
90 [300,16]. The books by Metcalf and Reid [204], Adams et al. [3], and Brainerd, Goldberg, and 
Adams [43] provide good introductions to Fortran 90. Kerrigan [171] addresses the topic of 
migrating existing codes to Fortran 90. Chapter 7 reviews some Fortran 90 features.  

Many parallel dialects of Fortran have been designed over the years. For example, Karp and Babb 
survey ten such dialects [165]. Most were designed for specifying concurrency in shared-memory 
computers and hence do not provide constructs for managing locality. Nor do they enforce 
determinism or modularity. Several recent language designs have emphasized data-parallel 
programming; these are discussed in Chapter 7, as is work on parallelizing compilers. Fortran M is 
distinguished by its support for task parallelism, deterministic execution, and modularity. Chandy 
and Foster provide both a language description and a more formal definition [102,51], while the 
monograph Programming in Fortran M [106] provides a tutorial and reference manual for the 
Argonne Fortran M compiler.  

7 High Performance Fortran 
 The term data parallelism refers to the concurrency that is obtained when the same operation is 
applied to some or all elements of a data ensemble. A data-parallel program is a sequence of such 
operations. A parallel algorithm is obtained from a data-parallel program by applying domain 
decomposition techniques to the data structures operated on. Operations are then partitioned, often 
according to the ``owner computes'' rule, in which the processor that ``owns'' a value is responsible 
for updating that value. Typically, the programmer is responsible for specifying the domain 
decomposition, but the compiler partitions the computation automatically.  

In this chapter, we introduce the key concepts of data-parallel programming and show how designs 
developed using the techniques discussed in Part I can be adapted for data-parallel execution. We 
base our presentation on the languages Fortran 90 (F90) and High Performance Fortran (HPF). 
Many of the ideas also apply to other data-parallel languages, such as C* and pC++. F90 provides 



constructs for specifying concurrent execution but not domain decomposition. HPF augments F90 
with additional parallel constructs and data placement directives, which allow many HPF 
programs to be compiled with reasonable efficiency for a range of parallel computers.  

After studying this chapter, you should know to write simple data-parallel programs using HPF. 
You should also understand how the design principles developed in Part I relate to data-parallel 
programs, and you should be able to evaluate the impact of HPF's data placement directives on 
performance. Finally, you should be able to determine when algorithms are suitable for data-
parallel implementation.  

7.1 Data Parallelism 
We first provide a general introduction to data parallelism and data-parallel languages, focusing on 
concurrency, locality, and algorithm design.  

7.1.1 Concurrency 
 Depending on the programming language used, the data ensembles operated on in a data-parallel 
program may be regular (e.g., an array) or irregular (e.g., a tree or sparse matrix). In F90 and HPF, 
the data structures operated on are arrays. In contrast, the data-parallel language pC++ allows 
programs to operate not only on arrays but also on trees, sets, and other more complex data 
structures.  

 Concurrency may be implicit or may be expressed by using explicit parallel constructs. For 
example, the F90 array assignment statement is an explicitly parallel construct; we write  

  A = B*C        ! A, B, C are arrays 

to specify that each element of array A is to be assigned the product of the corresponding elements 
of arrays B and C. This statement also implies conformality ; that is, the three arrays have the same 
size and shape. In contrast, the following do-loop is implicitly parallel: a compiler may be able to 
detect that the various do-loop iterations are independent (meaning that one iteration does not 
write a variable read or written by another) and hence can be performed in parallel, but this 
detection requires some analysis.  
 
  do i = 1,m 

   do j = 1,n 

    A(i,j) = B(i,j)*C(i,j) 

   enddo 

  enddo 

A data-parallel program is a sequence of explicitly and implicitly parallel statements. On a 
distributed-memory parallel computer, compilation typically translates these statements into an 
SPMD program (Section 1.3.2), in which each processor executes the same code on a subset of the 
data structures. In many cases, the compiler can construct this program by first partitioning data 
structures into disjoint subdomains, one per processor, and then applying the owner computes rule 



to determine which operations should be performed on each processor. This rule states that the 
computation required to produce a datum is performed on the processor on which that datum is 
located. However, compilers can also use different techniques.  

Compilation also introduces communication operations when computation mapped to one 
processor requires data mapped to another processor. As an example, consider the following 
program.  

  real y, s, X(100)    ! y, s scalars; X an array 

  X = X*y          ! Multiply each X(i) by y 

  do i = 2,99 

   X(i) = (X(i-1) + X(i+1))/2   ! Communication required 

  enddo 

  s = SUM(X)        ! Communication required 

The communication requirements of this program depend on how the variables X, y, and s are 
distributed over processors. If X is distributed while y and s are replicated, then the first 
assignment can proceed without communication, with each X(i) being computed by the processor 
that owns X(i). The second assignment (in the do-loop) requires communication: the processor 
computing X(i) requires the values of X(i-1) and X(i+1), which may be located on different 
processors. The summation also requires communication.  

7.1.2 Locality 
 Data placement is an essential part of a data-parallel algorithm, since the mapping of data to 
processors determines the locality of data references and hence, to a large extent, the performance 
of a parallel program. For example, the simple array assignment A = B*C either can proceed 
without any communication or can require communication for every assignment, depending on 
whether corresponding elements of the arrays A, B, and C are located on the same or different 
processors.  

Identifying the best distribution of the various data structures operated on by a data-parallel 
program is a global optimization problem and not generally tractable. Hence, data-parallel 
languages often provide the programmer with the ability to define how data structures are to be 
distributed. In HPF, the DISTRIBUTE directive fulfills this function. The statements  

   !HPF$  PROCESSORS pr(16) 
       real X(1024) 
   !HPF$  DISTRIBUTE X(BLOCK) ONTO pr 

indicate that the array X is to be distributed in a blocked fashion over 16 processors---processor 0 
gets the first 1024/16 elements, processor 1 the second 1024/16 elements, and so on.  

7.1.3 Design 



The data-parallel programming model is both higher level and more restrictive than the 
task/channel model introduced in Part I. It is higher level in that the programmer is not required to 
specify communication structures explicitly: these are derived by a compiler from the domain 
decomposition specified by the programmer. It is more restrictive because not all algorithms can 
be specified in data-parallel terms. For these reasons, data parallelism, although important, is not a 
universal parallel programming paradigm.  

Despite these differences between the task/channel and data-parallel programming models, the 
program design techniques developed in Part I are still applicable. Recall that we have 
decomposed the design process into partitioning, communication, agglomeration, and mapping 
phases. Data-parallel languages address the first phase directly, by providing implicit and explicit 
constructs that can be used to specify a very fine grained partition of a computation, in which one 
task is created for each data element. As noted in Section 2.2, a key concern at this stage is to 
define a partition that identifies sufficient concurrency.  

The PCAM design strategy of Chapter 2 requires that once we have developed a fine-grained 
partition, we determine communication requirements, agglomerate fine-grained tasks into larger 
tasks, and map tasks to processors. The beauty of the data-parallel approach is that the latter issues 
can be addressed at a particularly high level, by means of directives, rather than in terms of 
explicit communication and mapping operations. Directives indicate how arrays are to be aligned 
and distributed over processors and hence specify agglomeration and mapping. Communication 
operations are not specified explicitly by the programmer but are instead inferred by the compiler 
from the program.  

The translation from fine-grained source program and directives to executable (typically SPMD) 
program is an automatic process that is performed by the data-parallel compiler. Nevertheless, the 
programmer must understand the essential characteristics of this translation in order to write 
efficient code and identify inefficient constructs. For example, an inappropriate choice of 
directives may lead to load imbalances or unnecessary communication. Alternatively, a data-
parallel compiler may fail to recognize opportunities for concurrent execution. Generally, a data-
parallel language compiler can be expected to generate reasonably efficient code when a program's 
communication structure is regular and local. Programs involving irregular and global 
communication patterns are less likely to be compiled efficiently. These and other performance 
issues are addressed in Section 7.7.  

Finally, we note that the modular design techniques introduced in Chapter 4 apply to data-parallel 
programs. The issues involved are straightforward. Because data-parallel programs have sequential 
semantics, we need be concerned only with sequential composition of program components 
(Section 4.2.2). The primary concern in a parallel environment is the choice of data distributions in 
components that are to be composed. This issue is discussed in Section 7.5.  

7.1.4 Data-Parallel Languages 
In the remainder of this chapter, we first briefly introduce F90 and then describe HPF. Much of 
this material also applies to other data-parallel languages. The chapter notes provide pointers to 
relevant documentation.  

 F90 is a data-parallel programming language in its own right. Its array assignment statement and 
array intrinsic functions can be used to specify certain classes of data-parallel computations. Our 



main interest in F90, however, is that it forms the basis for HPF, which augments F90 with data 
distribution directives, a FORALL statement, the INDEPENDENT directive, and new intrinsics. Array 
assignment, the FORALL statement, and the INDEPENDENT directive are used to identify concurrency 
in an algorithm, while data distribution directives specify how data should be placed on physical 
processors and hence provide control over locality.  

Although HPF defines only a small set of extensions to F90, it is nevertheless a complex language. 
The extensions have numerous variants and can interact with F90 constructs and with each other in 
a wide variety of ways. In the interests of succinctness and clarity, our presentation does not aim 
for completeness but rather seeks to present the essential ideas required to understand data-parallel 
programming and the HPF constructs required to write simple programs. These constructs are 
taken from the official HPF subset, which should in principle be supported by all HPF compilers.  

7.2 Fortran 90 
Fortran 90 (F90) is a complex language. It augments Fortran 77 (F77) with pointers, user-defined 
datatypes, modules, recursive subroutines, dynamic storage allocation, array operations, new 
intrinsic functions, and many other features. We focus here on those new features that are most 
relevant to parallel programming: the array assignment statement and the array intrinsic functions.  

7.2.1 Array Assignment Statement 
F90 allows a variety of scalar operations---operations defined on single values---to be applied also 
to entire arrays. This feature causes the scalar operation to be applied to each element of the array. 
If an operation involves several values, all must be represented by conformable arrays, that is, 
scalar values or arrays of the same size and shape. The operation is performed on corresponding 
elements from each array. For example, consider the following scalar operation, which assigns the 
sum b+c to a.  

         integer a, b, c 
         a = b + c 

In F90, we can apply the same operation to arrays A and B and scalar c, as follows. This assigns 
each element A(i,j) of A the sum B(i,j)+c.  

         integer A(10,10), B(10,10), c 
         A = B + c 

In fact, all F90's unary and binary intrinsic operations can be applied to arrays, as the following 
examples show.  

  real A(10,20), B(10,20) 

  logical L(10,20) 

  A = A + 1.0    ! Adds 1.0 to each element of A 

  A = SQRT(A)    ! Computes square root of each element of A 

  L = A .EQ. B    ! Sets L(i,j) to .true. if A(i,j)= B(i,j); 



     ! and to .false. otherwise 

A conformable array section can be substituted for an entire array in an array operation. An array 
section is represented by specifying a range for one or more subscripts. A range is represented by a 
triplet that has the following general form. lower-bound : upper-bound : stride  

A stride of 1 is assumed if : stride is omitted, and bounds can be omitted if the corresponding 
bounds of the array are required. See Figure 7.1 for examples of array sections.  

   
Figure 7.1: F90 array sections. The three examples show array sections comprising (a) all of row 
2, (b) elements 2..7 of row 2, and (c) elements 1,3,5,7 of row 2, respectively.  

When operations are performed on arrays and array sections, corresponding elements are selected 
by position, not index. Hence, different array components do not need to have corresponding 
subscripts, and we can write the following code to compute the sum A(i)=B(i)+B(i+1) for 
1 i 7 (Figure 7.2).  

A(1:7) = B(1:7) + B(2:8)  

   
Figure 7.2: Use of array sections to compute the sum B(i)+B(i+1) for 1 i 7.  

 Finally, a masked array assignment uses the WHERE construct to restrict the array elements on 
which an assignment is performed. For example, the following statement replaces each nonzero 
element of X with its reciprocal (the F90 /= operator is equivalent to .NE. in F77). WHERE(X /= 
0) X = 1.0/X  

7.2.2 Array Intrinsic Functions 
All F90 intrinsic functions that apply to scalar values can also be applied to arrays, in which case 
the function is applied to each array element. For example, ABS(A) returns an array containing the 
absolute values of the elements of array A. In addition, F90 provides a number of transformational 
functions which return a scalar or array result that depends on the values of many elements of an 
array. Table 7.1 lists a representative selection of these functions.  



   
Table 7.1: Selected F90 array intrinsic functions. 

MAXVAL, MINVAL, SUM, and PRODUCT perform a reduction operation (Section 2.3.2) on an array, 
returning a scalar value representing the maximum, minimum, sum, or product of the elements of 
the array, respectively. Hence, the following code sets the scalar variable s to the sum of the 
elements of the array X.  

         real s, X(100) 
         s = SUM(X) 

   
Figure 7.3: The F90 CSHIFT function. In (a), a negative shift of one element is applied in 
dimension 1; in (b), a negative shift of three elements is applied in dimension 2.  

The CSHIFT function performs a circular shift on an array, returning a new array of the same size 
and shape but with its elements in a different configuration. As illustrated in Figure 7.3, a call of 
the form CSHIFT(A,s,d)  

performs a circular shift on the elements of the array A, where the scalar or array s specifies the 
size and direction (left is positive) of the shift and the optional argument d indicates the dimension 
in which the shift is to be applied (it defaults to 1). This function is often used in expressions 
involving index expressions. For example, consider the following F77 loop.  



   real X(0:99), B(0:99) 
   do i = 0,99 
    B(i) = (X(mod(i+99,100) + X(mod(i+1,100)))/2 
   enddo 

This can be written in F90 as  
   real X(100), B(100), L(100), R(100) 
   L = CSHIFT(X,+1) 
   R = CSHIFT(X,-1) 
   B = (L + R)/2 

or simply as follows.  
   real X(100), B(100) 
   B = (CSHIFT(X,+1) + CSHIFT(X,-1))/2 

In both cases, an array assignment sets the array B to the sum of two arrays: X shifted left one 
element, and X shifted right one element.  

Although powerful, F90's array operations can be used to implement only a limited class of data-
parallel algorithms. Consequently, F90 programs often incorporate code that, although implicitly 
parallel, must be executed sequentially if a compiler is unable to detect the implicit parallelism. 
For example, the following code zeroes the diagonal of an array. Although clearly a parallel 
operation, this cannot be expressed as such using the F90 array assignment statement.  

       do i = 1,100 
        X(i,i) = 0.0 
       enddo 



   

 
Example .  Finite Difference:  

 Program 7.1 illustrates F90's array assignment and array intrinsics. This program, for which both 
F77 and F90 versions are given, first applies a five-point finite difference stencil to the array X to 
obtain the array New and then computes the maximum difference between the two arrays. The F90 
version uses an array assignment and the intrinsic functions ABS and MAXVAL.  

 

7.3 Data Distribution 
 Array expressions specify concurrency but not locality. That is, they specify opportunities for 
parallel execution but not how these opportunities should be exploited so as to minimize 
communication costs on a parallel computer. HPF introduces data distribution directives to 
provide the programmer with control over locality. These directives work as follows. The 



PROCESSORS directive is used to specify the shape and size of an array of abstract processors. The 
ALIGN directive is used to align elements of different arrays with each other, indicating that they 
should be distributed in the same manner. The DISTRIBUTE directive is used to distribute an object 
(and any other objects that may be aligned with it) onto an abstract processor array. The mapping 
of abstract processors to physical processors is implementation dependent and is not specified in 
the language. The three directives are summarized in Figure 7.4.  

Figure 7.5 illustrates the use of ALIGN and DISTRIBUTE. The two-phase mapping strategy reduces 
the number of changes needed to move from one machine to another. A different machine may 
necessitate a different partitioning strategy but is less likely to require changes to array alignments.  

   
Figure 7.4: HPF data distribution directives. 

   
Figure 7.5: HPF data allocation model. The mapping of data to abstract processors is performed 
in two phases: ALIGN is used to create a relationship between objects and DISTRIBUTE is used to 
partition onto processors both a specified object and any objects that are aligned with it.  

Data distribution directives can have a major impact on a program's performance but do not affect 
the result computed. In this sense, they are similar to FM mapping annotations. However, they 
have a more profound effect on program structure: they affect partitioning, agglomeration, and 
communication as well as mapping. As in FM, this orthogonality makes it possible to experiment 
with alternative parallel algorithms simply by changing directives.  

Data distribution directives are recommendations to an HPF compiler, not instructions. The 
compiler does not have to obey them if, for example, it determines that performance can be 
improved by ignoring them.  



7.3.1 Processors 
 A PROCESSORS directive declares a named arrangement of abstract processors. For example, both 
of the following statements declare 32 abstract processors.  

  !HPF$    PROCESSORS P(32) 

  !HPF$    PROCESSORS Q(4,8) 

Normally, one abstract processor is created for each physical processor, although an 
implementation could in principle use a smaller number of physical processors to implement the 
abstract processors. The mapping of abstract processors to physical processors is not specified in 
HPF and can vary according to the implementation.  

7.3.2 Alignment 
 The ALIGN directive is used to specify array elements that should, if possible, be collocated ---
mapped to the same processor. Operations between aligned data objects are likely to be more 
efficient than operations between objects that are not known to be aligned. An alignment directive 
has the general form  

    !HPF$  ALIGN array WITH target 

which indicates that the specified array should be aligned with target. A list of subscripts 
associated with the array and target control the alignment, For example, the following code 
specifies a simple alignment of arrays B and C in which each B(i) is aligned with the 
corresponding C(i).  
  
            real B(50), C(50) 

    !HPF$    ALIGN C(:) WITH B(:) 

 



   
Figure 7.6: Six examples of the HPF ALIGN statement, with arrows and shading used to associate 
representative aligned components in the two arrays being aligned. (a) A simple alignment of two 
one-dimensional arrays. (b) Alignment with an offset. (c) An alignment of a smaller array onto a 
larger. (d) Alignment with indices inverted (transpose). (e) Collapsing a dimension: aligning a 
two-dimensional array with a one-dimensional array. (f) Replicating data: aligning a one-
dimensional array with a two-dimensional array.  

 Dummy arguments can be used in ALIGN directives to name dimensions, integer expressions can 
be used to specify offsets, and * can be used to collapse dimensions. See Figure 7.6 for examples 
of the alignments that can be specified using these mechanisms. Notice that an ALIGN statement 
can be used to specify that elements of an array should be replicated over processors. This can 
improve efficiency if the array is read more often than it is written. For example, assume that the 
two-dimensional array Y(N,N) is to be distributed by columns so that each processor performs 
computation on one or more columns. If the computation performed at a single processor requires 
data from a one-dimensional array X(N) that is not updated during a computation, replicating X 
may be useful. This is accomplished by the following alignment directive  

    !HPF$  ALIGN X(*) WITH Y(*,j) 

Care must be taken not to replicate arrays that are frequently updated, as considerable 
communication and/or redundant computation can result.  

7.3.3 Distribution 



 A DISTRIBUTE directive is used to indicate how data are to be partitioned among computer 
memories. It specifies, for each dimension of an array, a mapping of array indices to abstract 
processors in a processor arrangement. Each dimension of an array may be distributed in one of 
three ways.  

   *      : No distribution 

   BLOCK(n)   : Block distribution (default: n= N/P) 

   CYCLIC(n)  : Cyclic distribution (default: n=1) 

 

   
Figure 7.7: The HPF DISTRIBUTE statement, as used to specify different distributions of a two-
dimensional array of size onto four processors organized either as a one-dimensional array 
(in the three examples with a `` *'') or as a array (in the other three examples). The data 
mapped to processor 1 is shaded in each example.  

Let N be the number of elements in an array dimension, and let P be the number of processors 
assigned to that dimension. Then, as illustrated in Figure 7.7, a BLOCK distribution divides the 
indices in a dimension into contiguous, equal-sized blocks of size N/P, while a CYCLIC distribution 
maps every P th index to the same processor. The optional integer argument to BLOCK and CYCLIC 
specifies the number of elements in a block.  

 The ONTO specifier can be used to perform a distribution across a particular processor array. If no 
processor array is specified, one is chosen by the compiler. Hence, both DISTRIBUTE statements in 
the following code fragment are valid.  

   !HPF$    PROCESSORS p(32) 

           real D(1024), E(1024) 

   !HPF$    DISTRIBUTE D(BLOCK) 



   !HPF$    DISTRIBUTE E(BLOCK) ONTO p 

 A DISTRIBUTE directive applies not only to the named array but also to any arrays that are aligned 
with it. Thus, a DISTRIBUTE directive cannot be applied to an array that is aligned with another. 
For example, in the following code fragment the DISTRIBUTE directive specifies a mapping for all 
three arrays.  

   !HPF$    PROCESSORS p(20) 

           real A(100,100), B(100,100), C(100,100) 

   !HPF$    ALIGN B(:,:) WITH A(:,:) 

   !HPF$    ALIGN C(i,j) WITH A(j,i) 

   !HPF$    DISTRIBUTE A(BLOCK,*) ONTO p 

   

 
Example .  HPF Finite Difference:  

 Program 7.2 is an HPF version of Program 7.1. Notice that only three directives have been added: 
PROCESSORS, DISTRIBUTE, and ALIGN. These directives partition each of the two arrays by row, 
hence allocating 25 rows to each of four processors.  

The following is an alternative set of directives that partitions the two arrays in two dimensions so 
that each processor has a block of size 50 50. Notice that only the directives need to be changed to 
specify this alternative algorithm.  

   !HPF$    PROCESSORS pr(2,2) 

           real X(100,100), New(100,100) 

   !HPF$    ALIGN New(:,:) WITH X(:,:) 

   !HPF$    DISTRIBUTE X(BLOCK,BLOCK) ONTO pr 



As discussed in Example 3.4, the two-dimensional decomposition is typically more efficient than 
the one-dimensional decomposition.  

 
 

Example .  Pairwise Interactions:  

Consider the following version of the pairwise interactions problem of Section 1.4.2. We must 
compute the total force force  acting on each of N objects x . This is defined as follows, where 
force  and x  are both 3-vectors and the function f computes the force between two objects: 

 

   

An HPF formulation of this problem is presented in Program 7.3. This program is defined for an 
array of ten processors. The arrays Force, Tmp, and X are aligned and distributed blockwise. The 
N(N-1) interactions are computed in N-1 steps, with the i th step computing interactions between 
each element X  and the element offset by i in X. The CSHIFT operation is used to update a 
temporary array containing the offset values. This temporary array is shifted one element at each 
step. Each call to the function f computes N interactions.  

 Naively, we might expect each of the CSHIFT operations to result in a communication operation. 
On many machines, it will be more efficient to block these communications so that data circulates 
among the ten processors in just nine communication steps, as described in Section 1.4.2. An HPF 
compiler would normally be expected to perform this optimization.  

 

7.4 Concurrency 



At this point, we have presented all the HPF features needed to write simple programs. Array 
assignment statements provide a mechanism for specifying fine-grained concurrency, while data 
distribution directives provide control over agglomeration and mapping.  

The F90 array assignment statement provides a convenient and succinct notation for specifying 
data-parallel operations. However, it applies only to a limited set of such operations. For example, 
it requires that operands of right-hand-side expressions be conformant with (of the same shape as) 
the left-hand-side array. Two other HPF constructs allow an explicitly parallel representation of a 
wider range of data-parallel operations. These are the FORALL statement and the INDEPENDENT 
directive.  

7.4.1 The FORALL Statement 
 The FORALL statement allows for more general assignments to sections of an array. A FORALL 
statement has the general form  

   FORALL (triplet, ..., triplet, mask) assignment 

where assignment is an arithmetic or pointer assignment and triplet has the general form  
  
   subscript = lower-bound : upper-bound : stride 

(with : stride being optional) and specifies a set of indices.  

 The assignment statement is evaluated for those index values specified by the list of triplets that 
are not rejected by the optional mask. For example, the following statements set each element of X 
to the sum of its indices, zero the upper right triangle of Y, and zero the diagonal of Z, respectively.  

    FORALL (i=1:m, j=1:n)   X(i,j) = i+j 
    FORALL (i=1:n, j=1:n, i<j) Y(i,j) = 0.0 
    FORALL (i=1:n)       Z(i,i) = 0.0 

A FORALL statement is evaluated as follows. First, the right-hand-side expression is evaluated for 
all index values; these evaluations can be performed in any order. Second, the assignments are 
performed, again in any order. To ensure determinism, a FORALL statement cannot assign to the 
same element of an array more than once. A compiler can attempt to detect that this requirement is 
violated but is not required to do so. Hence, the following statement is valid only if the array 
Index does not contain duplicate values.  

FORALL (i=1:n) A(Index(i)) = B(i)  

 
Example .  Use of FORALL:  

The array assignment used to update the array New in Program 7.2 can also be expressed using 
FORALL, as follows.  

     forall(i=2:99, j=2:99) 

   $     New(i,j) = (X(i-1, j) + X(i+1, j) + 

   $      X(i, j-1) + X(i, j+1))/4 



Of course, in this case there is no reason not to use an array assignment.  

 

7.4.2 The INDEPENDENT Directive and Do-Loops 
An HPF program can reveal additional opportunities for parallel execution by using the 
INDEPENDENT directive to assert that the iterations of a do-loop can be performed independently---
that is, in any order or concurrently---without changing the result computed. In effect, this 
directive changes a do-loop from an implicitly parallel construct to an explicitly parallel construct.  

The INDEPENDENT directive must immediately precede the do-loop to which it applies. In its 
simplest form, it has no additional argument and asserts simply that no iteration of the do-loop can 
affect any other iteration. (An iteration I affects an iteration J if I leads to an assignment to a value 
read by J.) For example, in the following code fragment the assertion implies both that the array 
Index does not contain duplicate indices and that A and B do not share storage, for example 
because of an equivalence statement.  

    !HPF$  INDEPENDENT 
        do i=1,n 
         A(Index(i)) = B(i) 
        enddo 

In the following code fragment, the directives indicate that the outer two loops are independent. 
The inner loop assigns elements of A repeatedly and hence is not independent.  

 !HPF$   INDEPENDENT 

   do i=1,n1      ! Loop over i independent 

 !HPF$   INDEPENDENT 

        do j=1,n2      ! Loop over j independent 

        do k=1,n3 ! Inner loop not independent 

    A(i,j) = A(i,j) + B(i,j,k)*C(i,j) 

    enddo 

    enddo 

   enddo 

An INDEPENDENT directive can also specify that the assertion would be correct if distinct storage 
were to be used for a specified set of variables for each iteration of the nested do-loop. This is 
achieved by postfixing a NEW specifier, as in the following example. In this code fragment, 
interleaved execution of different loop iterations would cause erroneous results if values of tmp1 
and tmp2 computed in one iteration were used in another. The NEW specifier ensures that this 
situation does not arise.  



!HPF$  INDEPENDENT 
    do i=1,n1 
!HPF$   INDEPENDENT, NEW(tmp1,tmp2) 
     do j=1,n2 
      tmp1 = B(i,j) + C(i,j) 
      tmp1 = B(i,j) - C(i,j) 
      A(i,j) = tmp1*tmp2 
     ENDDO 
    ENDDO 

 
Example .  Parallel Fast Fourier Transform:  

 A 2-D FFT applies a 1-D FFT operation first to each column of a two-dimensional array and then 
to each row. An initial column distribution allows the first set of FFTs to proceed without 
communication; the array is then transposed before performing the second set of FFTs. (A similar 
technique is used in Section 4.4, but here we distribute by column to improve locality in a Fortran 
implementation.) The transpose involves considerable communication but is frequently more 
efficient than an algorithm based on a static decomposition and parallel FFTs. Program 7.4 
implements the transpose algorithm. Notice the initial distribution of A (blocked, by column) and 
the call to the transpose intrinsic. Notice also the use of the INDEPENDENT directive to specify 
that the colfft calls in the do-loop can proceed independently, even though each is passed the 
entire A array. This assertion is valid because each call to colfft operates on a single column.  

 



   

7.5 Dummy Arguments and Modularity 
 A large HPF program is typically constructed as a sequence of calls to subroutines and functions 
that implement different aspects of program logic. In the terminology used in Chapter 4, the 
program is a sequential composition of program components. As discussed in that chapter, one 
critical issue that arises when using sequential composition is the distribution of data structures 
that are shared by components.  

Consider what happens when a subroutine is called in an HPF program. For a particular computer 
and problem size, there is presumably a distribution of that subroutine's dummy arguments and 
local variables that is optimal in the sense that it minimizes execution time in that subroutine. 
However, this optimal distribution may not correspond to the distribution specified in the calling 
program for variables passed as arguments. Hence, we have a choice of two different strategies at 
a subroutine interface. These strategies, and the HPF mechanisms that support them, are as 
follows.  

1. We can ignore the distribution used in the calling program and specify a local distribution 
that must apply, even if it requires a (potentially expensive) remapping operation. For this 



purpose, we use the distribution directives DISTRIBUTE and ALIGN to specify the mapping 
of the dummy arguments.  

2. We can use whatever data distribution is used in the calling program, even though it may 
not be locally optimal. For this purpose, we use the INHERIT directive.  

As noted in Chapter 4, several tradeoffs must be evaluated when determining which strategy to 
adopt in a particular circumstance. The cost of the remapping inherent in strategy 1 should be 
weighed against the performance degradation that may occur if strategy 2 is used. Similarly, the 
effort required to optimize a subroutine for a particular distribution must be weighed against the 
subroutine's execution cost and frequency of use. These tradeoffs are more complex if a subroutine 
may be used in several contexts. In some cases, it may be worthwhile for a subroutine to 
incorporate different code for different distributions.  

Strategy 1: Remap Arguments. 

Strategy 1 is straightforward to apply. Ordinary distribution directives are applied to dummy 
arguments. As for any other variable, these directives recommend that the requested distribution 
hold. Any necessary data movement is performed automatically when the subroutine or function is 
called. (In the absence of a DISTRIBUTE or ALIGN directive for a dummy argument, the compiler 
may choose to use any distribution or alignment.) Any redistribution is undone upon return from 
the subroutine, so any data movement costs introduced in this way are incurred twice. The 
exception to this rule are arguments used for input or output only, as specified by the use of the 
F90 intent directive.  

Program 7.5 illustrates some of the issues involved in strategy 1. Arrays X and Y are distributed by 
rows and columns in the calling program, respectively, while the dummy argument Z of the 
subroutine fft is distributed by columns. Hence, the first call to fft requires that two matrix 
transpose operations be performed to convert from one distribution to the other---one upon entry to 
and one upon exit from the routine. In contrast, the second call to fft does not require any data 
movement because the array Y is already distributed appropriately.  



   

Strategy 2: Use Parent Mapping. 

The second strategy is supported by the INHERIT directive, which, however, does not form part of 
the HPF subset because of the difficulty of generating code that can handle multiple distributions. 
For that reason, we do not consider this language feature in detail.  

The following code fragment illustrates the use of INHERIT. This is an alternative version of the 
fft routine in Program 7.5. The INHERIT directive indicates that no remapping is to occur; hence, 
the two calls to fft in Program 7.5 will execute with (BLOCK,*) and (*,BLOCK) distribution, 
respectively. 

  subroutine fft(n, Z) 

   real Z(n,n) 

   ... 

 !HPF$    INHERIT Z    ! Z has parent mapping 

   ... 

  end 

7.6 Other HPF Features 
In this section, we discuss several miscellaneous aspects of HPF; we also list HPF features not 
covered in this book.  

7.6.1 System Inquiry Intrinsic Functions 



 HPF introduces a small set of intrinsic functions in addition to those defined in F90. The two most 
relevant to parallel program design are the system inquiry functions NUMBER_OF_PROCESSORS and 
PROCESSORS_SHAPE. These functions allow a program to obtain information about the number of 
physical processors on which it executes and the topology connecting these processors. This 
information can be used to write programs that run efficiently on varying numbers of processors 
and processor configuration. The functions are modeled on the F90 inquiry functions SIZE and 
SHAPE, respectively, and provide a view of the underlying computer as a rectilinear, 
multidimensional processor array. A call to NUMBER_OF_PROCESSORS has the general form 
NUMBER_OF_PROCESSORS(dim)  

where dim is an optional argument. A call to this function returns the number of processors in the 
underlying array or, if the optional argument is present, the size of this array along a specified 
dimension. A call to PROCESSORS_SHAPE has the following general form. PROCESSORS_SHAPE()  

It returns an array with rank (dimension) one and with size the rank of the underlying processor 
array. The i th element gives the size of the underlying array in its i th dimension.  

   
Figure 7.8: Examples of values returned by HPF system inquiry intrinsic functions. 

The representation of a particular physical computer as a processor array is implementation 
dependent and not specified in HPF. Two representative examples are presented in Figure 7.8. 
System inquiry functions can be included in array declarations and HPF directives, hence 
permitting a program to declare abstract processor arrays that match available physical resources. 
For example, in the following code the first directive declares an abstract processor array P with 
size equal to the number of physical processors. The F90 inquiry function SIZE is then used to 
declare an integer array Q with size corresponding to the rank (dimension) of the physical 
processor array.  

  !HPF$  PROCESSORS P(NUMBER_OF_PROCESSORS()) 
       integer Q(SIZE(PROCESSORS_SHAPE())) 

7.6.2 Storage and Sequence Association 
 Both F77 and F90 allow programmers to write programs that depend on a linear storage model, 
that is, a view of memory as linear, one dimensional, and sequentially addressed. This is the case if 
a program depends on storage association, using common or equivalence statements to align 
storage locations. (This might be done to reuse storage, for example.) It is also the case if a 
program relies on sequence association, for example, passing an array as an actual argument and 
then declaring the corresponding dummy argument to have a different size or shape.  



Storage and sequence association are not natural concepts when data are distributed over multiple 
processors. If always enforced in an HPF compiler, they could compromise performance. 
Therefore, HPF states that by default, storage and sequence association are not supported. Hence, 
without the use of additional directives, it not possible to do the following:  

1. Pass an array element as an actual argument to a subroutine, and declare the corresponding 
dummy argument to be an array.  

2. Pass an array or array section as an actual argument to a subroutine, and declare the 
corresponding dummy argument to have a different size or shape.  

3. Pass an assumed size array (an array declared with a dimension of *, for example, 
DIMENSION(32,*)) as as an actual argument.  

4. Declare the same COMMON block to contain different variables in different parts of a 
program, or use the EQUIVALENCE statement except in certain restricted cases.  

In order to support conversion of existing codes that rely on storage and sequence association to 
HPF, the SEQUENCE directive is provided to request that storage and sequence association be 
enabled for specified variables. Because this directive is intended only to support conversion of 
existing Fortran 77 codes and is not directly relevant to data-parallel programming, we do not 
discuss it further here.  

7.6.3 HPF Features Not Covered 
For simplicity, we have focused on a subset of the HPF language. In particular, we have described 
most of the HPF subset, which is a set of HPF constructs providing sufficient functionality to 
permit development of useful programs, while avoiding difficult implementation problems. Of 
necessity, numerous subtleties have been omitted in this brief description, and the following HPF 
features have not been covered at all.  

1. Templates. The TEMPLATE directive allows a programmer to declare an abstract index space 
that can be distributed and used as an alignment target in the same way as an array can. 
This is useful when several arrays must be aligned relative to each other, but there is no 
need to define a single array that spans the entire index space of interest.  

2.  Mapping inquiry intrinsic functions. These functions allow a program to determine the 
actual mapping of an array to processors. They are useful when the extrinsic function 
facility (described in item 7 of this list) is used to call non-HPF subprograms.  

3. FORALL construct. This more general form of the  FORALL statement can control multiple 
assignments, masked array assignments, and nested FORALL statements and constructs. This 
construct broadens the range of algorithms that can be expressed using FORALL.  

4. PURE procedures. A function or subroutine declared to be  PURE can be called in FORALL 
statements. A PURE function causes no side effects; that is, it does not perform I/O or 
modify dummy arguments or global data. A PURE subroutine may modify arguments but 
not global variables. This facility broadens the range of algorithms that can be expressed 
using the FORALL statement, for example by allowing the same function to be applied to 
each row or column of an array.  

5.  Dynamic data distribution. The executable directives  REDISTRIBUTE and REALIGN can be 
used to modify the distribution and alignment of a data structure if that data structure is 
declared to have attribute DYNAMIC. The HPF compiler and runtime system perform any 
data movement that may be required. This facility makes it easier to use different 
distributions in different parts of a computation, as discussed in Section 7.5.  



6.  Computational library. For each reduction operation in F90 (e.g., SUM and MAXVAL), HPF 
provides corresponding combining scatter, parallel prefix, and parallel suffix operations 
(e.g., SUM_SCATTER, SUM_PREFIX, and SUM_SUFFIX). Functions for sorting and for counting 
bits in an integer array are also provided. This computational library broadens the set of 
global operations available to the programmer. (The combining scatter operations allow 
elements of one array to be scattered to the elements of another array, under the control of 
index arrays. A parallel prefix using an operation of a sequence X yields a sequence Y of 
the same size, with each element  Y(j) = (X ). That is, each element is a function of 
the preceding elements. A parallel suffix is the same as a parallel prefix except that each 
element is a function of the elements that follow it rather than those that precede it.)  

7. Extrinsic functions. HPF programs can call non-HPF procedures as extrinsic procedures. 
The non-HPF procedure is invoked on every processor, and the local components of 
distributed arrays named in the interface are passed as arguments. This facility can be used 
to invoke MIMD procedures developed with message-passing systems such as MPI.  

7.7 Performance Issues 
 The performance of an HPF program depends not only on the skill of the programmer but also on 
the capabilities of the compiler, which in effect generates the actual parallel program from a high-
level specification provided by the programmer. The structure and hence the performance of this 
program may not be intuitively obvious to the programmer. However, a good HPF compiler 
should provide feedback identifying hard-to-parallelize components, and of course intuition can be 
developed with experience.  

Two major obstacles impact the efficient execution of an HPF program: sequential bottlenecks and 
excessive communication costs. In the following sections, we first examine the compilation 
process and then discuss these two obstacles in turn.  

7.7.1 HPF Compilation 
 Compilers for HPF and related languages generally proceed roughly as follows. Data 
decomposition statements are analyzed to determine the decomposition of each array in a program. 
Computation is then partitioned across processors, typically (but not always) using the owner 
computes rule. This process allows nonlocal references, and hence communication requirements, 
to be identified. Communication operations are then optimized. In particular, an attempt is made to 
move messages out of loops so as to reduce communication costs.  



   

As an illustration of how an HPF compiler operates, Program 7.6 gives the code that might be 
generated for Program 7.2. Recall that Program 7.2 implements a parallel algorithm based on a 
one-dimensional decomposition of a two-dimensional finite-difference problem and executes on 
four processors. The generated code is a mixture of F90 statements and calls to library routines 
that perform communication operations. In this example, two such routines are called: 
stencil_exchange_1d and reduce_real. The first routine exchanges data with the processors 
handling neighboring parts of the finite difference grid, and the second performs the reduction 
operation required to compute a maximum difference. These routines account for the 
communication requirements of the program.  

In this example, communication costs are easy to determine. The nearest-neighbor exchange will 
send two messages having a total size of 200 words; the reduction will generate 

communications, each of size one word. Hence, total costs are 202. As in 
addition, this program decomposes computation evenly across processors, it can be expected to 
execute with reasonable efficiency.  

7.7.2 Sequential Bottlenecks 
A sequential bottleneck occurs when a code fragment does not incorporate sufficient parallelism or 
when parallelism exists (in the sense that data dependencies do not prevent concurrent execution) 
but cannot be detected by the compiler. In either case, the code fragment cannot be executed in 
parallel. Sequential bottlenecks of this sort may not be serious if a program is intended to execute 
on only a small number of processors, but they inevitably reduce a program's scalability. More 
precisely, if some fraction 1/s of a program's total execution time executes sequentially, then 
Amdahl's law applies, and the maximum possible speedup that can be achieved on a parallel 
computer is s (Section 3.2.1).  

An HPF compiler should provide information about constructs that it was unable to parallelize. 
The programmer may then be able to restructure the code in question to enable parallelization.  



7.7.3 Communication Costs 
We next discuss a number of issues that affect the communication performance of HPF programs. 

 Intrinsics. Many F90 and HPF intrinsic functions combine data from entire arrays (Table 7.1) and 
hence involve considerable communication if the arrays to which they are applied are distributed. 
For example, operations such as MAXVAL and SUM perform array reductions which, as noted in 
Chapter 2, can be performed in steps on P processors, for a total communication cost of 

. This cost is independent of the size of the arrays to be reduced. In contrast, the 
cost of a TRANSPOSE or MATMUL operation depends on both the size and distribution of the 
operation's arguments. Other operations such as DOT_PRODUCT involve communication only if their 
arguments are not aligned.  

Array operations. Array assignments and FORALL statements can result in communication if, in 
order to compute some array element  A(i), they require data values (e.g., B(j)) that are not on 
the same processor. Program 7.6 showed one example: the references X(i,j-1) and X(i,j+1) 
resulted in communication. The CSHIFT operation is another common source of communication.  

 Cyclic distributions will often result in more communication than will block distributions. 
However, by scattering the computational grid over available processors, they can produce better 
load balance in some applications. (Recall that this strategy was discussed in Section 2.5.1.)  



   
Figure 7.9: Communication requirements of various FORALL statements. The arrays A and B are 
aligned and distributed in a blocked fashion on three processors, while the array C is distributed 
in a cyclic fashion.  

To help you develop intuition regarding communication costs, we present in Figure 7.9 the 
communication requirements associated with a number of different FORALL statements for three 
arrays A, B, and C distributed as follows.  

  !HPF$    PROCESSORS pr(3) 

          integer A(8), B(8), C(8) 

  !HPF$    ALIGN B(:) WITH A(:) 

  !HPF$    DISTRIBUTE A(BLOCK) ONTO pr 

  !HPF$    DISTRIBUTE C(CYCLIC) ONTO pr 



Different mappings. Even simple operations performed on nonaligned arrays can result in 
communication. For example, the assignment A=B can require considerable communication if 
arrays A and B have different distributions. The cost of this sort of communication must be 
weighed against the cost of converting to a common distribution before performing the operation.  

Procedure boundaries. As discussed in Sections 4.2.1 and 7.5, switching from one decomposition 
of an array to another at a procedure boundary can result in considerable communication. 
Although the precise amount of communication required depends on the decomposition, the total 
cost summed over P processors of moving between decompositions of an M N array will often be 
approximately S M N, where S is the size of an array element in four-byte words. This 
cost arises because, generally, each of the P processors must communicate with every other 
processor, and each M.N array element must be communicated.  

Compiler optimization. A good HPF compiler does not compile a program statement by statement. 
Instead, it seeks to reduce communication costs by combining communication operations and 
otherwise reorganizing program statements. In addition, it may choose to use data distributions 
different from those recommended by the programmer. Hence, it is always necessary to verify 
analytic results using instrumentation data.  

7.8 Case Study: Gaussian Elimination 
 To further illustrate the use of HPF, we present a slightly more complex example. The problem 
considered is the Gaussian elimination method used to solve a system of linear equations  

 

where A is a known matrix of size N N, x is the required solution vector, and b is a known vector 
of size N. This example is often used in discussions of HPF as it shows the benefits of cyclic 
distributions. The method proceeds in two stages:  

1. Gaussian elimination. The original system of equations is reduced to an upper triangular 
form  

 

where U is a matrix of size N N in which all elements below the diagonal are zero, and 
diagonal elements have the value 1.  

2. Back substitution. The new system of equations is solved to obtain the values of x.  



   
Figure 7.10: The i th step of the Gaussian elimination algorithm in which nonzero subdiagonal 
elements in column i are eliminated by subtracting appropriate multiples of the pivot row.  

The Gaussian elimination stage of the algorithm comprises N-1 steps. In the basic algorithm, the i 
th step eliminates nonzero subdiagonal elements in column i by subtracting the i th row from each 
row j in the range [i+1,n], in each case scaling the i th row by the factor so as to make the 
element zero. Hence, the algorithm sweeps down the matrix from the top left corner to the 
bottom right corner, leaving zero subdiagonal elements behind it (Figure 7.10).  

For numerical stability, this basic algorithm is modified so that instead of stepping through rows in 
order, it selects in step i the row in the range [i,n] with the largest element in column i. This row 
(called the pivot) is swapped with row i prior to performing the subtractions.  

Program 7.7 is an HPF implementation of this algorithm. For efficiency, this program maintains 
the vector b in the N+1 th column of the array A. The first do-loop implements Gaussian 
elimination. The MAXLOC intrinsic is used to identify the pivot row. Rather than performing an 
explicit swap with row i, an indirection array called indx is used to keep track of the actual indices 
of selected rows. This array is updated once the pivot is identified. The next statement computes 
the N scale factors; notice that the computation can be performed with a single array assignment. 
Finally, the FORALL statement performs the subtractions. The mask ensures that the subtraction is 
performed only for rows that have not been previously selected as pivots (Indx(j).EQ.0). Once 
the do-loop is complete, a second FORALL is used to reorganize the matrix into upper triangular 
form.  

The last four lines of the program perform the back substitution. In reverse order from N to 1, each 
element of the solution is computed and then substituted into A to simplify the matrix.  



   



   
Figure 7.11: Communication and computation in the various phases of the HPF Gaussian 
elimination algorithm. Arrows represent communication, and shading indicates tasks involved in 
computation in each phase. The five phases are described in Section 7.8.  

Before developing data distribution directives for this program, let us determine how much 
concurrency it exposes and what data dependencies may lead to communication. We can think of 
the data-parallel program as specifying a fine-grained partition comprising N N tasks, each 
responsible for a single element of A. (These tasks characterize the computation that would be 
associated with data elements by the owner-computes rule.) As illustrated in Figure 7.11, each of 
the N-1 steps of the elimination algorithm involves five principal steps, as follows:  

1. The MAXLOC statement involves a reduction operation by the N tasks in the i th column.  
2. The maximum value identified by the reduction (max_indx) must be broadcast within the i 

th column, since it is required for the computation of scale factors.  
3. The computation of scale factors (the array Fac) requires N independent operations, one in 

each task in the i th column.  
4. A scale factor (Fac(j)) and a pivot row value (Row(k)) must be broadcast within each 

column and row, respectively, since they are required for the update.  
5. The FORALL statement involves independent operations, one per task.  

Studying this algorithm, we see that it has two interesting attributes. First, there is little locality in 
communication beyond the fact that broadcasts and reductions are performed in rows and columns. 
Second, computation tends to be clustered: in each step, much of the computation is performed by 
tasks in a single row and column (before the FORALL) and in the bottom right-hand corner (the 
FORALL). These attributes can be exploited when developing data distribution directives to 
complete the parallel algorithm.  

In many grid-based problems, we prefer to use a BLOCK distribution of the principal data structures 
because it reduces communication requirements by enhancing locality. However, in the Gaussian 
elimination problem, a BLOCK distribution has no communication advantages; furthermore, it 
causes many processors to be idle, particularly in the later stages of computation. In contrast, a 



CYCLIC distribution scatters computation over many processors and hence reduces idle time. 
Therefore, we could use the following data distribution directives.  

    !HPF$ ALIGN Row(j) WITH A(1,j) 
    !HPF$ ALIGN X(i) WITH A(i,N+1) 
    !HPF$ DISTRIBUTE A(*,CYCLIC) 

Of course, the number of processors that can be used efficiently by this one-dimensional 
decomposition is limited. An alternative formulation, more efficient on large numbers of 
processors, decomposes A in two dimensions. This can be specified as follows.  

    !HPF$ ALIGN Row(j) WITH A(1,j) 
    !HPF$ ALIGN X(i) WITH A(i,N+1) 
    !HPF$ DISTRIBUTE A(CYCLIC,CYCLIC) 

7.9 Summary 
In this chapter, we have presented fundamental concepts of data-parallel programming and 
illustrated the application of these concepts in the programming languages Fortran 90 and High 
Performance Fortran. The eight HPF constructs described in this chapter are summarized in Table 
7.2. These are in addition to the F90 array language described in Section 7.2.  

   
Table 7.2: HPF quick reference: the HPF functions described in this chapter, the section in which 
each is described, and the programs that illustrate the use of each. 

F90's array language and HPF's data distribution directives and related constructs provide a 
powerful notation for data-parallel computations in science and engineering. Their chief features 
are as follows:  

1. An array language comprising array assignments, array intrinsics, and (in HPF) FORALL 
and INDEPENDENT constructs is used to reveal the fine-grained concurrency inherent in 
data-parallel operations on arrays.  

2. Data distribution directives are introduced to provide the programmer with control over 
partitioning, agglomeration, and mapping (and hence locality).  

3. An HPF compiler translates this high-level specification into an executable program by 
generating the communication code implied by a particular set of data-parallel operations 
and data distribution directives.  

 The most attractive feature of the data-parallel approach as exemplified in HPF is that the 
compiler takes on the job of generating communication code. This has two advantages. First, it 



allows the programmer to focus on the tasks of identifying opportunities for concurrent execution 
and determining efficient partition, agglomeration, and mapping strategies. Second, it simplifies 
the task of exploring alternative parallel algorithms; in principle, only data distribution directives 
need be changed.  

A problematic feature of HPF is the limited range of parallel algorithms that can be expressed in 
HPF and compiled efficiently for large parallel computers. However, the range of problems for 
which HPF is an appropriate tool can be expected to grow as compiler technology improves.  

Exercises 
1. Write an HPF program to multiply two matrices A and B of size N N. (Do not use the 

MATMUL intrinsic!) Estimate the communication costs associated with this program if A and 
B are distributed blockwise in a single dimension or blockwise in two dimensions.  

2. Compare the performance of your matrix multiplication program with that of the MATMUL 
intrinsic. Explain any differences.  

3.  Complete Program 7.2 and study its performance as a function of N and P on one or more 
networked or parallel computers. Modify the program to use a two-dimensional data 
decomposition, and repeat these performance experiments. Use performance models to 
interpret your results.  

4. Compare the performance of the programs developed in Exercise 3 with equivalent CC++, 
FM, or MPI programs. Account for any differences.  

5. Complete Program 7.3 and study its performance on one or more parallel computers as a 
function of problem size N and number of processors P. Compare with the performance 
obtained by a CC++, FM, or MPI implementation of this algorithm, as described in Section 
1.4.2. Explain any performance differences.  

6.  Develop an HPF implementation of the symmetric pairwise interactions algorithm of 
Section 1.4.2. Compare its performance with an equivalent CC++, Fortran M, or MPI 
program. Explain any differences.  

7. Learn about the data-parallel languages Data-parallel C and pC++, and use one of these 
languages to implement the finite-difference and pairwise interactions programs presented 
in this chapter.  

8. Develop a performance model for the HPF Gaussian elimination program of Section 7.8, 
assuming a one-dimensional cyclic decomposition of the array A. Compare your model 
with observed execution times on a parallel computer. Account for any differences that you 
see.  

9. Develop a performance model for the HPF Gaussian elimination program of Section 7.8, 
assuming a two-dimensional cyclic decomposition of the array A. Is it more efficient to 
maintain one or multiple copies of the one-dimensional arrays Row and X? Explain.  

10. Study the performance of the HPF global operations for different data sizes and numbers of 
processors. What can you infer from your results about the algorithms used to implement 
these operations?  

11. Develop an HPF implementation of the convolution algorithm described in Section 4.4.  

Chapter Notes 
 Early data-parallel programming notations included Kali [200], CM Fortran [282], Fortran D 
[112], and Vienna Fortran [56]. Other data-parallel languages include *Lisp [281], C* [281], Data-



parallel C [136,137], pC++ [38], NESL [37], and DINO [247]. In a rather different approach, 
several projects have explored the use of C++ class libraries to encapsulate data-parallel operations 
on data objects such as arrays [83,188].  

 The compilation of HPF and related languages requires specialized analysis and optimization 
techniques. Hiranandani et al. [152] and Zima and Chapman [303] provide a good introduction to 
these topics; see also papers by Albert, Lukas, and Steele [10], Bozkus et al. [42], Callahan and 
Kennedy [45], Rogers and Pingali [245], and Zima, Bast, and Gerndt [302] and the monographs by 
Banerjee [27] and Wolfe [296].  

The description of F90 and HPF provided here is necessarily brief. See Chapter 6 for F90 
references. Loveman [193] provides more information on both the HPF language and the process 
by which it was designed. The HPF Language Specification prepared by the HPF Forum provides 
a comprehensive, although sometimes impenetrable, description of the language [149]. The book 
by Koelbel et al. [176] presents essentially the same information but in a more readable form, and 
also provides a useful introduction to F90.  

Extensions to the data-parallel programming model that would allow its application to a wider 
range of problems is an active area of research. Chapman, Mehrotra, and Zima [57] propose a 
range of extensions. Saltz, Berryman, and Wu [251] and Agrawal, Sussman, and Saltz [6] describe 
techniques for irregular problems. Subhlok et al. [273] generate pipeline parallelism automatically 
from HPF code augmented with additional directives. Foster [100] discusses issues relating to the 
integration of task parallelism. Chandy et al. [52] address the integration of HPF and Fortran M.  

8 Message Passing Interface 
In the message-passing library approach to parallel programming, a collection of processes 
executes programs written in a standard sequential language augmented with calls to a library of 
functions for sending and receiving messages. In this chapter, we introduce the key concepts of 
message-passing programming and show how designs developed using the techniques discussed in 
Part I can be adapted for message-passing execution. For concreteness, we base our presentation 
on the Message Passing Interface (MPI), the de facto message-passing standard. However, the 
basic techniques discussed are applicable to other such systems, including p4, PVM, Express, and 
PARMACS. 

MPI is a complex system. In its entirety, it comprises 129 functions, many of which have 
numerous parameters or variants. As our goal is to convey the essential concepts of message-
passing programming, not to provide a comprehensive MPI reference manual, we focus here on a 
set of 24 functions and ignore some of the more esoteric features. These 24 functions provide more 
than adequate support for a wide range of applications.  

After studying this chapter, you should understand the essential features of the message-passing 
programming model and its realization in MPI, and you should be able to write simple MPI 
programs. In particular, you should understand how MPI implements local, global, and 
asynchronous communications. You should also be familiar with the mechanisms that MPI 
provides to support the development of modular programs and the sequential and parallel 
composition of program components.  



8.1 The MPI Programming Model 
 In the MPI programming model, a computation comprises one or more processes that 
communicate by calling library routines to send and receive messages to other processes. In most 
MPI implementations, a fixed set of processes is created at program initialization, and one process 
is created per processor. However, these processes may execute different programs. Hence, the 
MPI programming model is sometimes referred to as multiple program multiple data (MPMD) to 
distinguish it from the SPMD model in which every processor executes the same program.  

Because the number of processes in an MPI computation is normally fixed, our focus in this 
chapter is on the mechanisms used to communicate data between processes. Processes can use 
point-to-point communication operations to send a message from one named process to another; 
these operations can be used to implement local and unstructured communications. A group of 
processes can call collective communication operations to perform commonly used global 
operations such as summation and broadcast. MPI's ability to probe for messages supports 
asynchronous communication. Probably MPI's most important feature from a software engineering 
viewpoint is its support for modular programming. A mechanism called a communicator allows 
the MPI programmer to define modules that encapsulate internal communication structures. In the 
terminology used in Chapter 4, these modules can be combined by both sequential and parallel 
composition.  

Most parallel algorithms designed using the techniques of Part I are readily implemented using 
MPI. Algorithms that create just one task per processor can be implemented directly, with point-
to-point or collective communication routines used to meet communication requirements. 
Algorithms that create tasks in a dynamic fashion or that rely on the concurrent execution of 
several tasks on a processor must be further refined to permit an MPI implementation. For 
example, consider the first branch-and-bound search algorithm developed in Section 2.7, which 
creates a tree of ``search'' tasks dynamically. This algorithm cannot be implemented directly in 
MPI; however, as discussed in Chapter 2, it can be refined to obtain an algorithm that creates a 
fixed set of worker processes that exchange messages representing tree nodes to be searched. The 
resulting SPMD algorithm can be implemented as an MPI program. Algorithms that are not easily 
modified in this way are better implemented using alternative technologies.  

8.2 MPI Basics 
Although MPI is a complex and multifaceted system, we can solve a wide range of problems using 
just six of its functions! We introduce MPI by describing these six functions, which initiate and 
terminate a computation, identify processes, and send and receive messages:  

 MPI_INIT     :   Initiate an MPI computation. 

 MPI_FINALIZE   :   Terminate a computation. 

 MPI_COMM_SIZE  :   Determine number of processes. 

 MPI_COMM_RANK  :   Determine my process identifier. 

 MPI_SEND     :   Send a message. 



 MPI_RECV     :   Receive a message. 

Function parameters are detailed in Figure 8.1. In this and subsequent figures, the labels IN, OUT, 
and INOUT indicate whether the function uses but does not modify the parameter (IN), does not use 
but may update the parameter (OUT), or both uses and updates the parameter (INOUT).  

   
Figure 8.1: Basic MPI. These six functions suffice to write a wide range of parallel programs. The 
arguments are characterized as having mode IN or OUT and as having type integer, choice, handle, 
or status. These terms are explained in the text.  

 
All but the first two calls take a communicator handle as an argument. A communicator identifies 



the process group and context with respect to which the operation is to be performed. As explained 
later in this chapter, communicators provide a mechanism for identifying process subsets during 
development of modular programs and for ensuring that messages intended for different purposes 
are not confused. For now, it suffices to provide the default value MPI_COMM_WORLD, which 
identifies all processes involved in a computation. Other arguments have type integer, datatype 
handle, or status. These datatypes are explained in the following.  

 The functions MPI_INIT and MPI_FINALIZE are used to initiate and shut down an MPI 
computation, respectively. MPI_INIT must be called before any other MPI function and must be 
called exactly once per process. No further MPI functions can be called after MPI_FINALIZE.  

 The functions MPI_COMM_SIZE and MPI_COMM_RANK determine the number of processes in the 
current computation and the integer identifier assigned to the current process, respectively. (The 
processes in a process group are identified with unique, contiguous integers numbered from 0.) For 
example, consider the following program. This is not written in any particular language: we shall 
see in the next section how to call MPI routines from Fortran and C.  

 program main 

 begin 

  MPI_INIT()          Initiate computation 

  MPI_COMM_SIZE(MPI_COMM_WORLD, count)    Find # of processes 

  MPI_COMM_RANK(MPI_COMM_WORLD, myid)    Find my id 

  print("I am", myid, "of", count)        Print message 

  MPI_FINALIZE()                Shut down 

 end 

The MPI standard does not specify how a parallel computation is started. However, a typical 
mechanism could be a command line argument indicating the number of processes that are to be 
created: for example, myprog -n 4, where myprog is the name of the executable. Additional 
arguments might be used to specify processor names in a networked environment or executable 
names in an MPMD computation.  

If the above program is executed by four processes, we will obtain something like the following 
output. The order in which the output appears is not defined; however, we assume here that the 
output from individual print statements is not interleaved.  

          I am 1 of 4 
          I am 3 of 4 
          I am 0 of 4 
          I am 2 of 4 

Finally, we consider the functions MPI_SEND and MPI_RECV, which are used to send and receive 
messages, respectively. A call to MPI_SEND has the general form MPI_SEND(buf, count, 
datatype, dest, tag, comm)  



and specifies that a message containing count elements of the specified datatype starting at 
address buf is to be sent to the process with identifier dest. As will be explained in greater detail 
subsequently, this message is associated with an envelope comprising the specified tag, the source 
process's identifier, and the specified communicator (comm).  

A call to MPI_RECV has the general form  

MPI_RECV(buf, count, datatype, source, tag, comm, status)  

and attempts to receive a message that has an envelope corresponding to the specified tag, 
source, and comm, blocking until such a message is available. When the message arrives, elements 
of the specified datatype are placed into the buffer at address buf. This buffer is guaranteed to be 
large enough to contain at least count elements. The status variable can be used subsequently to 
inquire about the size, tag, and source of the received message (Section 8.4).  



   

Program 8.1 illustrates the use of the six basic calls. This is an implementation of the bridge 
construction algorithm developed in Example 1.1. The program is designed to be executed by two 
processes. The first process calls a procedure  foundry and the second calls bridge, effectively 
creating two different tasks. The first process makes a series of MPI_SEND calls to communicate 
100 integer messages to the second process, terminating the sequence by sending a negative 
number. The second process receives these messages using MPI_RECV.  

8.2.1 Language Bindings 
Much of the discussion in this chapter will be language independent; that is, the functions 
described can be used in C, Fortran, or any other language for which an MPI library has been 



defined. Only when we present example programs will a particular language be used. In that case, 
programs will be presented using the syntax of either the Fortran or C language binding. Different 
language bindings have slightly different syntaxes that reflect a language's peculiarities. Sources of 
syntactic difference include the function names themselves, the mechanism used for return codes, 
the representation of the handles used to access specialized MPI data structures such as 
communicators, and the implementation of the status datatype returned by MPI_RECV. The use of 
handles hides the internal representation of MPI data structures.  

C Language Binding. 

In the C language binding, function names are as in the MPI definition but with only the MPI 
prefix and the first letter of the function name in upper case. Status values are returned as integer 
return codes. The return code for successful completion is MPI_SUCCESS; a set of error codes is 
also defined. Compile-time constants are all in upper case and are defined in the file mpi.h, which 
must be included in any program that makes MPI calls. Handles are represented by special defined 
types, defined in mpi.h. These will be introduced as needed in the following discussion. Function 
parameters with type IN are passed by value, while parameters with type OUT and INOUT are passed 
by reference (that is, as pointers). A status variable has type MPI_Status and is a structure with 
fields status.MPI_SOURCE and status.MPI_TAG containing source and tag information. Finally, 
an MPI datatype is defined for each C datatype: MPI_CHAR, MPI_INT, MPI_LONG, 
MPI_UNSIGNED_CHAR, MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT, MPI_DOUBLE, 
MPI_LONG_DOUBLE, etc.  

Fortran Language Binding. 

In the Fortran language binding, function names are in upper case. Function return codes are 
represented by an additional integer argument. The return code for successful completion is 
MPI_SUCCESS; a set of error codes is also defined. Compile-time constants are all in upper case and 
are defined in the file mpif.h, which must be included in any program that makes MPI calls. All 
handles have type INTEGER. A status variable is an array of integers of size MPI_STATUS_SIZE, 
with the constants MPI_SOURCE and MPI_TAG indexing the source and tag fields, respectively. 
Finally, an MPI datatype is defined for each Fortran datatype: MPI_INTEGER, MPI_REAL, 
MPI_DOUBLE_PRECISION, MPI_COMPLEX, MPI_LOGICAL, MPI_CHARACTER, etc.  

 
Example .  Pairwise Interactions:  

The pairwise interactions algorithm of Section 1.4.2 illustrate the two language bindings. Recall 
that in this algorithm, T tasks (T an odd number) are connected in a ring. Each task is responsible 
for computing interactions involving N data. Data are circulated around the ring in T-1 phases, 
with interactions computed at each phase. Programs 8.2 and 8.3 are C and Fortran versions of an 
MPI implementation, respectively.  

The number of processes created is specified when the program is invoked. Each process is 
responsible for 100 objects, and each object is represented by three floating-point values, so the 
various work arrays have size 300. As each process executes the same program, the first few lines 
are used to determine the total number of processes involved in the computation (np), the process's 
identifier (myid), and the identify of the process's neighbors in the ring (lnbr, rnbr). The 



computation then proceeds as described in Section 1.4.2 but with messages sent to numbered 
processes rather than on channels.  

 

   



   

8.2.2 Determinism 
Before proceeding to more sophisticated aspects of MPI, we consider the important topic of 
determinism. Message-passing programming models are by default nondeterministic: the arrival 
order of messages sent from two processes, A and B, to a third process, C, is not defined. 
(However, MPI does guarantee that two messages sent from one process, A, to another process, B, 
will arrive in the order sent.) It is the programmer's responsibility to ensure that a computation is 
deterministic when (as is usually the case) this is required.  

 In the task/channel programming model, determinism is guaranteed by defining separate channels 
for different communications and by ensuring that each channel has a single writer and a single 
reader. Hence, a process C can distinguish messages received from A or B as they arrive on 
separate channels. MPI does not support channels directly, but it does provide similar mechanisms. 
In particular, it allows a receive operation to specify a source, tag, and/or context. (Recall that 
these data constitute a message's envelope.) We consider the first two of these mechanisms in this 
section.  



The source specifier in the MPI_RECV function allows the programmer to specify that a message is 
to be received either from a single named process (specified by its integer process identifier) or 
from any process (specified by the special value MPI_ANY_SOURCE). The latter option allows a 
process to receive data from any source; this is sometimes useful. However, the former is 
preferable because it eliminates errors due to messages arriving in time-dependent order.  

Message tags provide a further mechanism for distinguishing between different messages. A 
sending process must associate an integer tag with a message. This is achieved via the tag field in 
the MPI_SEND call. (This tag has always been set to 0 in the examples presented so far.) A 
receiving process can then specify that it wishes to receive messages either with a specified tag or 
with any tag (MPI_ANY_TAG). Again, the former option is preferable because it reduces the 
possibility of error.  

 
Example .  Nondeterministic Program:  

To illustrate the importance of source specifiers and tags, we examine a program that fails to use 
them and that, consequently, suffers from nondeterminism. Program 8.4 is part of an MPI 
implementation of the symmetric pairwise interaction algorithm of Section 1.4.2. Recall that in 
this algorithm, messages are communicated only half way around the ring (in T/2-1 steps, if the 
number of tasks T is odd), with interactions accumulated both in processes and in messages. As in 
Example 8.1, we assume 100 objects, so the arrays to be communicated in this phase have size 
100.3.2=600. In a final step, each message (with size 100.3=300) is returned to its originating 
process. Hence, each process sends and receives N/2-1 data messages and one result message.  



   

Program 8.4 specifies neither sources nor tags in its MPI_RECV calls. Consequently, a result 
message arriving before the final data message may be received as if it were a data message, 
thereby resulting in an incorrect computation. Determinism can be achieved by specifying either a 
source processor or a tag in the receive calls. It is good practice to use both mechanisms. In effect, 
each ``channel'' in the original design is then represented by a unique (source, destination, tag) 
triple.  

 

8.3 Global Operations 
As explained in Chapter 2, parallel algorithms often call for coordinated communication 
operations involving multiple processes. For example, all processes may need to cooperate to 
transpose a distributed matrix or to sum a set of numbers distributed one per process. Clearly, 
these global operations can be implemented by a programmer using the send and receive functions 
introduced in Section 8.2. For convenience, and to permit optimized implementations, MPI also 
provides a suite of specialized collective communication functions that perform commonly used 
operations of this type. These functions include the following.  



• Barrier: Synchronizes all processes.  
• Broadcast: Sends data from one process to all processes.  
• Gather: Gathers data from all processes to one process.  
• Scatter: Scatters data from one process to all processes.  
• Reduction operations: Sums, multiplies, etc., distributed data. 

These operations are summarized in Figure 8.2. All are executed collectively, meaning that each 
process in a process group calls the communication routine with the same parameters.  

   
Figure 8.2: MPI global communication functions. 

8.3.1 Barrier 



MPI_BARRIER is used to synchronize execution of a group of processes. No process returns from 
this function until all processes have called it. A barrier is a simple way of separating two phases 
of a computation to ensure that messages generated in the two phases do not intermingle. For 
example, a call to MPI_BARRIER could be inserted before the second send operation in Program 8.4 
to ensure deterministic execution. Of course, in this example as in many others, the need for an 
explicit barrier can be avoided by the appropriate use of tags, source specifiers, and/or contexts.  

8.3.2 Data Movement 
MPI_BCAST, MPI_GATHER, and MPI_SCATTER are collective data movement routines, in which all 
processes interact with a distinguished root process to broadcast, gather, or scatter data, 
respectively. The operation of these functions is illustrated in Figure 8.3. In each case, the first 
three arguments specify the location (inbuf) and type (intype) of the data to be communicated 
and the number of elements to be sent to each destination (incnt). Other arguments specify the 
location and type of the result (outbuf, outtype) and the number of elements to be received from 
each source (outcnt).  

   
Figure 8.3: MPI collective data movement functions, illustrated for a group of 4 processes. In 
each set of 16 boxes, each row represents data locations in a different process. Thus, in the one-
to-all broadcast, the data A  is initially located just in process 0; after the call, it is replicated in 
all processes. In each case, both incnt and outcnt are 1, meaning that each message comprises a 
single data element.  

MPI_BCAST implements a one-to-all broadcast operation whereby a single named process (root) 
sends the same data to all other processes; each process receives this data from the root process. At 



the time of call, the data are located in inbuf in process root and consists of incnt data items of a 
specified intype. After the call, the data are replicated in inbuf in all processes. As inbuf is used 
for input at the root and for output in other processes, it has type INOUT.  

MPI_GATHER implements an all-to-one gather operation. All processes (including the root 
process) send data located in inbuf to root. This process places the data in contiguous 
nonoverlapping locations in outbuf, with the data from process i preceding that from process i+1. 
Hence, the outbuf in the root process must be P times larger than inbuf, where P is the number 
of processes participating in the operation. The outbuf in processes other than the root is ignored.  

MPI_SCATTER implements a one-to-all scatter operation; it is the reverse of MPI_GATHER. A 
specified  root process sends data to all processes, sending the i th portion of its inbuf to process 
i ; each process receives data from root in outbuf. Hence, the inbuf in the root process must be 
P times larger than outbuf. Notice the subtle difference between this function and MPI_BCAST: 
while in MPI_BCAST every process receives the same value from the root process, in MPI_SCATTER 
every process receives a different value.  

8.3.3 Reduction Operations 
 The functions MPI_REDUCE and MPI_ALLREDUCE implement reduction operations. They combine 
the values provided in the input buffer of each process, using a specified operation op, and return 
the combined value either to the output buffer of the single root process (in the case of 
MPI_REDUCE) or to the output buffer of all processes (MPI_ALLREDUCE). The operation is applied 
pointwise to each of the count values provided by each process. All operations return count 
values with the same datatype as the operands. Valid operations include maximum and minimum 
(MPI_MAX and MPI_MIN); sum and product (MPI_SUM and MPI_PROD); logical and, or, and exclusive 
or (MPI_LAND, MPI_LOR, and MPI_LXOR); and bitwise and, or, and exclusive or (MPI_BAND, 
MPI_BOR, and MPI_BXOR).  



   
Figure: Applications of MPI_REDUCE and MPI_ALLREDUCE. The first line shows the send buffers (of 
size 2) in each of four processes; subsequent lines show the output buffers in each process 
following four different global communication calls.  

As an example, the following call would be used to compute the minimum of two sets of P values, 
where P is the number of processes involved in the reduction.  

MPI_REDUCE(inbuf, outbuf, 2, MPI_INT, MPI_MIN, 0, MPI_COMM_WORLD)  

After the reduction, outbuf[0] in process 0 contains the minimum of the first element in each 
input buffer (min(inbuf[0])); similarly, outbuf[1] contains min(inbuf[1]). The operation of 
this and other calls to MPI reduction functions are illustrated in Figure 8.4.  



   

 
Example .  Finite Difference:  



Once again we consider a finite difference problem, this time to illustrate the use of global 
operations. The algorithm considered requires both nearest-neighbor communication (to exchange 
boundary values) and global communication (to detect termination). Similar problems have 
previously been discussed in Chapter 2. The MPI implementation given in Program 8.5 is for a 
one-dimensional decomposition of a one-dimensional problem in which each process has two 
neighbors. It uses MPI_SEND and MPI_RECV for nearest-neighbor communication and four MPI 
global communication routines, for a total of five distinct communication operations. These are 
summarized as follows and are illustrated in Figure 8.5:  

   
Figure 8.5: Communication performed in the finite difference program, assuming three processes. 
Each column represents a processor; each subfigure shows data movement in a single phase. The 
five phases illustrated are (1) broadcast, (2) scatter, (3) nearest-neighbor exchange, (4) reduction, 
and (5) gather.  

1. MPI_BCAST to broadcast the problem size parameter (size) from process 0 to all np 
processes;  

2. MPI_SCATTER to distribute an input array (work) from process 0 to other processes, so that 
each process receives size/np elements;  

3. MPI_SEND and MPI_RECV for exchange of data (a single floating-point number) with 
neighbors;  

4. MPI_ALLREDUCE to determine the maximum of a set of localerr values computed at the 
different processes and to distribute this maximum value to each process; and  

5. MPI_GATHER to accumulate an output array at process 0.  



The use of scatter and gather operations to transfer input and output data is particularly simple and 
convenient. Note, however, that their use in this example is inherently nonscalable. As we solve 
larger problems, storage limitations will eventually prevent us from accumulating all input and 
output data in a single process. In addition, the associated communication costs may be 
prohibitive.  

 

8.4 Asynchronous Communication 
 Recall from Chapter 2 that the need for asynchronous communication can arise when a 
computation must access elements of a shared data structure in an unstructured manner. One 
implementation approach is to encapsulate the data structure in a set of specialized data tasks to 
which read and write requests can be directed. This approach is not typically efficient in MPI, 
however, because of its MPMD programming model.  

As noted in Section 2.3.4, an alternative implementation approach is to distribute the shared data 
structure among the computational processes, which must then poll periodically for pending read 
and write requests. This technique is supported by the MPI_IPROBE function, which is described in 
this section along with the related functions MPI_PROBE and MPI_GET_COUNT. The three functions 
are summarized in Figure 8.6.  

   
Figure 8.6: MPI inquiry and probe operations. 

The MPI_IPROBE function checks for the existence of pending messages without receiving them, 
thereby allowing us to write programs that interleave local computation with the processing of 
incoming messages. A call to MPI_IPROBE has the general form MPI_IPROBE(source, tag, 
comm, flag, status)  



and sets a Boolean argument flag to indicate whether a message that matches the specified 
source, tag, and communicator is available. If an appropriate message is available, flag is set to 
true; otherwise, it is set to false. The message can then be received by using MPI_RECV. The 
receive call must specify the same source, tag, and communicator; otherwise, a different message 
may be received.  

Related to MPI_IPROBE is the function MPI_PROBE, which blocks until a message of the specified 
source, tag, and communicator is available and then returns and sets its status argument. The 
MPI_PROBE function is used to receive messages for which we have incomplete information.  

The status argument constructed by an MPI_RECV call, an MPI_PROBE call, or a successful 
MPI_IPROBE call can be used to determine the (pending) message's source, tag, and size. The 
inquiry function MPI_GET_COUNT yields the length of a message just received. Its first two (input) 
parameters are a status object set by a previous probe or MPI_RECV call and the datatype of the 
elements to be received, while the third (output) parameter is an integer used to return the number 
of elements received (Figure 8.6). Other information about the received message can be obtained 
directly from the status object. In the C language binding, this object is a structure with fields 
MPI_SOURCE and MPI_TAG. Thus, status.MPI_SOURCE and status.MPI_TAG contain the source 
and tag of the message just received. In Fortran, the status object is an array of size 
MPI_STATUS_SIZE, and the constants MPI_SOURCE and MPI_TAG are the indices of the array 
elements containing the source and tag information. Thus, status(MPI_SOURCE) and 
status(MPI_TAG) contain the source and tag of the message just received.  

The following code fragment use these functions to receive a message from an unknown source 
and containing an unknown number of integers. It first detects arrival of the message using 
MPI_PROBE. Then, it determines the message source and uses MPI_GET_COUNT to determine the 
message size. Finally, it allocates a buffer of the appropriate size and receives the message.  

  int count, *buf, source; 
  MPI_Probe(MPI_ANY_SOURCE, 0, comm, &status); 
  source = status.MPI_SOURCE; 
  MPI_Get_count(status, MPI_INT, &count); 
  buf = malloc(count*sizeof(int)); 
  MPI_Recv(buf, count, MPI_INT, source, 0, comm, &status); 

 
Example .  Fock Matrix Construction:  

The Fock matrix construction algorithm of Section 2.8 allocates to each processor a data task, 
which manages part of the D and F matrices, and a computation task, which generates requests for 
matrix elements. The two tasks execute concurrently, with the data task responding to requests for 
data and the computation task performing computation. Briefly, the two tasks are defined as 
follows.  

  /* Data task */        
  /* Computation task */ 

  while(done != TRUE) { 

   while(done != TRUE) { 

    receive(request); 



    identify_next_task(); 

    reply_to(request); 

    generate_requests(); 

   } 

   process_replies(); 

  } 

A polling version of this program integrates the functions of the database and computation tasks 
into a single process, which alternates between checking for pending data requests and performing 
computation. This integration can be achieved as in Program 8.6. The program uses the 
MPI_IPROBE function to determine whether database messages are pending. If they are, these 
messages are processed before further computation is performed.  

For simplicity, the procedure process_request deals with a single type of request: a read 
operation on a single array element. A process receiving such a request determines the source of 
the message, retrieves the requested value, and returns the value to the source process.  

 



   

8.5 Modularity 
In Chapter 4, we distinguished three general forms of composition that can be used for the 
modular construction of parallel programs: sequential, parallel, and concurrent. Recall that in 
sequential composition, two program components execute in sequence on the same set of 
processors. In parallel composition, two program components execute concurrently on disjoint sets 
of processors. In concurrent composition, two program components execute on potentially 
nondisjoint sets of processors.  

 MPI supports modular programming via its communicator mechanism, which provides the 
information hiding needed when building modular programs, by allowing the specification of 
program components that encapsulate internal communication operations and provide a local name 
space for processes. In this section, we show how communicators can be used to implement 



various forms of sequential and parallel composition. MPI's MPMD programming model means 
that the full generality of concurrent composition is not generally available.  

An MPI communication operation always specifies a communicator. This identifies the process 
group that is engaged in the communication operation and the context in which the communication 
occurs. As we shall see, process groups allow a subset of processes to communicate among 
themselves using local process identifiers and to perform collective communication operations 
without involving other processes. The context forms part of the envelope associated with a 
message. A receive operation can receive a message only if the message was sent in the same 
context. Hence, if two routines use different contexts for their internal communication, there can 
be no danger of their communications being confused.  

In preceding sections, all communication operations have used the default communicator 
MPI_COMM_WORLD, which incorporates all processes involved in an MPI computation and defines a 
default context. We now describe four functions that allow communicators to be used in more 
flexible ways. These functions, and their roles in modular design, are as follows.  

1. MPI_COMM_DUP. A program may create a new communicator comprising the same process 
group but a new context to ensure that communications performed for different purposes 
are not confused. This mechanism supports sequential composition. 

2. MPI_COMM_SPLIT. A program may create a new communicator comprising just a subset of 
a given group of processes. These processes can then communicate among themselves 
without fear of conflict with other concurrent computations. This mechanism supports 
parallel composition. 

3. MPI_INTERCOMM_CREATE. A program may construct an intercommunicator, which links 
processes in two groups. This mechanism supports parallel composition.  

4. MPI_COMM_FREE. This function can be used to release a communicator created using the 
preceding three functions. 

The four functions are summarized in Figure 8.7; their arguments and the ways they are called are 
described next.  



   
Figure 8.7: MPI communicator functions. 

8.5.1 Creating Communicators 

   
Figure 8.8: Errors can occur in a sequential composition of two parallel program components 
(e.g., an application program and a parallel library) if the two components use the same message 
tags. The figure on the left shows how this can occur. Each of the four vertical lines represents a 
single thread of control (process) in an SPMD program. All call an SPMD library, which are 
represented by the boxes. One process finishes sooner than the others, and a message that this 
process generates during subsequent computation (the dashed arrow) is intercepted by the library. 
The figure on the right shows how this problem is avoided by using contexts: the library 
communicates using a distinct tag space, which cannot be penetrated by other messages.  

As discussed in Section 8.2.2, message tags provide a mechanism for distinguishing between 
messages used for different purposes. However, they do not provide a sufficient basis for modular 
design. For example, consider an application that calls a library routine implementing (for 



example) an array transpose operation. It is important to ensure that the message tags used in the 
library are distinct from those used in the rest of the application (Figure 8.8). Yet the user of a 
library routine may not know the tags the library uses; indeed, tag values may be computed on the 
fly.  

 Communicators provide a solution to this problem. A call of the form MPI_COMM_DUP(comm, 
newcomm)  

 creates a new communicator newcomm comprising the same processes as comm but with a new 
context. This new communicator can be passed as an argument to the library routine, as in the 
following code, which calls transpose to transpose an array A.  

  integer comm, newcomm, ierr     ! Handles are integers 

  ... 

  call MPI_COMM_DUP(comm, newcomm, ierr)   ! Create new context 

  call transpose(newcomm, A)         ! Pass to library 

  call MPI_COMM_FREE(newcomm, ierr)     ! Free new context 

The transpose routine itself will be defined to use the communicator newcomm in all 
communication operations, thereby ensuring that communications performed within this routine 
cannot be confused with communications performed outside.  

8.5.2 Partitioning Processes 

   
Figure 8.9: Different views of parallel composition. On the left is the task-parallel view, in which 
new tasks are created dynamically to execute two different program components. Four tasks are 
created: two perform one computation (dark shading) and two another (light shading). On the 
right is the MPMD view. Here, a fixed set of processes (represented by vertical arrows) change 
character, for example, by calling different subroutines.  

Recall that we use the term parallel composition to denote the parallel execution of two or more 
program components on disjoint sets of processors (Section 4.2). One approach to the 
implementation of parallel composition is to create tasks dynamically and to place newly created 
tasks on different processors. This task-parallel approach is taken in CC++ and Fortran M, for 
example. In MPMD programs, parallel composition is implemented differently. As illustrated in 
Figure 8.9, available processes are partitioned into disjoint sets, with each set executing the 
appropriate program. This partitioning is achieved by using the function MPI_COMM_SPLIT. A call 
of the form  

MPI_COMM_SPLIT(comm, color, key, newcomm)  



creates one or more new communicators. This function is a collective communication operation, 
meaning that it must be executed by each process in the process group associated with comm. A 
new communicator is created for each unique value of color other than the defined constant 
MPI_UNDEFINED. Each new communicator comprises those processes that specified its value of 
color in the MPI_COMM_SPLIT call. These processes are assigned identifiers within the new 
communicator starting from zero, with order determined by the value of key or, in the event of 
ties, by the identifier in the old communicator. Thus, a call of the form MPI_COMM_SPLIT(comm, 
0, 0, newcomm)  

in which all processes specify the same color and key, is equivalent to a call 
MPI_COMM_DUP(comm, newcomm)  

That is, both calls create a new communicator containing all the processes in the old 
communicator comm. In contrast, the following code creates three new communicators if comm 
contains at least three processes.  

  MPI_Comm comm, newcomm; 

  int myid, color; 

  MPI_Comm_rank(comm, &myid); 

  color = myid%3; 

  MPI_Comm_split(comm, color, myid, &newcomm); 

For example, if comm contains eight processes, then processes 0, 3, and 6 form a new 
communicator of size three, as do processes 1, 4, and 7, while processes 2 and 5 form a new 
communicator of size two (Figure 8.10).  

   
Figure: Using MPI_COMM_SPLIT to form new communicators. The first communicator is a group 
of eight processes. Setting color to myid%3 and calling MPI_COMM_SPLIT(comm, color, myid, 
newcomm) split this into three disjoint process groups.  

As a final example, the following code fragment creates a new communicator (newcomm) 
containing at most eight processes. Processes with identifiers greater than eight in communicator 
comm call MPI_COMM_SPLIT with newid=MPI_UNDEFINED and hence are not part of the new 
communicator.  

  MPI_Comm comm, newcomm; 

  int myid, color; 

  MPI_Comm_rank(comm, &myid); 



  if (myid < 8)    /* Select first 8 processes */ 

   color = 1; 

  else      /* Others are not in group */ 

   color = MPI_UNDEFINED; 

  MPI_Comm_split(comm, color, myid, &newcomm); 

8.5.3 Communicating between Groups 
A communicator returned by MPI_COMM_SPLIT can be used to communicate within a group of 
processes. Hence, it is called an intracommunicator. (The default communicator, 
MPI_COMM_WORLD, is an intracommunicator.) It is also possible to create an intercommunicator that 
can be used to communicate between process groups. An intercommunicator that connects two 
groups A and B containing and processes, respectively, allows processes in group A to 
communicate with processes 0..  in group B by using MPI send and receive calls (collective 
operations are not supported). Similarly, processes in group B can communicate with processes 
0..  in group A.  

An intercommunicator is created by a collective call executed in the two groups that are to be 
connected. In making this call, the processes in the two groups must each supply a local 
intracommunicator that identifies the processes involved in their group. They must also agree on 
the identifier of a ``leader'' process in each group and a parent communicator that contains all the 
processes in both groups, via which the connection can be established. The default communicator 
MPI_COMM_WORLD can always be used for this purpose. The collective call has the general form  

   MPI_INTERCOMM_CREATE(comm, local_leader, peercomm, 
             remote_leader, tag, intercomm) 

where comm is an intracommunicator in the local group and local_leader is the identifier of the 
nominated leader process within this group. (It does not matter which process is chosen as the 
leader; however, all participants in the collective operation must nominate the same process.) The 
parent communicator is specified by peercomm, while remote_leader is the identifier of the other 
group's leader process within the parent communicator. The two other arguments are (1) a ``safe'' 
tag that the two groups' leader processes can use to communicate within the parent communicator's 
context without confusion with other communications and (2) the new intercommunicator 
intercomm.  

Program 8.7 illustrates these ideas. It first uses MPI_COMM_SPLIT to split available processes into 
two disjoint groups. Even-numbered processes are in one group; odd-numbered processes are in a 
second. Calls to MPI_COMM_RANK are used to determine the values of the variables myid and  
newid, which represent each process's identifier in the original communicator and the appropriate 
new communicator, respectively. In this example, newid=myid/2. Then, the 
MPI_INTERCOMM_CREATE call defines an intercommunicator that links the two groups (Figure 
8.11). Process 0 within each group are selected as the two leaders; these processes correspond to 
processes 0 and 1 within the original group, respectively. Once the intercommunicator is created, 
each process in the first group sends a message to the corresponding process in the second group. 
Finally, the new communicators created by the program are deleted.  



   
Figure: Establishing an intercommunicator between two process groups. At the top is an original 
group of eight processes; this is MPI_COMM_WORLD. An MPI_COMM_SPLIT call creates two process 
groups, each containing four processes. Then, an MPI_INTERCOMM_CREATE call creates an 
intercommunicator between the two groups.  

   

8.6 Other MPI Features 



In this section, we discuss MPI's derived datatype mechanism. We also list MPI features not 
covered in this book.  

8.6.1 Derived Datatypes 
 In earlier sections of this chapter, MPI routines have been used to communicate simple datatypes, 
such as integers and reals, or arrays of these types. The final set of MPI functions that we describe 
implements derived types, a mechanism allowing noncontiguous data elements to be grouped 
together in a message. This mechanism permits us to avoid data copy operations. Without it, the 
sending of a row of a two-dimensional array stored by columns would require that these 
noncontiguous elements be copied into a buffer before being sent.  

   
Figure 8.12: MPI derived datatype functions. 

Three sets of functions are applied for manipulating derived types. Derived datatypes are 
constructed by applying constructor functions to simple or derived types; we describe three 
constructor functions MPI_TYPE_CONTIGUOUS, MPI_TYPE_VECTOR, and MPI_TYPE_INDEXED. The 
commit function, MPI_TYPE_COMMIT, must be applied to a derived type before it can be used in a 



communication operation. Finally, the free function, MPI_TYPE_FREE, should be applied to a 
derived type after use, in order to reclaim storage. These functions are summarized in Figure 8.12.  

The constructor MPI_TYPE_CONTIGUOUS is used to define a type comprising one or more 
contiguous data elements. A call of the form MPI_TYPE_CONTIGUOUS(count, oldtype, 
newtype)  

defines a derived type newtype comprising count consecutive occurrences of datatype oldtype. 
For example, the sequence of calls  

  call MPI_TYPE_CONTIGUOUS(10, MPI_REAL, tenrealtype, ierr) 
  call MPI_TYPE_COMMIT(tenrealtype, ierr) 
  call MPI_SEND(data, 1, tenrealtype, dest, tag, 
 $       MPI_COMM_WORLD, ierr) 
  CALL MPI_TYPE_FREE(tenrealtype, ierr) 

is equivalent to the following single call.  
  call MPI_SEND(data, 10, MPI_REAL, dest, tag, 
 $       MPI_COMM_WORLD, ierr) 

Both code fragments send a sequence of ten contiguous real values at location data to process 
dest.  

 The constructor MPI_TYPE_VECTOR is used to define a type comprising one or more blocks of data 
elements separated by a constant stride in an array. A call of the form  

MPI_TYPE_VECTOR(count, blocklen, stride, oldtype, newtype)  

defines a derived type newtype comprising count consecutive blocks of data elements with 
datatype oldtype, with each block containing blocklen data elements, and the start of successive 
blocks separated by stride data elements. For example, the sequence of calls  

 float data[1024]; 
 MPI_Datatype floattype; 
 MPI_Type_vector(10, 1, 32, MPI_FLOAT, &floattype); 
 MPI_Type_commit(&floattype); 
 MPI_Send(data, 1, floattype, dest, tag, MPI_COMM_WORLD); 
 MPI_Type_free(&floattype); 

is equivalent to the following code.  
 float data[1024], buff[10]; 
 for (i=0; i<10; i++) buff[i] = data[i*32]; 
 MPI_Send(buff, 10, MPI_FLOAT, dest, tag, MPI_COMM_WORLD); 

Both send ten floating-point numbers from locations data[0], data[32],..., data[288].  
 

Example .  Finite Difference Stencil:  

Program 8.8 uses derived types to communicate the north and south rows and the west and east 
columns of a Fortran array. As illustrated in Figure 8.13, a column of this array is stored in 
contiguous locations and can be accessed by using a contiguous derived type. On the other hand, 
row i of this array (comprising elements array(i,1), (i,2), ..., (i,6)) is located in elements i, i 
+4, ..., i +20. As these elements are not stored in contiguous locations, a call to MPI_TYPE_VECTOR 
is used to define the appropriate type, rowtype.  



Program 8.8 frees the derived types that it defines immediately after they are used. In practice, a 
type might be reused many times before being freed.  

 

   

   
Figure 8.13: A finite difference grid. Areas to be sent to west, east, north, and south 
neighbors are highlighted.  

The third constructor, MPI_TYPE_INDEXED, is used to define a type comprising one or more blocks 
of a primitive or previously defined datatype, where block lengths and the displacements between 
blocks are specified in arrays. A call of the form  

MPI_TYPE_INDEXED(count, lengths, indices, oldtype, newtype)  



defines a derived type newtype comprising count consecutive blocks of data elements with 
datatype oldtype, with block i having a displacement of indices(i) data elements and 
containing lengths(i) data elements.  

 
Example .  Fock Matrix Problem:  

In Example 8.4 and Program 8.6, we developed an implementation for a Fock matrix task that 
receives read requests containing the address of a single data value. A more realistic program 
might support messages comprising len/2 indices followed by len/2 block lengths. The 
MPI_TYPE_INDEXED constructor can then be used to return the required values, as follows.  

 call MPI_TYPE_INDEXED(len/2, inbuf(len/2+1), inbuf(1), 
 $           MPI_INTEGER, focktype, ierr) 
 call MPI_TYPE_COMMIT(focktype, ierr); 
 call MPI_SEND(data, 1, focktype, source, MPI_COMM_WORLD, 
        ierr) 
 call MPI_TYPE_FREE(focktype, ierr) 

An alternative approach that does not use the constructor is to accumulate the values that are to be 
returned in a buffer. The relative efficiency of the two approaches depends on several factors, 
including the amount of data to be transferred and the capabilities of the computer used to execute 
the program.  

 

8.6.2 MPI Features Not Covered 
For simplicity, we have focused on a subset of MPI in this chapter. Of necessity, numerous 
subtleties have been omitted in this brief description. Also, the following MPI features have not 
been covered.  

1. Heterogeneous types. Different datatypes can be encapsulated in a single derived type, 
thereby allowing communication of heterogeneous messages. In addition, data can be sent 
in ``raw'' format, without data conversion in heterogeneous networks.  

2.  Environmental inquiry. A program can obtain information about the environment in which 
it is running, including information that can be used to tune algorithm performance.  

3. Additional global operations. These operations support all-to-all communication and 
variable-sized contributions from different processes. Additional reduction operations can 
be used to determine the location of minimum and maximum values and to perform 
reductions with user-defined functions.  

4.  Specialized communication modes. These modes include synchronous communication, 
which causes the sender to block until the corresponding receive operation has begun; 
buffered communication, which allows the programmer to allocate buffers so as to ensure 
that system resources are not exhausted during communications; and nonblocking 
communication, which can be more efficient on computers that allow user computation to 
be overlapped with some of the sending of a message.  

 



8.7 Performance Issues 
The performance analysis techniques developed in Chapter 3 can be applied directly to MPI 
programs. We discuss some relevant costs here.  

An MPI_SEND/ MPI_RECV pair communicates a single message. The cost of this communication 
can be modeled with Equation 3.1. The cost of the blocking MPI_PROBE operation will normally be 
similar to that of an ordinary receive. The cost of the nonblocking MPI_IPROBE operation can vary 
significantly according to implementation: in some implementations it may be negligible, while in 
others it can be higher than an ordinary receive.  

The performance of global operations is less straightforward to analyze, as their execution can 
involve considerable internal communication. Implementations of these functions can normally be 
expected to use efficient communication algorithms, such as the hypercube algorithms described 
in Chapter 11. In the absence of bandwidth limitations, these allow a barrier to complete in 

steps on P processors, a broadcast of N words to proceed in time if N is 
small and in time if N is large, and so on. The costs associated with these 
algorithms are summarized in Table 8.1. Remember that on many architectures, bandwidth 
limitations can increase actual costs, especially for larger messages (Section 3.7).  

   
Table 8.1: Communication costs associated with various MPI global operations when 
implemented using hypercube communication algorithms on the idealized multicomputer 
architecture. The term represents the cost of a single reduction operation. 

The MPI_COMM_DUP, MPI_COMM_SPLIT, and MPI_COMM_FREE operations should not normally 
involve communication. The cost of the MPI_INTERCOMM_CREATE operation is implementation 
dependent, but will normally involve at least one communication operation. The cost of the 
MPI_INIT and MPI_FINALIZE operations is implementation dependent and can be high. However, 
these functions are called once only in a program execution. Other functions can normally be 
expected to execute without communication and with little local computation.  

8.8 Case Study: Earth System Model 

   
Figure 8.14: Communicators and intercommunicators in an earth system model. Available 



processes are partitioned into three disjoint groups, each with its own communicator used for 
internal communication. Intercommunicators allow the atmosphere model to communicate with 
the ocean model and graphics model.  

We conclude by showing how the earth system model introduced in Chapter 2 can be constructed 
in a modular fashion by using MPI communicators. In particular, we consider a hypothetical 
model constructed as a parallel composition of atmosphere, ocean, and graphics components. The 
atmosphere and ocean models execute concurrently and exchange data periodically; in addition, 
the atmosphere model sends data periodically to the graphics component, which performs data 
reduction and rendering functions and outputs high-quality graphics. We allocate the same number 
of processes to each component; this approach is unlikely to be efficient in practice, but simplifies 
the presentation.  



   

Program 8.9 implements this modular structure (Figure 8.14). The first two lines partition 
available processes into the three equal-sized, disjoint process groups that will be used to execute 
the three components. The code following the ``if'' statement establishes intercommunicators that 
link the atmosphere model with the ocean and graphics components, and initiates execution of the 
three components. Part of the ocean model code is shown also. This performs a reduction within 
the ocean model processes by using MPI_ALLREDUCE and the intracommunicator comm. Then, it 



exchanges data with corresponding processes in the atmosphere model by using the 
intercommunicator atm_ocn.  

8.9 Summary 
This chapter has described the message-passing library approach to parallel programming and has 
shown how parallel algorithm designs developed using the techniques from Part I can be translated 
into message-passing programs. It has also provided a tutorial introduction to the MPI message-
passing standard. Table 8.2 summarizes the MPI routines described in this chapter; Tables 8.3 and 
8.4 summarize the C and Fortran language bindings, respectively, for these functions and give the 
types of each function's arguments.  

   
Table 8.2: MPI quick reference: the functions included in the MPI subset, the figure in which each 
is defined, the section in which each is described, and the programs that illustrate their use. 

The principal features of the message-passing programming model as realized in MPI are as 
follows.  

1. A computation consists of a (typically fixed) set of heavyweight processes, each with a 
unique identifier (integers 0..P--1).  

2. Processes interact by exchanging typed messages, by engaging in collective 
communication operations, or by probing for pending messages.  



3. Modularity is supported via communicators, which allow subprograms to encapsulate 
communication operations and to be combined in sequential and parallel compositions.  

4. Algorithms developed using the techniques set out in Part I can be expressed directly if 
they do not create tasks dynamically or place multiple tasks on a processor.  

5. Algorithms that do create tasks dynamically or place multiple tasks on a processor can 
require substantial refinement before they can be implemented in MPI.  

6. Determinism is not guaranteed but can be achieved with careful programming.  



   
Table 8.3: MPI quick reference: C language binding. 



   
Table: MPI quick reference: Fortran language binding. For brevity, we adopt the convention that 
arguments with an I prefix have type INTEGER unless specified otherwise. The ISTATUS argument 
is always an integer array of size MPI_STATUS_SIZE. 

Exercises 



1. Devise an execution sequence for five processes such that Program 8.4 yields an incorrect 
result because of an out-of-order message.  

2.  Write an MPI program in which two processes exchange a message of size N words a 
large number of times. Use this program to measure communication bandwidth as a 
function of N on one or more networked or parallel computers, and hence obtain estimates 
for and .  

3. Compare the performance of the program developed in Exercise 2 with an equivalent 
CC++ or FM program.  

4.  Implement a two-dimensional finite difference algorithm using MPI. Measure 
performance on one or more parallel computers, and use performance models to explain 
your results.  

5. Compare the performance of the program developed in Exercise 4 with an equivalent 
CC++, FM, or HPF programs. Account for any differences.  

6. Study the performance of the MPI global operations for different data sizes and numbers of 
processes. What can you infer from your results about the algorithms used to implement 
these operations?  

7. Implement the vector reduction algorithm of Section 11.2 by using MPI point-to-point 
communication algorithms. Compare the performance of your implementation with that of 
MPI_ALLREDUCE for a range of processor counts and problem sizes. Explain any 
differences.  

8.  Use MPI to implement a two-dimensional array transpose in which an array of size N N 
is decomposed over P processes (P dividing N), with each process having N/P rows before 
the transpose and N/P columns after. Compare its performance with that predicted by the 
performance models presented in Chapter 3.  

9. Use MPI to implement a three-dimensional array transpose in which an array of size N N 
N is decomposed over processes. Each processor has (N/P) (N/P) x/y columns before 

the transpose, the same number of x/z columns after the first transpose, and the same 
number of y/z columns after the second transpose. Use an algorithm similar to that 
developed in Exercise 8 as a building block.  

10.  Construct an MPI implementation of the parallel parameter study algorithm described in 
Section 1.4.4. Use a single manager process to both allocate tasks and collect results. 
Represent tasks by integers and results by real numbers, and have each worker perform a 
random amount of computation per task.  

11. Study the performance of the program developed in Exercise 10 for a variety of processor 
counts and problem costs. At what point does the central manager become a bottleneck?  

12. Modify the program developed in Exercise 10 to use a decentralized scheduling structure. 
Design and carry out experiments to determine when this code is more efficient.  

13. Construct an MPI implementation of the parallel/transpose and parallel/pipeline 
convolution algorithms of Section 4.4, using intercommunicators to structure the program. 
Compare the performance of the two algorithms, and account for any differences.  

14. Develop a variant of Program 8.8 that implements the nine-point finite difference stencil of 
Figure 2.22.  

15. Complete Program 8.6, adding support for an accumulate operation and incorporating 
dummy implementations of routines such as identify_next_task.  

16. Use MPI to implement a hypercube communication template (see Chapter 11). Use this 
template to implement simple reduction, vector reduction, and broadcast algorithms.  

Chapter Notes 



Message-passing functions were incorporated in specialized libraries developed for early 
distributed-memory computers such as the Cosmic Cube [254], iPSC [227], and nCUBE [211]. 
Subsequent developments emphasized portability across different computers and explored the 
functionality required in message-passing systems. Systems such as Express [219], p4 [44,194], 
PICL [118], PARMACS [143,144], and PVM [275] all run on a variety of homogeneous and 
heterogeneous systems. Each focused on a different set of issues, with the commercially supported 
Express and PARMACS systems providing the most extensive functionality, p4 integrating 
shared-memory support, PICL incorporating instrumentation, and PVM permitting dynamic 
process creation. A special issue of Parallel Computing includes articles on many of these systems 
[196].  

An unfortunate consequence of this exploration was that although various vendor-supplied and 
portable systems provided similar functionality, syntactic differences and numerous minor 
incompatibilities made it difficult to port applications from one computer to another. This situation 
was resolved in 1993 with the formation of the Message Passing Interface Forum, a consortium of 
industrial, academic, and governmental organizations interested in standardization [203]. This 
group produced the MPI specification in early 1994. MPI incorporates ideas developed previously 
in a range of systems, notably p4, Express, PICL, and PARMACS. An important innovation is the 
use of communicators to support modular design. This feature builds on ideas previously explored 
in Zipcode [266], CHIMP [90,91], and research systems at IBM Yorktown [24,25].  

The presentation of MPI provided in this chapter is intended to be self-contained. Nevertheless, 
space constraints have prevented inclusion of its more complex features. The MPI standard 
provides a detailed technical description [202]. Gropp, Lusk, and Skjellum [126] provide an 
excellent, more accessible tutorial text that includes not only a description of MPI but also material 
on the development of SPMD libraries and on MPI implementation.  

9 Performance Tools 
In Chapter 3, we emphasized the importance of using empirical data at each stage of the parallel 
program design and implementation process, in order to calibrate and validate performance models 
and implementations. However, we did not address the topic of how to collect or analyze these 
data. Clearly, a stopwatch is not enough. In this chapter, we survey the various sorts of 
performance data that may be of interest and describe tools that can assist in the tasks of gathering, 
analyzing, and interpreting these data.  

A discussion of tools for gathering and analyzing performance data is difficult because few 
standards exist. The various public domain and commercial tools take different approaches, use 
different performance data file formats, and provide different display technologies. Nevertheless, 
we can identify basic principles that apply to most existing tools, and can illustrate these principles 
by describing several popular systems.  

We emphasize that performance measurement is not an end in itself but is useful only in the 
context of a performance analysis methodology such as that described in Chapter 3. Hence, we do 
not repeat material from Chapter 3 here but base our presentation on the assumption that 
performance models have been developed and are guiding the data collection and analysis process, 
thereby allowing us to pose performance questions, identify performance data of interest, and 
isolate and correct performance problems.  



After studying this chapter, you should be familiar with the basic ideas of data collection, data 
reduction, and data visualization. You should understand the difference between profiles, counts, 
and execution traces and the role each plays in performance analysis. You should also be familiar 
with a number of popular performance analysis tools.  

9.1 Performance Analysis 
We distinguish three basic steps in the performance analysis process: data collection, data 
transformation, and data visualization. Data collection is the process by which data about program 
performance are obtained from an executing program. Data are normally collected in a file, either 
during or after execution, although in some situations it may be presented to the user in real time. 
Three basic data collection techniques can be distinguished: 

• Profiles record the amount of time spent in different parts of a program. This information, 
though minimal, is often invaluable for highlighting performance problems. Profiles 
typically are gathered automatically.  

• Counters record either frequencies of events or cumulative times. The insertion of counters 
may require some programmer intervention.  

• Event traces record each occurrence of various specified events, thus typically producing a 
large amount of data. Traces can be produced either automatically or with programmer 
intervention.  

The raw data produced by profiles, counters, or traces are rarely in the form required to answer 
performance questions. Hence, data transformations are applied, often with the goal of reducing 
total data volume. Transformations can be used to determine mean values or other higher-order 
statistics or to extract profile and counter data from traces. For example, a profile recording the 
time spent in each subroutine on each processor might be transformed to determine the mean time 
spent in each subroutine on each processor, and the standard deviation from this mean. Similarly, a 
trace can be processed to produce a histogram giving the distribution of message sizes. Each of the 
various performance tools described in subsequent sections incorporates some set of built-in 
transformations; more specialized transformation can also be coded by the programmer.  

Parallel performance data are inherently multidimensional, consisting of execution times, 
communication costs, and so on, for multiple program components, on different processors, and 
for different problem sizes. Although data reduction techniques can be used in some situations to 
compress performance data to scalar values, it is often necessary to be able to explore the raw 
multidimensional data. As is well known in computational science and engineering, this process 
can benefit enormously from the use of data visualization techniques. Both conventional and more 
specialized display techniques can be applied to performance data.  

As we shall see, a wide variety of data collection, transformation, and visualization tools are 
available. When selecting a tool for a particular task, the following issues should be considered: 

1. Accuracy. In general, performance data obtained using sampling techniques are less 
accurate than data obtained by using counters or timers. In the case of timers, the accuracy 
of the clock must be taken into account.  

2. Simplicity. The best tools in many circumstances are those that collect data automatically, 
with little or no programmer intervention, and that provide convenient analysis capabilities.  



3. Flexibility. A flexible tool can be extended easily to collect additional performance data or 
to provide different views of the same data. Flexibility and simplicity are often opposing 
requirements.  

4. Intrusiveness. Unless a computer provides hardware support, performance data collection 
inevitably introduces some overhead. We need to be aware of this overhead and account 
for it when analyzing data.  

5. Abstraction. A good performance tool allows data to be examined at a level of abstraction 
appropriate for the programming model of the parallel program. For example, when 
analyzing an execution trace from a message-passing program, we probably wish to see 
individual messages, particularly if they can be related to send and receive statements in 
the source program. However, this presentation is probably not appropriate when studying 
a data-parallel program, even if compilation generates a message-passing program. Instead, 
we would like to see communication costs related to data-parallel program statements.  

9.2 Data Collection 
Next, we examine in more detail the techniques used to collect performance data. We consider in 
turn profiling, counters, and event traces, focusing in each case on the principles involved. 
Individual tools are described in Section 9.4.  

9.2.1 Profiles 
The concept of a profile should be familiar from sequential computing. Typically, a profile shows 
the amount of time spent in different program components. This information is often obtained by 
sampling techniques, which are simple but not necessarily highly accurate. The value of the 
program counter is determined at fixed intervals and used to construct a histogram of execution 
frequencies. These frequences are then combined with compiler symbol table information to 
estimate the amount of time spent in different parts of a program. This profile data may be 
collected on a per-processor basis and may be able to identify idle time and communication time 
as well as execution time.  

 Profiles have two important advantages. They can be obtained automatically, at relatively low 
cost, and they can provide a high-level view of program behavior that allows the programmer to 
identify problematic program components without generating huge amounts of data. (In general, 
the amount of data associated with a profile is both small and independent of execution time.) 
Therefore, a profile should be the first technique considered when seeking to understand the 
performance of a parallel program.  

A profile can be used in numerous ways. For example, a single profile on a moderate number of 
processors can help identify the program components that are taking the most time and that hence 
may require further investigation. Similarly, profiles performed for a range of processor counts 
and problem sizes can identify components that do not scale.  

Profiles also have limitations. In particular, they do not incorporate temporal aspects of program 
execution. For example, consider a program in which every processor sends to each other 
processor in turn. If all processors send to processor 0, then to processor 1, and so on, overall 
performance may be poor. This behavior would not be revealed in a profile, as every processor 
would be shown to communicate the same amount of data.  



Profilers are available on most parallel computers but vary widely in their functionality and 
sophistication. The most basic do little more than collect sequential profile data on each processor; 
the most sophisticated provide various mechanisms for reducing this data, displaying it, and 
relating it to source code. Because efficient profiling requires the assistance of a compiler and 
runtime system, most profiling tools are vendor supplied and machine specific.  

9.2.2 Counters 
As its name suggests, a counter is a storage location that can be incremented each time a specified 
event occurs. Counters can be used to record the number of procedure calls, total number of 
messages, total message volume, or the number of messages sent between each pair of processors. 
Counts may be generated by compiler-generated code, by code incorporated in communication 
libraries, or by user-inserted calls to counter routines.  

Counters complement profilers by providing information that is not easily obtainable using 
sampling techniques. For example, they can provide the total number and volume of messages, 
information that can be combined with communication time data from a profile to determine the 
efficiency of communication operations.  

A useful variant of a counter is an interval timer, a timer used to determine the length of time spent 
executing a particular piece of code. This information can be accumulated in a counter to provide 
an accurate determination of the total time spent executing that program component. A 
disadvantage of interval timers is that the logic required to obtain a timer value can be expensive.  

The use of counters and interval timers in a computational chemistry code was illustrated in 
Section 3.6: see in particular Tables 3.4 and 3.5.  

9.2.3 Traces 

   
Figure 9.1: Trace records generated by the Portable Instrumented Communication Library. The 
various records contain information regarding the type of event, the processor number involved, a 
time stamp, and other information. Clearly, these records are not meant to be interpreted by 
humans. 

An execution trace is the most detailed and low-level approach to performance data collection. 
Trace-based systems typically generate log files containing time-stamped event records 
representing significant occurrences in a program's execution, such as calling a procedure or 
sending a message. Trace records may include information such as the type of event and the 



procedure name or destination task, and can be generated either automatically or under 
programmer control. Figure 9.1 shows an example of trace records.  

Trace-based approaches support a particularly broad study of program behavior. They can be used 
to examine causal relationships between communications, to localize sources of idle time, and to 
identify temporary hot spots. For example, an execution trace could be used to determine that all 
processors are sending to the same processor at the same time. An execution trace can also be 
postprocessed to obtain profile, count, and interval timer information; to compute higher-order 
statistics such as the means and variances of these values; and to obtain other data such as mean 
message queue length in a message-passing system.  

 The disadvantages of trace-based approaches stem primarily from the huge volume of data that 
can be generated. Particularly when a program is executing on large numbers of processors, it is 
easy to generate tens, hundreds, or even thousands of megabytes of data. (For example, if a 20-
byte record is logged for every message on a 128-processor system, then assuming messages are 
sent at the rate of one every 10 milliseconds, trace data will be generated at 256 kilobytes per 
second, or about 1 gigabyte per hour.) This large data volume has three unwelcome consequences. 
First, the logging of this data tends to perturb performance, thereby leading to what is called the 
probe effect in which the measuring of performance data changes their characteristics. Second, the 
sheer volume of data makes postprocessing difficult. Frequently, sophisticated analysis is required 
to extract relevant information. Third, the programmer, in order to combat the problems caused by 
volume, may have to spend considerable effort tuning the data collection process so that only 
relevant events are recorded while the phenomenon of interest is retained. Tracing then becomes a 
labor-intensive process. For these reasons, tracing should be used with care and only if other data 
collection techniques are not available or do not provide sufficient information.  

Many parallel programming tools provide some automatic tracing capabilities, for example by 
generating a trace record for every message generated or received. These capabilities are invoked 
by linking with a specialized version of a communication library and/or by a runtime flag. 
Mechanisms for generating user-defined events may also be provided.  

In principle, event traces can be interpreted in various ways by using different tools. A stumbling 
block here is a lack of standards for event log records. One proposed standard is the Pablo Self 
Describing Data Format (SDDF) designed at the University of Illinois. As illustrated in Figure 9.2, 
this associates an integer event type with a record description that specifies a type and name for 
each field.  



   
Figure 9.2: An example of the Pablo Self Describing Data Format. The data record "Procedure 
Exit Trace" has an event type of 105 and six data fields, all integers. 

9.2.4 Summary of Data Collection Tools 
A broad spectrum of data collection mechanisms can be used to obtain information about parallel 
program performance. In general, those requiring the least programmer intervention are also the 
least intrusive and provide the highest-level, least-detailed view of program behavior; those 
providing greater detail are progressively more intrusive and demand more programmer effort. 
Hence, for maximum programmer efficiency, the process of collecting and interpreting 
performance data should proceed in a staged manner, as follows.  

1. Use profile and count information to obtain any parameter values needed to complete 
performance models.  

2. Measure execution times for a range of processor counts and problem sizes, and compare 
these results with values predicted by performance models.  

3. If observed and modeled performance differ significantly, use profile and count 
information to verify the basic assumptions underlying your model. For example, check 
that message counts and volumes match your predictions, and check for load imbalances 
and replicated computation (Section 3.6).  

4. If there are still unexplained aspects of program performance, incorporate simple tracing 
(or enable automatic tracing capabilities), and study performance on a few processors. 
Increase the number of processors as your understanding improves.  

Of course, the actual path followed to obtain performance data will also depend on the 
functionality provided in a particular parallel programming system.  

9.3 Data Transformation and Visualization 
Data transformation and visualization tools transform raw data collected during program execution 
to yield data and images more easily understood by the programmer. In this section, we provide a 
general discussion of transformation and display techniques, indicating which are useful for which 



purposes. In the next section, we present examples of specific tools and describe specific 
transformations and display formats.  

9.3.1 Profile and Counts 
 A typical profile provides information about the time spent in each procedure on each processor, 
the number of times each procedure is called, the number of messages generated on each 
processor, the volume of these messages, and so forth. Data reduction techniques can be used to 
reduce this multidimensional data to a smaller number of dimensions, and various forms of display 
can be used to visualize both the original and the reduced data.  

Zero-dimensional (scalar) data are of course trivial to display, consisting of a single number: total 
computation time, total number of messages, mean message size, and so forth. However, numbers 
of this sort provide relatively little insight into program behavior. For example, we may notice that 
total communication volume is greater than expected. This observation may stimulate us to ask 
several questions. Is the additional communication concentrated in a subset of the processors? Is it 
concentrated in a single procedure? In which phase of the computation does it occur? More data 
are required if we are to answer these questions.  

The histogram is often a convenient display format for one-dimensional data. If the number of 
processors is large, the size of a histogram can be reduced by binning, in which case histogram 
bars represent the number of processors (or procedures or whatever) that have computation time in 
a specified range. Two-dimensional data can be displayed using color and a two-dimensional 
matrix. For example, in Plate 7 and Plate 8  

color is used, respectively, to indicate execution time per procedure per processor, and 
communication volume between pairs of processors.  

 

Plate 7 is not available in the online version.  

 
 

Plate 8 is not available in the online version.  

 

9.3.2 Traces 
 Trace data can often be reduced to one, two, or three dimensions and then displayed using the 
histogram techniques described in Section 9.3.1. For example, we can plot communication volume 
or efficiency as a function of time, or plot histograms of trace values. Other forms of display can 
provide more detailed views of temporal dependencies between different processors and program 
components by sacrificing scalability and abstraction for detail. We describe just two displays of 
this sort; others are illustrated in later sections.  



 The Gantt chart is a horizontal bar chart in which each bar represents the status of each processor 
as a function of time (Plate 8 and Plate 12).  

Bars can simply represent status (computing, communicating, or idling) and/or indicate the 
program component or procedure that is executing on each processor at a particular time. A Gantt 
chart can highlight unexpected dependencies between program components. Note that 
dependencies inferred from these sorts of displays are valid only if the computer and performance 
tool that we are using ensure that times recorded for events occurring on different processors are 
consistent. This will generally be the case if we use the performance tools described in this 
chapter, as these all incorporate appropriate clock synchronization logic. 

If we augment a Gantt chart by drawing lines to connect corresponding send and receive events on 
different processors, we obtain a space-time diagram, illustrated in the lower part of Plate 8.  

A space-time diagram can make it easier to infer temporal dependencies, because it is often 
possible to identify the specific communication event for which a processor is waiting and hence 
idle.  

9.3.3 Data-Parallel Languages 
 In data-parallel languages such as HPF and pC++, performance analysis is simplified by the fact 
that each processor typically executes the same program. On the other hand, the semantic gap 
between parallel program and executable code is particularly high. Apparently innocuous 
assignment statements can cause large amounts of communication if distributions do not match, 
while a compiler may restructure code to eliminate other communication operations that the 
programmer may assume will occur. Similarly, the mapping of computation to processors may not 
be obvious to the programmer. Therefore, low-level information about computation and 
communication tends to have only limited value.  

Performance tools for data-parallel languages both can take advantage of the SPMD nature of 
data-parallel computation and overcome the semantic gap by relating performance data to the 
program statements concerned. For example, they can label the source code with communication 
costs or can color data arrays to indicate the computation costs and communication volumes 
associated with each element. These forms of display can involve a considerable degree of 
compiler assistance and/or postprocessing, since in many cases the executed code has been 
transformed out of recognition. This approach is illustrated in Plate 9,  

which shows a communication summary produced by Thinking Machine's Prism performance 
tool. The program illustrated is the Gaussian elimination code used as a case study in Chapter 7. 
The plate indicates sources of communication in a data-parallel Fortran program and the relative 
cost of each communication operation.  

 



 

Plate 9: Thinking Machine's PRISM performance tool, here applied to a Gaussian elimination 
algorithm. Image courtesy of D. Reed.  

 

9.4 Tools 
Next, we describe a number of both public-domain and commercial performance tools, explaining 
how each is used to collect and display performance data. While the tools exhibit important 
differences, there are also many similarities, and frequently our choice of tool will be driven more 
by availability than by the features provided.  

9.4.1 Paragraph 
 Paragraph is a portable trace analysis and visualization package developed at Oak Ridge National 
Laboratory for message-passing programs. It was originally developed to analyze traces generated 
by a message-passing library called the Portable Instrumented Communication Library (PICL) but 
can in principle be used to examine any trace that complies to its format. Like many message-
passing systems, PICL can be instructed to generate execution traces automatically, without 
programmer intervention.  

Paragraph is an interactive tool. Having specified a trace file, the user instructs Paragraph to 
construct various displays concerning processor utilization, communication, and the like. The trace 
files consumed by Paragraph include, by default, time-stamped events for every communication 
operation performed by a parallel program. Paragraph performs on-the-fly data reduction to 
generate the required images. Users also can record events that log the start and end of user-
defined ``tasks.''  

Paragraph's processor utilization displays allow the user to distinguish time spent computing, 
communicating, and idling. Communication time represents time spent in system communication 
routines, while idle time represents time spent waiting for messages. These displays can be used to 
identify load imbalances and code components that suffer from excessive communication and idle 
time costs. Some of these displays are shown in Plate 8,  

which shows a Gantt chart (top part) and a space time diagram (bottom part) for a parallel climate 
model executing on 64 Intel DELTA processors. In the space-time diagram, the color of the lines 
representing communications indicates the size of the message being transferred. The climate 
model is a complex program with multiple phases. Initially, only processor 0 is active. 



Subsequently, the model alternates between computation and communication phases. Some of the 
communication phases involve substantial idle time, which should be the subject of further 
investigation.  

Communication displays can be used both to obtain more detailed information on communication 
volumes and communication patterns and to study causal relationships, for example between 
communication patterns and idle time. Plate 10  

shows some of these displays, applied here to the trace data set of Plate 8.  

The communication matrix on the left and the circle on the right both show instantaneous 
communication patterns. The colors in the communication matrix indicate communication volume, 
as defined by the scale above the matrix. Most matrix entries are on the diagonal, which indicates 
mostly nearest-neighbor communication. Another display in the top right presents cumulative data 
on processor utilization.  

 

Plate 10 is not available in the online version.  

 

A disadvantage of Paragraph is that the relationship between performance data and program 
source is not always clear. This problem can be overcome in part by explicitly logging events that 
record the start and end of ``tasks'' corresponding to different phases of a program's execution. 
Paragraph provides task Gantt and task histogram displays to examine this information.  

Of the portable tools described here, Paragraph is probably the simplest to install and use. Because 
it operates on automatically generated traces, it can be used with little programmer intervention. 
Paragraph displays are particularly intuitive, although the inability to scroll within display 
windows can be frustrating.  

9.4.2 Upshot 
 Upshot is a trace analysis and visualization package developed at Argonne National Laboratory 
for message-passing programs. It can be used to analyze traces from a variety of message-passing 
systems: in particular, trace events can be generated automatically by using an instrumented 
version of MPI. Alternatively, the programmer can insert event logging calls manually.  

Upshot's display tools are designed for the visualization and analysis of state data derived from 
logged events. A state is defined by a starting and ending event. (For example, an instrumented 
collective communication routine can generate two separate events on each processor to indicate 
when the processor entered and exited the routine.) The Upshot Gantt chart display shows the state 
of each processor as a function of time. States can be nested, thereby allowing multiple levels of 
detail to be captured in a single display. States can be defined either in an input file or interactively 
during visualization. A histogramming facility allows the use of histograms to summarize 
information about state duration (Plate 11).  

 



 

Plate 11: Gantt chart, state duration histogram, and instantaneous state diagram for a search 
problem running on 16 processors, generated using Upshot. Image courtesy of E. Lusk.  

 

Plate 12 illustrates the use of nested states within Upshot. This is a trace generated from a 
computational chemistry code that alternates between Fock matrix construction (Section 2.8) and 
matrix diagonalization, with the former taking most of the time. Each Fock matrix construction 
operation (blue) involves multiple integral computations (green). A substantial load imbalance is 
apparent---some processors complete their final set of integrals much later than do others. The 
display makes it apparent why this load imbalance occurs. Integrals are being allocated in a 
demand-driven fashion by a central scheduler to ensure equitable distribution of work; however, 
smaller integrals are being allocated before larger ones. Reversing the allocation order improves 
performance.  

 

Plate 12 is not available in the online version.  

 

Upshot provides fewer displays than does Paragraph, but has some nice features. The ability to 
scroll and zoom its displays is particularly useful.  

9.4.3 Pablo 
The Pablo system developed at the University of Illinois is the most ambitious (and complex) of 
the performance tools described here. It provides a variety of mechanisms for collecting, 
transforming, and visualizing data and is designed to be extensible, so that the programmer can 
incorporate new data formats, data collection mechanisms, data reduction modules, and displays. 
Predefined and user-defined data reduction modules and displays can be combined in a mix-and-
match fashion by using a graphical editor. Pablo is as much a performance tool toolkit as it is a 
performance tool proper and has been used to develop performance tools for both message-passing 
and data-parallel programs.  

A source code instrumentation interface facilitates the insertion of user-specified instrumentation 
into programs. In addition, Pablo calls can be incorporated into communication libraries or 
compilers to generate trace files automatically. When logging an event, Pablo can be requested to 
invoke a user-defined event handler that may perform on-the-fly data reduction. For example, a 



user-defined handler can compute communication statistics rather than logging every message or 
can combine procedure entry and exit events to determine procedure execution times. This very 
general mechanism provides great flexibility. A disadvantage is that the overhead associated with 
logging an event is greater than in other, less general systems.  

A novel feature of Pablo is its support for automatic throttling of event data generation. The user 
can specify a threshold data rate for each type of event. If events are generated at a greater rate, 
event recording is disabled or replaced by periodic logging of event counts, thereby enabling a 
variety of events to be logged without the danger that one will unexpectedly swamp the system.  

Pablo provides a variety of data reduction and display modules that can be plugged together to 
form specialized data analysis and visualization networks. For example, most displays provided by 
Paragraph can be constructed using Pablo modules. This feature is illustrated in Plate 13,  

which shows a variety of Paragraph-like displays and the Pablo network used to generate them. As 
noted earlier, Pablo uses its own SDDF.  

 

 

Plate 13: Pablo display of performance data collected from a numerical solver. Image courtesy of 
D.~Reed.  

 

An interesting feature of the Pablo environment is its support for novel ``display'' technologies, 
such as sound and immersive virtual environments. Sound appears to be particularly effective for 
alerting the user to unusual events, while immersive virtual environments can be used to display 
higher-dimensional data, as illustrated in Plate 14.  

In this plate, each cube represents a different performance metric, and the spheres within the cubes 
represent processors moving within a three-dimensional metric space. While both approaches are 
still experimental at present, they are suggestive of future directions.  

 



 

Plate 14: Pablo virtual reality display of performance data. Image courtesy of D. Reed.  

 

9.4.4 Gauge 
 The Gauge performance tool developed at the California Institute of Technology is distinguished 
by its focus on profiles and counters rather than execution traces. The Gauge display tool allows 
the user to examine a multidimensional performance data set in a variety of ways, collapsing along 
different dimensions and computing various higher-order statistics. For example, a three-
dimensional view of an execution profile uses color to indicate execution time per processor and 
per routine; corresponding two-dimensional displays provide histograms for time per routine 
summed over all processors or for time per processor for all routines. Idle time is also measured on 
a per-processor basis and associated with program components by determining which task is 
enabled by arrival of a message. Some of these displays are illustrated in Plate 7.  

9.4.5 ParAide 
 The ParAide system developed by Intel's Supercomputer Systems Division is specialized for the 
Paragon parallel computer. It incorporates a variety of different tools. Modified versions of the 
standard Unix prof and gprof tools provide profiling on a per-node basis. An enhanced version of 
Paragraph provides various data reduction and display mechanisms. The System Performance 
Visualization system uses displays specialized for the Paragon's two-dimensional mesh 
architecture to show data collected by hardware performance monitors. These provide detailed 
low-level information regarding the utilization of the processor, communication network, and 
memory bus. This fine level of detail is made possible by hardware and operating system support 
in the Paragon computer.  

9.4.6 IBM's Parallel Environment 
 The IBM AIX Parallel Environment is specialized for IBM computers, in particular the SP 
multicomputer. It incorporates a variety of different tools. A variant of the standard Unix prof and 
gprof commands can be used to generate and process multiple profile files, one per task involved 
in a computation. The Visualization Tool (VT) can be used to display a variety of different trace 
data. Three types of trace data are supported, as follows:  

1. A communication record represents a low-level communication event, such as a send, 
receive, or call to a global (collective) communication routine.  



2. A system statistics record samples low-level statistics such as CPU utilization, disk traffic, 
and virtual memory statistics. The sampling rate can be selected by the programmer.  

3. An application marker record is generated manually by a programmer and may be used to 
delineate distinct stages in a program's execution.  

Communication trace records and system statistics are generated automatically, although the 
programmer can turn them on and off and can control their frequency.  

VT displays are similar to those provided by Paragraph in many respects, but they give the 
programmer greater flexibility in how data are displayed and can deal with a wider range of data. 
Plate 15  

shows one display, in this case a space-time diagram.  

9.4.7 AIMS 
The Automated Instrumentation and Monitoring System (AIMS) developed at the NASA Ames 
Research Center provides both instrumentation tools and a variety of trace visualization 
mechanisms for message-passing programs. Users can either specify trace events manually or 
request AIMS to log communication events and procedure calls automatically. The resulting traces 
can be visualized by using the AIMS View Kernel (VK), Pablo, or Paragraph. A strength of AIMS 
is its tight integration with a source code browser that allows the user both to mark code blocks for 
tracing and to relate communication events with source code. For example, the user can click on a 
line representing a communication in a space-time diagram to identify the corresponding 
communication operation in the source code. AIMS also provides statistical analysis functions that 
can be used to determine average resource utilization and message latencies.  

9.4.8 Custom Tools 
We conclude this section by noting that while general-purpose tools have the advantage of being 
easy to use, custom performance tools can also be valuable, particularly in understanding the 
performance of a complex parallel program. Extensible tools such as Pablo can be useful in this 
regard. So can text manipulation systems such as awk and PERL, statistical packages such as 
Mathematica and Matlab, and general-purpose graphics packages such as AVS.  

As an example of this approach, Plate 5 shows an image generated by a tool developed specifically 
to help understand load imbalances in a parallel climate model. This tool collects timing data by 
using interval timers and counters inserted manually into the parallel climate model. The data are 
postprocessed to compensate for timer overhead and are then displayed by using a general-purpose 
graphics package. Sequences of such images provide insights into how computational load varies 
over time, and have motivated the design of load-balancing algorithms.  

9.5 Summary 
As discussed in Sections 3.5 and 3.6, parallel programming is an experimental discipline. An 
analytic performance model is an idealization of program behavior that must be validated by 
comparison with empirical results. This validation process can reveal deficiencies in both the 
model and the parallel program. Performance analysis is most effective when guided by an 



understanding rooted in analytic models, and models are most accurate when calibrated with 
empirical data.  

Because performance data tend to be complex and multidimensional, performance tools are a vital 
part of any parallel programming toolkit. In this chapter, we have introduced basic techniques and 
surveyed popular tools for collecting, transforming, and analyzing performance data. At the data 
collection level, we distinguished between profiles, counters, and event traces. Each approach has 
a role to play in performance analysis: profile and counter data are easier to obtain and to analyze, 
while traces can show fine detail. At the data transformation and visualization levels, we have 
emphasized the importance of data reduction techniques that are able to reduce raw performance 
data to more meaningful and manageable quantities, and data visualization tools that can facilitate 
the navigation of large multidimensional data sets.  

Exercises 
1.  Use one or more performance tools to obtain and analyze performance data from programs 

developed by using tools described in earlier chapters. Relate observed performance to 
analytic models and explain any disparities.  

2. Devise and carry out experiments to quantify the overhead of data collection in the 
performance tool(s) used in Exercise 1.  

3. Explain why reversing the order in which integrals are allocated can be expected to 
improve performance in the computational chemistry code discussed in Section 9.4.2 and 
illustrated in Plate 12.  

Chapter Notes 
 Cheng [58] surveys parallel programming tools, including tools for performance data collection 
and analysis. Reed [240] provides both a useful review of techniques for parallel performance 
analysis and an introduction to Pablo. Reed et al. [241] provide a more detailed description of 
Pablo, including its sound and virtual reality displays. Herrarte and Lusk [148] describe Upshot. 
Heath and Etheridge [139] describe Paragraph, and Heath [138] presents case studies showing how 
it is used to tune parallel program performance. Kesselman [104,172] provides a detailed 
description of Gauge; while originally developed for the parallel languages Strand and PCN, a 
general-purpose implementation is under development. Ries et al. [244] describe Intel's ParAide 
system. Yan et al. [301] describe AIMS. 

Graham et al. [124] describe the sampling approach to profiling sequential programs. Lamport 
[185] discusses clock synchronization algorithms. Tufte [285] provides a wonderful introduction 
to the visual presentation of multidimensional data.  

 Other systems not described here include Cray Research's MPP Apprentice, which provides 
integrated performance analysis, optimization, and prediction capabilities; Thinking Machines's 
Prism system, which provides specialized analysis capabilities for data-parallel programs; 
Parasoft's Express message-passing system, which provides execution profiling, communication 
profiling, and event trace analysis mechanisms; Applied Parallel Research's HPF profiler; and the 
IPS-2 system from University of Wisconsin Madison [207]. Other systems are described in a 
conference proceedings edited by Haring and Kotsis [132].  



 

 

Plate 15: IBM's VT trace analysis tool. Image courtesy of IBM.  

 

Part III: Resources 
In Parts I and II of this book, we have described the fundamental concepts and tools required to 
design and build parallel programs. In the process, we have also introduced a number of important 
algorithms, communication structures, and problem-solving techniques that can serve as building 
blocks in our programs. In Part III, we add to this set of building blocks. The goal is not to be in 
any way comprehensive, but instead simply to indicate the range of parallel algorithms that have 
been developed and to provide pointers to other information sources.  

Hence, Chapter 10 introduces the important topic of parallel random numbers. Chapter 11 surveys 
parallel algorithms based on an important communication structure, the hypercube. Chapter 12 
provides additional bibliographical material.  

10 Random Numbers 
 Random numbers are used in computing to simulate apparently random processes in the external 
world or to sample large parameter spaces. Well-known sequential techniques exist for generating, 
in a deterministic fashion, number sequences largely indistinguishable from true random 
sequences. The deterministic nature of these techniques is important because it provides for 
reproducibility in computations.  

 On parallel computers, random number generation becomes more complicated because many 
concurrently executing tasks may require access to random numbers. Generally, efficiency 



concerns will require that we generate these numbers in a distributed fashion; nevertheless, we 
wish to preserve randomness and reproducibility. In this chapter, we introduce these issues by 
showing how one commonly used sequential technique can be adapted to meet these potentially 
conflicting requirements.  

10.1 Sequential Random Numbers 
 Although the casinos at Monte Carlo are, one hopes, based on random phenomena, true random 
numbers are rarely used in computing. Not only would such numbers be difficult to generate 
reliably, but also the lack of reproducibility would make the validation of programs that use them 
extremely difficult. Instead, computers invariably use pseudo-random numbers: finite sequences 
generated by a deterministic process but indistinguishable, by some set of statistical tests, from a 
random sequence. (In the following, we use the term random to mean pseudo-random.) The 
statistical methods used to validate random sequences are an important topic of research, but 
beyond the scope of this book. See the chapter notes for further reading on this subject.  

Methods for generating a sequence of random numbers have been extensively studied and are well 
understood. A function called a generator is defined that, when applied to a number, yields the 
next number in the sequence. For example, the linear congruential generators considered in this 
chapter have the general form  

   

where is the k th element of the sequence and , a, c, and m define the generator. Random 
numbers in the range [0,1] are then obtained by dividing by m.  

As numbers are taken from a finite set (for example, integers between 1 and ), any generator 
will eventually repeat itself. The length of the repeated cycle is called the period of the generator. 
A good generator is one with a long period and no discernible correlation between elements of the 
sequence.  

The parameters , a, c, and m in the linear congruential generator are chosen to make the 
sequence look as random as possible. Common choices for these values are  

   

This generator has period m-1, that is, for . Other common choices are  

   



in which case the period of the generator is . A typical choice for m in this case is the 
word size of the machine on which we are executing. See the references in the chapter notes for 
sources of appropriate values for a, c, and m.  

A fundamental property of Equation 10.1 is that if c=0, then  

 

That is, the (k+n) th element of the sequence is related to the k th in the same way as is the (k+1) 
th, albeit with a different value for a. We shall exploit this property when developing parallel 
generators.  

10.2 Parallel Random Numbers 
 We can distinguish three general approaches to the generation of random numbers on parallel 
computers: centralized, replicated, and distributed. In the centralized approach, a sequential 
generator is encapsulated in a task from which other tasks request random numbers. This avoids 
the problem of generating multiple independent random sequences, but is unlikely to provide good 
performance. Furthermore, it makes reproducibility hard to achieve: the response to a request 
depends on when it arrives at the generator, and hence the result computed by a program can vary 
from one run to the next.  

In the replicated approach, multiple instances of the same generator are created (for example, one 
per task). Each generator uses either the same seed or a unique seed, derived, for example, from a 
task identifier. Clearly, sequences generated in this fashion are not guaranteed to be independent 
and, indeed, can suffer from serious correlation problems. However, the approach has the 
advantages of efficiency and ease of implementation and should be used when appropriate.  

In the distributed approach, responsibility for generating a single sequence is partitioned among 
many generators, which can then be parceled out to different tasks. The generators are all derived 
from a single generator; hence, the analysis of the statistical properties of the distributed generator 
is simplified. As only distributed generators are at all difficult to implement on parallel computers, 
we focus on this topic in the rest of this chapter.  

10.3 Distributed Random Generators 
The techniques described here for constructing distributed random number generators are based on 
an adaptation of the linear congruential algorithm called the random tree method. We first show 
how this method can be applied to a single generator to construct a tree of generators in a 
deterministic and reproducible fashion. This facility is particularly valuable in computations that 
create and destroy tasks dynamically during program execution.  

10.3.1 The Random Tree Method 
The random tree method employs two linear congruential generators, L and R, that differ only in 
the values used for a.  



 

   
Figure 10.1: The random tree method. Two generators are used to construct a tree of random 
numbers. The right generator is applied to elements of the sequence L generated by the left 
generator to generate new sequences R, R', R'', etc.  

 Application of the left generator L to a seed generates one random sequence; application of the 
right generator R to the same seed generates a different sequence. By applying the right generator 
to elements of the left generator's sequence (or vice versa), a tree of random numbers can be 
generated. By convention, the right generator R is used to generate random values for use in 
computation, while the left generator L is applied to values computed by R to obtain the starting 
points , , etc., for new right sequences (Figure 10.1).  

The strength of the random tree method is that it can be used to generate new random sequences in 
a reproducible and noncentralized fashion. This is valuable, for example, in applications in which 
new tasks and hence new random generators must be created dynamically. Before creating a new 
task, a parent task uses the left generator to construct a new right generator, which it passes to its 
new offspring. The new task uses this right generator to generate the random numbers required for 
its computation. If it in turn must generate a new task, it can apply the left generator to its latest 
random value to obtain a new random seed.  

A deficiency of the random tree method as described here is that there is no guarantee that 
different right sequences will not overlap. The period of R is usually chosen to be near to m, 
because this maximizes the quality of the random numbers obtained by using the generator. Hence, 
the starting points returned by the left generator are likely to be different points in the same 
sequence, in which case we can think of L as selecting random starting points in the sequence 
constructed by R. If two starting points happen to be close to each other, the two right sequences 
that are generated will be highly correlated.  

10.3.2 The Leapfrog Method 
In some circumstances, we may know that a program requires a fixed number of generators. (For 
example, we may require one generator for each task in a domain decomposition algorithm.) In 
this case, a variant of the random tree method called the leapfrog method can be used to generate 
sequences that can be guaranteed not to overlap for a certain period.  

Let n be the number of sequences required. Then we define and as a and , respectively, so 
that we have  



 

Then, we create n different right generators ..  by taking the first n elements of L as their 
starting values. The name ``leapfrog method'' refers to the fact that the i th sequence consists of 

and every n th subsequent element of the sequence generated by L (Figure 10.2). As this method 
partitions the elements of L, each subsequence has a period of at least P/n, where P is the period of 
L. (If n divides P, then the period of a subsequence is exactly P/n.) In addition, the n subsequences 
are disjoint for their first P/n elements.  

   
Figure 10.2: The leapfrog method with n=3. Each of the three right generators selects a disjoint 
subsequence of the sequence constructed by the left generator's sequence.  

The generator for the r th subsequence, , is defined by and . We can compute these 
values as follows. We first compute and ; these computations can be performed in 

time by taking advantage of the identity  

 

We then compute members of the sequence as follows, to obtain n generators, each defined by a 
triple , for .  

 

The leapfrog method can be applied recursively: the subsequence corresponding to a generator 
can be further subdivided by a second application of the leapfrog method. Doing this 

can be useful when random numbers are required at several levels in a task hierarchy. However, 
the periods of the resulting sequences become shorter, and their statistical properties are less 
certain.  

10.3.3 Modified Leapfrog 
In other situations, we may know the maximum number, n, of random values needed in a 
subsequence but not the number of subsequences required. In this case, a variant of the leapfrog 



method can be used in which the role of L and R are reversed so that the elements of subsequence i 
are the contiguous elements ..  (Figure 10.3), as follows:  

 

It is not a good idea to choose n as a power of two, as this can lead to serious long-term 
correlations.  

   
Figure 10.3: Modified leapfrog with n=3. Each subsequence contains three contiguous numbers 
from the main sequence.  

10.4 Summary 
In this chapter, we have shown how one commonly used sequential random number generator, the 
linear congruential method, can be adapted for parallel execution. This example shows how 
parallel computation can introduce new issues even in apparently simple problems. In the case of 
random numbers, these issues include reproducibility, scalability, the preservation of randomness, 
and the greater number of random values consumed when executing on many processors.  

Exercises 
1. An application running on processors consumes random numbers per second per 

processor. For how long can the application execute before it exhausts all available 
numbers, assuming that the leapfrog method is applied to the linear congruential generator 
of Equation 10.3 on a 32-bit machine? A 64-bit machine?  

2. A Monte Carlo simulation must perform independent trials. How many random 
numbers can be employed in each trial without duplication, assuming that the modified 
leapfrog method is applied to the linear congruential generator of Equation 10.1 on a 32-bit 
machine? A 64 bit machine?  

3. Monte Carlo integration techniques are sometimes to compute integrals of high dimension. 
They approximate the r-dimensional integral  



 

of a function f as  

 

where each is an r -vector of random values. Design and implement a parallel algorithm 
for this method, and use it to compute the one-dimensional integral  

 

Measure and account for the performance of the parallel program as a function of N and P.  

Chapter Notes 
 Knuth [175] provides a wealth of material on random number generation, including a table of 
appropriate values for a and m and tests that can be used to determine the quality of a particular 
generator. See in particular the table on page 102. Anderson [13] provides a more up-to-date 
survey of random number generation algorithms. He includes a short but useful section on parallel 
computers and provides numerous references. The random tree method was first described by 
Frederickson et al. [114].  

Random numbers are used extensively in the Monte Carlo method, in which a large, statistically 
valid sequence of ``samples'' is used to compute properties of mathematical functions or physical 
processes. Koonin [177] provides a good introduction to the computational issues associated with 
Monte Carlo methods on sequential computers, and Kalos [163] provides a more detailed 
discussion.  

11 Hypercube Algorithms 
 In Chapter 2, we pointed out that the communication requirements of a reduction operation can be 
structured as a series of pairwise exchanges, one with each neighbor in a hypercube (butterfly) 
structure. This structure allows a computation requiring all-to-all communication among P tasks to 
be performed in just steps, rather than P steps as might be expected from a superficial 
analysis.  

It turns out that the hypercube structure can be used to implement many other parallel algorithms 
requiring all-to-all communication; that is, algorithms in which each task must communicate with 
every other task. In this chapter, we review three such algorithms: vector reduction, matrix 
transposition, and sorting. The purpose of this discussion is both to describe some useful 
algorithms and to introduce the concept of a parallel algorithm template. A template is a basic 
program form that a programmer can augment with application-specific information to implement 
a particular parallel algorithm. The hypercube communication structure described in this chapter is 
one of the most useful templates in parallel computing.  



After studying this chapter, you should have a good understanding of the hypercube 
communication structure and how it is used to implement all-to-all communication in parallel 
algorithms. You should also be familiar with the concept of a template and the role templates play 
in parallel algorithm design and programming.  

11.1 The Hypercube Template 
Recall from Section 3.7.2 that a hypercube connects each of P tasks (P a power of 2) to other 
tasks (Figure 3.16). The template considered in this chapter uses this communication structure in 
an SPMD fashion, with each task executing Algorithm 11.1. A local state variable is first set to 
be the supplied input data. Computation then proceeds in steps. In each step, each task first 
exchanges its local state with one of its neighbors in the hypercube and then combines the 
message received from the neighbor with state to generate a new state. The output of the 
computation is the state generated in the final step.  

   

In Algorithm 11.1, the XOR function denotes an exclusive or operation and is used to identify 
neighbors. (Exclusive or is defined as follows: 0 XOR 0=0, 0 XOR 1=1, 1 XOR 0=1, 1 XOR 1=0.) 
As noted in Section 3.7.2, the hypercube has the property that the binary labels of two nodes that 
are neighbors in the d th dimension differ only in the d th place; hence, the expression myid XOR 

yields the i th neighbor of node myid.  

A particular parallel algorithm is defined by the operator OP used to combine state and message 
at each step in the template. In the following, we shall show how this template can be used as a 
basis for parallel vector reduction, matrix transposition, and sorting algorithms.  



11.2 Vector Reduction 
 Recall that in Section 2.4.1 we developed a parallel algorithm to sum P values distributed among 
P tasks. This algorithm is essentially Algorithm 11.1 with an addition operator used as OP. That is, 
the algorithm maintains a partial sum as the local state in each node, and in each step 
accumulates a partial sum received from another node into this partial sum. After steps, the 
sum of the P input values is available in every node.  

This same algorithm can be used to perform a reduction using any commutative associative 
operator, such as multiplication or maximum; the commutative associative operator is used as OP 
in Algorithm 11.1. The algorithm can also be used to implement a barrier operation, which 
synchronizes the tasks that execute it. In this case, the values communicated are simply null 
tokens, and the operation performed on each pair of incoming messages is a synchronization 
operation that waits for the two tokens to be available.  

   
Figure 11.1: Using the hypercube algorithm to reduce four vectors of length N=4 distributed 
among four tasks. The computation is performed in steps, with each task in each step 
exchanging N data values with a neighbor and performing N combine operations. The labels in 
the boxes denote the origin of the values that they contain; hence, 0.1 and 2.3 represent 
intermediate results obtained when contributions from task 0 and 1, or 2 and 3, are combined. R 
represents the final reduced values.  

 In the related vector reduction problem, each of P tasks supplies a vector of N values and N 
separate reductions are performed to produce a vector of N results. As illustrated in Figure 11.1, 
these N reductions can be achieved in steps by using Algorithm 11.1. The operator OP is 
defined as follows: take two vectors of N values as input and apply the commutative associative 
operator N times to produce a vector of N results. The per-processor cost of this simple exchange 
algorithm is  

   

where is the cost of applying the reduction operator. This algorithm is efficient for small N, 
when message startup costs dominate. However, for larger N it is inefficient, since it performs 
many redundant operations.  



 An alternative recursive halving algorithm utilizes the same hypercube communication structure 
but applies a divide-and-conquer technique to reduce message volume (Figure 11.2). In effect, 
Algorithm 11.1 is applied twice. In the reduction phase, each processor communicates (and 
combines) N/2 data in the first stage, half as much (N/4) in the second, and so on, so that each 
processor communicates a total of N(P-1)/P data in steps. The global sum is then complete, 
and the vector of N reduced values is evenly distributed over the P processors. This process is 
reversed (without the reductions) to broadcast the result. Communication cost is  

   
Figure 11.2: Using the recursive halving algorithm to reduce four vectors of length N=4 
distributed over four tasks. In the first stages, values are combined to compute the N 
reduced values, represented as R; these values are distributed over the four tasks. In the third and 
fourth stages, the process is reversed in order to broadcast the values.  

   

The recursive halving algorithm sends twice as many messages as the simpler algorithm does, but 
less data. It also performs less computation. Hence it will be more efficient for certain values of N 
and P and on certain machines. A robust hybrid algorithm can be designed that starts with the 
recursive halving approach and switches to an exchange algorithm after a certain number of stages 
so as to avoid some of the broadcast communication.  

We can use similar techniques to define an efficient vector broadcast algorithm. Here, the problem 
is to replicate N values located in a single task (the ``root'') in each of P-1 other tasks. A simple 
algorithm uses the binary tree communication structure illustrated in Figure 2.8. The root task first 
sends the data to two other tasks; each of these tasks forwards the data to two other tasks, and so 
on, until the data are completely distributed. Total cost is approximately  



 

This algorithm is efficient for small N and P. For larger problems and processor configurations, it 
has the disadvantage that most processors are idle most of the time and the total time is dominated 
by the term. In these situations, it can be more efficient to break the message into pieces 
and then to route these pieces separately by using the hypercube communication structure. 
Communication costs are then approximately as follows (the chapter notes provide pointers to 
descriptions of this algorithm):  

 

11.3 Matrix Transposition 
 The transposition of a two-dimensional N N matrix A yields a matrix A' of the same size, in 
which . If A and/or A' are distributed between multiple tasks, then execution of the 
transpose operation may involve communication. We consider here a one-dimensional, 
columnwise decomposition of the input and output matrices among P tasks. Notice that this 
transposition requires all-to-all communication.  

One commonly used transposition algorithm proceeds in P-1 steps, with each task exchanging 
data with another task in each step, for a per-processor communication cost of  

   

This algorithm was used in the convolution example in Section 4.4. An alternative algorithm, 
described here, uses the hypercube communication template to reduce message startup costs at the 
expense of increased data transfer costs. The basic idea is similar to that used in the recursive 
halving reduction algorithm, but because the operator used to combine messages in the transpose 
is ``append'' rather than ``reduce,'' message sizes do not become smaller as the transpose proceeds.  

   
Figure 11.3: The three steps of the matrix transpose algorithm when P=N=8. Initially, 



each task has a single column of the matrix. After the transpose, each task has a single row. In 
each step, each task exchanges one half of its data; this data is shaded in the upper part of the 
figure. The lower part of the figure shows the origin of the eight values held by task 0 at each step 
of the algorithm. Task 0 sends elements 4--7 in its first message and receives four elements from 
task 4; these are stored in locations 4--7. In the second step, task 0 exchanges both elements 2--3 
(its own) and 6--7 (from task 3) with task 2. In the third step, it exchanges elements 1 (its own), 3 
(from task 2), 5 (from task 4), and 7 (from task 6) with task 1.  

The algorithm proceeds as follows. Tasks are partitioned into two sets. Corresponding pairs of 
tasks in the two sets exchange the one half of their data that is destined for tasks in the other set. 
Tasks 0..(P/2)-1 communicate the lower half of their data, while tasks (P/2)..P-1 communicate the 
upper half. This partitioning and exchange process is repeated until each set contains a single task. 
See Figure 11.3 for more details.  

As each of the messages has size , the communication cost is:  

   

A comparison of Equations 11.3 and 11.4 shows that the hypercube algorithm sends about 
fewer messages but times more data. In most situations, the data transfer term 

dominates, and the algorithm is to be preferred. However, we can expect the 
algorithm to be competitive on small problems and when message startups are expensive 

and transfer costs are low.  

11.4 Mergesort 
 Sorting is a common and important problem in computing. Given a sequence of N data elements, 
we are required to generate an ordered sequence that contains the same elements. Here, we present 
a parallel version of the well-known mergesort algorithm. The algorithm assumes that the 
sequence to be sorted is distributed and so generates a distributed sorted sequence. For simplicity, 
we assume that N is an integer multiple of P, that the N data are distributed evenly among P tasks, 
and that is an integer power of two. Relaxing these assumptions does not change the 
essential character of the algorithm but would complicate the presentation.  

   
Figure 11.4: Mergesort, used here to sort the sequence [6,2,9,5]. The two partition phases each 
split the input sequence; the two merge phases each combine two sorted subsequences generated 
in a previous phase.  



The sequential mergesort algorithm is as follows; its execution is illustrated in Figure 11.4. 

1. If the input sequence has fewer than two elements, return.  
2. Partition the input sequence into two halves.  
3. Sort the two subsequences using the same algorithm.  
4. Merge the two sorted subsequences to form the output sequence.  

The merge operation employed in step (4) combines two sorted subsequences to produce a single 
sorted sequence. It repeatedly compares the heads of the two subsequences and outputs the lesser 
value until no elements remain. Mergesort requires time to sort N elements, which is 
the best that can be achieved (modulo constant factors) unless data are known to have special 
properties such as a known distribution or degeneracy.  

 We first describe two algorithms required in the implementation of parallel mergesort: compare-
exchange and parallel merge.  

Compare-Exchange. 

 A compare-exchange operation merges two sorted sequences of length M, contained in tasks A 
and B. Upon completion of the operation, both tasks have M data, and all elements in task A are 
less than or equal to all elements in task B. As illustrated in Figure 11.5, each task sends its data to 
the other task. Task A identifies the M lowest elements and discards the remainder; this process 
requires at least M/2 and at most M comparisons. Similarly, task B identifies the M highest 
elements.  

   
Figure 11.5: The compare-exchange algorithm, with M=4. (a) Tasks A and B exchange their 
sorted subsequences. (b) They perform a merge operation to identify the lowest and highest M 
elements, respectively. (c) Other elements are discarded, leaving a single sorted sequence 
partitioned over the two tasks.  



Notice that a task may not need all M of its neighbor's data in order to identify the M lowest (or 
highest) values. On average, only M/2 values are required. Hence, it may be more efficient in some 
situations to require the consumer to request data explicitly. This approach results in more 
messages that contain a total of less than M data, and can at most halve the amount of data 
transferred.  

   
Figure 11.6: The parallel merge operation, performed in hypercubes of dimension one, two, and 
three. In a hypercube of dimension d, each task performs d compare-exchange operations. Arrows 
point from the ``high'' to the ``low'' task in each exchange.  

Parallel Merge. 

A parallel merge algorithm performs a merge operation on two sorted sequences of length , 
each distributed over tasks, to produce a single sorted sequence of length distributed over 

tasks. As illustrated in Figure 11.6, this is achieved by using the hypercube communication 
template. Each of the tasks engages in d+1 compare-exchange steps, one with each neighbor. 
In effect, each node executes Algorithm 11.1, applying the following operator at each step.  

   if (myid AND  > 0) then 
   state = compare_exchange_high(state,message) 
  else 
   state = compare_exchange_low(state,message) 
  endif 

In this code fragment, AND is a bitwise logical and operator, used to determine whether the task is 
``high'' or ``low'' in a particular exchange; myid and i are as in Algorithm 11.1.  



Mergesort. 

We next describe the parallel mergesort algorithm proper. Each task in the computation executes 
the following logic.  

  procedure parallel_mergesort(myid, d, data, newdata) 
  begin 
   data = sequential_mergesort(data) 
   for dim = 1 to d 
    data = parallel_merge(myid, dim, data) 
   endfor 
   newdata = data 
  end 

First, each task sorts its local sequence using sequential mergesort. Second, and again using the 
hypercube communication structure, each of the tasks executes the parallel merge 
algorithm d times, for subcubes of dimension 1.. d. The i th parallel merge takes two sequences, 
each distributed over tasks, and generates a sorted sequence distributed over tasks. After d 
such merges, we have a single sorted list distributed over tasks.  

Performance 

 Parallel mergesort uses the hypercube communication template at multiple levels. We review 
these uses and develop a performance model. We assume N data distributed over tasks (that 
is, ), with N an integer multiple of P. Hence, the total number of compare-exchanges is  

 

Because each compare-exchange requires one message containing N/P data, the per-processor 
communication cost is  

 

The computation costs comprise the initial intraprocessor sort and the comparisons performed 
during the interprocessor communication phase. The former involves a total of 

comparisons, while the latter requires at most comparisons, thereby 
giving computation costs summed over P processors of  

 

Because the algorithm is perfectly balanced, we can assume that idle time is negligible. Thus, we 
obtain the following model for parallel execution time: 



 

11.5 Summary 
The hypercube communication template (Algorithm 11.1) allows information to be propagated 
among P tasks in just steps. Each algorithm considered in this case study has exploited this 
property to perform some form of all-to-all communication. For example, in matrix transposition 
each task requires values from every other task; in sorting, the position of each value in the final 
sequence depends on all other values. Many other parallel algorithms can be naturally formulated 
in terms of the same template, once the need for all-to-all communication is recognized.  

The hypercube template described in this chapter is one of the most useful communication 
structures in parallel computing. Another useful structure that we have encountered is nearest-
neighbor exchange on a two-dimensional torus: this template can be used to implement finite 
difference computations, matrix multiplication (Section 4.6), and graph algorithms. The 
manager/worker load balancing structure (Section 2.5.2) is a third example of a template.  

Learning to recognize and apply templates such as the hypercube, torus, and manager/worker can 
greatly simplify the task of designing and implementing parallel programs. When designing a 
parallel algorithm, we can first seek to formulate communication requirements in terms of known 
communication structures; if we are successful, the design problem then reduces to that of 
specifying the application-specific part of the algorithm. A similar strategy can be applied when 
implementing designs that have been formulated in terms of templates.  

Exercises 
1. Execute the hypercube summation algorithm by hand for N=8, and satisfy yourself that 

you obtain the correct answer.  
2. Use Equations 11.1 and 11.2 to identify problem size, processor count, and machine 

parameter regimes in which each of the two vector reduction algorithms of Section 11.2 
will be more efficient.  

3. Implement the hybrid vector reduction algorithm described in Section 11.2. Use empirical 
studies to determine the vector length at which the switch from recursive halving to 
exchange algorithm should occur. Compare the performance of this algorithm with pure 
recursive halving and exchange algorithms.  

4.  A variant of the parallel mergesort algorithm performs just compare-exchange 
operations and then switches to a parallel bubblesort [174]. In the bubblesort phase, tasks 
are connected in a logical ring and each task performs compare-exchange operations with 
its neighbors until a global reduction shows that no exchanges occurred. Design an 
implementation of this algorithm, using hypercube and ring structures as building blocks.  

5. Implement the modified parallel mergesort of Exercise 4. Compare its performance with 
regular parallel mergesort for different input sequences and for a variety of P and N.  



6.  Extend Equations 11.3 and 11.4 to account for bandwidth limitations in a one-dimensional 
mesh.  

7. Modify the performance models developed for the convolution algorithm in Section 4.4 to 
reflect the use of the hypercube-based transpose. Can the resulting algorithms ever provide 
superior performance?  

8. Use the performance models given in Section 11.2 for the simple and recursive halving 
vector reduction algorithms to determine situations in which each algorithm would give 
superior performance.  

9. Design and implement a variant of the vector sum algorithm that does not require the 
number of tasks to be an integer power of 2.  

10.  Develop a CC++, Fortran M, or MPI implementation of a ``hypercube template.'' Use this 
template to implement simple reduction, vector reduction, and broadcast algorithms. 
Discuss the techniques that you used to facilitate reuse of the template.  

11. Implement a ``torus template'' and use this together with the template developed in 
Exercise 10 to implement the finite difference computation of Section 4.2.2.  

12.  Develop a performance model for a 2-D matrix multiplication algorithm that uses the 
vector broadcast algorithm of Section 11.2 in place of the tree-based broadcast assumed in 
Section 4.6.1. Discuss the advantages and disadvantages of this algorithm.  

13. Implement both the modified matrix multiplication algorithm of Exercise 12 and the 
original algorithm of Section 4.6.1, and compare their performance.  

Chapter Notes 
 Leighton [187] discusses basic properties of hypercubes and describes many parallel algorithms 
that use a hypercube communication structure. The recursive halving vector reduction algorithm 
considered in Section 11.2 is described by Fox et al. [111] and the hybrid algorithm by van de 
Geijn [289]. Vector broadcast algorithms are described by Bertsekas and Tsitsiklis [35] and 
Johnsson and Ho [160]. The parallel mergesort algorithm, often called bitonic mergesort, is due to 
Batcher [30]; Akl [8] provides a good description. Fox et al. [111] describe a multicomputer 
implementation of this algorithm and of the variant discussed in Exercise 4. Other algorithms that 
are conveniently formulated in terms of a hypercube communication structure include the fast 
Fourier transform [20,21,110,192,277], parallel prefix [238], and various computer vision [238] 
and linear algebra computations [159]. See also the book by Kumar et al. [179] and papers by 
Bertsekas et al. [36], McBryan and van der Velde [197], and Saad and Schultz [248,249].  

 The book by Kumar et al. [179] describes parallel versions of several sorting algorithms, 
including quicksort [153], one of the most commonly used sorting algorithms on sequential 
computers. Their parallel quicksort algorithm partitions processors according to the number of 
elements lesser than or greater than the pivot at each step. Fox et al. [111] describe an alternative 
parallel quicksort algorithm that uses regular processor partitions. They address load imbalance by 
performing some preliminary processing to identify pivots that approximately bisect the input 
sequence. Knuth [174] and Aho et al. [7] are good references for sequential sorting algorithms. In 
addition to standard algorithms such as mergesort and quicksort, Knuth describes various 
specialized algorithms designed to exploit certain properties of the data to be sorted. Kumar et al. 
[179] explain how many of these can be adapted for parallel computers. For example, if data are 
highly redundant (that is, they have many identical items), we can count items on each node, then 
do a global sum to obtain total counts. If the input data distribution is known, a parallel bucketsort 
can be used. Each processor knows the location of each bucket and sends its data to the 
appropriate location.  



12 Further Reading 
The literature on parallel programming and parallel computing is large and expanding rapidly. We 
have provided numerous references to this literature in the chapter notes. Here, we provide 
additional pointers.  

 Numerous books on parallel computing provide other perspectives or more detailed treatments of 
topics covered only briefly here. Of particular interest are the texts by Quinn [235] and Kumar et 
al. [179], both of which complement Designing and Building Parallel Programs by describing a 
wide range of parallel algorithms and communication structures; both also include excellent 
bibliographies. The Association for Computing Machinery [1] has published a bibliography of 
relevant material. Fox et al. [111,113] describe a range of parallel algorithms, focusing on 
developments in the Caltech Concurrent Computation Project. Books by Akl [8], Gibbons and 
Rytter [119], JáJá [157], Leighton [187], Miller and Stout [209], and Smith [267] provide more 
theoretical treatments.  

Texts describing parallel computer architecture include those by Almasi and Gottlieb [11], 
DeCegama [75], Hwang [156], Reed and Fujimoto [242], Suaya and Birtwistle [272], Stone [269], 
and Tabak [278]. See also the survey articles by Duncan [87,88] and a chapter in Hennessy and 
Patterson's [134] book on computer architecture.  

Books providing general introductions to parallel programming or describing particular 
approaches include those by Andrews [14], Andrews and Olson [15], Ben Ari [32], Carriero and 
Gelernter [48], Chandy and Taylor [55], Foster and Taylor [107], Gehani and Roome [117], 
Hatcher and Quinn [136], Koelbel et al. [176], and Wallach [291]. See also the survey articles by 
Karp [166] and Bal, Steiner, and Tanenbaum [23]. Feo, Cann, and Oldehoeft [95] describe SISAL, 
a functional programming language for parallel computing.  

Kumar et al. [179] describe many parallel numeric algorithms and provide detailed references to 
the literature. Books by Bertsekas and Tsitsiklis [35], Carey [46], Dongarra et al. [82], Fox et al. 
[111], Golub and Ortega [122], Lakshmivarahan and Dhall [184], and van der Velde [290] address 
various aspects of parallel algorithms in numerical analysis and scientific computing. Survey 
articles in this area include those by Gallivan, Plemmons, and Sameh [116] (dense matrix 
algorithms); Demmel, Heath, and van der Vorst [77] (dense matrix algorithms); and Heath et al. 
[140] (sparse matrix algorithms).  

Useful resources in other areas include the books by Akl and Lyons [9] (computational geometry), 
Banerjee [26] (VLSI design), Dew, Earnshaw, and Heywood [78] and Ranka and Sahni [238] 
(computer vision), Gupta [128] (production systems), and Kowalik [178] (artificial intelligence). 
An article by Manber [195] discusses concurrent data structures, while Singhal [260] surveys 
deadlock detection algorithms.  

Keeping up to date with the most recent developments in parallel computing is made difficult by 
the large number of journals and conferences. IEEE Parallel and Distributed Technology 
magazine covers many topics of interest to parallel programmers. IEEE Computational Science 
and Engineering magazine focuses on the use of high-performance computers in science and 
engineering. IEEE Transactions on Parallel and Distributed Systems emphasizes parallel 
hardware and algorithms. Concurrency: Practice and Experience contains a mixture of application 
and algorithm papers, typically with an empirical flavor. Other relevant journals include 



International Journal of Parallel Programming, Journal of Parallel Algorithms and Applications, 
Journal of Parallel and Distributed Computing, and Parallel Computing. In addition, the 
following journals often include relevant articles: Communications of the ACM, Computer, Future 
Generation Computer Systems, IEEE Transactions on Computers, IEEE Transactions on Software 
Engineering, International Journal of Supercomputer Applications, Journal of Distributed 
Systems, New Generation Computing, Scientific Programming, SIAM Journal of Scientific and 
Statistical Computing, and SIAM Review.  

The proceedings of various conferences in the field are also of interest. See, in particular, the 
proceedings of the annual Supercomputing conference and the SIAM Conference on Parallel 
Processing for Scientific Computing; both include papers on applications, tools, and algorithms for 
parallel computers, with an emphasis on scientific computing. Other relevant meetings include the 
Conference on Parallel Computational Fluid Dynamics, CONPAR, Frontiers of Massively Parallel 
Processing, the International Conference on Parallel Programming, the International Parallel 
Processing Symposium, PARCO, and the ACM Symposium on Principles and Practice of Parallel 
Programming.  
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