

Designing and
Building Parallel

Programs

Ian Foster

http://www-unix.mcs.anl.gov/dbpp/text/book.html
(Noviembre 2003)

Preface
Welcome to Designing and Building Parallel Programs ! My goal in this book is to provide a
practitioner's guide for students, programmers, engineers, and scientists who wish to design and
build efficient and cost-effective programs for parallel and distributed computer systems. I cover
both the techniques used to design parallel programs and the tools used to implement these
programs. I assume familiarity with sequential programming, but no prior exposure to parallel
computing.

Designing and Building Parallel Programs promotes a view of parallel programming as an
engineering discipline, in which programs are developed in a methodical fashion and both cost and
performance are considered in a design. This view is reflected in the structure of the book, which
is divided into three parts. The first part, Concepts, provides a thorough discussion of parallel
algorithm design, performance analysis, and program construction, with numerous examples to
illustrate fundamental principles. The second part, Tools, provides an in-depth treatment of four
parallel programming tools: the parallel languages Compositional C++ (CC++), Fortran M (FM),
and High Performance Fortran (HPF), and the Message Passing Interface (MPI) library. HPF and
MPI are standard parallel programming systems, and CC++ and FM are modern languages
particularly well-suited for parallel software engineering. Part II also describes tools for collecting
and analyzing performance data. The third part, Resources surveys some fundamental parallel
algorithms and provides many pointers to other sources of information.

How to Use This Book
In writing this book, I chose to decouple the presentation of fundamental parallel programming
concepts from the discussion of the parallel tools used to realize these concepts in programs. This
separation allowed me to present concepts in a tool-independent manner; hence, commonalities
between different approaches are emphasized, and the book does not become a manual for a
particular programming language.

However, this separation also has its dangers. In particular, it may encourage you to think that the
concepts introduced in Part I can be studied independently of the practical discipline of writing
parallel programs. This assumption would be a serious mistake. Parallel programming, like most
engineering activities, is best learned by doing. Practical experience is essential! Hence, I
recommend that chapters from Parts I and II be studied concurrently. This approach will enable
you to acquire the hands-on experience needed to translate knowledge of the concepts introduced
in the book into the intuition that makes a good programmer. For the same reason, I also
recommend that you attempt as many of the end-of-chapter exercises as possible.

Designing and Building Parallel Programs can be used as both a textbook for students and a
reference book for professionals. Because the hands-on aspects of parallel programming are so
important, professionals may find it useful to approach the book with a programming problem in
mind and make the development of a solution to this problem part of the learning process. The
basic materials have been classroom tested. For example, I have used them to teach a two-quarter
graduate-level course in parallel computing to students from both computer science and
noncomputer science backgrounds. In the first quarter, students covered much of the material in
this book; in the second quarter, they tackled a substantial programming project. Colleagues have

used the same material to teach a one-semester undergraduate introduction to parallel computing,
augmenting this book's treatment of design and programming with additional readings in parallel
architecture and algorithms.

Acknowledgments
It is a pleasure to thank the colleagues with whom and from whom I have gained the insights that I
have tried to distill in this book: in particular Mani Chandy, Bill Gropp, Carl Kesselman, Ewing
Lusk, John Michalakes, Ross Overbeek, Rick Stevens, Steven Taylor, Steven Tuecke, and Patrick
Worley. In addition, I am grateful to the many people who reviewed the text. Enrique Castro-
Leon, Alok Choudhary, Carl Kesselman, Rick Kendall, Ewing Lusk, Rob Schreiber, and Rick
Stevens reviewed one or more chapters. Gail Pieper, Brian Toonen, and Steven Tuecke were kind
enough to read the entire text. Addison-Wesley's anonymous reviewers also provided invaluable
comments. Nikos Drakos provided the latex2html software used to construct the online version,
and Cris Perez helped run it. Brian Toonen tested all the programs and helped in other ways too
numerous to mention. Carl Kesselman made major contributions to Chapter 5. Finally, all the staff
at Addison-Wesley, and in particular editor Tom Stone and editorial assistant Kathleen Billus,
were always a pleasure to work with.

Many of the tools and techniques described in this book stem from the pioneering work of the
National Science Foundation's Center for Research in Parallel Computation,

without which this book would not have been possible. I am also grateful to the Office of
Scientific Computing of the U.S. Department of Energy for their continued support.

Terminology
 All logarithms in this book are to base 2; hence should be read as .

 The notation is used in the formal sense: A problem has size if and only if there exists
some constant c and some minimum problem size such that for all ,
size .

Various symbols are assumed to have the following conventional meanings, unless stated
otherwise.

Part I: Concepts
The first part of this book comprises four chapters that deal with the design of parallel programs.
Chapter 1 briefly introduces parallel computation and the importance of concurrency, scalability,
locality, and modularity in parallel algorithm design. It also introduces the machine model and
programming model used when developing parallel algorithms in subsequent chapters.

Chapter 2 presents a design methodology for parallel programs whereby the design process is
divided into distinct partition, communication, agglomeration, and mapping phases. It introduces
commonly used techniques and shows how these apply to realistic problems. It also presents
design checklists for each phase. Case studies illustrate the application of the design methodology.

Chapter 3 describes how to analyze the performance of parallel algorithms and parallel programs,
and shows how simple performance models can be used to assist in the evaluation of both design
alternatives and program implementations. It also shows how performance models can account for
characteristics of realistic interconnection networks.

Finally, Chapter 4 considers the issues that arise when parallel algorithms are combined to develop
larger programs. It reviews the basic principles of modular design and discusses how these apply
to parallel programs. It also examines different approaches to the composition of parallel program
modules and shows how to model the performance of multicomponent programs.

1 Parallel Computers and Computation
 In this chapter, we review the role of parallelism in computing and introduce the parallel machine
and programming models that will serve as the basis for subsequent discussion of algorithm
design, performance analysis, and implementation.

After studying this chapter, you should be aware of the importance of concurrency, scalability,
locality, and modularity in parallel program design. You should also be familiar with the idealized
multicomputer model for which we shall design parallel algorithms, and the computation and
communication abstractions that we shall use when describing parallel algorithms.

1.1 Parallelism and Computing
 A parallel computer is a set of processors that are able to work cooperatively to solve a
computational problem. This definition is broad enough to include parallel supercomputers that
have hundreds or thousands of processors, networks of workstations, multiple-processor
workstations, and embedded systems. Parallel computers are interesting because they offer the
potential to concentrate computational resources---whether processors, memory, or I/O bandwidth-
--on important computational problems.

Parallelism has sometimes been viewed as a rare and exotic subarea of computing, interesting but
of little relevance to the average programmer. A study of trends in applications, computer
architecture, and networking shows that this view is no longer tenable. Parallelism is becoming
ubiquitous, and parallel programming is becoming central to the programming enterprise.

1.1.1 Trends in Applications
As computers become ever faster, it can be tempting to suppose that they will eventually become
``fast enough'' and that appetite for increased computing power will be sated. However, history
suggests that as a particular technology satisfies known applications, new applications will arise
that are enabled by that technology and that will demand the development of new technology. As
an amusing illustration of this phenomenon, a report prepared for the British government in the
late 1940s concluded that Great Britain's computational requirements could be met by two or
perhaps three computers. In those days, computers were used primarily for computing ballistics
tables. The authors of the report did not consider other applications in science and engineering, let
alone the commercial applications that would soon come to dominate computing. Similarly, the
initial prospectus for Cray Research predicted a market for ten supercomputers; many hundreds
have since been sold.

Traditionally, developments at the high end of computing have been motivated by numerical
simulations of complex systems such as weather, climate, mechanical devices, electronic circuits,
manufacturing processes, and chemical reactions. However, the most significant forces driving the
development of faster computers today are emerging commercial applications that require a
computer to be able to process large amounts of data in sophisticated ways. These applications
include video conferencing, collaborative work environments, computer-aided diagnosis in
medicine, parallel databases used for decision support, and advanced graphics and virtual reality,
particularly in the entertainment industry. For example, the integration of parallel computation,
high-performance networking, and multimedia technologies is leading to the development of video
servers, computers designed to serve hundreds or thousands of simultaneous requests for real-time
video. Each video stream can involve both data transfer rates of many megabytes per second and
large amounts of processing for encoding and decoding. In graphics, three-dimensional data sets
are now approaching volume elements (1024 on a side). At 200 operations per element, a
display updated 30 times per second requires a computer capable of 6.4 operations per
second.

Although commercial applications may define the architecture of most future parallel computers,
traditional scientific applications will remain important users of parallel computing technology.
Indeed, as nonlinear effects place limits on the insights offered by purely theoretical investigations
and as experimentation becomes more costly or impractical, computational studies of complex
systems are becoming ever more important. Computational costs typically increase as the fourth
power or more of the ``resolution'' that determines accuracy, so these studies have a seemingly
insatiable demand for more computer power. They are also often characterized by large memory
and input/output requirements. For example, a ten-year simulation of the earth's climate using a
state-of-the-art model may involve floating-point operations---ten days at an execution speed
of floating-point operations per second (10 gigaflops). This same simulation can easily
generate a hundred gigabytes (bytes) or more of data. Yet as Table 1.1 shows, scientists can
easily imagine refinements to these models that would increase these computational requirements
10,000 times.

Table 1.1: Various refinements proposed to climate models, and the increased computational
requirements associated with these refinements. Altogether, these refinements could increase
computational requirements by a factor of between and .

In summary, the need for faster computers is driven by the demands of both data-intensive
applications in commerce and computation-intensive applications in science and engineering.
Increasingly, the requirements of these fields are merging, as scientific and engineering
applications become more data intensive and commercial applications perform more sophisticated
computations.

1.1.2 Trends in Computer Design
The performance of the fastest computers has grown exponentially from 1945 to the present,
averaging a factor of 10 every five years. While the first computers performed a few tens of
floating-point operations per second, the parallel computers of the mid-1990s achieve tens of
billions of operations per second (Figure 1.1). Similar trends can be observed in the low-end
computers of different eras: the calculators, personal computers, and workstations. There is little to
suggest that this growth will not continue. However, the computer architectures used to sustain
this growth are changing radically---from sequential to parallel.

Figure 1.1: Peak performance of some of the fastest supercomputers, 1945--1995. The exponential
growth flattened off somewhat in the 1980s but is accelerating again as massively parallel
supercomputers become available. Here, ``o'' are uniprocessors, ``+'' denotes modestly parallel
vector computers with 4--16 processors, and ``x'' denotes massively parallel computers with
hundreds or thousands of processors. Typically, massively parallel computers achieve a lower
proportion of their peak performance on realistic applications than do vector computers.

 The performance of a computer depends directly on the time required to perform a basic operation
and the number of these basic operations that can be performed concurrently. The time to perform
a basic operation is ultimately limited by the ``clock cycle'' of the processor, that is, the time
required to perform the most primitive operation. However, clock cycle times are decreasing
slowly and appear to be approaching physical limits such as the speed of light (Figure 1.2). We
cannot depend on faster processors to provide increased computational performance.

Figure 1.2: Trends in computer clock cycle times. Conventional vector supercomputer cycle times
(denoted ``o'') have decreased only by a factor of 3 in sixteen years, from the CRAY-1 (12.5
nanoseconds) to the C90 (4.0). RISC microprocessors (denoted ``+'') are fast approaching the
same performance. Both architectures appear to be approaching physical limits.

To circumvent these limitations, the designer may attempt to utilize internal concurrency in a chip,
for example, by operating simultaneously on all 64 bits of two numbers that are to be multiplied.
However, a fundamental result in Very Large Scale Integration (VLSI) complexity theory says that
this strategy is expensive. This result states that for certain transitive computations (in which any
output may depend on any input), the chip area A and the time T required to perform this
computation are related so that must exceed some problem-dependent function of problem
size. This result can be explained informally by assuming that a computation must move a certain
amount of information from one side of a square chip to the other. The amount of information that
can be moved in a time unit is limited by the cross section of the chip, . This gives a transfer
rate of , from which the relation is obtained. To decrease the time required to move the
information by a certain factor, the cross section must be increased by the same factor, and hence
the total area must be increased by the square of that factor.

This result means that not only is it difficult to build individual components that operate
faster, it may not even be desirable to do so. It may be cheaper to use more, slower components.
For example, if we have an area of silicon to use in a computer, we can either build

components, each of size A and able to perform an operation in time T, or build a single
component able to perform the same operation in time T/n. The multicomponent system is
potentially n times faster.

Computer designers use a variety of techniques to overcome these limitations on single computer
performance, including pipelining (different stages of several instructions execute concurrently)
and multiple function units (several multipliers, adders, etc., are controlled by a single instruction
stream). Increasingly, designers are incorporating multiple ``computers,'' each with its own
processor, memory, and associated interconnection logic. This approach is facilitated by advances

in VLSI technology that continue to decrease the number of components required to implement a
computer. As the cost of a computer is (very approximately) proportional to the number of
components that it contains, increased integration also increases the number of processors that can
be included in a computer for a particular cost. The result is continued growth in processor counts
(Figure 1.3).

Figure 1.3: Number of processors in massively parallel computers (``o'') and vector
multiprocessors (``+''). In both cases, a steady increase in processor count is apparent. A similar
trend is starting to occur in workstations, and personal computers can be expected to follow the
same trend.

1.1.3 Trends in Networking
 Another important trend changing the face of computing is an enormous increase in the
capabilities of the networks that connect computers. Not long ago, high-speed networks ran at 1.5
Mbits per second; by the end of the 1990s, bandwidths in excess of 1000 Mbits per second will be
commonplace. Significant improvements in reliability are also expected. These trends make it
feasible to develop applications that use physically distributed resources as if they were part of the
same computer. A typical application of this sort may utilize processors on multiple remote
computers, access a selection of remote databases, perform rendering on one or more graphics
computers, and provide real-time output and control on a workstation.

 We emphasize that computing on networked computers (``distributed computing'') is not just a
subfield of parallel computing. Distributed computing is deeply concerned with problems such as
reliability, security, and heterogeneity that are generally regarded as tangential in parallel
computing. (As Leslie Lamport has observed, ``A distributed system is one in which the failure of
a computer you didn't even know existed can render your own computer unusable.'') Yet the basic
task of developing programs that can run on many computers at once is a parallel computing

problem. In this respect, the previously distinct worlds of parallel and distributed computing are
converging.

1.1.4 Summary of Trends
This brief survey of trends in applications, computer architecture, and networking suggests a
future in which parallelism pervades not only supercomputers but also workstations, personal
computers, and networks. In this future, programs will be required to exploit the multiple
processors located inside each computer and the additional processors available across a network.
Because most existing algorithms are specialized for a single processor, this situation implies a
need for new algorithms and program structures able to perform many operations at once.
Concurrency becomes a fundamental requirement for algorithms and programs.

This survey also suggests a second fundamental lesson. It appears likely that processor counts will
continue to increase---perhaps, as they do in some environments at present, by doubling each year
or two. Hence, software systems can be expected to experience substantial increases in processor
count over their lifetime. In this environment, scalability ---resilience to increasing processor
counts---is as important as portability for protecting software investments. A program able to use
only a fixed number of processors is a bad program, as is a program able to execute on only a
single computer. Scalability is a major theme that will be stressed throughout this book.

1.2 A Parallel Machine Model
The rapid penetration of computers into commerce, science, and education owed much to the early
standardization on a single machine model, the von Neumann computer. A von Neumann
computer comprises a central processing unit (CPU) connected to a storage unit (memory) (Figure
1.4). The CPU executes a stored program that specifies a sequence of read and write operations on
the memory. This simple model has proved remarkably robust. Its persistence over more than forty
years has allowed the study of such important topics as algorithms and programming languages to
proceed to a large extent independently of developments in computer architecture. Consequently,
programmers can be trained in the abstract art of ``programming'' rather than the craft of
``programming machine X'' and can design algorithms for an abstract von Neumann machine,
confident that these algorithms will execute on most target computers with reasonable efficiency.

Figure 1.4: The von Neumann computer. A central processing unit (CPU) executes a program
that performs a sequence of read and write operations on an attached memory.

Our study of parallel programming will be most rewarding if we can identify a parallel machine
model that is as general and useful as the von Neumann sequential machine model. This machine
model must be both simple and realistic: simple to facilitate understanding and programming, and

realistic to ensure that programs developed for the model execute with reasonable efficiency on
real computers.

1.2.1 The Multicomputer
A parallel machine model called the multicomputer fits these requirements. As illustrated in Figure
1.5, a multicomputer comprises a number of von Neumann computers, or nodes, linked by an
interconnection network. Each computer executes its own program. This program may access local
memory and may send and receive messages over the network. Messages are used to communicate
with other computers or, equivalently, to read and write remote memories. In the idealized
network, the cost of sending a message between two nodes is independent of both node location
and other network traffic, but does depend on message length.

Figure 1.5: The multicomputer, an idealized parallel computer model. Each node consists of a von
Neumann machine: a CPU and memory. A node can communicate with other nodes by sending
and receiving messages over an interconnection network.

A defining attribute of the multicomputer model is that accesses to local (same-node) memory are
less expensive than accesses to remote (different-node) memory. That is, read and write are less
costly than send and receive. Hence, it is desirable that accesses to local data be more frequent
than accesses to remote data. This property, called locality, is a third fundamental requirement for
parallel software, in addition to concurrency and scalability. The importance of locality depends
on the ratio of remote to local access costs. This ratio can vary from 10:1 to 1000:1 or greater,
depending on the relative performance of the local computer, the network, and the mechanisms
used to move data to and from the network.

1.2.2 Other Machine Models

Figure 1.6: Classes of parallel computer architecture. From top to bottom: a distributed-memory
MIMD computer with a mesh interconnect, a shared-memory multiprocessor, and a local area
network (in this case, an Ethernet). In each case, P denotes an independent processor.

 We review important parallel computer architectures (several are illustrated in Figure 1.6) and
discuss briefly how these differ from the idealized multicomputer model.

The multicomputer is most similar to what is often called the distributed-memory MIMD (multiple
instruction multiple data) computer. MIMD means that each processor can execute a separate
stream of instructions on its own local data; distributed memory means that memory is distributed
among the processors, rather than placed in a central location. The principal difference between a
multicomputer and the distributed-memory MIMD computer is that in the latter, the cost of
sending a message between two nodes may not be independent of node location and other network
traffic. These issues are discussed in Chapter 3. Examples of this class of machine include the IBM
SP, Intel Paragon, Thinking Machines CM5, Cray T3D, Meiko CS-2, and nCUBE.

Another important class of parallel computer is the multiprocessor, or shared-memory MIMD
computer. In multiprocessors, all processors share access to a common memory, typically via a

bus or a hierarchy of buses. In the idealized Parallel Random Access Machine (PRAM) model,
often used in theoretical studies of parallel algorithms, any processor can access any memory
element in the same amount of time. In practice, scaling this architecture usually introduces some
form of memory hierarchy; in particular, the frequency with which the shared memory is accessed
may be reduced by storing copies of frequently used data items in a cache associated with each
processor. Access to this cache is much faster than access to the shared memory; hence, locality is
usually important, and the differences between multicomputers and multiprocessors are really just
questions of degree. Programs developed for multicomputers can also execute efficiently on
multiprocessors, because shared memory permits an efficient implementation of message passing.
Examples of this class of machine include the Silicon Graphics Challenge, Sequent Symmetry, and
the many multiprocessor workstations.

A more specialized class of parallel computer is the SIMD (single instruction multiple data)
computer. In SIMD machines, all processors execute the same instruction stream on a different
piece of data. This approach can reduce both hardware and software complexity but is appropriate
only for specialized problems characterized by a high degree of regularity, for example, image
processing and certain numerical simulations. Multicomputer algorithms cannot in general be
executed efficiently on SIMD computers. The MasPar MP is an example of this class of machine.

Two classes of computer system that are sometimes used as parallel computers are the local area
network (LAN), in which computers in close physical proximity (e.g., the same building) are
connected by a fast network, and the wide area network (WAN), in which geographically
distributed computers are connected. Although systems of this sort introduce additional concerns
such as reliability and security, they can be viewed for many purposes as multicomputers, albeit
with high remote-access costs. Ethernet and asynchronous transfer mode (ATM) are commonly
used network technologies.

1.3 A Parallel Programming Model
The von Neumann machine model assumes a processor able to execute sequences of instructions.
An instruction can specify, in addition to various arithmetic operations, the address of a datum to
be read or written in memory and/or the address of the next instruction to be executed. While it is
possible to program a computer in terms of this basic model by writing machine language, this
method is for most purposes prohibitively complex, because we must keep track of millions of
memory locations and organize the execution of thousands of machine instructions. Hence,
modular design techniques are applied, whereby complex programs are constructed from simple
components, and components are structured in terms of higher-level abstractions such as data
structures, iterative loops, and procedures. Abstractions such as procedures make the exploitation
of modularity easier by allowing objects to be manipulated without concern for their internal
structure. So do high-level languages such as Fortran, Pascal, C, and Ada, which allow designs
expressed in terms of these abstractions to be translated automatically into executable code.

 Parallel programming introduces additional sources of complexity: if we were to program at the
lowest level, not only would the number of instructions executed increase, but we would also need
to manage explicitly the execution of thousands of processors and coordinate millions of
interprocessor interactions. Hence, abstraction and modularity are at least as important as in
sequential programming. In fact, we shall emphasize modularity as a fourth fundamental
requirement for parallel software, in addition to concurrency, scalability, and locality.

1.3.1 Tasks and Channels

Figure 1.7: A simple parallel programming model. The figure shows both the instantaneous state
of a computation and a detailed picture of a single task. A computation consists of a set of tasks
(represented by circles) connected by channels (arrows). A task encapsulates a program and local
memory and defines a set of ports that define its interface to its environment. A channel is a
message queue into which a sender can place messages and from which a receiver can remove
messages, ``blocking'' if messages are not available.

 We consider next the question of which abstractions are appropriate and useful in a parallel
programming model. Clearly, mechanisms are needed that allow explicit discussion about
concurrency and locality and that facilitate development of scalable and modular programs. Also
needed are abstractions that are simple to work with and that match the architectural model, the
multicomputer. While numerous possible abstractions could be considered for this purpose, two fit
these requirements particularly well: the task and channel. These are illustrated in Figure 1.7 and
can be summarized as follows:

Figure 1.8: The four basic task actions. In addition to reading and writing local memory, a task
can send a message, receive a message, create new tasks (suspending until they terminate), and
terminate.

1. A parallel computation consists of one or more tasks. Tasks execute concurrently. The
number of tasks can vary during program execution.

2. A task encapsulates a sequential program and local memory. (In effect, it is a virtual von
Neumann machine.) In addition, a set of inports and outports define its interface to its
environment.

3. A task can perform four basic actions in addition to reading and writing its local memory
(Figure 1.8): send messages on its outports, receive messages on its inports, create new
tasks, and terminate.

4. A send operation is asynchronous: it completes immediately. A receive operation is
synchronous: it causes execution of the task to block until a message is available.

5. Outport/inport pairs can be connected by message queues called channels. Channels can
be created and deleted, and references to channels (ports) can be included in messages, so
connectivity can vary dynamically.

6. Tasks can be mapped to physical processors in various ways; the mapping employed does
not affect the semantics of a program. In particular, multiple tasks can be mapped to a
single processor. (We can also imagine a single task being mapped to multiple processors,
but that possibility is not considered here.)

 The task abstraction provides a mechanism for talking about locality: data contained in a task's
local memory are ``close''; other data are ``remote.'' The channel abstraction provides a mechanism
for indicating that computation in one task requires data in another task in order to proceed. (This
is termed a data dependency). The following simple example illustrates some of these features.

Example . Bridge Construction:

 Consider the following real-world problem. A bridge is to be assembled from girders being
constructed at a foundry. These two activities are organized by providing trucks to transport
girders from the foundry to the bridge site. This situation is illustrated in Figure 1.9(a), with the
foundry and bridge represented as tasks and the stream of trucks as a channel. Notice that this
approach allows assembly of the bridge and construction of girders to proceed in parallel without
any explicit coordination: the foundry crew puts girders on trucks as they are produced, and the
assembly crew adds girders to the bridge as and when they arrive.

Figure 1.9: Two solutions to the bridge construction problem. Both represent the foundry and the
bridge assembly site as separate tasks, foundry and bridge. The first uses a single channel on
which girders generated by foundry are transported as fast as they are generated. If foundry
generates girders faster than they are consumed by bridge, then girders accumulate at the
construction site. The second solution uses a second channel to pass flow control messages from
bridge to foundry so as to avoid overflow.

A disadvantage of this scheme is that the foundry may produce girders much faster than the
assembly crew can use them. To prevent the bridge site from overflowing with girders, the
assembly crew instead can explicitly request more girders when stocks run low. This refined
approach is illustrated in Figure 1.9(b), with the stream of requests represented as a second
channel. The second channel can also be used to shut down the flow of girders when the bridge is
complete.

We now examine some other properties of this task/channel programming model: performance,
mapping independence, modularity, and determinism.

Performance. Sequential programming abstractions such as procedures and data structures are
effective because they can be mapped simply and efficiently to the von Neumann computer. The
task and channel have a similarly direct mapping to the multicomputer. A task represents a piece
of code that can be executed sequentially, on a single processor. If two tasks that share a channel

are mapped to different processors, the channel connection is implemented as interprocessor
communication; if they are mapped to the same processor, some more efficient mechanism can be
used.

 Mapping Independence. Because tasks interact using the same mechanism (channels) regardless
of task location, the result computed by a program does not depend on where tasks execute.
Hence, algorithms can be designed and implemented without concern for the number of processors
on which they will execute; in fact, algorithms are frequently designed that create many more tasks
than processors. This is a straightforward way of achieving scalability : as the number of
processors increases, the number of tasks per processor is reduced but the algorithm itself need not
be modified. The creation of more tasks than processors can also serve to mask communication
delays, by providing other computation that can be performed while communication is performed
to access remote data.

Modularity. In modular program design, various components of a program are developed
separately, as independent modules, and then combined to obtain a complete program. Interactions
between modules are restricted to well-defined interfaces. Hence, module implementations can be
changed without modifying other components, and the properties of a program can be determined
from the specifications for its modules and the code that plugs these modules together. When
successfully applied, modular design reduces program complexity and facilitates code reuse.

Figure 1.10: The task as building block. (a) The foundry and bridge tasks are building blocks
with complementary interfaces. (b) Hence, the two tasks can be plugged together to form a
complete program. (c) Tasks are interchangeable: another task with a compatible interface can be
substituted to obtain a different program.

The task is a natural building block for modular design. As illustrated in Figure 1.10, a task
encapsulates both data and the code that operates on those data; the ports on which it sends and
receives messages constitute its interface. Hence, the advantages of modular design summarized in
the previous paragraph are directly accessible in the task/channel model.

Strong similarities exist between the task/channel model and the popular object-oriented
programming paradigm. Tasks, like objects, encapsulate data and the code that operates on those
data. Distinguishing features of the task/channel model are its concurrency, its use of channels
rather than method calls to specify interactions, and its lack of support for inheritance.

Determinism. An algorithm or program is deterministic if execution with a particular input always
yields the same output. It is nondeterministic if multiple executions with the same input can give
different outputs. Although nondeterminism is sometimes useful and must be supported, a parallel
programming model that makes it easy to write deterministic programs is highly desirable.
Deterministic programs tend to be easier to understand. Also, when checking for correctness, only
one execution sequence of a parallel program needs to be considered, rather than all possible
executions.

The ``arms-length'' interactions supported by the task/channel model makes determinism relatively
easy to guarantee. As we shall see in Part II when we consider programming tools, it suffices to
verify that each channel has a single sender and a single receiver and that a task receiving on a
channel blocks until a receive operation is complete. These conditions can be relaxed when
nondeterministic interactions are required.

In the bridge construction example, determinism means that the same bridge will be constructed
regardless of the rates at which the foundry builds girders and the assembly crew puts girders
together. If the assembly crew runs ahead of the foundry, it will block, waiting for girders to
arrive. Hence, it simply suspends its operations until more girders are available, rather than
attempting to continue construction with half-completed girders. Similarly, if the foundry produces
girders faster than the assembly crew can use them, these girders simply accumulate until they are
needed. Determinism would be guaranteed even if several bridges were constructed
simultaneously: As long as girders destined for different bridges travel on distinct channels, they
cannot be confused.

1.3.2 Other Programming Models
In subsequent chapters, the task/channel model will often be used to describe algorithms.
However, this model is certainly not the only approach that can be taken to representing parallel
computation. Many other models have been proposed, differing in their flexibility, task interaction
mechanisms, task granularities, and support for locality, scalability, and modularity. Here, we
review several alternatives.

 Message passing. Message passing is probably the most widely used parallel programming model
today. Message-passing programs, like task/channel programs, create multiple tasks, with each
task encapsulating local data. Each task is identified by a unique name, and tasks interact by
sending and receiving messages to and from named tasks. In this respect, message passing is really
just a minor variation on the task/channel model, differing only in the mechanism used for data
transfer. For example, rather than sending a message on ``channel ch,'' we may send a message to
``task 17.'' We study the message-passing model in more detail in Chapter 8, where we discuss the
Message Passing Interface. In that chapter, we explain that the definition of channels is a useful
discipline even when designing message-passing programs, because it forces us to conceptualize
the communication structure of a parallel program.

The message-passing model does not preclude the dynamic creation of tasks, the execution of
multiple tasks per processor, or the execution of different programs by different tasks. However, in
practice most message-passing systems create a fixed number of identical tasks at program startup
and do not allow tasks to be created or destroyed during program execution. These systems are
said to implement a single program multiple data (SPMD) programming model because each task
executes the same program but operates on different data. As explained in subsequent chapters, the
SPMD model is sufficient for a wide range of parallel programming problems but does hinder
some parallel algorithm developments.

Data Parallelism. Another commonly used parallel programming model, data parallelism, calls for
exploitation of the concurrency that derives from the application of the same operation to multiple
elements of a data structure, for example, ``add 2 to all elements of this array,'' or ``increase the
salary of all employees with 5 years service.'' A data-parallel program consists of a sequence of
such operations. As each operation on each data element can be thought of as an independent task,
the natural granularity of a data-parallel computation is small, and the concept of ``locality'' does
not arise naturally. Hence, data-parallel compilers often require the programmer to provide
information about how data are to be distributed over processors, in other words, how data are to
be partitioned into tasks. The compiler can then translate the data-parallel program into an SPMD
formulation, thereby generating communication code automatically. We discuss the data-parallel
model in more detail in Chapter 7 under the topic of High Performance Fortran. In that chapter,
we show that the algorithm design and analysis techniques developed for the task/channel model
apply directly to data-parallel programs; in particular, they provide the concepts required to
understand the locality and scalability of data-parallel programs.

Shared Memory. In the shared-memory programming model, tasks share a common address space,
which they read and write asynchronously. Various mechanisms such as locks and semaphores
may be used to control access to the shared memory. An advantage of this model from the
programmer's point of view is that the notion of data ``ownership'' is lacking, and hence there is no
need to specify explicitly the communication of data from producers to consumers. This model can
simplify program development. However, understanding and managing locality becomes more
difficult, an important consideration (as noted earlier) on most shared-memory architectures. It can
also be more difficult to write deterministic programs.

1.4 Parallel Algorithm Examples
We conclude this chapter by presenting four examples of parallel algorithms. We do not concern
ourselves here with the process by which these algorithms are derived or with their efficiency;
these issues are discussed in Chapters 2 and 3, respectively. The goal is simply to introduce
parallel algorithms and their description in terms of tasks and channels.

The first two algorithms described have an SPMD structure, the third creates tasks dynamically
during program execution, and the fourth uses a fixed number of tasks but has different tasks
perform different functions.

1.4.1 Finite Differences

Figure 1.11: A parallel algorithm for the one-dimensional finite difference problem. From top to
bottom: the one-dimensional vector X, where N=8 ; the task structure, showing the 8 tasks, each
encapsulating a single data value and connected to left and right neighbors via channels; and the
structure of a single task, showing its two inports and outports.

We first consider a one-dimensional finite difference problem, in which we have a vector of
size N and must compute , where

That is, we must repeatedly update each element of X, with no element being updated in step t+1
until its neighbors have been updated in step t.

A parallel algorithm for this problem creates N tasks, one for each point in X. The i th task is given
the value and is responsible for computing, in T steps, the values . Hence,

at step t, it must obtain the values and from tasks i-1 and i+1. We specify this data
transfer by defining channels that link each task with ``left'' and ``right'' neighbors, as shown in
Figure 1.11, and requiring that at step t, each task i other than task 0 and task N-1

1. sends its data on its left and right outports,

2. receives and from its left and right inports, and
3. uses these values to compute .

Notice that the N tasks can execute independently, with the only constraint on execution order
being the synchronization enforced by the receive operations. This synchronization ensures that no
data value is updated at step t+1 until the data values in neighboring tasks have been updated at
step t. Hence, execution is deterministic.

1.4.2 Pairwise Interactions

Figure 1.12: Task structures for computing pairwise interactions for N=5. (a) The unidirectional
ring used in the simple, nonsymmetric algorithm. (b) The unidirectional ring with additional
channels used to return accumulated values in the symmetric algorithm; the path taken by the
accumulator used for task 0 is shown as a solid line.

 Our second example uses a similar channel structure but requires a more complex communication
algorithm. Many problems require the computation of all N(N-1) pairwise interactions ,

, between N data, . Interactions may be symmetric, in which case
and only N(N-1)/2 interactions need be computed. For example, in

molecular dynamics we may require the total force vector acting on each atom , defined as
follows:

Each atom is represented by its mass and Cartesian coordinates. denotes the mutual
attraction or repulsion between atoms and ; in this example, , so
interactions are symmetric.

A simple parallel algorithm for the general pairwise interactions problem might create N tasks.
Task i is given the datum and is responsible for computing the interactions .
One might think that as each task needs a datum from every other task, N(N-1) channels would be
needed to perform the necessary communications. However, a more economical structure is
possible that uses only N channels. These channels are used to connect the N tasks in a
unidirectional ring (Figure 1.12(a)). Hence, each task has one inport and one outport. Each task
first initializes both a buffer (with the value of its local datum) and an accumulator that will
maintain the result of the computation. It then repeatedly

1. sends the value contained in its buffer on its outport,
2. receives a datum on its inport into its buffer,
3. computes the interaction between this datum and its local datum, and
4. uses the computed interaction to update its local accumulator.

This send-receive-compute cycle is repeated N-1 times, causing the N data to flow around the ring.
Every task sees every datum and is able to compute all N-1 interactions involving its datum. The
algorithm involves N-1 communications per task.

It turns out that if interactions are symmetric, we can halve both the number of interactions
computed and the number of communications by refining the communication structure. Assume
for simplicity that N is odd. An additional N communication channels are created, linking each
task to the task offset around the ring (Figure 1.12(b)). Each time an interaction is
computed between a local datum and an incoming datum , this value is accumulated not
only in the accumulator for but also in another accumulator that is circulated with . After

steps, the accumulators associated with the circulated values are returned to their home task
using the new channels and combined with the local accumulators. Hence, each symmetric
interaction is computed only once: either as on the node that holds or as on
the node that holds .

1.4.3 Search
 The next example illustrates the dynamic creation of tasks and channels during program
execution. Algorithm 1.1 explores a search tree looking for nodes that correspond to ``solutions.''
A parallel algorithm for this problem can be structured as follows. Initially, a single task is created
for the root of the tree. A task evaluates its node and then, if that node is not a solution, creates a
new task for each search call (subtree). A channel created for each new task is used to return to
the new task's parent any solutions located in its subtree. Hence, new tasks and channels are
created in a wavefront as the search progresses down the search tree (Figure 1.13).

Figure 1.13: Task structure for the search example. Each circle represents a node in the search
tree and hence a call to the search procedure. A task is created for each node in the tree as it is
explored. At any one time, some tasks are actively engaged in expanding the tree further (these are
shaded in the figure); others have reached solution nodes and are terminating, or are waiting for
their offspring to report back with solutions. The lines represent the channels used to return
solutions.

1.4.4 Parameter Study
 In so-called embarrassingly parallel problems, a computation consists of a number of tasks that
can execute more or less independently, without communication. These problems are usually easy
to adapt for parallel execution. An example is a parameter study, in which the same computation
must be performed using a range of different input parameters. The parameter values are read from
an input file, and the results of the different computations are written to an output file.

Figure 1.14: Task structure for parameter study problem. Workers (W) request parameters from
the input task (I) and send results to the output task (O). Note the many-to-one connections: this
program is nondeterministic in that the input and output tasks receive data from workers in
whatever order the data are generated. Reply channels, represented as dashed lines, are used to
communicate parameters from the input task to workers.

If the execution time per problem is constant and each processor has the same computational
power, then it suffices to partition available problems into equal-sized sets and allocate one such
set to each processor. In other situations, we may choose to use the task structure illustrated in
Figure 1.14. The input and output tasks are responsible for reading and writing the input and
output files, respectively. Each worker task (typically one per processor) repeatedly requests
parameter values from the input task, computes using these values, and sends results to the output
task. Because execution times vary, the input and output tasks cannot expect to receive messages

from the various workers in any particular order. Instead, a many-to-one communication structure
is used that allows them to receive messages from the various workers in arrival order.

The input task responds to a worker request by sending a parameter to that worker. Hence, a
worker that has sent a request to the input task simply waits for the parameter to arrive on its reply
channel. In some cases, efficiency can be improved by prefetching, that is, requesting the next
parameter before it is needed. The worker can then perform computation while its request is being
processed by the input task.

 Because this program uses many-to-one communication structures, the order in which
computations are performed is not necessarily determined. However, this nondeterminism affects
only the allocation of problems to workers and the ordering of results in the output file, not the
actual results computed.

1.5 Summary
This chapter has introduced four desirable attributes of parallel algorithms and software:
concurrency, scalability, locality, and modularity. Concurrency refers to the ability to perform
many actions simultaneously; this is essential if a program is to execute on many processors.
Scalability indicates resilience to increasing processor counts and is equally important, as
processor counts appear likely to grow in most environments. Locality means a high ratio of local
memory accesses to remote memory accesses (communication); this is the key to high
performance on multicomputer architectures. Modularity ---the decomposition of complex entities
into simpler components---is an essential aspect of software engineering, in parallel computing as
well as sequential computing.

The multicomputer parallel machine model and the task/channel programming model introduced
in this chapter will be used in subsequent discussion of parallel algorithm design, analysis, and
implementation. The multicomputer consists of one or more von Neumann computers connected
by an interconnection network. It is a simple and realistic machine model that provides a basis for
the design of scalable and portable parallel programs. A programming model based on tasks and
channels simplifies the programming of multicomputers by providing abstractions that allow us to
talk about concurrency, locality, and communication in a machine-independent fashion, and by
providing a basis for the modular construction of parallel programs.

Exercises
Exercises 6--10 require you to describe a parallel algorithm. You should describe the task/channel
structure created by the algorithm and provide a definition for each task, including its interface
(inports and outports), its local data, and the actions it performs.

1. If today's workstations execute at operations per second, and performance increases at a
rate of 25 percent per year, how long will it be before we have workstations capable of

operations per second? ?
2. A climate model requires floating point operations for a ten-year simulation. How long

would this computation take at floating point operations per second (10 Mflops)?

3. A climate model generates bytes of data in a ten-day simulation. How fast must data be
transferred to secondary storage? What transfer rate is required if we are to search this data
in ten minutes?

4. Consider a three-dimensional chip. Demonstrate that chip volume V and computation time
T are related as , just as area A and computation time are related as in a two-
dimensional chip.

5. Execute the parallel algorithm described in Section 1.4.1 by hand for N=4, and satisfy
yourself that execution is deterministic.

6. Adapt the parallel algorithm of Section 1.4.1 to deal with a two-dimensional finite
difference problem in which the value of each point in a two-dimensional grid of size N

N is updated as follows:

7. Describe a variant of the parallel algorithm of Section 1.4.2 that allows for the case when N
is even.

8. Describe a parallel algorithm for Hoare's quicksort algorithm [153] based on the parallel
divide-and-conquer strategy employed in Section 1.4.3.

9. Describe a task/channel structure for a parallel database system in which M concurrently
executing users can generate requests to read and write data located in N databases and
requests to access different databases can be handled concurrently. You must use less than
M.N channels.

Extend this structure to allow a user to request that a set of read and write operations be
performed as an atomic operation, that is, without read or write operations generated by
other tasks intervening.

10. Extend the parallel algorithms of Sections 1.4.1 and 1.4.3 to provide for the loading of
initial data values in from disk and the writing out of the solutions to disk.

Chapter Notes
Kauffman and Smarr [169] discuss the impact of high-performance computing on science. Levin
[189] and several U.S. government reports [232,233,215] describe the so-called Grand Challenge
problems that have motivated recent initiatives in high-performance computing. The
computational requirements in Table 1.1 are derived from the project plan for the CHAMMP
climate modeling program, which has adapted a range of climate models for execution on parallel
computers [287]. Dewitt and Gray [79] discuss developments in parallel databases. Lawson [186]
discusses industrial real-time applications of parallel computing. Worlton [299], Meindl [201], and
Hennessy and Joupp [147] discuss trends in processor design and sequential and parallel computer
architecture. Ullman [286] provides a succinct explanation of the complexity results.

Goldstine and von Neumann [121] provide an early exposition of the von Neumann computer.
Bailey [22] explains how this model derived from the automation of algorithms performed
previously by ``human computers.'' He argues that highly parallel computers are stimulating not
only new algorithmic approaches, but also new ways of thinking about problems. Many
researchers have proposed abstract machine models for parallel computing [67,99,288]. Snyder
[268] explains why the multicomputer is a good choice. Early parallel computers with a

multicomputer-like architecture include the Ultracomputer [252] and the Cosmic Cube [254].
Athas and Seitz [18] and Seitz [255] discuss developments in this area. Almasi and Gottlieb [11]
and Hwang [156] provide good introductions to parallel computer architectures and
interconnection networks. Hillis [150] describes SIMD computers. Fortune and Wylie [99] and
Jájá [157] discuss the PRAM model. Comer [63] discusses LANs and WANs. Kahn [162]
describes the ARPANET, an early WAN. The chapter notes in Chapter 3 provide additional
references on parallel computer architecture.

The basic abstractions used to describe parallel algorithms have been developed in the course of
many years of research in operating systems, distributed computing, and parallel computation. The
use of channels was first explored by Hoare in Communicating Sequential Processes (CSP) [154]
and is fundamental to the occam programming language [231,280]. However, in CSP the task and
channel structure is static, and both sender and receiver block until a communication has
completed. This approach has proven too restrictive for general-purpose parallel programming.
The task/channel model introduced in this chapter is described by Chandy and Foster [102], who
also discuss the conditions under which the model can guarantee deterministic execution [51].

 Seitz [254] and Gropp, Lusk, and Skjellum [126] describe the message-passing model (see also
the chapter notes in Chapter 8). Ben Ari [32] and Karp and Babb [165] discuss shared-memory
programming. Hillis and Steele [151] and Hatcher and Quinn [136] describe data-parallel
programming; the chapter notes in Chapter 7 provide additional references. Other approaches that
have generated considerable interest include Actors [5], concurrent logic programming [107],
functional programming [146], Linda [48], and Unity [54]. Bal et al. [23] provide a useful survey
of some of these approaches. Pancake and Bergmark [218] emphasize the importance of
deterministic execution in parallel computing.

2 Designing Parallel Algorithms
Now that we have discussed what parallel algorithms look like, we are ready to examine how they
can be designed. In this chapter, we show how a problem specification is translated into an
algorithm that displays concurrency, scalability, and locality. Issues relating to modularity are
discussed in Chapter 4.

Parallel algorithm design is not easily reduced to simple recipes. Rather, it requires the sort of
integrative thought that is commonly referred to as ``creativity.'' However, it can benefit from a
methodical approach that maximizes the range of options considered, that provides mechanisms
for evaluating alternatives, and that reduces the cost of backtracking from bad choices. We
describe such an approach and illustrate its application to a range of problems. Our goal is to
suggest a framework within which parallel algorithm design can be explored. In the process, we
hope you will develop intuition as to what constitutes a good parallel algorithm.

After studying this chapter, you should be able to design simple parallel algorithms in a
methodical fashion and recognize design flaws that compromise efficiency or scalability. You
should be able to partition computations, using both domain and functional decomposition
techniques, and know how to recognize and implement both local and global, static and dynamic,
structured and unstructured, and synchronous and asynchronous communication structures. You
should also be able to use agglomeration as a means of reducing communication and
implementation costs and should be familiar with a range of load-balancing strategies.

2.1 Methodical Design
Most programming problems have several parallel solutions. The best solution may differ from
that suggested by existing sequential algorithms. The design methodology that we describe is
intended to foster an exploratory approach to design in which machine-independent issues such as
concurrency are considered early and machine-specific aspects of design are delayed until late in
the design process. This methodology structures the design process as four distinct stages:
partitioning, communication, agglomeration, and mapping. (The acronym PCAM may serve as a
useful reminder of this structure.) In the first two stages, we focus on concurrency and scalability
and seek to discover algorithms with these qualities. In the third and fourth stages, attention shifts
to locality and other performance-related issues. The four stages are illustrated in Figure 2.1 and
can be summarized as follows:

1. Partitioning. The computation that is to be performed and the data operated on by this
computation are decomposed into small tasks. Practical issues such as the number of
processors in the target computer are ignored, and attention is focused on recognizing
opportunities for parallel execution.

2. Communication. The communication required to coordinate task execution is determined,
and appropriate communication structures and algorithms are defined.

3. Agglomeration. The task and communication structures defined in the first two stages of a
design are evaluated with respect to performance requirements and implementation costs.
If necessary, tasks are combined into larger tasks to improve performance or to reduce
development costs.

4. Mapping. Each task is assigned to a processor in a manner that attempts to satisfy the
competing goals of maximizing processor utilization and minimizing communication costs.
Mapping can be specified statically or determined at runtime by load-balancing algorithms.

Figure 2.1: PCAM: a design methodology for parallel programs. Starting with a problem
specification, we develop a partition, determine communication requirements, agglomerate tasks,
and finally map tasks to processors.

 The outcome of this design process can be a program that creates and destroys tasks dynamically,
using load-balancing techniques to control the mapping of tasks to processors. Alternatively, it can
be an SPMD program that creates exactly one task per processor. The same process of algorithm
discovery applies in both cases, although if the goal is to produce an SPMD program, issues
associated with mapping are subsumed into the agglomeration phase of the design.

Algorithm design is presented here as a sequential activity. In practice, however, it is a highly
parallel process, with many concerns being considered simultaneously. Also, although we seek to
avoid backtracking, evaluation of a partial or complete design may require changes to design
decisions made in previous steps.

The following sections provide a detailed examination of the four stages of the design process. We
present basic principles, use examples to illustrate the application of these principles, and include
design checklists that can be used to evaluate designs as they are developed. In the final sections of
this chapter, we use three case studies to illustrate the application of these design techniques to
realistic problems.

2.2 Partitioning
 The partitioning stage of a design is intended to expose opportunities for parallel execution.
Hence, the focus is on defining a large number of small tasks in order to yield what is termed a
fine-grained decomposition of a problem. Just as fine sand is more easily poured than a pile of
bricks, a fine-grained decomposition provides the greatest flexibility in terms of potential parallel
algorithms. In later design stages, evaluation of communication requirements, the target
architecture, or software engineering issues may lead us to forego opportunities for parallel
execution identified at this stage. We then revisit the original partition and agglomerate tasks to
increase their size, or granularity. However, in this first stage we wish to avoid prejudging
alternative partitioning strategies.

A good partition divides into small pieces both the computation associated with a problem and the
data on which this computation operates. When designing a partition, programmers most
commonly first focus on the data associated with a problem, then determine an appropriate
partition for the data, and finally work out how to associate computation with data. This
partitioning technique is termed domain decomposition. The alternative approach---first
decomposing the computation to be performed and then dealing with the data---is termed
functional decomposition. These are complementary techniques which may be applied to different
components of a single problem or even applied to the same problem to obtain alternative parallel
algorithms.

In this first stage of a design, we seek to avoid replicating computation and data; that is, we seek to
define tasks that partition both computation and data into disjoint sets. Like granularity, this is an
aspect of the design that we may revisit later. It can be worthwhile replicating either computation
or data if doing so allows us to reduce communication requirements.

2.2.1 Domain Decomposition
 In the domain decomposition approach to problem partitioning, we seek first to decompose the
data associated with a problem. If possible, we divide these data into small pieces of
approximately equal size. Next, we partition the computation that is to be performed, typically by
associating each operation with the data on which it operates. This partitioning yields a number of
tasks, each comprising some data and a set of operations on that data. An operation may require
data from several tasks. In this case, communication is required to move data between tasks. This
requirement is addressed in the next phase of the design process.

The data that are decomposed may be the input to the program, the output computed by the
program, or intermediate values maintained by the program. Different partitions may be possible,
based on different data structures. Good rules of thumb are to focus first on the largest data
structure or on the data structure that is accessed most frequently. Different phases of the
computation may operate on different data structures or demand different decompositions for the
same data structures. In this case, we treat each phase separately and then determine how the
decompositions and parallel algorithms developed for each phase fit together. The issues that arise
in this situation are discussed in Chapter 4.

Figure 2.2 illustrates domain decomposition in a simple problem involving a three-dimensional
grid. (This grid could represent the state of the atmosphere in a weather model, or a three-

dimensional space in an image-processing problem.) Computation is performed repeatedly on each
grid point. Decompositions in the x, y, and/or z dimensions are possible. In the early stages of a
design, we favor the most aggressive decomposition possible, which in this case defines one task
for each grid point. Each task maintains as its state the various values associated with its grid point
and is responsible for the computation required to update that state.

Figure 2.2: Domain decompositions for a problem involving a three-dimensional grid. One-, two-,
and three-dimensional decompositions are possible; in each case, data associated with a single
task are shaded. A three-dimensional decomposition offers the greatest flexibility and is adopted
in the early stages of a design.

2.2.2 Functional Decomposition
 Functional decomposition represents a different and complementary way of thinking about
problems. In this approach, the initial focus is on the computation that is to be performed rather
than on the data manipulated by the computation. If we are successful in dividing this computation
into disjoint tasks, we proceed to examine the data requirements of these tasks. These data
requirements may be disjoint, in which case the partition is complete. Alternatively, they may
overlap significantly, in which case considerable communication will be required to avoid
replication of data. This is often a sign that a domain decomposition approach should be
considered instead.

 While domain decomposition forms the foundation for most parallel algorithms, functional
decomposition is valuable as a different way of thinking about problems. For this reason alone, it
should be considered when exploring possible parallel algorithms. A focus on the computations
that are to be performed can sometimes reveal structure in a problem, and hence opportunities for
optimization, that would not be obvious from a study of data alone.

As an example of a problem for which functional decomposition is most appropriate, consider
Algorithm 1.1. This explores a search tree looking for nodes that correspond to ``solutions.'' The
algorithm does not have any obvious data structure that can be decomposed. However, a fine-
grained partition can be obtained as described in Section 1.4.3. Initially, a single task is created for
the root of the tree. A task evaluates its node and then, if that node is not a leaf, creates a new task
for each search call (subtree). As illustrated in Figure 1.13, new tasks are created in a wavefront
as the search tree is expanded.

Figure 2.3: Functional decomposition in a computer model of climate. Each model component
can be thought of as a separate task, to be parallelized by domain decomposition. Arrows
represent exchanges of data between components during computation: the atmosphere model
generates wind velocity data that are used by the ocean model, the ocean model generates sea
surface temperature data that are used by the atmosphere model, and so on.

 Functional decomposition also has an important role to play as a program structuring technique. A
functional decomposition that partitions not only the computation that is to be performed but also
the code that performs that computation is likely to reduce the complexity of the overall design.
This is often the case in computer models of complex systems, which may be structured as
collections of simpler models connected via interfaces. For example, a simulation of the earth's
climate may comprise components representing the atmosphere, ocean, hydrology, ice, carbon
dioxide sources, and so on. While each component may be most naturally parallelized using
domain decomposition techniques, the parallel algorithm as a whole is simpler if the system is first
decomposed using functional decomposition techniques, even though this process does not yield a
large number of tasks (Figure 2.3). This issue is explored in Chapter 4.

2.2.3 Partitioning Design Checklist
 The partitioning phase of a design should produce one or more possible decompositions of a
problem. Before proceeding to evaluate communication requirements, we use the following
checklist to ensure that the design has no obvious flaws. Generally, all these questions should be
answered in the affirmative.

1. Does your partition define at least an order of magnitude more tasks than there are
processors in your target computer? If not, you have little flexibility in subsequent design
stages.

2. Does your partition avoid redundant computation and storage requirements? If not, the
resulting algorithm may not be scalable to deal with large problems.

3. Are tasks of comparable size? If not, it may be hard to allocate each processor equal
amounts of work.

4. Does the number of tasks scale with problem size? Ideally, an increase in problem size
should increase the number of tasks rather than the size of individual tasks. If this is not the
case, your parallel algorithm may not be able to solve larger problems when more
processors are available.

5. Have you identified several alternative partitions? You can maximize flexibility in
subsequent design stages by considering alternatives now. Remember to investigate both
domain and functional decompositions.

Answers to these questions may suggest that, despite careful thought in this and subsequent design
stages, we have a ``bad'' design. In this situation it is risky simply to push ahead with
implementation. We should use the performance evaluation techniques described in Chapter 3 to
determine whether the design meets our performance goals despite its apparent deficiencies. We
may also wish to revisit the problem specification. Particularly in science and engineering
applications, where the problem to be solved may involve a simulation of a complex physical
process, the approximations and numerical techniques used to develop the simulation can strongly
influence the ease of parallel implementation. In some cases, optimal sequential and parallel
solutions to the same problem may use quite different solution techniques. While detailed
discussion of these issues is beyond the scope of this book, we present several illustrative
examples of them later in this chapter.

2.3 Communication
 The tasks generated by a partition are intended to execute concurrently but cannot, in general,
execute independently. The computation to be performed in one task will typically require data
associated with another task. Data must then be transferred between tasks so as to allow
computation to proceed. This information flow is specified in the communication phase of a
design.

Recall from Chapter 1 that in our programming model, we conceptualize a need for
communication between two tasks as a channel linking the tasks, on which one task can send
messages and from which the other can receive. Hence, the communication associated with an
algorithm can be specified in two phases. First, we define a channel structure that links, either
directly or indirectly, tasks that require data (consumers) with tasks that possess those data
(producers). Second, we specify the messages that are to be sent and received on these channels.
Depending on our eventual implementation technology, we may not actually create these channels
when coding the algorithm. For example, in a data-parallel language, we simply specify data-
parallel operations and data distributions. Nevertheless, thinking in terms of tasks and channels
helps us to think quantitatively about locality issues and communication costs.

The definition of a channel involves an intellectual cost and the sending of a message involves a
physical cost. Hence, we avoid introducing unnecessary channels and communication operations.
In addition, we seek to optimize performance by distributing communication operations over many
tasks and by organizing communication operations in a way that permits concurrent execution.

 In domain decomposition problems, communication requirements can be difficult to determine.
Recall that this strategy produces tasks by first partitioning data structures into disjoint subsets and
then associating with each datum those operations that operate solely on that datum. This part of
the design is usually simple. However, some operations that require data from several tasks usually
remain. Communication is then required to manage the data transfer necessary for these tasks to
proceed. Organizing this communication in an efficient manner can be challenging. Even simple
decompositions can have complex communication structures.

 In contrast, communication requirements in parallel algorithms obtained by functional
decomposition are often straightforward: they correspond to the data flow between tasks. For
example, in a climate model broken down by functional decomposition into atmosphere model,
ocean model, and so on, the communication requirements will correspond to the interfaces

between the component submodels: the atmosphere model will produce values that are used by the
ocean model, and so on (Figure 2.3).

In the following discussion, we use a variety of examples to show how communication
requirements are identified and how channel structures and communication operations are
introduced to satisfy these requirements. For clarity in exposition, we categorize communication
patterns along four loosely orthogonal axes: local/global, structured/unstructured, static/dynamic,
and synchronous/asynchronous.

• In local communication, each task communicates with a small set of other tasks (its
``neighbors''); in contrast, global communication requires each task to communicate with
many tasks.

• In structured communication, a task and its neighbors form a regular structure, such as a
tree or grid; in contrast, unstructured communication networks may be arbitrary graphs.

• In static communication, the identity of communication partners does not change over
time; in contrast, the identity of communication partners in dynamic communication
structures may be determined by data computed at runtime and may be highly variable.

• In synchronous communication, producers and consumers execute in a coordinated
fashion, with producer/consumer pairs cooperating in data transfer operations; in contrast,
asynchronous communication may require that a consumer obtain data without the
cooperation of the producer.

2.3.1 Local Communication
 A local communication structure is obtained when an operation requires data from a small number
of other tasks. It is then straightforward to define channels that link the task responsible for
performing the operation (the consumer) with the tasks holding the required data (the producers)
and to introduce appropriate send and receive operations in the producer and consumer tasks,
respectively.

 For illustrative purposes, we consider the communication requirements associated with a simple
numerical computation, namely a Jacobi finite difference method. In this class of numerical
method, a multidimensional grid is repeatedly updated by replacing the value at each point with
some function of the values at a small, fixed number of neighboring points. The set of values
required to update a single grid point is called that grid point's stencil. For example, the following
expression uses a five-point stencil to update each element of a two-dimensional grid X :

This update is applied repeatedly to compute a sequence of values , , and so on. The

notation denotes the value of grid point at step t.

Figure 2.4: Task and channel structure for a two-dimensional finite difference computation with
five-point update stencil. In this simple fine-grained formulation, each task encapsulates a single
element of a two-dimensional grid and must both send its value to four neighbors and receive
values from four neighbors. Only the channels used by the shaded task are shown.

Let us assume that a partition has used domain decomposition techniques to create a distinct task
for each point in the two-dimensional grid. Hence, a task allocated the grid point must
compute the sequence

This computation requires in turn the four corresponding sequences

which are produced by the four tasks handling grid points , , , and , that
is, by its four neighbors in the grid. For these values to be communicated, we define channels
linking each task that requires a value with the task that generates that value. This yields the
channel structure illustrated in Figure 2.4. Each task then executes the following logic:

 for t=0 to T-1

 send to each neighbor

 receive , , , from neighbors

 compute using Equation 2.1

 endfor

We observed earlier that the best sequential and parallel solutions to a problem may use different
techniques. This situation arises in finite difference problems. In sequential computing, Gauss-
Seidel update strategies are often preferred over Jacobi strategies because they allow solutions of
comparable accuracy to be obtained using fewer iterations. In a Gauss-Seidel scheme, elements are
updated in a particular order so that the computation of each element can use the most up-to-date
value of other elements. For example, the Jacobi update of Equation 2.1 may be reformulated as

follows (notice the use of values and):

While Jacobi schemes are trivial to parallelize (all grid points can be updated concurrently), this is
not the case for all Gauss-Seidel schemes. For example, the update scheme of Equation 2.2 allows
only an average of around N/2 points within an N N grid to be updated concurrently. Fortunately,
many different Gauss-Seidel orderings are possible for most problems, and we are usually free to
choose the ordering that maximizes available parallelism. In particular, we can choose to update
first the odd-numbered elements and then the even-numbered elements of an array. Each update
uses the most recent information, yet the updates to the odd-numbered points are independent and
can proceed concurrently, as can the updates to the even-numbered points. This update strategy
yields what is referred to as a red-black algorithm, since the points can be thought of as being
colored as on a chess board: either red (odd) or black (even); points of the same color can be
updated concurrently. Figure 2.5 illustrates both the Gauss-Seidel scheme of Equation 2.2 and a
red-black scheme, and shows how the latter scheme increases opportunities for parallel execution.

Figure 2.5: Two finite difference update strategies, here applied on a two-dimensional grid with a
five-point stencil. In both figures, shaded grid points have already been updated to step t+1 ;
unshaded grid points are still at step t. The arrows show data dependencies for one of the latter
points. The figure on the left illustrates a simple Gauss-Seidel scheme and highlights the five grid
points that can be updated at a particular point in time. In this scheme, the update proceeds in a
wavefront from the top left corner to the bottom right. On the right, we show a red-black update
scheme. Here, all the grid points at step t can be updated concurrently.

This example indicates the important role that choice of solution strategy can play in determining
the performance of a parallel program. While the simple Gauss-Seidel update strategy of Equation
2.2 may be appropriate in a sequential program, it is not ideal on a parallel computer. The Jacobi
update strategy is efficient on a parallel computer but is inferior numerically. The red-black
scheme combines the advantages of both approaches.

2.3.2 Global Communication

Figure 2.6: A centralized summation algorithm that uses a central manager task (S) to sum N
numbers distributed among N tasks. Here, N=8, and each of the 8 channels is labeled with the
number of the step in which they are used.

 A global communication operation is one in which many tasks must participate. When such
operations are implemented, it may not be sufficient simply to identify individual
producer/consumer pairs. Such an approach may result in too many communications or may
restrict opportunities for concurrent execution. For example, consider the problem of performing a
parallel reduction operation, that is, an operation that reduces N values distributed over N tasks
using a commutative associative operator such as addition:

Let us assume that a single ``manager'' task requires the result S of this operation. Taking a purely
local view of communication, we recognize that the manager requires values , , etc., from
tasks 0, 1, etc. Hence, we could define a communication structure that allows each task to
communicate its value to the manager independently. The manager would then receive the values
and add them into an accumulator (Figure 2.6). However, because the manager can receive and
sum only one number at a time, this approach takes time to sum N numbers---not a very
good parallel algorithm!

 This example illustrates two general problems that can hinder efficient parallel execution in
algorithms based on a purely local view of communication:

1. The algorithm is centralized : it does not distribute computation and communication. A
single task (in this case, the manager task) must participate in every operation.

2. The algorithm is sequential : it does not allow multiple computation and communication
operations to proceed concurrently.

We must address both these problems to develop a good parallel algorithm.

Distributing Communication and Computation.

We first consider the problem of distributing the computation and communication associated with
the summation. We can distribute the summation of the N numbers by making each task i, 0<i<N-
1, compute the sum:

Figure 2.7: A summation algorithm that connects N tasks in an array in order to sum N numbers
distributed among these tasks. Each channel is labeled with the number of the step in which it is
used and the value that is communicated on it.

The communication requirements associated with this algorithm can be satisfied by connecting the
N tasks in a one-dimensional array (Figure 2.7). Task N-1 sends its value to its neighbor in this
array. Tasks 1 through N-2 each wait to receive a partial sum from their right-hand neighbor, add
this to their local value, and send the result to their left-hand neighbor. Task 0 receives a partial
sum and adds this to its local value to obtain the complete sum. This algorithm distributes the N-1
communications and additions, but permits concurrent execution only if multiple summation
operations are to be performed. (The array of tasks can then be used as a pipeline, through which
flow partial sums.) A single summation still takes N-1 steps.

Uncovering Concurrency: Divide and Conquer.

Opportunities for concurrent computation and communication can often be uncovered by applying
a problem-solving strategy called divide and conquer. To solve a complex problem (such as
summing N numbers), we seek to partition it into two or more simpler problems of roughly
equivalent size (e.g., summing N/2 numbers). This process is applied recursively to produce a set
of subproblems that cannot be subdivided further (e.g., summing two numbers). The strategy is
summarized in Algorithm 2.1. The divide-and-conquer technique is effective in parallel computing
when the subproblems generated by problem partitioning can be solved concurrently. For example,
in the summation problem, we can take advantage of the following identity (, n an
integer):

The two summations on the right hand side can be performed concurrently. They can also be
further decomposed if n>1, to give the tree structure illustrated in Figure 2.8. Summations at the
same level in this tree of height can be performed concurrently, so the complete
summation can be achieved in rather than N steps.

Figure 2.8: Tree structure for divide-and-conquer summation algorithm with N=8. The N
numbers located in the tasks at the bottom of the diagram are communicated to the tasks in the
row immediately above; these each perform an addition and then forward the result to the next
level. The complete sum is available at the root of the tree after steps.

In summary, we observe that in developing an efficient parallel summation algorithm, we have
distributed the N-1 communication and computation operations required to perform the summation
and have modified the order in which these operations are performed so that they can proceed
concurrently. The result is a regular communication structure in which each task communicates
with a small set of neighbors.

2.3.3 Unstructured and Dynamic Communication

Figure 2.9: Example of a problem requiring unstructured communication. In this finite element
mesh generated for an assembly part, each vertex is a grid point. An edge connecting two vertices
represents a data dependency that will require communication if the vertices are located in
different tasks. Notice that different vertices have varying numbers of neighbors. (Image courtesy
of M. S. Shephard.)

The examples considered previously are all of static, structured communication, in which a task's
communication partners form a regular pattern such as a tree or a grid and do not change over
time. In other cases, communication patterns may be considerably more complex. For example, in
finite element methods used in engineering calculations, the computational grid may be shaped to
follow an irregular object or to provide high resolution in critical regions (Figure 2.9). Here, the
channel structure representing the communication partners of each grid point is quite irregular and
data-dependent and, furthermore, may change over time if the grid is refined as a simulation
evolves.

 Unstructured communication patterns do not generally cause conceptual difficulties in the early
stages of a design. For example, it is straightforward to define a single task for each vertex in a
finite element graph and to require communication for each edge. However, unstructured
communication complicates the tasks of agglomeration and mapping. In particular, sophisticated
algorithms can be required to determine an agglomeration strategy that both creates tasks of

approximately equal size and minimizes communication requirements by creating the least number
of intertask edges. Algorithms of this sort are discussed in Section 2.5.1. If communication
requirements are dynamic, these algorithms must be applied frequently during program execution,
and the cost of these algorithms must be weighed against their benefits.

2.3.4 Asynchronous Communication
The examples considered in the preceding section have all featured synchronous communication,
in which both producers and consumers are aware when communication operations are required,
and producers explicitly send data to consumers. In asynchronous communication, tasks that
possess data (producers) are not able to determine when other tasks (consumers) may require data;
hence, consumers must explicitly request data from producers.

Figure 2.10: Using separate ``data tasks'' to service read and write requests on a distributed data
structure. In this figure, four computation tasks (C) generate read and write requests to eight data
items distributed among four data tasks (D). Solid lines represent requests; dashed lines represent
replies. One compute task and one data task could be placed on each of four processors so as to
distribute computation and data equitably.

This situation commonly occurs when a computation is structured as a set of tasks that must
periodically read and/or write elements of a shared data structure. Let us assume that this data
structure is too large or too frequently accessed to be encapsulated in a single task. Hence, a
mechanism is needed that allows this data structure to be distributed while supporting
asynchronous read and write operations on its components. Possible mechanisms include the
following.

1. The data structure is distributed among the computational tasks. Each task both performs
computation and generates requests for data located in other tasks. It also periodically
interrupts its own computation and polls for pending requests.

2. The distributed data structure is encapsulated in a second set of tasks responsible only for
responding to read and write requests (Figure 2.10).

3. On a computer that supports a shared-memory programming model, computational tasks
can access shared data without any special arrangements. However, care must be taken to
ensure that read and write operations on this shared data occur in the proper order.

 Each strategy has advantages and disadvantages; in addition, the performance characteristics of
each approach vary from machine to machine. The first strategy can result in convoluted,
nonmodular programs because of the need to intersperse polling operations throughout application
code. In addition, polling can be an expensive operation on some computers, in which case we
must trade off the cost of frequent polling against the benefit of rapid response to remote requests.
The second strategy is more modular: responsibility for the shared data structure is encapsulated in

a separate set of tasks. However, this strategy makes it hard to exploit locality because, strictly
speaking, there are no local data: all read and write operations require communication. Also,
switching between the computation and data tasks can be expensive on some machines.

2.3.5 Communication Design Checklist
 Having devised a partition and a communication structure for our parallel algorithm, we now
evaluate our design using the following design checklist. As in Section 2.2.3, these are guidelines
intended to identify nonscalable features, rather than hard and fast rules. However, we should be
aware of when a design violates them and why.

1. Do all tasks perform about the same number of communication operations? Unbalanced
communication requirements suggest a nonscalable construct. Revisit your design to see
whether communication operations can be distributed more equitably. For example, if a
frequently accessed data structure is encapsulated in a single task, consider distributing or
replicating this data structure.

2. Does each task communicate only with a small number of neighbors? If each task must
communicate with many other tasks, evaluate the possibility of formulating this global
communication in terms of a local communication structure, as was done in the pairwise
interactions algorithm of Section 1.4.2 and the summation algorithm of Section 2.3.2.

3. Are communication operations able to proceed concurrently? If not, your algorithm is
likely to be inefficient and nonscalable. Try to use divide-and-conquer techniques to
uncover concurrency, as in the summation algorithm of Section 2.3.2.

4. Is the computation associated with different tasks able to proceed concurrently? If not, your
algorithm is likely to be inefficient and nonscalable. Consider whether you can reorder
communication and computation operations. You may also wish to revisit your problem
specification, as was done in moving from a simple Gauss-Seidel to a red-black algorithm
in Section 2.3.1.

2.4 Agglomeration
 In the first two stages of the design process, we partitioned the computation to be performed into a
set of tasks and introduced communication to provide data required by these tasks. The resulting
algorithm is still abstract in the sense that it is not specialized for efficient execution on any
particular parallel computer. In fact, it may be highly inefficient if, for example, it creates many
more tasks than there are processors on the target computer and this computer is not designed for
efficient execution of small tasks.

In the third stage, agglomeration, we move from the abstract toward the concrete. We revisit
decisions made in the partitioning and communication phases with a view to obtaining an
algorithm that will execute efficiently on some class of parallel computer. In particular, we
consider whether it is useful to combine, or agglomerate, tasks identified by the partitioning phase,
so as to provide a smaller number of tasks, each of greater size (Figure 2.11). We also determine
whether it is worthwhile to replicate data and/or computation.

Figure 2.11: Examples of agglomeration. In (a), the size of tasks is increased by reducing the
dimension of the decomposition from three to two. In (b), adjacent tasks are combined to yield a
three-dimensional decomposition of higher granularity. In (c), subtrees in a divide-and-conquer
structure are coalesced. In (d), nodes in a tree algorithm are combined.

The number of tasks yielded by the agglomeration phase, although reduced, may still be greater
than the number of processors. In this case, our design remains somewhat abstract, since issues
relating to the mapping of tasks to processors remain unresolved. Alternatively, we may choose
during the agglomeration phase to reduce the number of tasks to exactly one per processor. We
might do this, for example, because our target parallel computer or program development
environment demands an SPMD program. In this case, our design is already largely complete,
since in defining P tasks that will execute on P processors, we have also addressed the mapping
problem. In this section, we focus on general issues that arise when increasing task granularity.
Specific issues relating to the generation of SPMD programs are discussed in Section 2.5.

Three sometimes-conflicting goals guide decisions concerning agglomeration and replication:
reducing communication costs by increasing computation and communication granularity,
retaining flexibility with respect to scalability and mapping decisions, and reducing software
engineering costs. These goals are discussed in the next three subsections.

2.4.1 Increasing Granularity
In the partitioning phase of the design process, our efforts are focused on defining as many tasks as
possible. This is a useful discipline because it forces us to consider a wide range of opportunities
for parallel execution. We note, however, that defining a large number of fine-grained tasks does
not necessarily produce an efficient parallel algorithm.

One critical issue influencing parallel performance is communication costs. On most parallel
computers, we have to stop computing in order to send and receive messages. Because we
typically would rather be computing, we can improve performance by reducing the amount of time
spent communicating. Clearly, this performance improvement can be achieved by sending less
data. Perhaps less obviously, it can also be achieved by using fewer messages, even if we send the
same amount of data. This is because each communication incurs not only a cost proportional to
the amount of data transferred but also a fixed startup cost. These issues are discussed in detail in
Chapter 3, where we use analytic models to quantify communication costs.

In addition to communication costs, we may need to be concerned with task creation costs. For
example, the performance of the fine-grained search algorithm illustrated in Figure 1.13, which
creates one task for each search tree node, is sensitive to task creation costs.

Figure 2.12: Effect of increased granularity on communication costs in a two-dimensional finite
difference problem with a five-point stencil. The figure shows fine- and coarse-grained two-
dimensional partitions of this problem. In each case, a single task is exploded to show its outgoing
messages (dark shading) and incoming messages (light shading). In (a), a computation on an

grid is partitioned into tasks, each responsible for a single point, while in (b) the
same computation is partioned into tasks, each responsible for 16 points. In (a),

communications are required, 4 per task; these transfer a total of 256 data values. In
(b), only communications are required, and only data values are
transferred.

Surface-to-Volume Effects.

If the number of communication partners per task is small, we can often reduce both the number of
communication operations and the total communication volume by increasing the granularity of
our partition, that is, by agglomerating several tasks into one. This effect is illustrated in Figure
2.12. In this figure, the reduction in communication costs is due to a surface-to-volume effect. In
other words, the communication requirements of a task are proportional to the surface of the

subdomain on which it operates, while the computation requirements are proportional to the
subdomain's volume. In a two-dimensional problem, the ``surface'' scales with the problem size
while the ``volume'' scales as the problem size squared. Hence, the amount of communication
performed for a unit of computation (the communication/computation ratio) decreases as task size
increases. This effect is often visible when a partition is obtained by using domain decomposition
techniques.

 A consequence of surface-to-volume effects is that higher-dimensional decompositions are
typically the most efficient, other things being equal, because they reduce the surface area
(communication) required for a given volume (computation). Hence, from the viewpoint of
efficiency it is usually best to increase granularity by agglomerating tasks in all dimensions rather
than reducing the dimension of the decomposition. This issue is explored quantitatively in
Example 3.4 in Chapter 3.

The design of an efficient agglomeration strategy can be difficult in problems with unstructured
communications, such as the finite element problem of Figure 2.9. Specialized techniques that can
be used in such cases are discussed in Section 2.5.1.

Replicating Computation.

 We can sometimes trade off replicated computation for reduced communication requirements
and/or execution time. For an example, we consider a variant of the summation problem presented
in Section 2.3.2, in which the sum must be replicated in each of the N tasks that contribute to the
sum.

Figure 2.13: Using an array (above) and a tree (below) to perform a summation and a broadcast.
On the left are the communications performed for the summation (s); on the right, the
communications performed for the broadcast (b). After or steps, respectively, the
sum of the N values is replicated in each of the N tasks.

A simple approach to distributing the sum is first to use either a ring- or tree-based algorithm to
compute the sum in a single task, and then to broadcast the sum to each of the N tasks. The
broadcast can be performed using the same communication structure as the summation; hence, the
complete operation can be performed in either 2(N-1) or steps, depending on which
communication structure is used (Figure 2.13).

These algorithms are optimal in the sense that they do not perform any unnecessary computation
or communication. However, there also exist alternative algorithms that execute in less elapsed

time, although at the expense of unnecessary (replicated) computation and communication. The
basic idea is to perform multiple summations concurrently, with each concurrent summation
producing a value in a different task.

 We first consider a variant of the array summation algorithm based on this idea. In this variant,
tasks are connected in a ring rather than an array, and all N tasks execute the same algorithm so
that N partial sums are in motion simultaneously. After N-1 steps, the complete sum is replicated
in every task. This strategy avoids the need for a subsequent broadcast operation, but at the
expense of redundant additions and unnecessary communications. However, the
summation and broadcast complete in N-1 rather than 2(N-1) steps. Hence, the strategy is faster if
the processors would otherwise be idle waiting for the result of the summation.

The tree summation algorithm can be modified in a similar way to avoid the need for a separate
broadcast. That is, multiple tree summations are performed concurrently so that after steps
each task has a copy of the sum. One might expect this approach to result in additions and
communications, as in the ring algorithm. However, in this case we can exploit redundancies in
both computation and communication to perform the summation in just operations.
The resulting communication structure, termed a butterfly, is illustrated in Figure 2.14. In each of
the stages, each task receives data from two tasks, performs a single addition, and sends the
result of this addition to two tasks in the next stage.

Figure 2.14: The butterfly communication structure can be used to sum N values in steps.
Numbers located in the bottom row of tasks are propagated up through intermediate stages,
thereby producing the complete sum in each task in the top row.

Figure 2.15: The communication structures that result when tasks at different levels in a tree or
butterfly structure are agglomerated. From top to bottom: a tree, a butterfly, and an equivalent
representation of the butterfly as a hypercube. In each case, N=8, and each channel is labeled
with the step in which it is used for communication.

Avoiding Communication.

Agglomeration is almost always beneficial if analysis of communication requirements reveals that
a set of tasks cannot execute concurrently. For example, consider the tree and butterfly structures
illustrated in Figures 2.8 and 2.14. When a single summation problem is performed, only tasks at
the same level in the tree or butterfly can execute concurrently. (Notice, however, that if many
summations are to be performed, in principle all tasks can be kept busy by pipelining multiple
summation operations.) Hence, tasks at different levels can be agglomerated without reducing
opportunities for concurrent execution, thereby yielding the communication structures represented
in Figure 2.15. The hypercube structure shown in this figure is a fundamental communication
structure that has many applications in parallel computing. It is discussed in greater detail in
Chapter 11.

2.4.2 Preserving Flexibility
It is easy when agglomerating tasks to make design decisions that limit unnecessarily an
algorithm's scalability. For example, we might choose to decompose a multidimensional data
structure in just a single dimension, reasoning that this provides more than enough concurrency for
the number of processors available. However, this strategy is shortsighted if our program must
ultimately be ported to larger parallel computers. It may also lead to a less efficient algorithm, as
discussed in Section 2.4.1.

The ability to create a varying number of tasks is critical if a program is to be portable and
scalable. As discussed in Chapter 1, good parallel algorithms are designed to be resilient to
changes in processor count. This flexibility can also be useful when tuning a code for a particular
computer. If tasks often block waiting for remote data, it can be advantageous to map several tasks
to a processor. Then, a blocked task need not result in a processor becoming idle, since another
task may be able to execute in its place. In this way, one task's communication is overlapped with
another task's computation. This technique, termed overlapping computation and communication,
is discussed in Chapter 3.

A third benefit of creating more tasks than processors is that doing so provides greater scope for
mapping strategies that balance computational load over available processors. As a general rule of
thumb, we could require that there be at least an order of magnitude more tasks than processors.
This issue is discussed in the next section.

The optimal number of tasks is typically best determined by a combination of analytic modeling
and empirical studies. Flexibility does not necessarily require that a design always create a large
number of tasks. Granularity can be controlled by a compile-time or runtime parameter. What is
important is that a design not incorporate unnecessary limits on the number of tasks that can be
created.

2.4.3 Reducing Software Engineering Costs
So far, we have assumed that our choice of agglomeration strategy is determined solely by a desire
to improve the efficiency and flexibility of a parallel algorithm. An additional concern, which can
be particularly important when parallelizing existing sequential codes, is the relative development
costs associated with different partitioning strategies. From this perspective, the most interesting
strategies may be those that avoid extensive code changes. For example, in a code that operates on
a multidimensional grid, it may be advantageous to avoid partitioning altogether in one dimension,
if doing so allows existing routines to be reused unchanged in a parallel program.

Frequently, we are concerned with designing a parallel algorithm that must execute as part of a
larger system. In this case, another software engineering issue that must be considered is the data
distributions utilized by other program components. For example, the best algorithm for some
program component may require that an input array data structure be decomposed in three
dimensions, while a preceding phase of the computation generates a two-dimensional
decomposition. Either one or both algorithms must be changed, or an explicit restructuring phase
must be incorporated in the computation. Each approach has different performance characteristics.
These issues are discussed in Chapter 4.

2.4.4 Agglomeration Design Checklist
 We have now revised the partitioning and communication decisions developed in the first two
design stages by agglomerating tasks and communication operations. We may have agglomerated
tasks because analysis of communication requirements shows that the original partition created
tasks that cannot execute concurrently. Alternatively, we may have used agglomeration to increase
computation and communication granularity and/or to decrease software engineering costs, even
though opportunities for concurrent execution are reduced. At this stage, we evaluate our design
with respect to the following checklist. Several of these questions emphasize quantitative

performance analysis, which becomes more important as we move from the abstract to the
concrete; this topic is addressed in Chapter 3.

1. Has agglomeration reduced communication costs by increasing locality? If not, examine
your algorithm to determine whether this could be achieved using an alternative
agglomeration strategy.

2. If agglomeration has replicated computation, have you verified that the benefits of this
replication outweigh its costs, for a range of problem sizes and processor counts?

3. If agglomeration replicates data, have you verified that this does not compromise the
scalability of your algorithm by restricting the range of problem sizes or processor counts
that it can address?

4. Has agglomeration yielded tasks with similar computation and communication costs? The
larger the tasks created by agglomeration, the more important it is that they have similar
costs. If we have created just one task per processor, then these tasks should have nearly
identical costs.

5. Does the number of tasks still scale with problem size? If not, then your algorithm is no
longer able to solve larger problems on larger parallel computers.

6. If agglomeration eliminated opportunities for concurrent execution, have you verified that
there is sufficient concurrency for current and future target computers? An algorithm with
insufficient concurrency may still be the most efficient, if other algorithms have excessive
communication costs; performance models can be used to quantify these tradeoffs.

7. Can the number of tasks be reduced still further, without introducing load imbalances,
increasing software engineering costs, or reducing scalability? Other things being equal,
algorithms that create fewer larger-grained tasks are often simpler and more efficient than
those that create many fine-grained tasks.

8. If you are parallelizing an existing sequential program, have you considered the cost of the
modifications required to the sequential code? If these costs are high, consider alternative
agglomeration strategies that increase opportunities for code reuse. If the resulting
algorithms are less efficient, use performance modeling techniques to estimate cost
tradeoffs.

2.5 Mapping
 In the fourth and final stage of the parallel algorithm design process, we specify where each task
is to execute. This mapping problem does not arise on uniprocessors or on shared-memory
computers that provide automatic task scheduling. In these computers, a set of tasks and associated
communication requirements is a sufficient specification for a parallel algorithm; operating system
or hardware mechanisms can be relied upon to schedule executable tasks to available processors.
Unfortunately, general-purpose mapping mechanisms have yet to be developed for scalable
parallel computers. In general, mapping remains a difficult problem that must be explicitly
addressed when designing parallel algorithms.

Our goal in developing mapping algorithms is normally to minimize total execution time. We use
two strategies to achieve this goal:

1. We place tasks that are able to execute concurrently on different processors, so as to
enhance concurrency.

2. We place tasks that communicate frequently on the same processor, so as to increase
locality.

Clearly, these two strategies will sometimes conflict, in which case our design will involve
tradeoffs. In addition, resource limitations may restrict the number of tasks that can be placed on a
single processor.

The mapping problem is known to be NP -complete, meaning that no computationally tractable
(polynomial-time) algorithm can exist for evaluating these tradeoffs in the general case. However,
considerable knowledge has been gained on specialized strategies and heuristics and the classes of
problem for which they are effective. In this section, we provide a rough classification of problems
and present some representative techniques.

Figure 2.16: Mapping in a grid problem in which each task performs the same amount of
computation and communicates only with its four neighbors. The heavy dashed lines delineate
processor boundaries. The grid and associated computation is partitioned to give each processor
the same amount of computation and to minimize off-processor communication.

Many algorithms developed using domain decomposition techniques feature a fixed number of
equal-sized tasks and structured local and global communication. In such cases, an efficient
mapping is straightforward. We map tasks in a way that minimizes interprocessor communication
(Figure 2.16); we may also choose to agglomerate tasks mapped to the same processor, if this has
not already been done, to yield a total of P coarse-grained tasks, one per processor.

In more complex domain decomposition-based algorithms with variable amounts of work per task
and/or unstructured communication patterns, efficient agglomeration and mapping strategies may
not be obvious to the programmer. Hence, we may employ load balancing algorithms that seek to
identify efficient agglomeration and mapping strategies, typically by using heuristic techniques.
The time required to execute these algorithms must be weighed against the benefits of reduced
execution time. Probabilistic load-balancing methods tend to have lower overhead than do
methods that exploit structure in an application.

The most complex problems are those in which either the number of tasks or the amount of
computation or communication per task changes dynamically during program execution. In the
case of problems developed using domain decomposition techniques, we may use a dynamic load-
balancing strategy in which a load-balancing algorithm is executed periodically to determine a
new agglomeration and mapping. Because load balancing must be performed many times during
program execution, local algorithms may be preferred that do not require global knowledge of
computation state.

Algorithms based on functional decomposition often yield computations consisting of many short-
lived tasks that coordinate with other tasks only at the start and end of execution. In this case, we
can use task-scheduling algorithms, which allocate tasks to processors that are idle or that are
likely to become idle.

2.5.1 Load-Balancing Algorithms
A wide variety of both general-purpose and application-specific load-balancing techniques have
been proposed for use in parallel algorithms based on domain decomposition techniques. We
review several representative approaches here (the chapter notes provide references to other
methods), namely recursive bisection methods, local algorithms, probabilistic methods, and cyclic
mappings. These techniques are all intended to agglomerate fine-grained tasks defined in an initial
partition to yield one coarse-grained task per processor. Alternatively, we can think of them as
partitioning our computational domain to yield one subdomain for each processor. For this reason,
they are often referred to as partitioning algorithms.

Recursive Bisection.

 Recursive bisection techniques are used to partition a domain (e.g., a finite element grid) into
subdomains of approximately equal computational cost while attempting to minimize
communication costs, that is, the number of channels crossing task boundaries. A divide-and-
conquer approach is taken. The domain is first cut in one dimension to yield two subdomains. Cuts
are then made recursively in the new subdomains until we have as many subdomains as we require
tasks. Notice that this recursive strategy allows the partitioning algorithm itself to be executed in
parallel.

The most straightforward of the recursive bisection techniques is recursive coordinate bisection,
which is normally applied to irregular grids that have a mostly local communication structure. This
technique makes cuts based on the physical coordinates of grid points in the domain, at each step
subdividing along the longer dimension so that if (for example) the cut is made along the x
dimension, grid points in one subdomain will all have an x -coordinate greater than grid points in
the other. This approach has the advantages of being simple and inexpensive. It also does a good
job of partitioning computation. A disadvantage is that it does not optimize communication
performance. In particular, it can generate long, skinny subdomains, which if an algorithm has
significant local communication will result in more messages than will a decomposition that
generates square subdomains.

A variant of recursive bisection called unbalanced recursive bisection attempts to reduce
communication costs by forming subgrids that have better aspect ratios. Instead of automatically
dividing a grid in half, it considers the P-1 partitions obtained by forming unbalanced subgrids
with 1/P and (P-1)/P of the load, with 2/P and (P-2)/P of the load, and so on, and chooses the
partition that minimizes partition aspect ratio. This method increases the cost of computing the
partition but can reduce communication costs. Plate 1

shows a mapping onto 64 processors constructed by using unbalanced recursive bisection. In this
instance, the grid in question is an irregular finite element mesh generated for a superconductivity
simulation.

Plate 1: The unbalanced recursive bisection algorithm, applied here to a superconductivity
simulation in which increased computational load corresponds to an increased number of
triangular elements in certain areas of the grid. The recursive partitioning yields sixty four
subdomains, with for example the first partition descending vertically between subdomains 28 and
5. Image courtesy of P. Plassmann.

 Another technique, called recursive graph bisection, can be useful in the case of more complex
unstructured grids, for example, finite element meshes. This technique uses connectivity
information to reduce the number of grid edges crossing subdomain boundaries, and hence to
reduce communication requirements. A grid is treated as a graph with N vertices (grid points) .
The algorithm first identifies the two extremities of the graph, that is, the two vertices that are the
most separated in terms of graph distance. (The graph distance between two vertices is the smallest
number of edges that must be traversed to go between them.) Each vertex is then assigned to the
subdomain corresponding to the closer extremity. Another algorithm called recursive spectral
bisection is even better in many circumstances (see the chapter notes for references). Plate 2

 shows a partition computed using the latter algorithm for the grid of Figure 2.9.

Plate 2: The spectral bisection partitioning algorithm applied to a finite element mesh generated
for an assembly part. Image courtesy of Z. Johan.

Figure 2.17: Load balancing in a grid problem. Variable numbers of grid points are placed on
each processor so as to compensate for load imbalances. This sort of load distribution may arise if
a local load-balancing scheme is used in which tasks exchange load information with neighbors
and transfer grid points when load imbalances are detected.

Local Algorithms.

 The techniques just described are relatively expensive because they require global knowledge of
computation state. In contrast, local load-balancing algorithms compensate for changes in
computational load using only information obtained from a small number of neighboring
processors. For example, processors may be organized in a logical mesh; periodically, each
processor compares its computational load with that of its neighbors in the mesh and transfers
computation if the difference in load exceeds some threshold. Figure 2.17 and Plate 3

show load distributions produced by such schemes.

Plate 3: A dynamic, local load-balancing algorithm applied to a weather model. This shows the
situation after grid points have migrated to compensate for a ``hot spot'' slightly to the left of the
center of the grid. Image courtesy of J. Michalakes.

Because local algorithms are inexpensive to operate, they can be useful in situations in which load
is constantly changing. However, they are typically less good at balancing load than global
algorithms and, in particular, can be slow to adjust to major changes in load characteristics. For
example, if a high load suddenly appears on one processor, multiple local load-balancing
operations are required before load ``diffuses'' to other processors.

Probabilistic Methods.

A particularly simple approach to load balancing is to allocate tasks to randomly selected
processors. If the number of tasks is large, we can expect that each processor will be allocated
about the same amount of computation. Advantages of this strategy are its low cost and scalability.
Disadvantages are that off-processor communication is required for virtually every task and that
acceptable load distribution is achieved only if there are many more tasks than there are
processors. The strategy tends to be most effective when there is relatively little communication
between tasks and/or little locality in communication patterns. In other cases, probabilistic
methods tend to result in considerably more communication than do other techniques.

Cyclic Mappings.

 If we know both that computational load per grid point varies and that there is significant spatial
locality in load levels, then a cyclic (or scattered, as it is sometimes called) mapping of tasks to
processors can be appropriate. That is, each of P processors is allocated every P th task according
to some enumeration of the tasks (Figure 2.18). This technique is a form of probabilistic mapping.
The goal is that, on average, each processor will be allocated about the same computational load.
The benefits of improved load balance may need to be weighed against increased communication
costs due to reduced locality. Block cyclic distributions are also possible, in which blocks of tasks
are allocated to processors.

Figure 2.18: Using a cyclic mapping for load balancing in a grid problem, when executing on 12
processors. Tasks mapped to a single processor are shaded. Notice that with this mapping, all
communications are with tasks located on different processors (assuming a five-point stencil).

2.5.2 Task-Scheduling Algorithms
 Task-scheduling algorithms can be used when a functional decomposition yields many tasks, each
with weak locality requirements. A centralized or distributed task pool is maintained, into which
new tasks are placed and from which tasks are taken for allocation to processors. In effect, we
reformulate the parallel algorithm so that what were originally conceived of as tasks become data
structures representing ``problems,'' to be solved by a set of worker tasks, typically one per
processor.

The most critical (and complicated) aspect of a task-scheduling algorithm is the strategy used to
allocate problems to workers. Generally, the chosen strategy will represent a compromise between
the conflicting requirements for independent operation (to reduce communication costs) and global
knowledge of computation state (to improve load balance). We discuss manager/worker,
hierarchical manager/worker, and decentralized approaches.

Figure 2.19: Manager/worker load-balancing structure. Workers repeatedly request and process
problem descriptions; the manager maintains a pool of problem descriptions (p) and responds to
requests from workers.

Manager/Worker.

Figure 2.19 illustrates a particularly simple task scheduling scheme that is nevertheless effective
for moderate numbers of processors. This strategy was used previously in Section 1.4.4. A central
manager task is given responsibility for problem allocation. Each worker repeatedly requests and
executes a problem from the manager. Workers can also send new tasks to the manager for
allocation to other workers. The efficiency of this strategy depends on the number of workers and
the relative costs of obtaining and executing problems. Efficiency can be improved by prefetching
problems so as to overlap computation and communication, and by caching problems in workers,
so that workers communicate with the manager only when no problems are available locally.

Hierarchical Manager/Worker.

A variant of the manager/worker scheme divides workers into disjoint sets, each with a
submanager. Workers request tasks from submanagers, which themselves communicate
periodically with the manager and with other submanagers to balance load between the sets of
processors for which they are responsible.

Decentralized Schemes.

 In completely decentralized schemes, there is no central manager. Instead, a separate task pool is
maintained on each processor, and idle workers request problems from other processors. In effect,
the task pool becomes a distributed data structure that is accessed by the different tasks in an
asynchronous fashion. A variety of access policies can be defined. For example, a worker may
request work from a small number of predefined ``neighbors'' or may select other processors at
random. In a hybrid centralized/distributed scheme, requests are sent to a central manager, which
allocates them to workers in a round-robin fashion. Notice that while this manager will certainly
be a bottleneck on large numbers of processors, it will typically be accessed less frequently than
will the manager in a manager/worker scheduler and hence is a more scalable construct.

As noted in Section 2.3.4, access to a distributed data structure, such as the task pool maintained
by a decentralized load-balancing scheme, can be provided in several different ways. Workers can
be made responsible for both computing and managing the queue of problems. In this case, each

worker must periodically poll to detect pending requests. Alternatively, computation and task pool
management responsibilities can be encapsulated in separate tasks.

Termination Detection.

Task-scheduling algorithms require a mechanism for determining when a search is complete;
otherwise, idle workers will never stop requesting work from other workers. This termination
detection operation is straightforward in centralized schemes, because the manager can easily
determine when all workers are idle. It is more difficult in decentralized algorithms, because not
only is there no central record of which workers are idle, but also messages in transit may be
carrying tasks even when all workers appear to be idle. See the chapter notes for references to
termination-detection algorithms.

2.5.3 Mapping Design Checklist
 We have now completed our parallel algorithm design by specifying how tasks defined in
previous design stages are mapped to processors. Our mapping decisions seek to balance
conflicting requirements for equitable load distribution and low communication costs. When
possible, we use a static mapping scheme that allocates each task to a single processor. However,
when the number or size of tasks is variable or not known until runtime, we may use a dynamic
load balancing scheme or reformulate the problem so that a task scheduling structure can be used
to schedule computation.

The following checklist can serve as a basis for an informal evaluation of the mapping design.

1. If considering an SPMD design for a complex problem, have you also considered an
algorithm based on dynamic task creation and deletion? The latter approach can yield a
simpler algorithm (as will be illustrated in Section 2.7); however, performance can be
problematic.

2. If considering a design based on dynamic task creation and deletion, have you also
considered an SPMD algorithm? An SPMD algorithm provides greater control over the
scheduling of communication and computation, but can be more complex.

3. If using a centralized load-balancing scheme, have you verified that the manager will not
become a bottleneck? You may be able to reduce communication costs in these schemes by
passing pointers to tasks, rather than the tasks themselves, to the manager.

4. If using a dynamic load-balancing scheme, have you evaluated the relative costs of
different strategies? Be sure to include the implementation costs in your analysis.
Probabilistic or cyclic mapping schemes are simple and should always be considered,
because they can avoid the need for repeated load-balancing operations.

5. If using probabilistic or cyclic methods, do you have a large enough number of tasks to
ensure reasonable load balance? Typically, at least ten times as many tasks as processors
are required.

We have now completed the design of one or more parallel algorithms designs for our problem.
However, we are not quite ready to start writing code: several phases in the design process remain.
First, we need to conduct some simple performance analyses in order to choose between
alternative algorithms and to verify that our design meets performance goals. We should also think
hard about the implementation costs of our designs, about opportunities for reusing existing code

in their implementation, and about how algorithms fit into larger systems of which they may form
a part. These issues are discussed in detail in Chapters 3 and 4.

2.6 Case Study: Atmosphere Model
 In the next three sections, we develop parallel algorithms for atmosphere modeling, VLSI design,
and computational chemistry problems. These case studies are intended to illustrate both the
design principles presented in the text and the stepwise process by which realistic parallel
algorithms are developed.

While the problems examined in these case studies are of considerable interest in their own right,
our interest here is in their computational characteristics. The atmosphere modeling application is
an example of a problem amenable to parallelization by using simple domain decomposition
techniques. It is representative of a wide range of scientific and engineering computations. The
VLSI design problem is an example of an irregular problem requiring load-balancing techniques.
It is representative of many symbolic computing problems. Finally, the computational chemistry
application is an example of a problem requiring asynchronous access to distributed data
structures, a requirement that arises frequently in both numerical and symbolic computing.

In each case study, we first briefly introduce the problem being solved and then develop parallel
algorithms. We restrict the problem descriptions to essential computational issues and omit details
that would add to the length of the presentation without illustrating new principles. In particular,
we do not say much about why the underlying scientific or engineering problem is formulated in
the way described, or about alternative problem formulations that might admit to alternative
parallelization strategies. The chapter notes provide pointers to detailed treatments of these topics.

2.6.1 Atmosphere Model Background

Figure 2.20: The basic predictive equations used in atmospheric modeling, where and are
latitude and longitude, z is height, u and v are horizontal components of velocity, p is pressure, is
density, T is temperature, f is Coriolis force, g is gravity, F and Q are external forcing terms, is
specific heat, and a is the earth's radius.

 An atmosphere model is a computer program that simulates atmospheric processes (wind, clouds,
precipitation, etc.) that influence weather or climate. It may be used to study the evolution of
tornadoes, to predict tomorrow's weather, or to study the impact on climate of increased
concentrations of atmospheric carbon dioxide. Like many numerical models of physical processes,
an atmosphere model solves a set of partial differential equations, in this case describing the basic
fluid dynamical behavior of the atmosphere (Figure 2.20). The behavior of these equations on a
continuous space is approximated by their behavior on a finite set of regularly spaced points in that
space. Typically, these points are located on a rectangular latitude-longitude grid of size

, with in the range 15--30, , and in the range 50--500 (Figure 2.21).
This grid is periodic in the x and y dimensions, meaning that grid point is viewed as being
adjacent to and . A vector of values is maintained at each grid point,
representing quantities such as pressure, temperature, wind velocity, and humidity.

Figure 2.21: The three-dimensional grid used to represent the state of the atmosphere. Values
maintained at each grid point represent quantities such as pressure and temperature.

The atmosphere model performs a time integration to determine the state of the atmosphere at
some future time, based on an initial state. This integration proceeds in a series of steps, with each
step advancing the state of the computation by a fixed amount. We shall assume that the model
uses a finite difference method (Section 2.3.1) to update grid values, with a nine-point stencil
being used to compute atmospheric motion in the horizontal dimension, and a three-point stencil in
the vertical (Figure 2.22).

Figure 2.22: The finite difference stencils used in the atmosphere model. This figure shows for a
single grid point both the nine-point stencil used to simulate horizontal motion and the three-point
stencil used to simulate vertical motion.

The finite difference computations are concerned with the movement, or fluid dynamics, of the
atmosphere. In addition to these dynamics calculations, the atmosphere model includes algorithms
used to simulate processes such as radiation, convection, and precipitation. These calculations are
collectively termed physics and use a range of numerical methods of varying complexity. Data
dependencies within physics computations are restricted to within vertical columns.

Plate 4 illustrates one of the many phenomena that can be simulated using an atmospheric
circulation model. This shows a potential temperature isosurface of two thunderstorm downdrafts
that hit the ground as microbursts, then spread out and collide. The surfaces outline the boundaries
of the cold downdrafted air. The collision region contains wind fields that are dangerous to landing
aircraft. The grey tiles are 1-kilometer squares and the model domain is km with 50 m
resolution.

Plate 4: Potential temperature isosurface of two colliding thunderstorm microbursts. Image
courtesy of J. Anderson.

In summary, the atmosphere modeling example is primarily concerned with performing finite
difference computations on a regular three-dimensional grid. In this respect, it is representative of
a large class of scientific (numeric) computations. The simple, regular structure of the finite
difference method makes it a useful pedagogical tool, and we shall use it repeatedly in the
following chapters to illustrate issues in algorithm design and performance analysis.

2.6.2 Atmosphere Model Algorithm Design
 We now develop parallel algorithms for the atmosphere modeling problem, proceeding in the
stepwise fashion presented in earlier sections.

Partition.

The grid used to represent state in the atmosphere model is a natural candidate for domain
decomposition. Decompositions in the x, y, and/or z dimensions are possible (Figure 2.2). Pursuant
to our strategy of exposing the maximum concurrency possible, we initially favor the most
aggressive decomposition possible, which in this case defines a task for each grid point. This task
maintains as its state the various values associated with its grid point and is responsible for the
computation required to update that state at each time step. Hence, we have a total of

tasks, each with data and computation per time step.

Communication.

 The design checklist of Section 2.2.3 does not suggest any obvious deficiencies in our partition
design, so we proceed to consider communication requirements. We identify three distinct
communications:

Figure 2.23: Task and channel structure for a two-dimensional finite difference computation with
nine-point stencil, assuming one grid point per processor. Only the channels used by the shaded
task are shown.

1. Finite difference stencils. If we assume a fine-grained decomposition in which each task
encapsulates a single grid point, the nine-point stencil used in the horizontal dimension
requires that each task obtain values from eight neighboring tasks. The corresponding
channel structure is illustrated in Figure 2.23. Similarly, the three-point stencil used in the
vertical dimension requires that each task obtain values from two neighbors.

2. Global operations. The atmosphere model computes periodically the total mass of the
atmosphere, in order to verify that the simulation is proceeding correctly. This quantity is
defined as follows:

where denotes the mass at grid point (i,j,k). This sum can be computed using one of
the parallel summation algorithms presented in Section 2.4.1.

3. Physics computations. If each task encapsulates a single grid point, then the physics
component of the atmosphere model requires considerable communication. For example,
the total clear sky (TCS) at level is defined as

where level 0 is the top of the atmosphere and cld is the cloud fraction at level i. This
prefix product operation can be performed in steps using a variant of the hypercube
algorithm of Section 2.4.1. In total, the physics component of the model requires on the
order of 30 communications per grid point and per time step.

Let us evaluate this design by using the checklist of Section 2.3.5. The communication associated
with the finite difference stencil is distributed and hence can proceed concurrently. So is the
communication required for the global communication operation, thanks to the distributed
algorithm developed in Section 2.4.1. (We might also consider performing this global operation
less frequently, since its value is intended only for diagnostic purposes.) The one component of
our algorithm's communication structure that is problematic is the physics. However, we shall see
that the need for this communication can be avoided by agglomeration.

Figure 2.24: Using agglomeration to reduce communication requirements in the atmosphere
model. In (a), each task handles a single point and hence must obtain data from eight other tasks
in order to implement the nine-point stencil. In (b), granularity is increased to points,
meaning that only 4 communications are required per task.

Agglomeration.

 Our fine-grained domain decomposition of the atmosphere model has created
tasks: between and , depending on problem size. This is likely to be many

more than we require and some degree of agglomeration can be considered. We identify three
reasons for pursuing agglomeration:

1. As illustrated in Figure 2.24, a small amount of agglomeration (from one to four grid
points per task) can reduce the communication requirements associated with the nine-point
stencil from eight to four messages per task per time step.

2. Communication requirements in the horizontal dimension are relatively small: a total of
four messages containing eight data values. In contrast, the vertical dimension requires
communication not only for the finite difference stencil (2 messages, 2 data values) but
also for various ``physics'' computations (30 messages). These communications can be
avoided by agglomerating tasks within each vertical column.

3. Agglomeration in the vertical is also desirable from a software engineering point of view.
Horizontal dependencies are restricted to the dynamics component of the model; the
physics component operates within individual columns only. Hence, a two-dimensional
horizontal decomposition would allow existing sequential physics code to be reused in a
parallel program without modification.

This analysis makes it appear sensible to refine our parallel algorithm to utilize a two-dimensional
horizontal decomposition of the model grid in which each task encapsulates at least four grid

points. Communication requirements are then reduced to those associated with the nine-point
stencil and the summation operation. Notice that this algorithm can create at most

tasks: between and , depending on problem size. This number is likely to be
enough for most practical purposes.

Mapping.

 In the absence of load imbalances, the simple mapping strategy illustrated in Figure 2.16 can be
used. It is clear from the figure that in this case, further agglomeration can be performed; in the
limit, each processor can be assigned a single task responsible for many columns, thereby yielding
an SPMD program.

This mapping strategy is efficient if each grid column task performs the same amount of
computation at each time step. This assumption is valid for many finite difference problems but
turns out to be invalid for some atmosphere models. The reason is that the cost of physics
computations can vary significantly depending on model state variables. For example, radiation
calculations are not performed at night, and clouds are formed only when humidity exceeds a
certain threshold. The sort of variation in computational load that can result is illustrated in Plate 5.

Plate 5: Load distribution in an atmosphere model with a 64X128 grid. The figure shows per-point
computational load at a single time step, with the histogram giving relative frequency of different
load values. The left-hand image shows a time step in which radiation time steps are performed,
and the right-hand image an ordinary time step. Diurnal, land/ocean, and local variations are
visible. Images courtesy of J. Michalakes.

Figure 2.25: Load distribution in the physics component of an atmosphere model in the absence of
load balancing. In the top part of the figure, shading is used to indicate computational load in
each of processors. A strong spatial variation is evident. This effect is due to the night/day
cycle (radiation calculations are performed only in sunlight); hence, there is a temporal variation
also. The bottom part of the figure is a histogram showing the distribution of computation times,
which vary by a factor of 5. These results were obtained by using a parallel version of the
National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2) on the
512-processor Intel DELTA computer.

Figure 2.26: Load distribution in the physics component of CCM2 when using a cyclic mapping. A
comparison with Figure 2.25 shows that load imbalances are reduced significantly.

 Empirical studies suggest that these load imbalances can reduce computational efficiency by 20
percent or more (Figure 2.25; see also Plate 5).

In many circumstances, this performance loss may be regarded as acceptable. However, if a model
is to be used extensively, it is worthwhile to spend time improving efficiency. One approach is to
use a form of cyclic mapping: for example, allocating each processor tasks from western and
eastern and from northern and southern hemispheres. Figure 2.26 shows the reduction in load
imbalance that can be achieved with this technique; this reduction must be weighed against the
resulting increase in communication costs.

2.6.3 Atmosphere Model Summary
The design of a parallel atmosphere model has proved to be straightforward process, in that most
design choices are clear-cut. A two-dimensional domain decomposition of the model grid results
in a need for both local communication between tasks handling neighboring grid points and a
parallel summation operation.

One unanswered question concerns whether load-balancing algorithms should be incorporated into
the model. Because load balancing adds to the complexity of the overall design, this decision
requires both performance data (of the sort presented in Figure 2.25) and information about the
expected use of the parallel model. Another question, addressed in Chapter 4, is how the
atmosphere model will fit into a larger framework such as the climate model of Figure 2.3.

2.7 Case Study: Floorplan Optimization

Our second case study is an example of a highly irregular, symbolic problem. The solution that we
develop incorporates a task scheduling algorithm.

2.7.1 Floorplan Background
VLSI is a process used to build electronic components such as microprocessors and memory chips
comprising millions of transistors. The design of VLSI components is a computationally
demanding process. Computers are used extensively to verify the correctness of a circuit design, to
lay out a circuit in a two-dimensional area, and to generate the patterns used to test circuits once
they have been fabricated. Many of these problems involve either an exhaustive or a heuristically
guided search of a large space of possible solutions. Here, we consider a layout problem. The first
stage of the VLSI design process typically produces a set of indivisible rectangular blocks called
cells. In a second stage, interconnection information is used to determine the relative placements
of these cells. In a third stage, implementations are selected for the various cells with the goal of
optimizing the total area. It is the third stage, floorplan optimization, for which we shall develop a
parallel algorithm. This is an important part of the design process, since the cost of a chip is
usually dominated by its area.

VLSI floorplan optimization can be explained by analogy with the problem of designing a kitchen.
Assume that we have decided on the components the kitchen is to contain (this action is stage 1 of
the VLSI design process) and how these components are to be arranged (stage 2). For example, we
may wish to have a stove, refrigerator, table, and sink and may require that the stove be next to the
refrigerator and the table next to the sink. Assume also that we can choose among several possible
models for each of these components, with different models having different shapes but occupying
the same floor area. In the floorplan optimization phase of our kitchen design, we select models so
as make the best use of available floorspace.

In VLSI, a floorplan is represented as a pair of polar graphs, conventionally called the and
graphs. (A polar graph is a directed acyclic graph with a single source and a single sink. The

term directed means that edges have a direction, and acyclic means that there are no cycles.) These
graphs specify which cells are adjacent in the vertical and horizontal directions, respectively. Each
arc denotes a cell, and nodes (other than the source and sink) link cells that must have touching
edges.

Although a cell has a fixed area, it may have several possible implementations with different
aspect ratios. If we have N cells, and if cell has implementations, then the total number of
possible floorplan configurations is

For example, Figure 2.27 shows a floorplan optimization problem with three cells and six possible
configurations.

Figure 2.27: A floorplan optimization problem. The three cells A, B, and C, have 1, 3, and 2
implementations each, respectively. In (a) are the alternative implementations. In (b) are the and

graphs, which state that B must be above C, and that A must be to the left of B and C,
respectively. In (c) are the alternative floorplans that satisfy the constraints; each is
labeled with its area. The lowest area floorplan is constructed from A, B0, and C1 and has an area
of 130.

Figure 2.28: Solving a floorplan optimization problem. This is the search tree corresponding to
the problem illustrated in Figure 2.27. Level 0 is the root. At level 1, an implementation has been
chosen for A; the three level 2 subtrees represent the choices for B and the level 3 leaves the
choices for C. The number in each tree node represents the area of the associated (partial)
solution. The optimal configuration is (A,B0,C1) and has area 130.

The problem then is to identify the configuration with the lowest area, where area is defined as the
product of the maximum horizontal and vertical extents. This identification can be achieved by
using a search algorithm to explore a search tree representing all possible configurations. As
shown in Figure 2.28, level i of this tree corresponds to the situation in which implementations
have been chosen for i cells. We can explore this search tree by using Algorithm 1.1. An initial
call search(root) causes the entire tree to be visited, with the path used to get to each leaf node
reported as a solution.

 Algorithm 1.1 implements an exhaustive search that visits all nodes of the search tree.
Unfortunately, this strategy is computationally infeasible for any but the smallest problems. For
example, a problem with just 20 cells and 6 implementations per cell has a search space of

nodes. Fortunately, the number of nodes explored can be reduced considerably by
using a technique called branch-and-bound search. The basic idea is to keep track of the best
(lowest area) solution found so far. Before ``expanding'' a node (that is, looking at its subtrees), we
check whether the area of the partial configuration represented by that node is already greater than
that of the best known solution. If so, we know that this node cannot yield a better solution, and
the subtree rooted at that node can be abandoned, or pruned (Figure 2.29). This approach is
specified as Algorithm 2.2, with the global variable A used to maintain a record of the best
solution.

Figure 2.29: Branch-and-bound search. This figure shows the nodes actually explored in the
example problem, assuming a depth-first and left-to-right search strategy. The subtree rooted at
the second node on level 2 is pruned because the cost of this node (170) is greater than that of the
cheapest solution already found (130).

On a sequential computer, the foreach in Algorithm 2.2 can examine each subtree in turn, thereby
giving a depth-first search algorithm that explores the tree depth-first and left-to-right. In this case,

pruning can reduce the number of nodes explored enormously. In one experiment reported in the
literature, the number of nodes explored in a typical 20-cell problem was reduced from to

. As we shall see, efficient pruning is a difficult problem in a parallel environment and, to a
large extent, determines the structure of our parallel algorithm.

In summary, the fundamental operation to be performed in the floorplan optimization problem is
branch-and-bound search. This is an interesting algorithm from a parallel computing perspective
because of its irregular computational structure: the size and shape of the search tree that must be
explored are not known ahead of time. Also, the need for pruning introduces a need both to
manage the order in which the tree is explored and to acquire and propagate global knowledge of
computation state. In these respects this problem is typical of many algorithms in symbolic
(nonnumeric) computing.

2.7.2 Floorplan Algorithm Design

Partition.

 Algorithm 2.2, like Algorithm 1.1, has no obvious data structure to which we can apply domain
decomposition techniques. Hence, we use a fine-grained functional decomposition in which each
search tree node is explored by a separate task. As noted earlier, this means that new tasks will be
created in a wavefront as the search progresses down the search tree, which will tend to be
explored in a breadth-first fashion. Notice that only tasks on the wavefront can execute
concurrently. We also need to address the issue of how to manage the A value, which must be
accessed by all tasks. For now, we assume that it is encapsulated in a single task with which other
tasks will communicate.

A quick review using the design checklist of Section 2.2.3 reveals one deficiency in this design.
The breadth-first exploration strategy is likely to decrease performance dramatically by delaying
discovery of solution nodes and hence reducing the amount of pruning that occurs, thereby leading
to considerable redundant computation. We must bear this issue in mind in subsequent design
phases.

Communication.

 In a parallel implementation of simple search (Algorithm 1.1), tasks can execute independently
and need communicate only to report solutions. In contrast, branch-and-bound search requires
communication during execution in order to obtain and update the search bound A . In
designing a communication structure to achieve this goal, we need to trade off the benefits of
frequent accesses to a centralized A value (which tends to reduce the amount of the search tree
that must be explored) against communication costs.

One approach is to encapsulate responsibility for maintaining A in a centralized task, with
which each task communicates when a solution is produced or a bound is required. This approach
is simple and may even be efficient if communication is cheap, evaluating a node is expensive, and
the number of processors is not too large. However, the centralized approach is inherently
nonscalable. Since the manager must take a certain amount of time to process a request, the
maximum rate at which it can service requests, and hence the maximum number of tasks that can
execute concurrently, is bounded.

Various refinements to this centralized scheme can be imagined. We can modify Algorithm 2.2 to
check A only periodically, for example when a depth counter incremented on each recursive
call is an integer multiple of a specified frequency parameter. Or, we can partition the tree into
subtrees, each with its own A submanager, and organize periodic exchanges of information
between these submanagers. For example, submanagers can perform broadcast operations when
they discover significantly better solutions.

Agglomeration.

In the agglomeration phase of the design process we start to address practical issues relating to
performance on target computers. In the floorplan optimization problem, this means we must
address two potential deficiencies of the fine-grained algorithm that we have developed. The first
will be familiar from earlier problems, that is, the cost of creating a large number of fine-grained
tasks. This can be addressed using agglomeration, unless we believe that node evaluation is
sufficiently expensive and task creation sufficiently cheap for the fine-grained algorithm to be
efficient. For example, we can create one task for each search call in the foreach statement of
Algorithm 2.2 until we reach a specified depth in the tree, and then switch to a depth-first strategy,
thereby creating a single task that evaluates search calls in sequence (Figure 2.30). If the switch
to depth-first search is performed at depth D and cell has implementations, then in the

absence of pruning this technique creates tasks.

Figure 2.30: Increasing granularity in a search problem. In this figure, we agglomerate by
switching to a sequential search at level two in the search tree. A task is created for each subtree
rooted at level two.

The second potential deficiency is more subtle and relates to the scheduling of tasks rather than to
their creation. In the absence of explicit programmer control, we can assume that the tasks created
to evaluate search tree nodes will execute either in the order that they are created or perhaps in a
random order. In either case, the search tree tends to be explored in a breadth-first fashion. This is
undesirable because it tends to reduce the effectiveness of pruning and hence cause redundant
computation. The solution to this problem is to control the order in which search tree nodes are
explored. That is, we must implement a task-scheduling algorithm. Because this is really a
mapping issue, we discuss it under ``Mapping.''

Mapping.

 Recall that when we use a task-scheduling strategy, tasks (search tree nodes) become ``problems''
to be executed by one of a smaller number of ``worker'' tasks, typically one per processor.

Workers generate new search problems as they expand nodes, and request new search problems
each time they complete previously assigned problems. Requests can be handled using a
centralized or decentralized strategy.

We can imagine a variety of alternative task-scheduling schemes for the floorplan optimization
problem. One approach works in conjunction with the agglomeration scheme of Figure 2.30. A
central manager first constructs a number of coarse-grained tasks, by exploring the search tree to
depth D. These tasks are then assigned to idle workers in a demand-driven manner. Because each
task can be represented by a short vector representing the path taken to its position in the tree, the
data movement costs associated with this scheme are not high. Furthermore, because each
processor executes one subtree at a time in a depth-first fashion, pruning is effective.

An interesting variant of this approach combines elements of both redundant work and cyclic
mapping to avoid the need for a central manager. Every worker expands the tree to depth D. Then,
each worker takes responsibility for a disjoint subset of the tasks generated. (This subset could be
identified using a cyclic allocation strategy, for example.) Only if a worker becomes idle does it
ask other workers for tasks.

A third strategy, more complex but also more general, is initially to allocate the root node to a
single worker. Load balancing is then achieved by causing workers with empty queues to request
problems from other workers. Each worker can then enforce a local depth-first search strategy, and
hence increase the amount of pruning, by ordering its queue of search problems according to their
depth in the tree. This method allows the worker to select problems far from the root for local
execution and problems nearer to the root to hand to other workers.

Our choice of task scheduling strategy will depend on characteristics of our problem and target
computer and can be determined by analysis and experiment. Notice that the communication
structures used for task scheduling can be integrated with those proposed earlier for maintaining A

. For example, a central manager used for task scheduling can also maintain and distribute an
up-to-date search bound with each task. In decentralized schemes, the worker tasks that execute
search problems can broadcast improved search bound values to other workers.

2.7.3 Floorplan Summary
The parallel algorithm designed in this case study is certainly more complex, and perhaps less
obvious, than that developed for the atmosphere model. It is clear from the start that functional
decomposition techniques should be used to define tasks, that responsibility for maintaining A

should be isolated from the rest of the computation, and that we can increase task granularity
by switching from a parallel to a sequential evaluation strategy at a specified depth in the search
tree. If we were concerned with parallelizing simple search, the design might be complete at this
stage. However, the need to support pruning requires that we proceed with further refinements. In
particular, we introduce a task-scheduling algorithm so that we can pursue depth-first search on
each processor while exposing higher-level search tree nodes for idle workers.

2.8 Case Study: Computational Chemistry

 Our third case study, like the first, is from computational science. It is an example of an
application that accesses a distributed data structure in an asynchronous fashion and that is
amenable to a functional decomposition.

2.8.1 Chemistry Background
Computational techniques are being used increasingly as an alternative to experiment in chemistry.
In what is called ab initio quantum chemistry, computer programs are used to compute
fundamental properties of atoms and molecules, such as bond strengths and reaction energies,
from first principles, by solving various approximations to the Schrödinger equation that describes
their basic structures. This approach allows the chemist to explore reaction pathways that would be
hazardous or expensive to explore experimentally. One application for these techniques is in the
investigation of biological processes. For example, Plate 6

shows a molecular model for the active site region in the enzyme malate dehydrogenase, a key
enzyme in the conversion of glucose to the high-energy molecule ATP. This image is taken from a
simulation of the transfer of a hydride anion from the substrate, malate, to a cofactor, nicotinamide
adenine diphosphate. The two isosurfaces colored blue and brown represent lower and higher
electron densities, respectively, calculated by using a combined quantum and classical mechanics
methodology. The green, red, blue, and white balls are carbon, oxygen, nitrogen, and hydrogen
atoms, respectively.

Fundamental to several methods used in quantum chemistry is the need to compute what is called
the Fock matrix, a two-dimensional array representing the electronic structure of an atom or
molecule. This matrix, which is represented here as F, has size N N and is formed by evaluating
the following summation for each element:

where D is a two-dimensional array of size N N that is only read, not written, by this computation
and the I represent integrals that are computed using elements i, j, k, and l of a read-only, one-
dimensional array A with elements. An integral can be thought of as an approximation to the
repulsive force between two electrons.

Because Equation 2.3 includes a double summation, apparently 2 integrals must be computed
for each element of F, for a total of 2 integrals. However, in practice it is possible to exploit
redundancy in the integrals and symmetry in F and reduce this number to a total of . When
this is done, the algorithm can be reduced to the rather strange logic given as Algorithm 2.3. In
principle, the calculation of each element of F requires access to all elements of D and A;
furthermore, access patterns appear highly irregular. In this respect, the Fock matrix construction
problem is representative of many numeric problems with irregular and nonlocal communication
patterns.

For the molecular systems of interest to chemists, the problem size N may be in the range
. Because the evaluation of an integral is a fairly expensive operation, involving
operations, the construction of the Fock matrix may require operations. In

addition, most methods require that a series of Fock matrices be constructed, each representing a
more accurate approximation to a molecule's electronic structure. These considerations have
motivated a considerable amount of work on both efficient parallel algorithms for Fock matrix
construction and improved methods that require the computation of less than integrals.

2.8.2 Chemistry Algorithm Design

Partition.

Because the Fock matrix problem is concerned primarily with the symmetric two-dimensional
matrices F and D, an obvious partitioning strategy is to apply domain decomposition techniques to
these matrices to create N(N+1)/2 tasks, each containing a single element from each matrix (,

) and responsible for the operations required to compute its . This yields N(N+1)/2 tasks,
each with data and each responsible for computing 2 integrals, as specified in Equation
2.3.

This domain decomposition strategy is simple but suffers from a significant disadvantage: it
cannot easily exploit redundancy and symmetry and, hence, performs eight times too many
integral computations. Because an alternative algorithm based on functional decomposition
techniques is significantly more efficient (it does not perform redundant computation and does not
incur high communication costs), the domain decomposition algorithm is not considered further.

Figure 2.31: Functional decomposition of Fock matrix problem. This yields about data
tasks, shown in the upper part of the figure, and computation tasks, shown in the lower part
of the figure. Computation tasks send read and write requests to data tasks.

Quite a different parallel algorithm can be developed by focusing on the computation to be
performed rather than on the data structures manipulated, in other words, by using a functional
decomposition. When redundancy is considered, one naturally thinks of a computation as
comprising a set of integrals (the integral procedure of Algorithm 2.3), each requiring six D
elements and contributing to six F elements. Focusing on these computations, we define

``computation'' tasks, each responsible for one integral.

Having defined a functional decomposition, we next need to distribute data structures over tasks.
However, we see no obvious criteria by which data elements might be associated with one
computation task rather than another: each data element is accessed by many tasks. In effect, the F,
D, and A arrays constitute large data structures that the computation tasks need to access in a
distributed and asynchronous fashion. This situation suggests that the techniques described in
Section 2.3.4 for asynchronous communication may be useful. Hence, for now we simply define
two sets of ``data'' tasks that are responsible only for responding to requests to read and write data
values. These tasks encapsulate elements of the two-dimensional arrays D and F (,) and of

the one-dimensional array A (), respectively. In all, our partition yields a total of approximately
computation tasks and data tasks (Figure 2.31).

Communication and Agglomeration.

 We have now defined computation tasks and data tasks. Each computation task
must perform sixteen communications: six to obtain D matrix elements, four to obtain A matrix
elements, and six to store F matrix elements. As the computational costs of different integrals can
vary significantly, there does not appear to be any opportunity for organizing these communication
operations into a regular structure, as is advocated in Section 2.3.2.

On many parallel computers, the cost of an integral will be comparable to the cost of a
communication. Hence, communication requirements must be reduced by agglomeration. We
describe two alternative strategies that can be used to achieve this goal. Their data requirements
are illustrated in Figure 2.32.

Figure 2.32: Agglomeration strategies for Fock matrix construction with N=P=5, for (a) the total
replication algorithm and (b) the partial replication algorithm. In each case, the five tasks are
shown with shading used to represent the portion of the symmetric D and F matrices allocated to
each task. In (a), each matrix is replicated in each task. In (b), each task is given a single row and
column; this corresponds to a factor of two replication.

1. Total replication. Communication costs can be cut dramatically by replicating the F and D
matrices in each of P tasks, one per processor of a parallel computer. Each task is given
responsibility for 1/P of the integrals. Computation can then proceed in each task without any
communication. The only coordination required is a final summation to accumulate partial F
matrices. This can be achieved using a parallel vector reduction algorithm described in Section
11.2.

The technique of replicating data structures on each processor of a parallel computer is commonly
used in parallel computing to reduce software engineering costs. It allows an existing sequential
code to be adapted quickly for parallel execution, since there is no need to modify data structures.
The principal disadvantage of the technique is that it is nonscalable. Because total memory
requirements scale with the number of tasks created, the largest problem that can be solved is
determined not by the total amount of memory in a parallel computer, but by the amount available
in a single processor. For example, on a 512-processor computer with 16 MB of memory per
processor, an implementation of the quantum chemistry code DISCO that uses this strategy cannot
solve problems with N>400. In principle, it would be interesting to solve problems where N is 10
times larger.

Figure 2.33: Data requirements for integral clusters. Each task accesses three rows (and
sometimes columns) of the D and F matrices.

2. Partial replication. An alternative approach is as follows. First, we agglomerate computation in
what seems an obvious way, namely, by making the inner loop of the procedure fock_build in
Algorithm 2.3 into a task. This yields computation tasks, each responsible for

integrals. Next, we examine the communication requirements of each such task. We find that
there is considerable locality in the data required by these clusters of integrals: each cluster
accesses the i th, j th, and k th row (and sometimes column) of D and F (Figure 2.33). To exploit
this locality, we agglomerate data to create N data tasks, each containing a row/column pair of the
two-dimensional arrays D and F and all of the one-dimensional array A. In this scheme, each
element of D and F is replicated once, and A is replicated N times, so total storage requirements are
increased from an average of N to 3N per task. Because of this replication, each computation task
now requires data from just three data tasks. Hence, the number of messages is reduced from

to . The total volume communicated remains . Because the cost of
communicating a word is typically much less than the cost of computing an integral, this is an
efficient parallel algorithm.

Mapping.

 The ``partial replication'' Fock matrix construction algorithm creates N data tasks and
computation tasks. We use the notation (i j k) to identify the computation task responsible for

computing the integrals I ; this task requires data from data tasks i, j, and k. To complete
the parallel algorithm, we must define a mapping of data and computation tasks to processors.

We assume processors. Since each data task will receive roughly the same number of
requests, we allocate one data task to each processor. This leaves the problem of mapping
computation tasks. We can imagine a variety of approaches:

1. A simple mapping, in which task (i j k) is mapped to the same processor as data task i ;
since each task communicates with data tasks i, j, and k, off-processor communication
requirements are reduced by one third. A disadvantage of this strategy is that since both the
number of integrals in a task and the amount of computation per integral can vary, different
processors may be allocated different amounts of computation.

2. A probabilistic mapping, in which computation tasks are mapped to processors at random
or using a cyclic strategy.

3. A task-scheduling algorithm to allocate tasks to idle processors. Since a problem can be
represented by three integers (i, j, k) and multiple problems can easily be agglomerated into

a single message, a simple centralized scheduler can be used. (Empirical studies suggest
that a centralized scheduler performs well on up to a few hundred processors.)

4. Hybrid schemes in which, for example, tasks are allocated randomly to sets of processors,
within which a manager/worker scheduler is used.

The best scheme will depend on performance requirements and on problem and machine
characteristics.

2.8.3 Chemistry Summary
We have developed two alternative parallel algorithms for the Fock matrix construction problem.

1. The F and D matrices are replicated in each of N tasks. Integral computations are distributed
among the tasks, and a summation algorithm is used to sum F matrix contributions
accumulated in the different tasks. This algorithm is simple but nonscalable.

2. The F, D, and A matrices are partitioned among N tasks, with a small amount of replication.
Integral computations are agglomerated into tasks, each containing integrals.
These tasks are mapped to processors either statically or using a task-scheduling scheme.

This case study illustrates some of the tradeoffs that can arise in the design process. The first
algorithm slashes communication and software engineering costs; however, it is not scalable. In
contrast, the second algorithm has higher communication costs but is highly scalable: its memory
requirements increase only with problem size, not the number of processors. To choose between
the two algorithms, we need to quantify their parallel performance and then to determine the
importance of scalability, by assessing application requirements and the characteristics of the
target parallel computer.

2.9 Summary
 In this chapter, we have described a four-step approach to parallel algorithm design in which we
start with a problem specification and proceed as follows:

1. We first partition a problem into many small pieces, or tasks. This partitioning can be
achieved by using either domain or functional decomposition techniques.

2. Next, we organize the communication required to obtain data required for task execution.
We can distinguish between local and global, static and dynamic, structured and
unstructured, and synchronous and asynchronous communication structures.

3. Then, we use agglomeration to decrease communication and development costs, while
maintaining flexibility if possible.

4. Finally, we map tasks to processors, typically with the goal of minimizing total execution
time. Load balancing or task scheduling techniques can be used to improve mapping
quality.

We have also provided design checklists that can be used to evaluate designs as they are
developed. These informal questions are intended to highlight nonscalable or inefficient features in
designs.

Successful application of this design methodology, together with the use of the performance
modeling techniques described in Chapter 3, produces one or more parallel algorithms that balance
in an appropriate fashion the potentially conflicting requirements for concurrency, scalability, and
locality. The next stage in the design process is to consider how such algorithms fit into the larger
context of a complete program. As we shall see in Chapter 4, additional concerns must be
addressed at that level, which may require revisions to the designs of individual components.
Agglomeration and mapping decisions are particularly prone to modification; therefore, we make
these decisions last, when they can be most easily changed.

Exercises
Some of the exercises in this chapter ask you to design parallel algorithms; others ask you to
implement algorithms described in the text or designed by you. It is important to attempt both
types of problem. Your implementations should use one of the tools described in Part II.

1. The component labeling problem in image processing is defined as follows. We are given
a two-dimensional array of pixels valued 0 or 1. The 1-pixels must be labeled in such a
way that two pixels have the same label if and only if they are in the same connected
component. Two 1-pixels are in the same connected component if there is a path of
contiguous 1-pixels linking them together. Two pixels are contiguous if they are adjacent
vertically or horizontally. Develop a parallel algorithm based on the following approach.
First, each 1-pixel is assigned a unique label (for example, its address). Then, each 1-pixel
is updated to contain the minimum of its current label and those of its four neighbors. The
second step is repeated until all adjacent 1-pixels have the same label.

2. Modify the algorithm in Exercise 1 to deal with the situation in which pixels are also
contiguous when adjacent diagonally.

3. Implement the algorithm developed in Exercise 1 and measure its performance for a
variety of array sizes and processor counts.

4. A compiler consists of six distinct stages. The tokenizer translates characters (input from
one or more files) into tokens. The parser translates tokens into procedures. The
canonicalizer translates procedures into a canonical form. The encoder translates
procedures in this canonical form into low-level code. The optimizer rewrites this low-
level code. Finally, the assembler generates object code. Apply domain and functional
decomposition techniques to obtain two different parallel algorithms for the compiler.
Compare and contrast the scalability and expected efficiency of the two algorithms.

5. Design and implement a parallel algorithm for a 1-D finite-difference algorithm with a
three-point stencil. Study the performance of the resulting program as a function of
problem size and processor count, assuming one task per processor.

6. Extend the algorithm and program developed in Exercise 5 to incorporate a simple
convergence test: terminate execution when the difference between values computed at
successive steps is less than a specified threshold for all grid points.

7. Design and implement parallel algorithms based on both 1-D and 2-D decompositions of a
2-D finite-difference algorithm with a five-point stencil. Study the performance of the
resulting programs as a function of problem size and processor count, assuming one task
per processor.

8. Using a parallel tool such as CC++ or Fortran M that supports multiple tasks per processor,
study the performances of the programs developed in Exercises 5 and 7 for a fixed number
of processors as the number of tasks is varied.

9. Implement the various parallel summation algorithms described in Section 2.3.2, and study
their performance as a function of problem size and processor count. Account for any
differences.

10. Design parallel algorithms for the Gauss-Seidel method described in Section 2.3.1, for
both 1-D and 2-D grids.

11. Implement the parallel Gauss-Seidel algorithms of Exercise 10. Quantify the available
parallelism (a) in a single time step and (b) when performing T time steps in a pipelined
fashion.

12. The branch-and-bound search algorithm (Section 2.7) replicates the data defining the
search problem on every processor. Is it worthwhile distributing these data? Explain.

13. An all-solutions search problem explores a search tree similar to that shown in Figure 2.28
in its entirety without the benefit of pruning. A function is applied to each leaf-node to
determine whether it is a solution, and solutions are collected. Develop a parallel algorithm
for this problem. Initially, assume that the cost of a node evaluation is a constant and that
the tree is of uniform and known depth; then relax these assumptions.

14. A single-solution search is like the all-solutions search of Exercise 13, except that it
terminates when a single solution is found. Develop a parallel algorithm for this problem.

15. Design a variant of the ``partial replication'' Fock matrix construction algorithm (Section
2.8) that can execute on P processors, where P>N.

16. Design a variant of the ``partial replication'' Fock matrix construction algorithm (Section
2.8) that reduces communication requirements to less than two messages per task.
Characterize the savings that can be achieved by this scheme as a function of available
memory. Hint : Cache data.

17. Develop an analytic model for the maximum performance possible in a branch-and-bound
search algorithm in which tasks poll a central manager for an up-to-date search bound.

18. Implement the branch-and-bound search algorithm studied in Exercise 17 and compare its
performance with that of your model. Propose and investigate refinements to the
centralized algorithm.

19. A deficiency of the parallel branch-and-bound search algorithm of Section 2.7 is that it
does not provide a mechanism for informing workers when a search is complete. Hence, an
idle worker will never stop requesting work from other workers. Design a mechanism that
ensures that all workers cease execution some finite time after the last solution is reported.

20. Discuss the circumstances under which a random mapping of tasks to processors might be
expected to be effective in the branch-and-bound search problem. When might it be
expected to be ineffective?

21. Discuss the relative advantages and disadvantages of random and cyclic mappings of tasks
to processors in the partial replication Fock matrix construction algorithm of Section 2.8.2.

22. Educate yourself about the basic operations employed in a relational database, and design
parallel algorithms that could be used to perform these operations when a database is
distributed over the processors of a multicomputer.

23. Without referring to Section 4.6, design parallel algorithms based on both 1-D and 2-D
decompositions for the matrix multiplication problem, in which we compute C=A.B, where

.

Chapter Notes
In this chapter, we have focused on the software engineering question of developing a parallel
algorithm design from a given problem specification. We have assumed some familiarity with
program design---from, for example, previous study in sequential programming. A classic article

by Parnas and Clements [222] describes the benefits (and difficulties) of a rational design process.
The chapter notes in Chapters 3 and 4 provide additional references to material on the related
topics of performance analysis and modularity.

Relatively few authors have addressed the particular problems that arise when designing
algorithms for realistic scalable parallel computers. Numerous books discuss parallel algorithm
design in the context of the idealized PRAM model; see, for example, Akl [8], Gibbons and Reitter
[119], and JáJá [157]. However, these techniques are for the most part not directly applicable to
multicomputers. The books by Fox et al. [111,113] and Kumar et al. [181] provide relevant
material. Carriero and Gelernter [48] give an introduction to parallel program design in the Linda
language. They distinguish between agenda, result, and specialist parallelism, which can be
thought of as domain decomposition and two different forms of functional parallelism,
respectively. See also the references in Chapter 12.

 The mapping problem has received considerable attention in the computer science and scientific
computing literature. Bokhari shows that it is NP -complete [39]. The recursive coordinate
bisection algorithm is due to Berger and Bokhari [33], and the unbalanced recursive bisection
algorithm is due to Jones and Plassmann [161]. A related algorithm is the recursive spectral
bisection algorithm of Pothen, Simon, and Liou [230], which uses connectivity information to
identify partitions of unstructured meshes with low communication requirements, at the cost of an
eigenvalue computation. This algorithm has proven very effective, although more expensive than
the other recursive algorithms. Simon [258] and Williams [293] compare different algorithms for
partitioning unstructured meshes, including coordinate bisection, graph bisection, and spectral
bisection. Barnard and Simon [28] describe a less expensive multilevel version of spectral
bisection. The mesh in Figure 2.9 is generated using the finite octree technique of Shephard and
Georges [256]. Fox et al. [111] and Nicol and Saltz [213] describe the use of cyclic
decompositions. Lin and Keller [190] describe a local algorithm. The local algorithm described in
the text is termed a receiver-initiated strategy. In an alternative sender-initiated strategy, workers
with excess work send it to other workers. Tantawi and Towsley [279] compare sender-initiated
and receiver-initiated strategies and show that the former gives better performance if workers are
often idle and that the latter performs better when load is heavy. Other relevant papers include
those by Berman and Snyder [34]; Chowdhury [61]; Cybenko [68]; Hac [131]; Heath, Rosenberg,
and Smith [141]; Kumar, Grama, and Rao [180]; Lo [191]; and Sadayappan and Ercal [250].
Dijkstra, Feijen, and Gasteren [81], Rokusawa et al. [246], and Kumar et al. [179] describe
distributed termination-detection algorithms.

Real atmosphere models are of course more complex than the system considered in Section 2.6.
Washington and Parkinson [292] provide a good introduction to the numerical methods and
algorithms used in climate modeling on sequential computers. A workshop held at the European
Center for Medium-range Weather Forecasting surveyed issues involved in executing weather and
climate models on parallel computers [155]. The parallel version of the Community Climate
Model is described by Drake et al. [86]. Michalakes [206] analyzes load imbalances in climate
models and Foster and Toonen [109] describe load-balancing algorithms.

Banerjee [26] describes parallel algorithms for VLSI design. Wimer et al. [294] and Arvindam et
al. [17] describe branch-and-bound search algorithms and domain-specific optimizations that can
improve performance on floorplanning problems. Reinefeld and Schnecke [243] describe the
algorithm variant in which workers redundantly expand several tree levels before selecting nodes
for local expansion. Kumar et al. [179,181,239] provide a wealth of material on the design,
implementation, and analysis of parallel search algorithms. Quinn [234] also examines branch-

and-bound search and describes and analyzes the performance of four different load balancing
strategies. For a general introduction to search algorithms, see Nilsson [214], Pearl [225], and
Kumar and Kanal [164].

Hehre et al. [142] provide an introduction to ab initio quantum chemistry. Feyereisen and Kendall
[96] describe a replicated data algorithm for the Fock matrix construction problem. Colvin et al.
[62] describe an algorithm based on domain decomposition techniques. An algorithm that uses
distributed data structures and a centralized task scheduler is described by Harrison et al.
[108,135].

3 A Quantitative Basis for Design
In parallel programming, as in other engineering disciplines, the goal of the design process is not
to optimize a single metric such as speed. Rather, a good design must optimize a problem-specific
function of execution time, memory requirements, implementation costs, maintenance costs, and
so on. Such design optimization involves tradeoffs between simplicity, performance, portability,
and other factors.

Making informed design decisions about alternatives requires an understanding of their costs. In
this chapter, we show how this understanding can be developed and formalized in mathematical
performance models. These models can be used to compare the efficiency of different algorithms,
to evaluate scalability, and to identify bottlenecks and other inefficiencies, all before we invest
substantial effort in an implementation. Performance models can also be used to guide
implementation efforts by showing where optimization is needed.

After studying this chapter, you should know how to develop performance models for parallel
algorithms and be able to use these models to evaluate scalability and to choose between
alternative algorithms. You also should know how to obtain reliable empirical data and how to use
this data to validate models and implementations. Further, you should understand how network
topology can affect communication performance, and you should know how to account for these
effects in your models. Finally, you should be able to recognize and account for factors other than
performance, factors such as implementation costs, that influence design choices.

3.1 Defining Performance
The task of the software engineer is to design and implement programs that satisfy user
requirements for correctness and performance. However, the ``performance'' of a parallel program
is a complex and multifaceted issue. We must consider, in addition to the execution time and
scalability of the computational kernels, the mechanisms by which data are generated, stored,
transmitted over networks, moved to and from disk, and passed between different stages of a
computation. We must consider costs incurred at different phases of the software life cycle,
including design, implementation, execution, and maintenance. Hence, the metrics by which we
measure performance can be as diverse as execution time, parallel efficiency, memory
requirements, throughput, latency, input/output rates, network throughput, design costs,
implementation costs, verification costs, potential for reuse, hardware requirements, hardware
costs, maintenance costs, portability, and scalability.

The relative importance of these diverse metrics will vary according to the nature of the problem at
hand. A specification may provide hard numbers for some metrics, require that others be
optimized, and ignore yet others. For example, the design specification for an operational weather
forecasting system may specify maximum execution time (``the forecast must complete within
four hours''), hardware costs, and implementation costs, and require that the fidelity of the model
be maximized within these constraints. In addition, reliability is of particularly high importance, as
may be scalability to future generations of computers.

In contrast, a group of engineers developing a parallel database search program for their own
occasional use may be happy with anything that runs faster than an existing sequential program
but may be tightly constrained as to how long they can spend on implementation. Here, scalability
is less critical, but the code should adapt easily to changes in both the database system and
computer technologies.

As a third example, consider an image-processing pipeline consisting of several concurrent stages,
each performing a different transformation on a stream of images. Here, one may be concerned not
with the total time required to process a certain number of images but rather with the number of
images that can be processed per second (throughput) or the time that it takes a single image to
pass through the pipeline (latency). Throughput would be important in a video compression
application, while latency would be important if the program formed part of a sensor system that
must react in real time to events detected in an image stream.

In other situations, the ratio of execution time to system cost may be important. For example,
consider a bank that spends two hours every night on its overloaded mainframe computer running
an analysis program that searches for fraudulent transactions. A version that runs in six hours on a
parallel computer at one-twentieth the cost is significantly more cost effective even though the
total execution time is greater.

Much of the material in the rest of this chapter is concerned with the modeling and measurement
of just two aspects of algorithm performance: execution time and parallel scalability. We focus on
these issues because they are frequently among the more problematic aspects of parallel program
design and because they are the most easily formalized in mathematical models. However, these
topics must be examined in the context of a broader design process that also addresses the other
issues listed in this section.

3.2 Approaches to Performance Modeling
We introduce the topic of performance modeling by describing three techniques sometimes used to
characterize the performance of parallel algorithms. We explain why each is inadequate for our
purposes.

3.2.1 Amdahl's Law
 A common observation regarding parallel processing is that every algorithm has a sequential
component that will eventually limit the speedup that can be achieved on a parallel computer.
(Speedup, as we shall soon define more formally, is the ratio between execution time on a single
processor and execution time on multiple processors.) This observation is often codified as
Amdahl's law, which can be stated as follows: if the sequential component of an algorithm

accounts for 1/s of the program's execution time, then the maximum possible speedup that can be
achieved on a parallel computer is s. For example, if the sequential component is 5 percent, then
the maximum speedup that can be achieved is 20.

In the early days of parallel computing, it was widely believed that this effect would limit the
utility of parallel computing to a small number of specialized applications. However, practical
experience shows that this inherently sequential way of thinking is of little relevance to real
problems. To understand why, let us consider a noncomputing problem. Assume that 999 of 1000
workers on an expressway construction project are idle while a single worker completes a
``sequential component'' of the project. We would not view this as an inherent attribute of the
problem to be solved, but as a failure in management. For example, if the time required for a truck
to pour concrete at a single point is a bottleneck, we could argue that the road should be under
construction at several points simultaneously. Doing this would undoubtedly introduce some
inefficiency---for example, some trucks would have to travel further to get to their point of work---
but would allow the entire task to be finished more quickly. Similarly, it appears that almost all
computational problems admit parallel solutions. The scalability of some solutions may be limited,
but this is due to communication costs, idle time, or replicated computation rather than the
existence of ``sequential components.''

 Amdahl's law can be relevant when sequential programs are parallelized incrementally. In this
approach to parallel software development, a sequential program is first profiled to identify
computationally demanding components. These components are then adapted for parallel
execution, one by one, until acceptable performance is achieved. Amdahl's law clearly applies in
this situation, because the computational costs of the components that are not parallelized provide
a lower bound on the execution time of the parallel program. Therefore, this ``partial,'' or
``incremental,'' parallelization strategy is generally effective only on small parallel computers.
Amdahl's law can also be useful when analyzing the performance of data-parallel programs, in
which some components may not be amenable to a data-parallel formulation (see Chapter 7).

3.2.2 Extrapolation from Observations
 Descriptions of parallel algorithms often characterize performance by stating something like the
following:

We implemented the algorithm on parallel computer X and achieved a speedup of 10.8 on 12
processors with problem size N=100.
Presumably, this single data point on a small number of processors is intended as a measure of
algorithm quality. A speedup of 10.8 on 12 processors may or may not be regarded as ``good.''
However, a single performance measurement (or even several measurements) serves only to
determine performance in one narrow region of what is a large multidimensional space, and is
often a poor indicator of performance in other situations. What happens on 1000 processors? What
if N=10 or N=1000 ? What if communication costs are ten times higher? Answering these
questions requires a deeper understanding of the parallel algorithm.

The following three equations emphasize the limitations of observations as a tool for
understanding parallel performance. Each is a simple performance model that specifies execution
time T as a function of processor count P and problem size N. In each case, we assume that the
total computation performed by an optimal sequential algorithm scales as N+N .

1. . This algorithm partitions the computationally demanding
component of the algorithm but replicates the component on every processor.

There are no other sources of overhead.
2. . This algorithm partitions all the computation but introduces an

additional cost of 100.
3. . This algorithm also partitions all the computation but

introduces an additional cost of .

These algorithms all achieve a speedup of about 10.8 when P=12 and N=100. However, they
behave differently in other situations, as illustrated in Figure 3.1. With N=100, all three algorithms
perform poorly for larger P, although Algorithm (3) does noticeably worse than the other two.
When N=1000, Algorithm (2) is significantly better than Algorithm (1) for larger P.

Figure 3.1: Efficiency as a function of P for three different algorithms (described in the text). The
upper figure is for N=100, and the lower figure is for N=1000. Notice the use of logarithmic
scales. When N=100, Algorithms (1) and (2) are indistinguishable.

3.2.3 Asymptotic Analysis
 Textbooks frequently characterize the performance of parallel algorithms by stating something
like the following:

 Asymptotic analysis reveals that the algorithm requires time on processors.

That is, there exists a constant c and minimum problem size such that for all , cost (N)
on N processors. This relationship tells how cost varies with N when N and P are

large.

 While this information is interesting, it is often not directly relevant to the task of developing an
efficient parallel program. Because it deals with large N and P, it ignores lower-order terms that
may be significant for problem sizes and processor counts of practical interest. For example, the
actual cost of an algorithm with asymptotic complexity of might be 10 N + N . The
10 N component is larger for N<1024 and must be incorporated in a performance model if
problems of interest are in this regime. A second deficiency of asymptotic analysis is that it says
nothing about absolute cost. Asymptotic analysis would suggest that an algorithm with cost 1000
N is superior to an algorithm with cost . However, the latter is faster for N<996, which
again may be the regime of practical interest. A third deficiency is that such analyses frequently
assume idealized machine models that are very different from the physical computers for which
we develop programs. For example, they may assume the PRAM model, in which communication
costs are assumed to be nil.

Asymptotic analysis has a role to play in parallel program design. However, when evaluating
asymptotic results, we must be careful to identify the machine model for which the results are
obtained, the coefficients that are likely to apply, and the N and P regime in which the analyses
hold.

3.3 Developing Models
 A good performance model, like a good scientific theory, is able to explain available observations
and predict future circumstances, while abstracting unimportant details. Amdahl's law, empirical
observations, and asymptotic analysis do not satisfy the first of these requirements. On the other
hand, conventional computer system modeling techniques, which typically involve detailed
simulations of individual hardware components, introduce too many details to be of practical use
to parallel programmers. In the rest of this chapter, we introduce performance modeling techniques
that provide an intermediate level of detail. These techniques are certainly not appropriate for all
purposes: they are specialized for the multicomputer architecture and do not take into account, for
example, cache behavior. However, they have been proven useful in a wide range of parallel
algorithm design problems. The chapter notes provide references to other approaches.

The performance models considered here specify a metric such as execution time T as a function
of problem size N, number of processors P, number of tasks U, and other algorithm and hardware
characteristics:

We define the execution time of a parallel program as the time that elapses from when the first
processor starts executing on the problem to when the last processor completes execution. This
definition is not entirely adequate for a timeshared parallel computer but suffices for our purposes.
During execution, each processor is computing, communicating, or idling, as illustrated in Figure
3.2. , , and are the time spent computing, communicating, and idling, respectively,
on the i th processor. Hence, total execution time T can be defined in two ways: as the sum of
computation, communication, and idle times on an arbitrary processor j,

or as the sum of these times over all processors divided by the number of processors P,

Figure 3.2: Activity plot during execution of a parallel program on eight processors. Each
processor spends its time computing, communicating, or idling. T is the total execution time.

The latter definition is often more useful, since it is typically easier to determine the total
computation and communication performed by a parallel algorithm rather than the time spent
computing and communicating on individual processors.

Thus, the goal is to develop mathematical expressions that specify execution time as functions of
N, P, etc. These models should be as simple as possible, while providing acceptable accuracy. We
use the following techniques to reduce model complexity.

• We base our model on the idealized multicomputer parallel architecture model introduced
in Chapter 1. Low-level hardware details such as memory hierarchies and the topology of
the interconnection network are introduced only if there is evidence to suggest that they are
important. (The latter issue is discussed in Section 3.7.)

• We use scale analysis to identify insignificant effects that can be ignored in the analysis.
For example, if an algorithm consists of an initialization step followed by several thousand
iterations of a computation step, then unless initialization is very expensive we consider
only the computation step in our analysis.

• We use empirical studies to calibrate simple models rather than developing more complex
models from first principles.

3.3.1 Execution Time
We first examine the three components of total execution time: computation time, communication
time, and idle time.

Computation Time.

The computation time of an algorithm (is the time spent performing computation rather
than communicating or idling. If we have a sequential program that performs the same
computation as the parallel algorithm, we can determine by timing that program. Otherwise,
we may have to implement key kernels.

Computation time will normally depend on some measure of problem size, whether that size is
represented by a single parameter N or by a set of parameters, , , ..., . If the parallel
algorithm replicates computation, then computation time will also depend on the number of tasks
or processors. In a heterogeneous parallel computer (such as a workstation network), computation
time can vary according to the processor on which computation is performed.

Computation time will also depend on characteristics of processors and their memory systems. For
example, scaling problem size or number of processors can change cache performance or the
effectiveness of processor pipelining. As a consequence, one cannot automatically assume that
total computation time will stay constant as the number of processors changes.

Communication Time.

 The communication time of an algorithm () is the time that its tasks spend sending and
receiving messages. Two distinct types of communication can be distinguished: interprocessor
communication and intraprocessor communication. In interprocessor communication, two
communicating tasks are located on different processors. This will always be the case if an
algorithm creates one task per processor. In intraprocessor communication, two communicating
tasks are located on the same processor. For simplicity, we assume that interprocessor and
intraprocessor communication costs are comparable. Perhaps surprisingly, this assumption is not
unreasonable in many multicomputers, unless intraprocessor communication is highly optimized.
This is because the cost of the memory-to-memory copies and context switches performed in a
typical implementation of intraprocessor communication is often comparable to the cost of an
interprocessor communication. In other environments, such as Ethernet-connected workstations,
intraprocessor communication is much faster.

In the idealized multicomputer architecture, the cost of sending a message between two tasks
located on different processors can be represented by two parameters: the message startup time ,
which is the time required to initiate the communication, and the transfer time per (typically four-
byte) word , which is determined by the physical bandwidth of the communication channel
linking the source and destination processors. As illustrated in Figure 3.3, the time required to
send a message of size L words is then

This idealized model of communication performance is adequate for many purposes but does
break down in some situations. More detailed models are described in Section 3.7.

Figure 3.3: Simple communication cost model: . In this plot of time versus
message length, the slope of the line corresponds to the cost per word transferred and the y-
intercept to the message startup cost.

Table 3.1 lists approximate values for and for some parallel computers. Because these values
tend to change rapidly as hardware and systems software evolve, they should be verified before
being used in performance models. Notice the considerable variation in both and values.
Clearly, different computers have very different communication performance characteristics.

The values in Table 3.1 were obtained either from the literature or by fitting Equation 3.1 to
execution times measured for a small test program that sends messages back and forth between
two processors. Figure 3.4 presents some representative experimental data obtained with this
program. These times are for a single round trip and hence are twice those given by Equation 3.1.
The impact of startup and per-word costs on communication time is clearly visible. Notice the
irregularities in both Ethernet and Fiber Distributed Data Interconnect (FDDI) times for small
messages, and the periodic jumps in Paragon times. These are due to details of the communication
protocols and buffer management strategies used in communication libraries. Nevertheless, we see
that Equation 3.1 is a reasonably accurate representation of message costs, particularly for larger
messages.

Table 3.1: Approximate machine parameters for some parallel computers, in microseconds (sec).
Some of these data provided by T. Dunigan.

Figure 3.4: Round-trip time for a single message between two processors as a function of message
length on Ethernet-connected workstations, FDDI-connected workstations, Intel Paragon, and
IBM SP1. Data provided by W. Gropp.

Notice that both the and terms are required in Equation 3.1. Asymptotically (for large L) only
the term is important; yet as is generally much larger than , the term can dominate in
applications that send mostly small messages.

The values in Table 3.1 represent ``best achievable'' performance and in general may be used as a
lower bound on communication costs when estimating performance. Applications with less regular
or structured communication patterns may perform less well. In addition, the values in Table 3.1
do not incorporate other costs such as buffer management associated with message passing.
However, these additional costs are typically proportional to the number and size of messages
communicated. Hence, it is generally possible, by fitting Equation 3.1 to empirical data, to obtain
system- and algorithm-dependent values for and for which Equation 3.1 is valid for a large
range of problem and machine sizes. This procedure is applied in several examples later in this
chapter.

Idle Time.

 Both computation and communication times are specified explicitly in a parallel algorithm; hence,
it is generally straightforward to determine their contribution to execution time. Idle time ()
can be more difficult to determine, however, since it often depends on the order in which
operations are performed.

A processor may be idle due to lack of computation or lack of data. In the first case, idle time may
be avoided by using load-balancing techniques such as those introduced in Section 2.5.1. In the
second case, the processor is idle while the computation and communication required to generate
remote data are performed. This idle time can sometimes be avoided by structuring a program so
that processors perform other computation or communication while waiting for remote data. This

technique is referred to as overlapping computation and communication, since local computation
is performed concurrently with remote communication and computation (Figure 3.5). Such
overlapping can be achieved in two ways. A simple approach is to create multiple tasks on each
processor. When one task blocks waiting for remote data, execution may be able to switch to
another task for which data are already available. This approach has the advantage of simplicity
but is efficient only if the cost of scheduling a new task is less than the idle time cost that is
avoided. Alternatively, a single task can be structured so that requests for remote data are
interleaved explicitly with other computation.

Figure 3.5: Overlapping computation with communication. Solid lines represent computation and
dashed lines represent communication operations. In both (a) and (b), processor P1 generates a
request to processor P2 at time t+2 and receives a reply at time t+8. In both cases, the cost of
actually sending the message is assumed to be 1 time unit. In (a), P1 has no other useful work to
do while waiting for the reply and hence is idle for five time units after sending the message. In
(b), P1 switches to another task as soon the request is generated. As this task requires five time
units to complete, P1 is never idle.

Example . Finite Difference:

Throughout this chapter, we use a parallel finite difference algorithm similar to the atmosphere
model considered in Section 2.6 to illustrate how performance models are developed and used. For
simplicity, we assume a grid of size points, where Z is the number of points in the
vertical dimension. Initially, we assume that this grid is decomposed in one horizontal dimension
and partitioned among P tasks, with each task responsible for a subgrid of size .
Each task performs the same computation on each grid point and at each time step. Because the
parallel algorithm does not replicate computation, we can model computation time in a single time
step as

where is the average computation time at a single grid point.

As in Section 2.6, we consider a nine-point stencil, meaning that each task must exchange 2 N Z
data points with two neighboring tasks, for a total of two messages and 4 N Z data. (We assume
that each processor is allocated at least a 2 N subgrid; if not, communications will be required
with more than two neighbors. Hence, the performance model that we develop does not apply on
more than N/2 processors.) The total communication cost, summed over P processors, is

If P divides N and the amount of computation per grid point is a constant, idle time can be
expected to be negligible in this example. In these circumstances, we can combine Equations 3.2
and 3.3 to obtain the following performance model:

3.3.2 Efficiency and Speedup
 Execution time is not always the most convenient metric by which to evaluate parallel algorithm
performance. As execution time tends to vary with problem size, execution times must be
normalized when comparing algorithm performance at different problem sizes. Efficiency---the
fraction of time that processors spend doing useful work---is a related metric that can sometimes
provide a more convenient measure of parallel algorithm quality. It characterizes the effectiveness
with which an algorithm uses the computational resources of a parallel computer in a way that is
independent of problem size. We define relative efficiency as

where is the execution time on one processor and is the time on P processors. The related
quantity relative speedup,

is the factor by which execution time is reduced on P processors:

 The quantities defined by Equations 3.5 and 3.6 are called relative efficiency and speedup
because they are defined with respect to the parallel algorithm executing on a single processor.
They are useful when exploring the scalability of an algorithm but do not constitute an absolute
figure of merit. For example, assume that we have a parallel algorithm that takes 10,000 seconds
on 1 processor and 20 seconds on 1000 processors. Another algorithm takes 1000 seconds on 1
processor and 5 seconds on 1000 processors. Clearly, the second algorithm is superior for P in the
range 1 to 1000. Yet it achieves a relative speedup of only 200, compared with 500 for the first
algorithm.

When comparing two algorithms, it can be useful to have an algorithm-independent metric other
than execution time. Hence, we define absolute efficiency and speedup, using as the baseline the
uniprocessor time for the best-known algorithm. In many cases, this ``best'' algorithm will be the
best-known uniprocessor (sequential) algorithm. From this point forward, we shall frequently use
the terms efficiency and speedup without qualifying them as relative or absolute. However, the
context will always make clear which is meant.

Example . Efficiency of Finite Difference Algorithm:

 In the finite difference algorithm, , and so from Equation 3.4 we have the following
model for efficiency in the absence of load imbalances and when P divides N :

Because the uniprocessor algorithm is identical to the parallel algorithm when P=1, this equation
represents absolute efficiency.

3.4 Scalability Analysis
Performance models of the type developed in preceding sections are tools that we can use to
explore and refine a parallel algorithm design. These models can be used without further
refinement to perform qualitative analyses of performance. For example, from Equations 3.4 and
3.7 the following observations can be made about the finite difference algorithm:

• Efficiency decreases with increasing P, , and .
• Efficiency increases with increasing N, Z, and .
• Execution time decreases with increasing P but is bounded from below by the cost of

exchanging two array slices.
• Execution time increases with increasing N, Z, , , and .

These observations provide interesting insights into algorithm characteristics. However, they are
not a sufficient basis for making design tradeoffs. This task requires quantitative results, which in
turn require that we substitute machine-specific numeric values for the various parameters in
performance models. In general, we seek to obtain these numeric values by empirical studies, as
will be discussed in Section 3.5. Once augmented with empirical data, models can be used to
answer questions such as the following.

• Does the algorithm meet design requirements (for execution time, memory requirements,
etc.) on the target parallel computer?

• How adaptable is the algorithm? That is, how well does it adapt to increases in problem
size and processor counts? How sensitive is to machine parameters such as and ?

• How does the algorithm compare with other algorithms for the same problem? What
difference in execution time can be expected from different algorithms?

It is important to remember that performance models are idealizations of more complex
phenomena. Once an algorithm has been implemented, we are able to validate our models and
hence increase our confidence in their quality. However, in the early stages of a design we must
necessarily be cautious, especially if we are making quantitative predictions or if the target
computer has an architecture very different from the idealized multicomputer.

3.4.1 Scalability with Fixed Problem Size

An important aspect of performance analysis is the study of how algorithm performance varies
with parameters such as problem size, processor count, and message startup cost. In particular, we
may evaluate the scalability of a parallel algorithm, that is, how effectively it can use an increased
number of processors. One approach to quantifying scalability is to determine how execution time
T and efficiency E vary with increasing processor count P for a fixed problem size and machine
parameters. This fixed problem analysis allows us to answer questions such as, What is the fastest I
can solve problem A on computer X ? and What is the greatest number of processors I can utilize if
I want to maintain an efficiency of 50 percent? The latter question may be of interest if a computer
is shared and there is a charge for each processor used.

It is important to consider both E and T when evaluating scalability. While E will generally
decrease monotonically with P, T may actually increase if the performance model includes a term
proportional to a positive power of P. In such cases, it may not be productive to use more than
some maximum number of processors for a particular problem size and choice of machine
parameters.

Example . Scalability of Finite Difference:

Figure 3.6 illustrates fixed problem analysis applied to the finite difference algorithm (Equations
3.4 and 3.7). This figure plots T and E as a function of P and N, using machine parameters
characteristic of a relatively fine-grained multicomputer. The computation cost sec has
been obtained by experiment, as will be described in Example 3.5. Recall that because the
algorithm requires each task to have at least two grid columns, at most 64 processors can be used
productively when N=128 and 256 processors when N=512. Later in the chapter, we shall see how
these predictions compare with observed performance.

Figure 3.6: Scalability of the 1-D decomposition finite difference algorithm, as predicted by
Equations 3.4 and 3.7 when sec, sec, sec, and Z=10 : (a) execution
time as a function of P ; (b) efficiency as a function of P. Note that when N=128, only 64
processors can be used productively.

3.4.2 Scalability with Scaled Problem Size
Large parallel computers are frequently used not only to solve fixed-size problems faster, but also
to solve larger problems. This observation encourages a different approach to the analysis of
algorithms called scaled problem analysis, whereby we consider not how E varies with P, but how

the amount of computation performed must scale with P to keep E constant. This function of N is
called an algorithm's isoefficiency function and can provide valuable insights into algorithm
behavior. An algorithm with an isoefficiency function of is highly scalable, since the amount
of computation needs to increase only linearly with respect to P to keep efficiency constant. In
contrast, an algorithm with a quadratic or exponential isoefficiency function would be poorly
scalable.

Recall that efficiency E is defined as the ratio between execution time on a single processor and
total execution time summed over P processors:

Hence, to maintain constant efficiency E, the following relation must hold for increasing P :

That is, uniprocessor time must increase at the same rate as total parallel time or, equivalently, the
amount of essential computation must increase at the same rate as overheads due to replicated
computation, communication, and idle time.

Scaled problem analysis does not make sense for all problems. Real-time constraints, for example
in weather forecasting, may require that computation be completed in a fixed amount of time. In
other applications, scaling is not possible because of physical constraints on problem size. For
example, in molecular modeling, the number of atoms in a molecule is fixed, as is the number of
pixels in image-processing applications.

Example . Isoefficiency of Finite Difference Algorithms:

We use isoefficiency analysis to examine the scalability of two parallel finite difference
algorithms. Recall that the efficiency of an algorithm based on a 1-D decomposition of an

grid is given by Equation 3.7. For constant efficiency, a function of P, when
substituted for N, must satisfy the following relation for increasing P and constant E :

The function N=P satisfies this requirement, and yields the following relation, which is valid for
all except small P, when the term becomes significant:

Because the finite difference computation operates on a square grid, scaling N with P causes the
number of grid points and thus the amount of computation to scale as . Hence, we say that the
isoefficiency function for this algorithm is , meaning that the amount of computation must
increase as the square of the number of processors in order for constant efficiency to be
maintained. Figure 3.7 illustrates why this is so.

Figure 3.7: Scaling a finite difference algorithm based on a 1-D decomposition. In (a), N=8 and
P=2. Each task has 32 grid points and must communicate with two neighbors. In (b), P is doubled
while N stays the same. Total computation costs stay the same but communication costs double, so
efficiency is reduced. In (c), both P and N are doubled, thereby increasing both computation costs
and the component of communication costs by a factor of four; hence, efficiency remains the
same.

As a second example, consider a two-dimensional decomposition of the finite difference problem.
Here, each task is responsible for points and must exchange

points with each of four neighbors at each time step. Hence,

For constant efficiency, a function of P, when substituted for N, must satisfy the following relation
for increasing P :

The function meets this requirement and gives the following relation which is valid for
all values of P :

Because total computation is again proportional to , the isoefficiency function is . This
analysis shows that a 2-D decomposition is more scalable than a 1-D decomposition.

This example illustrates a general rule: Higher-dimensional decompositions tend to be more
efficient than lower-dimensional decompositions. To understand why, consider Equations 3.7 and
3.8. While the 2-D decomposition sends slightly more messages (four instead of two), data volume

is reduced by a factor of , from to . Total communication costs are reduced
unless P and N are small or is much larger than .

3.4.3 Execution Profiles
If scalability analysis suggests that performance is poor on problem sizes and computers of
interest, we can use models to identify likely sources of inefficiency and hence areas in which an
algorithm can be improved.

Poor performance may be due to excessive replicated computation, idle time, message startups,
data transfer costs, or some combination of these factors. An important first step when attempting
to improve an algorithm is to identify which of these factors is dominant. We can do this by
computing an expected execution profile for the algorithm, indicating the contributions of these
different factors to execution time as a function of N and/or P. This approach is illustrated in
Figure 3.8 for the 1-D finite difference algorithm. The model predicts that when this algorithm is
executed on a multicomputer with a single vertical layer (Z=1), data transfer costs dominate
execution time when P is large; message startup costs are also significant. If the number of vertical
levels is increased, message startup costs become negligible, and overall efficiency improves.

Figure 3.8: Contributions of computation, message startup, and message transfer costs to total
execution time in the 1-D finite difference algorithm, for N=512, Z=1, sec,

sec, sec, and varying P. There is no replicated computation or idle time in this
example.

Cost information of this sort can be used to guide a redesign of an algorithm. Often, it may
motivate us to reconsider decisions made earlier in the design process. For example, if replicated
computation is reducing performance, then we may wish to reconsider an alternative algorithm,

previously discarded, that avoids replicated computation at the expense of increased
communication. Alternatively, high message startup costs may suggest further agglomeration so as
to increase granularity. Similarly, if data transfer costs are high, we may seek to replicate
computation or send more, smaller messages if doing so can reduce the total volume of data
transferred.

3.5 Experimental Studies
 Discussion in preceding sections has emphasized analytic modeling of performance. Yet parallel
programming is first and foremost an experimental discipline. The flexibility and ease of
modification of software on the one hand, and the complexity of parallel computer systems on the
other, mean that approaches to parallel program design based entirely on theory are rarely cost
effective. The role of modeling is most often to assist in what is essentially an experimental
process, by guiding experiment and explaining results.

Experimental studies can be used in early design stages to determine values for parameters used in
performance models, such as computation time per grid point, average depth of a search tree,
message startup cost, and message transfer costs. They can also be used after programming begins,
to compare observed and modeled performance.

Next we review several sometimes subtle issues that can arise during experimental studies.

3.5.1 Experimental Design
 The first step in an experimental study is to identify the data that we wish to obtain. For example,
when calibrating a performance model we may be interested in determining the execution time of
a sequential version of our application as a function of problem size in order to determine . Or,
we may need to measure the execution time of a simple message-passing testbed program in order
to determine and .

Normally, experiments are performed for a range of data points---different problem sizes and/or
processor counts. By maximizing the number of data points obtained, we reduce the impact of
errors in individual measurements. When empirical data are used to evaluate the quality of an
implementation, a range of data points also allows us to estimate the accuracy of the model and to
identify regimes in which it is inadequate.

The next step in an experimental study is to design the experiments that will be used to obtain the
required data. The critical issue here is to ensure that our experiments measure what we intend to
measure. For example, if a program comprises an initialization step followed by a long series of
iterations, and our performance model deals only with the cost of an iteration, then that is what we
need to measure.

3.5.2 Obtaining and Validating Experimental Data
The principal challenge when performing experiments is to obtain accurate and reproducible
results. Execution times can be obtained in various ways; which is best will depend on both our
requirements and the facilities available on the target computer. A straightforward but potentially
time-consuming approach is to incorporate code into our program that calls system timer routines

to determine elapsed time. In principle, we should make these calls on every processor and then
take the maximum time. However, we can often identify a reference processor that does not start
or finish appreciably later or sooner than others, and measure times on this processor alone.
Alternatively, we can use a profiling or tracing tool that obtains timing data automatically. We
discuss specific tools in Chapter 9.

Experiments should always be repeated to verify that results are reproducible. Generally, results
should not vary by more than a small amount---2 or 3 percent is a lot if one is trying to fine-tune
algorithms. Possible causes of variation include the following.

• A nondeterministic algorithm. Programs may use random numbers or may explore a
search space or allocate work to processors in a time-dependent manner (as in the search
algorithm of Section 2.7). Nondeterminism due to random numbers can be controlled by
using a reproducible parallel generator (Chapter 10). Nondeterminism due to time-
dependent execution is more problematic. One solution is to perform a large number of
trials. Another is to normalize execution times by dividing them by some measure of the
amount of work done, such as search tree nodes visited.

• An inaccurate timer. The timer used to obtain execution times may have limited resolution
or be inaccurate. If resolution is limited, we can improve accuracy by increasing execution
time, for example by performing more iterations or by solving the same problem several
times. If the timer is inaccurate, we need to find another way to determine execution times.

• Startup and shutdown costs. The time required for system management functions
concerned with the acquisition of processors, loading of code, allocation of virtual
memory, deallocation of processors, etc., can vary significantly according to the state of
the system. Timings are often more accurate if these system-dependent components are
excluded. Hence, we may start a timer after a program is loaded and stop it once a solution
has been computed.

• Interference from other programs. On a nondedicated machine, other users may compete
for shared resources such as processors, network bandwidth, and I/O bandwidth. Timings
may also be perturbed by system functions such as accounting and backups that execute
occasionally. Note that competition can occur even when processors are dedicated to our
application. For example, a computer in which processors are connected in a 2-D mesh
(Section 3.7.2) may be partitioned into disjoint submeshs. Yet I/O requests generated by
programs executing in one submesh may need to traverse our submesh to reach I/O
devices, thereby consuming bandwidth.

• Contention. On some computers, the time required for a communication operation can
increase when several processors communicate at the same time. For example, an Ethernet-
connected LAN can carry only one message at a time, and senders must back off and
resend when messages collide. An unfortunate schedule can result in repeated resendings,
thereby increasing execution time. In Section 3.7, we describe advanced modeling
techniques that can account for some such effects.

• Random resource allocation. The operating system may use a random processor allocation
strategy, which will affect execution times if communication costs depend on processor
location in a network (see Section 3.7). If possible, the same allocation should be used for
all experiments.

Studies of variability in experimental results can help us to identify sources of error or uncertainty
in our measurements. However, even when results are reproducible, we still have no assurance that
they are correct. Confidence in our results can be increased by measuring the same thing several
different ways and verifying that the results of these redundant measurements are consistent. For

example, in addition to measuring the time taken in individual program components, we can
measure the total time for the entire program.

3.5.3 Fitting Data to Models
 When experimental studies are performed for calibration purposes, we fit results to the function of
interest to obtain values for unknown parameters. A fit can be performed graphically by plotting
data points and estimating the fit. For example, if the function is

we can plot the data points as a function of L and draw a straight line that fits these points.
The slope of this line will be , and the intercept of the axis when L=0 will be .

 Alternatively, and more accurately, we can perform a least-squares fit of the function with the
data. (Mathematical packages such as Mathematica and Matlab incorporate fitting functions.) A
least-squares fit involves a minimization of the sum of the squares of the differences between the
observations, obs (i), and the corresponding function values, f (i) :

For example, when fitting the function with observations of T for different values of N
in order to determine the value , we minimize

When fitting to execution times for different numbers of processors, the method just described
gives less weight to the (presumably smaller) times on larger numbers of processors. Yet these are
typically the times of greatest interest. Hence, we can use a scaled least-squares fit in which the
difference between observation and function value is scaled by the observation, as follows:

Example . Determining Computation Time ():

We consider the problem of determining the computation cost per grid point in the finite
difference problem. Recall that we have modeled this cost as follows (Equation 3.2):

In this equation, is the parameter that we wish to determine, and N is a value that we can vary
while measuring performance. (For simplicity, we keep Z fixed.) Table 3.2 gives execution times
measured on a Sun SPARC 2 workstation. Experiments were performed when the machine was
idle but not in single-user mode; hence, there might have been a small amount of background

activity. Each experiment was repeated three times so that we could study variability; the table
also lists the means of each set of three values. The repeated experiments show little variation in
total execution time.

Table 3.2: Execution times in milliseconds for a single time step of the finite difference code on a
Sun SPARC 2, with Z=10.

Figure 3.9: Simple and scaled least-squares fits of the function to finite difference
execution times on a Sun SPARC 2 workstation. Notice the use of logarithmic scales.

Table 3.3: Execution times predicted for finite difference code on Sun SPARC 2, with Z=10
(milliseconds).

Figure 3.9 shows simple and scaled least-squares fits of Equation 3.2 to the data in Table 3.2. The
two fits correspond to values of 0.0120 msec and 0.0112 msec, respectively. The execution times
predicted by the two models are shown in Table 3.3. As expected, the simple fit is more accurate
for larger N, while the scaled fit is better for smaller N ; both are good enough for most practical
purposes. These results suggest that the hypothesized performance model, , is an
adequate characterization of finite difference computation time.

3.6 Evaluating Implementations
Performance models also play an important role after a design is complete, when we start to write
programs. Comparisons of observed and predicted execution times can provide valuable
information about both an algorithm and its implementation.

Even if considerable care is taken when designing and carrying out experiments, the idealized
nature of our models means that observed and predicted execution times will seldom completely
agree. Major discrepancies signify either that the model is incorrect or that the implementation is
inadequate. In the first case, we can use the empirical results to determine where the model is
deficient; this information in turn enables us to reassess the quantitative tradeoffs that we have
used to justify design decisions. In the second case, we can use the model to identify areas in
which the implementation can be improved.

When faced with a substantial difference between modeled and observed execution times, our first
step should be to check both the performance model and our experimental design to verify not
only that the model and experiments are correct but that they are measuring the same thing.

Our next step should be to obtain an execution profile of the parallel code. (In contrast to the
execution profiles discussed in Section 3.4.3, this profile will be based on measured values.) The
goal here is to obtain a more detailed view of program behavior, by measuring, for example, time
spent in initialization, time spent in different phases of a computation, total idle time, and the total
number and volume of messages communicated. Ideally, data will be obtained for a range of
problem sizes and processor counts. Tables 3.4 and 3.5 show typical examples of execution profile
data, in this case from a parallel computational chemistry code that incorporates the Fock matrix
construction algorithm of Section 2.8 as a kernel. These data were obtained by using
instrumentation inserted manually into the program.

Table 3.4: A simple execution profile for a single step of a parallel computational chemistry code,
here applied to a relatively small problem on an IBM SP computer. This code combines the Fock
matrix construction algorithm of Chapter 2 (``fock'') with additional components. The profile
shows both the time spent in different parts of the program for varying processor counts and the
total execution time. Scalability is reasonably good, although it is evident that the routine diag has
not been parallelized. The init routine does not scale well, but this cost is less important because
the code is normally run for many steps.

Table 3.5: A more detailed execution profile for the parallel code of Table 3.4. This gives call
frequencies and execution times for various communication routines on each processor. For
brevity, only the first 6 of 16 processors are shown. Instrumentation overhead increases total time
from the 230 seconds of Table 3.4 to around 241 seconds. The get, accum, and put routines read
and write data in distributed global arrays. A get operation, which blocks waiting for a response to
a remote request, takes around 1.7 milliseconds on average. Since each data transfer is relatively

small, and the IBM SP's is low, this time must include substantial idle time that could perhaps be
overlapped with local computation. The second major source of communication cost is the
barrier operation, which is used to ensure that all updates to a global array have completed
before reading begins. We may wish to examine the program to determine whether we really need
85 such operations per step.

Once we have obtained an execution profile, we can compare it with the performance model to
identify deficiencies in either the model or the implementation. In the following sections, we list
several potential problems that may be revealed in an execution profile.

3.6.1 Unaccounted-for Overhead
 We first consider issues that may lead to observed execution times greater than predicted by a
model. Most often, such a situation occurs because the performance model is incomplete: some
aspect of an algorithm or its implementation was neglected as insignificant but proves in practice
to contribute significantly to execution time.

• Load imbalances. An algorithm may suffer from computation or communication
imbalances that were not considered in the performance model. These problems may be
revealed by a study of how costs vary across processors.

• Replicated computation. Disparities between observed and predicted times can also signal
deficiencies in the implementation. For example, we may have failed to parallelize some
component, assuming that the cost of replicating its computation on every processor would
be insignificant. On large numbers of processors, this assumption may not be valid. These
sorts of problem can be detected by studying costs in different parts of a program and for
varying numbers of processors.

• Tool/algorithm mismatch. The tools used to implement the algorithms may introduce
inefficiencies. For example, we may have designed an algorithm that creates multiple tasks
per processor so as to overlap computation and communication. Yet the programming
language or library used to implement the algorithm may not implement tasks efficiently.

• Competition for bandwidth. Equation 3.1 may not be an adequate characterization of the
communication network on which the program is executing. In particular, concurrent
communications may compete for bandwidth, thereby increasing total communication
costs. This issue is discussed in Section 3.7.

3.6.2 Speedup Anomalies
 An implementation may execute faster than predicted by a performance model. If this effect
becomes more marked as the number of processors increases, this phenomenon is termed a
speedup anomaly---the observed speedup is greater than predicted. Sometimes, we may see a
speedup that is greater than linear, or superlinear. Situations in which this can occur include the
following:

• Cache effects. On most parallel computers, each processor has a small amount of fast
memory (cache) and a larger amount of slower memory. When a problem is executed on a
greater number of processors, more of its data can be placed in fast memory. As a result,
total computation time () will tend to decrease. If the reduction in from this
cache effect offsets increases in and resulting from the use of additional

processors, then efficiency will be greater than 1 and speedup will be superlinear.
Similarly, the increased physical memory available in a multiprocessor may reduce the cost
of memory accesses by avoiding the need for virtual memory paging.

• Search anomalies. This phenomenon is encountered in some parallel search algorithms,
such as the branch-and-bound search of Section 2.7. If a search tree contains solutions at
varying depths, then multiple depth-first searches will, on average, explore fewer tree
nodes before finding a solution than will a sequential depth-first search. Notice that in this
case, the parallel algorithm executed is not the same as the sequential algorithm. In fact, the
best uniprocessor algorithm may be one that pursues several searches concurrently.

Figure 3.10: Speedup of an implementation of the 1-D finite difference algorithm with N=512 and
Z=10 as measured on the Intel DELTA and as predicted by both a simple performance model that
does not account for load imbalances and a more sophisticated model that does; both models
assume sec and sec.

Example . Evaluating a Finite Difference Program:

We consider the behavior of an implementation of the 1-D finite difference algorithm. Figure 3.10
shows observed performance, performance predicted by Equation 3.4, and performance predicted
by a refined model that we shall develop in the following. We present speedups rather than raw
execution times in order to make results clearer for larger P. The predicted performance curves use
machine parameter values obtained by a fitting process so as to take into account additional
overheads not accounted for by the ``best possible'' parameter values of Table 3.1. A comparison
of the two sets of parameter values (sec versus 77 sec, sec versus 0.54 sec)
indicates that the finite difference implementation incurs significant overhead. This suggests that
there may be opportunities for optimization.

Figure 3.10 shows that Equation 3.4 is inaccurate for N=512 and larger values of P. The observed
speedup does not increase continuously, as predicted, but in a stepwise fashion. This observation

suggests that the model is incorrect in assuming that some aspect of program performance varies
continuously with P. Examining Equation 3.4, we see that only computation cost depends on P ;
both the number of messages and message size per processor are constant and hence independent
of P. The problem then becomes clear. Equation 3.4 assumes that each processor has N/P columns
of the grid. In reality, P does not always divide N. More specifically, some tasks will be allocated

grid points and others points. For example, if N=8, Z=1, and P=3, some
will have and others grid points. Hence, while total computation costs are as
given by Equation 3.4, the maximum computation costs on any processor are as follows:

This uneven distribution of computation leads to idle time, since at each step processors with less
computation will terminate before those with more. Total idle time is the difference between the
maximum computation time and the mean computation times, multipled by the number of
processors:

Incorporating this idle time into Equation 3.4, we obtain the following more general performance
model:

The second predicted performance curve in Figure 3.10 is obtained using this refined model.
Notice that the two models are equivalent when N is an integer multiple of P.

3.7 A Refined Communication Cost Model
Next we examine how the idealized communication cost model used in preceding sections can be
extended to account for characteristics of realistic interconnection networks. We review a range of
network architectures and develop a more detailed model of communication performance that
takes into account the impact of competition for bandwidth on communication costs. This more
detailed model is still idealized but can be significantly more accurate in some circumstances.

3.7.1 Competition for Bandwidth
 In the idealized multicomputer architecture introduced in Chapter 1, the time required to send a
message from one processor to another is independent of both processor location and the number
of other processors that may be communicating at the same time. These assumptions are reflected
in the communication cost model, Equation 3.1:

While accurate for many algorithms and on many architectures, this model can break down if a
computer's interconnection network has properties different from the ideal, particularly if an
application generates many messages. In these cases, it is necessary to develop a more detailed
model of the interconnection network.

Most interconnection networks use fewer than wires to connect N processors. Hence, they must
include routing nodes, or switches, to route messages from a source processor to a destination. A
switching node may block or reroute messages when several messages require access to the same
wire at the same time. The number of wires that must be traversed in order to get from one
processor to another is termed the distance between those two processors. (The distance is equal to
the number of switches plus one.) The maximum distance from any processor to any other
processor is termed the diameter of the network. The distance between two processors and the
length of the wires connecting them are not normally significant factors in determining
performance, although networks with long wires may be more expensive to build. (Wire length
can be important in networks extending over tens to thousands of kilometers, where the speed of
light---about sec per kilometer in optical fiber---places a lower limit on communication
latency.)

A factor that can have a significant impact on communication performance and which we study
here in some depth is competition for bandwidth. Two processors may need to send data over the
same wire at the same time. Typically, only one message can be transmitted simultaneously, so the
other message will be delayed. However, for many practical purposes it suffices to think of the two
processors as sharing the available bandwidth. Hence, we scale the data volume term of Equation
3.1 by S, the number of processors needing to send concurrently over the same wire:

The scaling factor reflects the idea that the effective bandwidth available to each processor is 1/S
of the true bandwidth.

Equation 3.10 does not account for additional contention costs that may be incurred if messages
collide and must be retransmitted. (Network researchers have developed sophisticated simulation
techniques to account for such effects.) However, experience shows that Equation 3.10 is
sufficiently accurate for many practical purposes.

The impact of competition for bandwidth is most severe in algorithms that execute synchronously,
that is, algorithms in which all processors are sending and receiving messages at approximately the
same time and in which processors cannot proceed with other computation while awaiting
messages. The finite difference problem and many other SPMD algorithms have this property. In
algorithms such as the search and Fock matrix construction algorithms described in Chapter 2,
processors execute asynchronously and are less likely to compete for bandwidth.

3.7.2 Interconnection Networks
 The value S in Equation 3.10 can depend on properties of both the parallel algorithm and the
underlying interconnection network. In the following discussion, we use two examples to illustrate
how the communication patterns of a particular algorithm can be analyzed to determine an
approximate value for S on different networks. We first consider properties of interconnection
networks.

Crossbar Switching Network.

 A crossbar switch avoids competition for bandwidth by using switches to connect N
inputs to N outputs (Figure 3.11). In this case, S=1. Although highly nonscalable, crossbar
switches are a popular mechanism for connecting small numbers of workstations, typically 20 or
fewer. For example, the DEC GIGAswitch can connect up to 22 workstations. While larger
crossbars can be constructed (for example, the Fujitsu VPP 500 uses a 224 224 crossbar to
connect 224 processors), they are very expensive.

Figure 3.11: A 4 4 nonblocking crossbar, used here to connect 4 processors. On the right, two
switching elements are expanded; the top one is set to pass messages through and the lower one to
switch messages. Notice that each processor is depicted twice, and that any pair of processors can
communicate without preventing other processor pairs from communicating.

Bus-based Networks.

 In a bus-based network, processors share a single communication resource (the bus). A bus is a
highly nonscalable architecture, because only one processor can communicate on the bus at a time.
The competition factor S is equal to the number of processors trying to communicate
simultaneously.

Figure 3.12: A bus-based interconnection network, here used to implement a shared-memory
parallel computer. Each processor (P) is connected to the bus, which in turn is connected to the
global memory. A cache associated with each processor stores recently accessed memory values,
in an effort to reduce bus traffic.

 Buses are commonly used in shared-memory parallel computers to communicate read and write
requests to a shared global memory. In principle, the use of a global memory in a shared-memory
computer simplifies parallel programming by making locality a nonissue. However, as discussed
in Section 1.2.2, most shared-memory parallel computers introduce caches in an attempt to reduce
bus traffic; hence, locality continues to be important.

Figure 3.13: An Ethernet LAN. Multiple computers are connected to a single Ethernet cable,
which acts as a communication bus, carrying a single signal at a time.

Ethernet.

 The Ethernet network often used in LANs to connect workstations or personal computers at a
departmental level is another example of a bus-based interconnect. As noted in Table 3.1, standard
Ethernet can provide network bandwidths of up to about 1 Mbytes per second. All computers
connected via an Ethernet share a single communication channel (Figure 3.13). A computer that
needs to send must wait until the channel is idle, then send its message; if it detects a collision, it
waits a while and then retransmits. Since a computer requires exclusive access to the entire
channel when sending a message, any algorithm that requires more than one processor to
communicate concurrently will suffer reduced effective bandwidth. Hence, the term S in Equation
3.10 is, as in other bus-based networks, equal to the number of simultaneous senders. The impact
of Ethernet bandwidth limitations on performance is illustrated in the examples that follow.

Figure 3.14: A two-dimensional torus interconnection network. This is a 2-D mesh with end-
around connections so that each processor is connected to four neighbors.

Mesh Networks.

 A mesh network can be thought of as a crossbar switch (Figure 3.11) in which processors are
associated with switching elements rather than being placed on the edge of the mesh. In a mesh
network of dimension D, each nonboundary processor is connected to 2D immediate neighbors.
Connections typically consist of two wires, one in each direction. Two- and three-dimensional
meshes are commonly used in parallel computing. They have the advantage over some more
sophisticated networks that they can be constructed in three-dimensional space without long wires.
In a 2-D mesh, a message is communicated from processor (i,j) to processor (k,l) in

steps. One-, two- and three-dimensional cubic meshes of P processors have
diameters of P-1, , and and contain 2(P-1), , and

wires, respectively. As illustrated in Figure 3.14, these diameters can be halved by
extending a mesh with toroidal connections so that boundary processors are also connected with
neighbors. However, the torus has two disadvantages. First, longer wires are needed for the end-
around connections in the 3-D case. (The need for longer wires can be avoided in a 2-D torus by
folding the mesh.) Second, a subset of a torus is not a torus, so the benefits of the toroidal
connections are lost if a torus-connected computer is partitioned among several users.

Figure 3.15: Competition for bandwidth in a 1-D mesh. In (a), processors P0 and P1
communicate and P2 and P3 communicate. Because the two communications use different wires,
both can proceed concurrently. In (b), processors P0 and P2 communicate and P1 and P3
communicate. The two communications must both traverse the wire connecting P1 and P2; hence,
the two communications cannot proceed concurrently, and S=2. In (c), processors P0 and P2
communicate and P3 and P1 communicate. Because each connection is bidirectional, the two
communications can proceed concurrently.

Competition for bandwidth in a mesh network occurs when two or more processors attempt to
send over the same wire at the same time (Figure 3.15). The analysis used to determine S for a
particular algorithm is illustrated in the examples that follow.

Figure 3.16: Hypercubes of dimension zero through four. The processors in the cubes of
dimension 1, 2, and 3 are labeled with integers, here represented as binary numbers. Notice that
two processors are neighbors in dimension d if and only if their binary labels differ only in the d th
place. Notice also that in a hypercube of dimension d, a message can be routed between any pair
of processors in at most d hops.

Hypercube Network.

 The hypercube network was introduced in Section 2.4.1. As in the mesh, processors in a
hypercube network are associated with switching elements. A d -dimensional hypercube connects
each of processors to d other processors. A hypercube can be defined recursively as follows
(Figure 3.16). A zero-dimensional hypercube is a single processor and a one-dimensional
hypercube connects two zero-dimensional hypercubes. Generally, a hypercube of dimension d+1
is constructed by connecting corresponding processors in two hypercubes of dimension d. As with
the mesh, the competition-for-bandwidth factor S is algorithm dependent, although the greater
number of wires in the hypercube means that competition for bandwidth tends to occur less often.

The many interesting properties of hypercubes are beyond the scope of this book (but see Chapter
11). However, we note that when labeled as shown in Figure 3.16, two processors are connected if
and only if the binary representation of their labels differs in a single position. We exploit this
property when specifying algorithms that use the hypercube communication structure. Another
important feature of a hypercube is that it contains a mesh: it may be considered a mesh with
additional, long-distance connections. The additional connectivity reduces the diameter to d and
increases the number of available wires, particularly for nonlocal communication. A disadvantage
of the hypercube interconnect from an engineering point of view is that it is more complex than
the mesh. In particular, it requires more and longer wires, since a hypercube with dimension
greater than three cannot be laid out in three-dimensional space so that wires connect only
physically adjacent processors.

Figure 3.17: Example multistage interconnection networks. Shaded circles represent processors
and unshaded circles represent crossbar switches. The network on the left has k=2 and n=3 ; on
the right, k=4 and n=2. The network can be constructed from unidirectional switches and links, in
which case it is folded so that the processors on the left and right are the same. Alternatively, it
can be constructed from bidirectional switches and links, in which case processors on the left and
right are distinct.

Multistage Interconnection Networks.

In a multistage interconnection network (MIN), as in a crossbar, switching elements are distinct
from processors. However, fewer than switches are used to connect P processors. Instead,
messages pass through a series of switch stages. Figure 3.17 illustrates two MINs, which are

representatives of a general class of networks characterized by parameters n and k. These networks
are sometimes referred to as radix k, dimension n butterflies, or k -ary n -flies. Either n stages of

unidirectional crossbar switches connect processors, or n stages of
bidirectional crossbar switches connect processors. In the latter case, each link

comprises two channels that carry data in opposite directions, and each crossbar switch can route
data arriving on any of 2k inputs to any of 2k outputs. Notice that each stage of these networks
connects P inputs with P outputs, although not every input is directly connected to every output in
each stage.

Figure 3.18: Communications in a bidirectional MIN. The communication indicated at (a)
involves processors connected to the same crossbar; it takes just two hops and passes through a
single switch. The communication at (b) takes three hops and passes through two switches.

In a unidirectional MIN, all messages must traverse the same number of wires, and so the cost of
sending a message is independent of processor location. In effect, all processors are equidistant. In
a bidirectional MIN, the number of wires traversed depends to some extent on processor location,
although to a lesser extent than in a mesh or hypercube (Figure 3.18).

The fact that messages destined for different destinations may need to pass over the same wire
means that MINs are not immune to competition for bandwidth. Nevertheless, a MIN connecting P

processors typically provides P wires at each stage, so in principle we should be able to organize
communications so that little competition occurs.

Example . Competition for Bandwidth in Finite Difference:

 In the first of two examples, we consider the impact of competition for bandwidth in an algorithm
with a high degree of locality: the one-dimensional finite difference algorithm examined in
preceding sections. Recall from Equation 3.3 that according to the idealized model of Equation
3.1, the per-processor communication costs for this algorithm are

Figure 3.19: Speedup of finite difference code with N=512 and Z=5 as measured on Ethernet-
connected IBM RS6000 workstations and as predicted both by a simple performance model that
does not take into account competition for bandwidth and by a more sophisticated model that
does. Both models assume that sec and sec.

Competition for bandwidth is not an issue on a mesh or hypercube because the one-dimensional
ring-based communication structure of the finite difference problem can be embedded in these
networks using only nearest-neighbor connections. On a bus-based network, only one of the P
processors can communicate at one time; if we assume that in the communication phase of the
algorithm, half the processors need to send at once (the other half are receiving), then S=P/2 and
the communication volume term must be scaled by a factor of P/2, giving

Figure 3.19 illustrates both the large impact that bandwidth limitations can have on the
performance of even a simple algorithm such as finite difference and the improved accuracy of the
refined performance model. The figure shows performance measured on Ethernet-connected

workstations and as predicted by Equations 3.3 and 3.11. We see that the more sophisticated
model is reasonably accurate.

Example . Competition for Bandwidth in Butterfly:

 As a second example, we consider an algorithm in which P tasks use the butterfly (or hypercube)
communication structure illustrated in Figure 2.14 to perform exchanges of N/P data. The
summation algorithm described in Section 2.4.1 has this form. Other algorithms with similar
characteristics are described in Chapter 11.

Per-processor communication costs associated with this algorithm are, in the absence of
competition for bandwidth,

The algorithm can, of course, execute without competition for bandwidth on a crossbar switch.
Somewhat less obviously, it can also execute without competition for bandwidth on a P -processor
hypercube: Computation and communication can be organized so that each of the processors
with which a processor must communicate is a neighbor on one of the hypercube links. On a bus-
based network, only one processor can communicate at a time; hence, as in the finite difference
algorithm considered in Example 3.7, we assume S=P/2 and from Equation 3.10 we have

Figure 3.20: Execution of the butterfly summation algorithm on an eight-processor, one-
dimensional mesh. Shading is used to highlight a single task and its communication partners,
which are one, two, and four hops distant.

On a mesh, the limited number of wires becomes an issue. For example, on a one-dimensional
mesh of P processors, each processor generates messages that must traverse 1, 2, ..., hops in
the p steps of the algorithm (Figure 3.20). These messages travel a total of

hops. This represents the number of wires to which each processor
requires exclusive access during execution of the summation. As a one-dimensional bidirectional
mesh provides only 2(P-1) wires, we see that the parallel algorithm cannot possibly proceed in less
than P/2 steps rather than steps as supposed previously. In fact, it can proceed in P/2 steps
only if we can define a communication schedule that keeps all wires busy all the time. Hence, the
following model represents a lower bound on communication costs:

Figure 3.21: Performance of parallel FFT in a spectral transform code on a one-dimensional
mesh in Intel DELTA and on Ethernet-connected RS/6000 processors. The simple models do not
take into account competition for bandwidth; the refined models do, and give a better fit to
observed performance.

Figure 3.21 compares observed speedups with those predicted by the simple and bandwidth-
limited performance models on a one-dimensional mesh and on an Ethernet. These results are
from an atmosphere modeling code that uses a parallel fast Fourier transform (FFT) to parallelize a
numerical method called the spectral transform. The details of the numerical method are not
important here; what is relevant is that at each step, the code must perform two butterfly
communication operations (specifically, FFT) on a large array. Details of the two experiments are
given in Table 3.6. (The term used on the DELTA is significantly smaller than in the finite
difference code of Example 3.6; this reflects the fact that the communication code in the FFT
implementation on the DELTA had been carefully optimized.)

Table 3.6: Parameters for butterfly performance study (N in words, times in sec).

3.8 Input/Output
An important determinant of performance in many parallel programs is the time required to move
data between memory and secondary storage, that is, the time required for input/output (I/O).
Applications with substantial I/O requirements include the following.

• Checkpoints. Many computations performed on parallel computers execute for extended
periods. Periodic checkpointing of computation state is essential in order to reduce the cost
of system failures. On large parallel computers, state can be large (many gigabytes).

• Simulation data. Scientific and engineering simulations that compute the time evolution of
physical systems periodically save system state for subsequent visualization or analysis.
Some simulations can generate very large amounts of data---hundreds of gigabytes or more
in a single run.

• Out-of-core computation. Some programs must operate on data structures that are larger
than available ``core'' memory. In principle, a virtual memory system can perform the
necessary paging of data to and from disk. In practice, not all parallel computers provide
virtual memory. Even when they do, application performance can often be enhanced by
explicit management of data movement.

• Data analysis. Many applications involve the analysis of large amounts of data. For
example, climate model output or data from weather satellites may be searched for
``extreme events'' such as high temperature values, a video database may be searched for
specified images, and a database of credit card transactions may be searched for patterns of
fraudulent use. These data analysis applications are particularly demanding from an I/O
point of view, because relatively little computation is performed on each datum retrieved
from disk.

It is difficult to provide a general discussion of parallel I/O because different parallel computers
have radically different I/O architectures and hence parallel I/O mechanisms. However, we can
make several points that have wide applicability.

We can often gain a reasonable understanding of the cost of an I/O operation by thinking of it as a
communication from the processors that perform that operation to one or more disks. The cost of a
disk I/O operation can be approximated by a startup cost and a per-word transfer cost in much the
same way as an interprocessor communication. (However, the startup cost is typically much
greater.) As in interprocessor communication, the keys to good performance are to maximize the
utilization of available paths and to minimize startups.

Figure 3.22: I/O architecture of an idealized parallel computer. P processors are connected by
multiple I/O channels to D disks.

If a computer has only a single disk or if multiple disks are connected to a single processor, little
can be done to optimize I/O performance. However, in practice most parallel computers provide
multiple paths from processors to disk, whether by providing distinct ``I/O nodes'' or by
connecting disks directly to processors (Figures 3.22). On architectures of this sort, we seek to
organize I/O operations so that multiple processors read and write concurrently, using multiple

paths. Thus, centralized I/O strategies that cause data to pass through a single processor are
unlikely to be efficient and are certainly not scalable.

In addition to maximizing concurrency in I/O operations, we need to be concerned about the
number of distinct read or write requests required to transfer data between disk and processor
memory. This can often have a greater impact on I/O performance than can the amount of data
transferred. The number of I/O requests depends partly on how data are distributed on disk and in
memory. The distribution in memory will presumably be determined by the application; the
distribution on disk either will be under programmer control or will be selected by the file system.
Data may sometimes be ``striped'' (scattered) across available disks so as to reduce the probability
of many processors attempting to read from the same disk simultaneously.

If distributions on disk and in memory differ, then a large number of reads or writes may be
required in order to achieve data transfer. This problem is analogous to what happens when
transferring data structures between two parallel program components that require different
distributions. As will be discussed in Chapter 4, at least two approaches are possible in this
situation: we can modify one or both components to use different distributions, or we can
explicitly redistribute data before or while transferring it. Because I/O requests tend to be more
expensive than interprocessor communications, it is often better to perform an explicit
redistribution of data in memory so as to minimize the number of I/O requests. This leads to a two-
phase access strategy, in which the data distributions used on disk and in memory are decoupled.
The merits of these various approaches can be explored analytically with performance models.

3.9 Case Study: Shortest-Path Algorithms
 We conclude this chapter by using performance models to compare four different parallel
algorithms for the all-pairs shortest-path problem. This is an important problem in graph theory
and has applications in communications, transportation, and electronics problems. It is interesting
because analysis shows that three of the four algorithms can be optimal in different circumstances,
depending on tradeoffs between computation and communication costs.

Figure 3.23: A simple directed graph, G, and its adjacency matrix, A.

The all-pairs shortest-path problem involves finding the shortest path between all pairs of vertices
in a graph. A graph G=(V,E) comprises a set V of N vertices, , and a set E V of edges
connecting vertices in V. In a directed graph, each edge also has a direction, so edges and

, , are distinct. A graph can be represented as an adjacency matrix A in which each
element (i,j) represents the edge between element i and j. if there is an edge ;
otherwise, =0 (Figure 3.23).

A path from vertex to vertex is a sequence of edges , , ..., from E in
which no vertex appears more than once. For example, , is a path from vertex 1 to
vertex 0 in Figure 3.23. The shortest path between two vertices and in a graph is the path that
has the fewest edges. The single-source shortest-path problem requires that we find the shortest
path from a single vertex to all other vertices in a graph. The all-pairs shortest-path problem
requires that we find the shortest path between all pairs of vertices in a graph. We consider the
latter problem and present four different parallel algorithms, two based on a sequential shortest-
path algorithm due to Floyd and two based on a sequential algorithm due to Dijkstra. All four
algorithms take as input an N N adjacency matrix A and compute an N N matrix S, with the
length of the shortest path from to , or a distinguished value () if there is no path.

3.9.1 Floyd's Algorithm

Floyd's all-pairs shortest-path algorithm is given as Algorithm 3.1. It derives the matrix S in N
steps, constructing at each step k an intermediate matrix I(k) containing the best-known shortest
distance between each pair of nodes. Initially, each is set to the length of the edge , if
the edge exists, and to otherwise. The k th step of the algorithm considers each in turn and
determines whether the best-known path from to is longer than the combined lengths of the
best-known paths from to and from to . If so, the entry is updated to reflect the shorter
path (Figure 3.24). This comparison operation is performed a total of times; hence, we can
approximate the sequential cost of this algorithm as , where is the cost of a single
comparison operation.

Figure 3.24: The fundamental operation in Floyd's sequential shortest-path algorithm: Determine
whether a path going from to via is shorter than the best-known path from to .

Parallel Floyd 1.

The first parallel Floyd algorithm is based on a one-dimensional, rowwise domain decomposition
of the intermediate matrix I and the output matrix S. Notice that this means the algorithm can use
at most N processors. Each task has one or more adjacent rows of I and is responsible for
performing computation on those rows. That is, it executes the following logic.

 for k = 0 to N-1

 for i = local_i_start to local_i_end

 for j = 0 to N-1

 (k+1) = min((k), (k)+ (k))

 endfor

 endfor

 endfor

Figure 3.25: Parallel version of Floyd's algorithm based on a one-dimensional decomposition of
the I matrix. In (a), the data allocated to a single task are shaded: a contiguous block of rows. In
(b), the data required by this task in the k th step of the algorithm are shaded: its own block and
the k th row.

In the k th step, each task requires, in addition to its local data, the values , , ..., , that
is, the k th row of I (Figure 3.25). Hence, we specify that the task with this row broadcast it to all
other tasks. This communication can be performed by using a tree structure in steps. Because
there are N such broadcasts and each message has size N, the cost is

Notice that each task must serve as the ``root'' for at least one broadcast (assuming). Rather
than defining P binary tree structures, it suffices to connect the P tasks using a hypercube structure
(Chapter 11), which has the useful property of allowing any node to broadcast to all other nodes in

steps.

Parallel Floyd 2.

An alternative parallel version of Floyd's algorithm uses a two-dimensional decomposition of the
various matrices. This version allows the use of up to processors and requires that each task
execute the following logic.

 for k = 0 to N-1

 for i = local_i_start to local_i_end

 for j = local_j_start to local_j_end

 (k+1) = min((k), (k)+ (k))

 endfor

 endfor

 endfor

Figure 3.26: Parallel version of Floyd's algorithm based on a two-dimensional decomposition of
the I matrix. In (a), the data allocated to a single task are shaded: a contiguous submatrix. In (b),
the data required by this task in the k th step of the algorithm are shaded: its own block, and part
of the k th row and column.

In each step, each task requires, in addition to its local data, values from two tasks located
in the same row and column of the 2-D task array (Figure 3.26). Hence, communication
requirements at the k th step can be structured as two broadcast operations: from the task in each
row that possesses part of column k to all other tasks in that row, and from the task in each column
that possesses part of row k to all other tasks in that column.

In each of N steps, values must be broadcast to the tasks in each row and column, and
the total cost is

Notice that each task must serve as the ``root'' node for at least one broadcast to each task in the
same row and column of the 2-D task array. These communication requirements can be satisfied
by connecting tasks in the same row or column in a hypercube structure.

3.9.2 Dijkstra's Algorithm
 Dijkstra's single-source shortest-path algorithm computes all shortest paths from a single vertex,

. It can also be used for the all-pairs shortest-path problem, by the simple expedient of applying
it N times---once to each vertex , ..., .

Dijkstra's sequential single-source algorithm is given as Algorithm 3.2. It maintains as T the set of
vertices for which shortest paths have not been found, and as the shortest known path from to
vertex . Initially, T=V and all . At each step of the algorithm, the vertex in T with the
smallest d value is removed from T. Each neighbor of in T is examined to see whether a path
through would be shorter than the currently best-known path (Figure 3.27).

Figure 3.27: The comparison operation performed in Dijkstra's single-source shortest-path
algorithm. The best-known path from the source vertex to vertex is compared with the path that
leads from to and then to .

An all-pairs algorithm executes Algorithm 3.2 N times, once for each vertex. This involves
comparisons and takes time F, where is the cost of a single comparison in Floyd's

algorithm and F is a constant. Empirical studies show that F 1.6; that is, Dijkstra's algorithm is
slightly more expensive than Floyd's algorithm.

Parallel Dijkstra 1.

The first parallel Dijkstra algorithm replicates the graph in each of P tasks. Each task executes the
sequential algorithm for N/P vertices. This algorithm requires no communication but can utilize at
most N processors. Because the sequential Dijkstra algorithm is F times slower than the sequential
Floyd algorithm, the parallel algorithm's execution time is

Parallel Dijkstra 2.

The second parallel Dijkstra algorithm allows for the case when P>N. We define N sets of P/N
tasks. Each set of tasks is given the entire graph and is responsible for computing shortest paths for
a single vertex (Figure 3.28). Within each set of tasks, the vertices of the graph are partitioned.
Hence, the operation Find with minimum

requires first a local computation to find the local vertex with minimum d and second a reduction
involving all P/N tasks in the same set in order to determine the globally minimum . The
reduction can be achieved by using the butterfly communication structure of Section 2.4.1, in

steps. Hence, as the reduction is performed N times and involves two values, the total
cost of this algorithm is

Figure 3.28: The second parallel Dijkstra algorithm allocates P/N tasks to each of N
instantiations of Dijkstra's single-source shortest-path algorithm. In this figure, N=9 and P=36,
and one set of P/N=4 tasks is shaded.

3.9.3 Shortest-Path Algorithms Summary
 Table 3.7 summarizes the performance models developed for the four all-pairs shortest-path
algorithms. Clearly, Floyd 2 will always be more efficient that Floyd 1. Both algorithms have the
same computation costs and send the same number of messages, but Floyd 2 communicates
considerably less data. On the other hand, Floyd 1 is easier to implement. Algorithms Dijkstra 1
and 2 will be more efficient than Floyd 2 in certain circumstances. For example, Dijkstra 1 is more
efficient than Floyd 2 if P N and

Table 3.7: Performance of four parallel shortest-path algorithms.

 In addition to these factors, we must consider the fact that algorithms Dijkstra 1 and Dijkstra 2
replicate the graph P and P/N times, respectively. This replication may compromise the scalability
of these algorithms. Also, the cost of replicating an originally distributed graph must be considered
if (as is likely) the shortest-path algorithm forms part of a larger program in which the graph is
represented as a distributed data structure.

Clearly, the choice of shortest-path algorithm for a particular problem will involve complex
tradeoffs between flexibility, scalability, performance, and implementation complexity. The
performance models developed in this case study provide a basis for evaluating these tradeoffs.

3.10 Summary
In this chapter, we have seen how to develop mathematical performance models that characterize
the execution time, efficiency, and scalability of a parallel algorithm in terms of simple parameters
such as problem size, number of processors, and communication parameters. We have also seen
how these models can be used throughout the parallel program design and implementation cycle:

• Early in the design process, we characterize the computation and communication
requirements of our parallel algorithms by building simple performance models. These
models can be used to choose between algorithmic alternatives, to identify problem areas
in the design, and to verify that algorithms meet performance requirements.

• Later in the design process, we refine our performance models and conduct simple
experiments to determine unknown parameters (such as computation time or
communication costs) or to validate assumptions. The refined models can be used to
increase our confidence in the quality of our design before implementation.

• During implementation, we compare the performance of the parallel program with its
performance model. Doing this can help both to identify implementation errors and to
improve the quality of the model.

A performance model gives information about one aspect of an algorithm design: its expected
parallel performance. We can use this information, when it is combined with estimates of
implementation cost, etc., to make informed choices between design alternatives.

Exercises
The exercises in this chapter are designed to provide experience in the development and use of
performance models. When an exercise asks you to implement an algorithm, you should use one
of the programming tools described in Part II.

1. Discuss the relative importance of the various performance metrics listed in Section 3.1
when designing a parallel floorplan optimization program for use in VLSI design.

2. Discuss the relative importance of the various performance metrics listed in Section 3.1
when designing a video server that uses a parallel computer to generate many hundreds of
thousands of concurrent video streams. Each stream must be retrieved from disk, decoded,
and output over a network.

3. The self-consistent field (SCF) method in computational chemistry involves two
operations: Fock matrix construction and matrix diagonalization. Assuming that
diagonalization accounts for 0.5 per cent of total execution time on a uniprocessor
computer, use Amdahl's law to determine the maximum speedup that can be obtained if
only the Fock matrix construction operation is parallelized.

4. You are charged with designing a parallel SCF program. You estimate your Fock matrix
construction algorithm to be 90 percent efficient on your target computer. You must choose
between two parallel diagonalization algorithms, which on five hundred processors achieve
speedups of 50 and 10, respectively. What overall efficiency do you expect to achieve with
these two algorithms? If your time is as valuable as the computer's, and you expect the
more efficient algorithm to take one hundred hours longer to program, for how many hours
must you plan to use the parallel program if the more efficient algorithm is to be
worthwhile?

5. Some people argue that in the future, processors will become essentially free as the cost of
computers become dominated by the cost of storage and communication networks. Discuss
how this situation may affect algorithm design and performance analysis.

6. Generate an execution profile similar to that in Figure 3.8 for an implementation of a
parallel finite difference algorithm based on a 2-D decomposition. Under which
circumstances will message startups contribute more to execution time than will data
transfer costs?

7. Derive expressions that indicate when a 2-D decomposition of a finite difference
computation on an grid will be superior to a 1-D decomposition and when a 3-
D decomposition will be superior to a 2-D decomposition. Are these conditions likely to
apply in practice? Let sec, sec, sec, and P=1000. For what
values of N does the use of a 3-D decomposition rather than a 2-D decomposition reduce
execution time by more than 10 percent?

8. Adapt the analysis of Example 3.4 to consider 1-D and 2-D decompositions of a 2-D grid.
Let N=1024, and fix other parameters as in Exercise 7. For what values of P does the use
of a 2-D decomposition rather than a 1-D decomposition reduce execution time by more
than 10 percent?

9. Implement a simple ``ping-pong'' program that bounces messages between a pair of
processors. Measure performance as a function of message size on a workstation network
and on one or more parallel computers. Fit your results to Equation 3.1 to obtain values for

and . Discuss the quality of your results and of the fit.
10. Develop a performance model for the program constructed in Exercise 5 in Chapter 2 that

gives execution time as a function of N, P, , , and . Perform empirical studies to
determine values for , , and on different parallel computer systems. Use the results of
these studies to evaluate the adequacy of your model.

11. Develop performance models for the parallel algorithms developed in Exercise 10 in
Chapter 2. Compare these models with performance data obtained from implementations of
these algorithms.

12. Determine the isoefficiency function for the program developed in Exercise 10. Verify this
experimentally.

13. Use the ``ping-pong'' program of Exercise 9 to study the impact of bandwidth limitations
on performance, by writing a program in which several pairs of processors perform
exchanges concurrently. Measure execution times on a workstation network and on one or
more parallel computers. Relate observed performance to Equation 3.10.

14. Implement the parallel summation algorithm of Section 2.4.1. Measure execution times as
a function of problem size on a network of workstations and on one or more parallel
computers. Relate observed performance to the performance models developed in this
chapter.

15. Determine the isoefficiency function for the butterfly summation algorithm of Section
2.4.1, with and without bandwidth limitations.

16. Design a communication structure for the algorithm Floyd 2 discussed in Section 3.9.1.
17. Assume that a cyclic mapping is used in the atmosphere model of Section 2.6 to

compensate for load imbalances. Develop an analytic expression for the additional
communication cost associated with various block sizes and hence for the load imbalance
that must exist for this approach to be worthwhile.

18. Implement a two-dimensional finite difference algorithm using a nine-point stencil. Use
this program to verify experimentally the analysis of Exercise 17. Simulate load imbalance
by calling a ``work'' function that performs different amounts of computation at different
grid points.

19. Assume that , , and sec. Use the performance models summarized
in Table 3.7 to determine the values of N and P for which the various shortest-path
algorithms of Section 3.9 are optimal.

20. Assume that a graph represented by an adjacency matrix of size is distributed among P
tasks prior to the execution of the all-pairs shortest-path algorithm. Repeat the analysis of
Exercise 19 but allow for the cost of data replication in the Dijkstra algorithms.

21. Extend the performance models developed for the shortest-path algorithms to take into
account bandwidth limitations on a 1-D mesh architecture.

22. Implement algorithms Floyd 1 and Floyd 2, and compare their performance with that
predicted by Equations 3.12 and 3.13. Account for any differences.

23. In so-called nondirect Fock matrix construction algorithms, the integrals of Equation
2.3 are cached on disk and reused at each step. Discuss the performance issues that may
arise when developing a code of this sort.

24. The bisection width of a computer is the minimum number of wires that must be cut to
divide the computer into two equal parts. Multiplying this by the channel bandwidth gives
the bisection bandwidth. For example, the bisection bandwidth of a 1-D mesh with
bidirectional connections is 2/ . Determine the bisection bandwidth of a bus, 2-D mesh, 3-
D mesh, and hypercube.

Figure 3.29: Parallel matrix transpose of a matrix A decomposed by column, with P=4.
The components of the matrix allocated to a single task are shaded black, and the
components required from other tasks are stippled.

25. An array transpose operation reorganizes an array partitioned in one dimension so that it is
partitioned in the second dimension (Figure 3.29). This can be achieved in P-1 steps, with
each processor exchanging of its data with another processor in each step. Develop a
performance model for this operation.

26. Equation 3.1 can be extended to account for the distance D between originating and
destination processors:

The time per hop typically has magnitude comparable to . Under what circumstances
might the term be significant?

27. Develop a performance model for the matrix transpose algorithm on a 1-D mesh that takes
into account per-hop costs, as specified by Equation 3.14. Assume that and

, and identify P and N values for which per-hop costs make a significant (>5
percent) difference to execution time.

28. Demonstrate that the transpose algorithm's messages travel a total of hops on a
1-D mesh. Use this information to refine the performance model of Exercise 25 to account
for competition for bandwidth.

29. In the array transpose algorithm of Exercise 25, roughly half of the array must be moved
from one half of the computer to the other. Hence, we can obtain a lower time bound by
dividing the data volume by the bisection bandwidth. Compare this bound with times
predicted by simple and bandwidth-limited performance models, on a bus, one-dimensional
mesh, and two-dimensional mesh.

30. Implement the array transpose algorithm and study its performance. Compare your results
to the performance models developed in preceding exercises.

Chapter Notes
 The observation commonly referred to as Amdahl's law was first formulated in [12]. Asymptotic
analysis of parallel algorithms is discussed in many computer science texts, such as those by Akl
[8], Leighton [187], and Smith [267]. Cook [64] discusses problems for which no efficient parallel
algorithms have been discovered.

Many different approaches to performance modeling have been proposed, each appropriate for
different purposes. See, for example, the papers by Culler et al. [67], Eager et al. [89], Flatt and
Kennedy [97], Karp and Flatt [167], and Nussbaum and Agarwal [216]. Patel [224] discusses the
modeling of shared-memory computers. The book by Kumar et al. [179] provides many example
models and a more detailed treatment of the concept of isoefficiency. Gustafson et al. [129,130]
introduce the concept of scaled speedup. Singh, Hennessy, and Gupta [259], Sun and Ni [274], and
Worley [297,298] discuss various constraints on the scalability of parallel programs. Lai and Sahni
[183] and Quinn and Deo [237] discuss speedup anomalies in search problems. Faber et al. [93]
argue against the concept of superlinear speedup. Fromm et al. [115], Harrison and Patel [134],
and Thomasian and Bay [284] use queuing models to study performance of parallel systems.
Kleinrock [173] reviews techniques used for performance analysis of networks and discusses
issues that arise in high-speed (gigabit/sec) WANs.

The chapter notes in Chapter 1 provide references on parallel computer architecture. Feng [94]
provides a tutorial on interconnection networks. Hypercube networks have been used in a variety
of multicomputers such as the Cosmic Cube [254], nCUBE-2 [212], Intel iPSC, and Thinking
Machines CM2 [281]. The Intel DELTA and Intel Paragon [276] use two-dimensional mesh
networks. The Cray T3D and MIT J machine [72] use a three-dimensional torus. Adams, Agrawal,
and Siegel [2] survey multistage interconnection networks, and Harrison [133] discusses the
analytic modeling of these networks. Various forms of multistage network have been used in the
BBN Butterfly [31], NYU Ultracomputer [123], IBM RP3 [226], and IBM SP [271]. The IBM SP
uses a bidirectional multistage network constructed from 4 4 crossbars (a modified 4-ary n -fly)
similar to that illustrated in Figure 3.18. Seitz [253,255] provides an introduction to
multicomputers and their interconnection networks. Dally [69] discusses networks and the concept
of bisection width, while Leighton [187] provides a more detailed and theoretical treatment. Dally
and Seitz [70,71] discuss routing techniques. The material in Example 3.8 is based on work by
Foster and Worley [110]. Ethernet was designed by Metcalfe and Boggs [205]; Shoch, Dalal, and
Redell [257] describe its evolution.

 Miller and Katz [208], Foster, Henderson, and Stevens [103], and Pool et al. [229] discuss the I/O
requirements of scientific and engineering applications. Del Rosario and Choudhary [76] discuss

problems and prospects for parallel I/O. Henderson, Nickless, and Stevens [145] discuss
application I/O requirements and describe a flexible I/O architecture for parallel computers. Plank
and Li [228] discuss checkpointing. Bordawekar, del Rosario, and Choudhary [41] explain the
utility of a two-phase I/O strategy. A special issue of the Journal of Parallel and Distributed
Computing [60] discusses various aspects of parallel I/O, as do Aggarwal and Vitter [4] and Katz,
Gibson, and Patterson [168]. DeWitt and Gray [79] discuss parallel database machines. Gibson
[120] examines the design and performance analysis of redundant disk arrays (RAID disks).
Hennessy and Patterson [134] provide a good description of I/O system performance analysis and
design.

The parallel versions of Floyd's shortest-path algorithm [98] are due to Jenq and Sahni [158],
while the parallel version of Dijkstra's single-source algorithm [80] is described by Paige and
Kruskal [217]. Our analysis of these algorithms follows Kumar and Singh [182], who also present
analyses that take into account bandwidth limitations on hypercube and two-dimensional mesh
architectures. Bertsekas and Tsitsiklis [35] describe a pipelined variant of Floyd 2 that improves
performance by allowing iterations to proceed concurrently, subject only to dataflow constraints.
Aho, Hopcroft, and Ullman [7] and Cormen, Leiserson, and Rivest [65] provide good
introductions to sequential graph algorithms. Quinn and Deo [236] and Das, Deo, and Prasad
[73,74] describe parallel graph algorithms. Ranka and Sahni's [238] book on parallel algorithms
for image processing and pattern recognition includes relevant material.

4 Putting Components Together
In previous chapters, we have focused on the problem of deriving efficient parallel algorithms for
individual program components, such as search and finite difference computation. Yet complete
programs may need to incorporate multiple parallel algorithms, each operating on different data
structures and requiring different partitioning, communication, and mapping strategies for its
efficient execution.

Experience shows that the complexity that tends to arise when constructing large programs can be
controlled by the application of modular design techniques. The key idea is to encapsulate
complex or changeable aspects of a design inside separate program components, or modules, with
well-defined interfaces indicating how each module interacts with its environment. Complete
programs are developed by plugging together, or composing, these modules. Modular design can
increase reliability and reduce costs by making it easier to build programs, change programs to suit
changing requirements, and reuse components in new programs.

Our goal in this chapter is to introduce some of the design issues that arise when developing large
parallel programs. After studying this chapter, you should understand the basic principles and
benefits of modular design. You should be familiar with the techniques used to apply modular
design in parallel programs: what needs to be encapsulated in parallel program components, and
the various ways in which components can be composed. You should also understand the
performance issues that arise when composing parallel program components.

4.1 Modular Design Review
The basic idea underlying modular design is to organize a complex system (such as a large
program, an electronic circuit, or a mechanical device) as a set of distinct components that can be

developed independently and then plugged together. Although this may appear a simple idea,
experience shows that the effectiveness of the technique depends critically on the manner in which
systems are divided into components and the mechanisms used to plug components together. The
following design principles are particularly relevant to parallel programming.

Provide simple interfaces.

Simple interfaces reduce the number of interactions that must be considered when verifying that a
system performs its intended function. Simple interfaces also make it easier to reuse components
in different circumstances. Reuse is a major cost saver. Not only does it reduce time spent in
coding, design, and testing, but it also allows development costs to be amortized over many
projects. Numerous studies have shown that reusing software is by far the most effective technique
for reducing software development costs.

As an example, a modular implementation of a climate modeling system (Figure 2.3) may define
distinct modules concerned with atmosphere modeling, ocean modeling, etc. The interfaces to
each module can comprise a small set of procedures that access boundary data, advance the
simulation, and so on. Hence, there is no need for the user to become familiar with the
implementation of the various modules, which collectively may comprise hundreds of procedures
and tens of thousands of lines of code.

Ensure that modules hide information.

The benefits of modularity do not follow automatically from the act of subdividing a program. The
way in which a program is decomposed can make an enormous difference to how easily the
program can be implemented and modified. Experience shows that each module should
encapsulate information that is not available to the rest of a program. This information hiding
reduces the cost of subsequent design changes. For example, a module may encapsulate

• related functions that can benefit from a common implementation or that are used in many
parts of a system,

• functionality that is likely to change during later design or deployment,
• aspects of a problem that are particularly complex, and/or
• code that is expected to be reused in other programs.

Notice that we do not say that a module should contain functions that are logically related because,
for example, they solve the same part of a problem. This sort of decomposition does not normally
facilitate maintenance or promote code reuse.

Use appropriate tools.

While modular designs can in principle be implemented in any programming language,
implementation is easier if the language supports information hiding by permitting the
encapsulation of code and data structures. Fundamental mechanisms in this regard include the
procedure (or subroutine or function) with its locally scoped variables and argument list, used to
encapsulate code; the user-defined datatype, used to encapsulate data; and dynamic memory
allocation, which allows subprograms to acquire storage without the involvement of the calling
program. These features are supported by most modern languages (e.g., C++, Fortran 90, and Ada)
but are lacking or rudimentary in some older languages (e.g., Fortran 77).

Design checklist.

The following design checklist can be used to evaluate the success of a modular design. As usual,
each question should be answered in the affirmative.

1. Does the design identify clearly defined modules?
2. Does each module have a clearly defined purpose? (Can you summarize it in one

sentence?)
3. Is each module's interface sufficiently abstract that you do not need to think about its

implementation in order to understand it? Does it hide its implementation details from
other modules?

4. Have you subdivided modules as far as usefully possible?
5. Have you verified that different modules do not replicate functionality?
6. Have you isolated those aspects of the design that are most hardware specific, complex, or

otherwise likely to change?

Example . Database search:

We use a simple example to illustrate how information hiding considerations can influence design.
To search a database for records matching a specified search pattern, we must read the database,
search the database, and write any matching records found. One possible decomposition of this
problem defines input, search, and output modules with the following interfaces.

 input(in_file, database)

 search(database, search_pattern, matches)

 output(out_file, database, matches)

An examination of what must be done to read a database, perform a search, and so on could then
lead us to define the procedures that comprise the input, search, and output modules.

This design provides simple interfaces. However, all three modules depend on the internal
representation used for the database, and hence must be modified if this representation is changed.
In addition, each module probably duplicates database access functions.

An alternative decomposition, driven by information hiding concerns, focuses on the internal
representation of the database as something potentially complex, likely to change, and common to
many components. Hence, this information is hidden in a single database module that provides
operations such as the following.

 read_record(file, id, record)

 add_record(id, record, database)

 get_record(id, record, database)

 write_record(file, id, record)

The rest of the program can now be written without knowing anything about how the database is
implemented. To change the internal representation of the database, we need simply to substitute a
different implementation of the database module, which furthermore is ideally suited for reuse in
other applications.

4.2 Modularity and Parallel Computing
 The design principles reviewed in the preceding section apply directly to parallel programming.
However, parallelism also introduces additional concerns. A sequential module encapsulates the
code that implements the functions provided by the module's interface and the data structures
accessed by those functions. In parallel programming, we need to consider not only code and data
but also the tasks created by a module, the way in which data structures are partitioned and
mapped to processors, and internal communication structures. Probably the most fundamental
issue is that of data distribution.

Figure 4.1: Three forms of parallel program composition. In each case, the program is shown
executing on four processors, with each arrow representing a separate thread of control and
shading denoting two different program components. In sequential composition, different program
components execute in sequence on all processors. In parallel composition, different program
components execute concurrently on different processors. In concurrent composition, different
program components execute concurrently on the same processors.

Another difference between sequential and parallel programming is that in the former, modules
can be put together (composed) in just one way: sequentially. Execution of a program leads to a
sequence of calls to functions defined in different modules. This is called sequential composition

and can also be used in parallel programming, and indeed is fundamental to the SPMD
programming model used in many parallel programs. However, we often need to compose
program components in other ways (Figure 4.1). In parallel composition, different modules
execute concurrently on disjoint sets of processors. This strategy can enhance modularity and
improve scalability and locality. In concurrent composition, different modules execute
concurrently on the same processors, with execution of a particular module enabled by the
availability of data. Concurrent composition can both reduce design complexity and allow
overlapping of computation and communication.

We distinguish between sequential, parallel, and concurrent composition both because they are
different ways of thinking about programs and because not all parallel programming tools support
all three compositional forms. Data-parallel languages (such as HPF) tend to support only
sequential composition. Message-passing libraries (such as MPI) typically support both sequential
and parallel composition but not concurrent composition. Other languages and libraries (such as
CC++ and Fortran M) support all three forms of composition.

4.2.1 Data Distribution
In Chapters 2 and 3, we showed that the distribution of a program's data structures among tasks
and processors (that is, the way in which data structures are partitioned and mapped) is an
important aspect of parallel algorithm design. We also showed how to design data distributions
that maximize performance and/or minimize software engineering costs.

 Data distribution can become a more complex issue in programs constructed from several
components. Simply choosing the optimal distribution for each component may result in different
modules using different data distributions. For example, one module may output an array data
structure distributed by columns, while another expects its input to be distributed by rows. If these
two modules are to be composed, then either the modules themselves must be modified to use
different distributions, or data must be explicitly redistributed as they are passed from one
component to the other. These different solutions can have different performance characteristics
and development costs.

Both performance tuning and program reuse are made easier if modules are designed to be data
distribution neutral, that is, if they can deal with a variety of different data distributions. This
neutrality can be achieved by specifying the distribution of a particular data structure as a runtime
parameter or in the data structure itself. For example, the two modules referred to in the preceding
paragraph could be defined to deal with arbitrary two-dimensional decompositions. The combined
program could then utilize a decomposition by rows, a decomposition by columns, or (as a
compromise) a two-dimensional decomposition.

Designing a module to be data distribution neutral is not necessarily easy. In some cases, different
data distributions may call for quite different algorithms. This issue is explored in more detail in
Section 4.6.

4.2.2 Sequential Composition
In a parallel program constructed using only sequential composition, each processor inevitably
executes the same program, which in turn performs a series of calls to different program

components. These program components may themselves communicate and synchronize, but they
cannot create new tasks. Hence, the entire computation moves sequentially from one parallel
operation to the next.

 As an example, consider the following program, which could be executed by each task in an
SPMD finite difference program.

 while (not done) do

 finite_difference(localgrid, localmax)

 global_maximum(localmax, globmax)

 if(globmax < threshold) done = true

 enddo

This program is structured as a sequential composition of two procedure calls and a conditional
statement. At each step, each task first calls the procedure finite_difference to advance the
simulation on its part of the finite difference grid. This updates localgrid and returns a local
error estimate, localmax. Next, each task calls global_maximum to obtain a global maximum
error, which is used to determine whether the simulation has converged. On a parallel computer,
both the finite_difference and global_maximum routines must perform communication (to
exchange the data required by the finite difference stencil and to compute the global maximum,
respectively), but this activity is hidden from the rest of the program.

This example illustrates an important advantage of sequential composition and the SPMD model:
the program executed by each process has a fairly straightforward sequential reading, and many
sequential programming techniques can be used unchanged. For example, the procedures
finite_difference and global_maximum can be defined in separate grid and reduction modules,
both of which can encapsulate internal data structures (and communication structures).

A second advantage of sequential composition is that if different modules use the same data
distribution, no data movement (and hence no communication) is required at module interfaces.
For example, the top-level structure of an SPMD climate modeling system could be as follows.
Procedures from ocean and atmosphere modules are called repeatedly in an interleaved fashion,
with data generated by the ocean module being passed to the atmosphere module and vice versa.
Communication is required only within the two components.

 initialize_ocn(ocn_grid)

 initialize_atm(atm_grid)

 while (not done) do

 ocean(atm_grid, ocn_grid)

 atmosphere(ocn_grid, atm_grid, done)

 enddo

As these examples show, a library intended for use in an SPMD programming environment can
utilize an interface almost identical to that used in a comparable sequential library. The principal
concerns are that library routines be able to deal with a variety of data distributions (that is, be data
distribution neutral) and that parallel implementation details such as data structures and
communication operations be hidden behind interfaces.

Figure 4.2: A block cyclic distribution of a two-dimensional array of size 12 18 onto a processor
array of size 3 3 (P=Q=3) with a block size of 2 3 (r=2, c=3). Array elements mapped to
processor (0,0) are shaded.

The simplicity of sequential composition and SPMD programming has stimulated some major
parallel library development projects. One example, which we describe here to illustrate how data
distribution neutral libraries are defined, is ScaLAPACK, a version of the popular LAPACK linear
algebra library designed to execute on scalable parallel computers. ScaLAPACK supports a wide
range of operations on dense and banded matrices, such as multiplication, transpose, and
factorization. Its routines operate on data objects representing two-dimensional matrices
decomposed by using a block cyclic distribution. The distribution of an array is specified by four
parameters, P, Q, r, and c, where P and Q denote the number of processors and r and c the block
size in each dimension (Figure 4.2). In principle, every routine can be called with any parameter
values, so the programmer can experiment with alternative data distributions simply by changing
parameters in a top-level program. This approach provides a high degree of mapping
independence, in a manner evocative of the data distribution directives employed in the data-
parallel language High Performance Fortran (HPF) (Chapter 7). In practice, certain limitations are
placed on allowable parameter values so as to simplify the software. For example, the LU
factorization routine requires that blocks be square. Internally, ScaLAPACK routines may
incorporate multiple parallel algorithms and select between these algorithms based on distribution,
problem size, and machine size. However, these details are hidden from the user. Program 4.1
illustrates the use of ScaLAPACK routines.

Not surprisingly, sequential composition also has limitations as a program structuring technique
for parallel programs. We examine some of these limitations in the subsections that follow.

4.2.3 Parallel Composition
Parallel composition can be viewed as a generalization of the SPMD programming model in which
different parts of a computer execute different programs. (It can also be thought of as a special
case of concurrent composition in which concurrently executing tasks are required to execute on
disjoint sets of processors.) A parallel composition specifies which program components are to
execute in which parts of the computer and how these components are to exchange data.

In principle, any program expressed as a parallel composition can be converted to a sequential
composition that interleaves the execution of the various program components appropriately.
However, the use of parallel composition can enhance scalability and locality. For example, if two
program components (such as the atmosphere and ocean model considered in the preceding
section) can execute concurrently, then mapping them to disjoint sets of processors increases
scalability by providing additional opportunities for parallel execution. If locality increases with
granularity, then this parallel composition can also make more efficient use of cache, memory, and
communication bandwidth than can a sequential composition of the same components. Parallel
composition can also decrease total memory requirements by reducing the amount of code and
data replicated on every processor.

4.2.4 Concurrent Composition

 Concurrent composition is the most general form of composition that we consider. A concurrent
composition specifies the program components that are to execute concurrently,
producer/consumer relationships between components, and the mapping of components to
processors. Components then execute in a data-driven manner, meaning that they can be executed
if the data that they require from other components are available. These ideas should be familiar
from the discussion of the task/channel programming model in Chapter 1. In the terms of that
model, a concurrent composition specifies a set of tasks, a set of channels connecting these tasks,
and a mapping of tasks to processors.

 Concurrent composition has both advantages and disadvantages relative to sequential and parallel
composition. One important advantage is that it can facilitate information hiding and hence the
development of modular programs. This is because the interfaces in a concurrent composition
consist entirely of the channels connecting the various components. Internal implementation
details concerning code, data structures, concurrency, and communication are hidden. Hence,
program components can be designed and developed in isolation even when they need to execute
on the same processors.

 Concurrent composition can also simplify design by allowing decisions concerned with mapping
and scheduling to be delayed or even avoided altogether. Because the semantics of a program
specified by using concurrent composition are independent of how program components are
mapped to processors, mapping decisions can be delayed until late in the design process, as
recommended in Chapter 2. Because the execution schedule is determined by the availability of
data, execution order need not be specified explicitly by the programmer.

 A disadvantage of concurrent composition in some environments is the cost of a data-driven
execution model. While compilers and runtime systems can do much to reduce costs incurred
when switching between tasks, these costs can be significant if task switches occur frequently.

Figure 4.3: A finite difference program can be structured as a concurrent composition of reduce
and grid components. The first of these components is designed to perform reductions, while the
second performs finite difference computation. An array of channels defines the interface between
the two components, which encapsulate internal task and channel structures. The two components
may execute on the same or different processors.

Example . Finite Difference Problem:

Figure 4.3 shows how the finite difference program can be constructed as a concurrent
composition of grid and reduce components. The grid module might create a set of tasks

specified as follows. The arguments to_reduce and from_reduce are ports referencing channels
that can be used to send data to and receive data from the reduce module, respectively.

 procedure grid(to_reduce, from_reduce)

 begin

 while(not done) do ! Repeat for each step

 exchange_with_neighbors(grid)

 compute(grid, localmax) ! Local computation

 send(to_reduce, localmax) ! Dispatch request for reduction

 other_computation(grid) ! More local computation

 receive(from_reduce, globmax) ! Receive reduced value

 if(globmax < threshold) done = true

 enddo

 end

At each step, this code performs some computation before sending a message requesting a
reduction operation, and then performs other computation before receiving the result. The other
computation can be overlapped with the communication required for the reduction.

4.2.5 Design Rules
We conclude this section with a set of design rules that can be used to determine how to compose
modules and which sorts of interfaces to design.

1. Design modules to handle multiple data distributions. This feature can increase their
reusability.

2. Incorporate data distribution information in data structures rather than in module interfaces.
This approach simplifies interfaces and maximizes opportunities for code reuse.

3. Use sequential composition when designing for an SPMD programming system such as
HPF or MPI.

4. Consider sequential composition when program components cannot execute concurrently
or need to share a lot of data.

5. Consider concurrent composition if program components can execute concurrently,
communication costs are high, and communication/computation overlap is possible.

6. Consider parallel composition if memory is at a premium or if intracomponent
communication costs are greater than intercomponent communication costs.

4.3 Performance Analysis

 When composing components to form programs, we also need to consider how to compose their
performance models. For example, consider a program that combines two components a and b
with performance models as follows:

In the case of a sequential composition of a and b that does not require data redistribution, a
performance model for the resulting program may sometimes be obtained simply by summing the
components of and :

In practice, the performance analysis of programs constructed from multiple modules is often
complicated by the following factors. Fortunately, these complications can be accounted for by
using the modeling techniques of Chapter 3.

Increased computation. Data transfer between modules can require computation, thereby
increasing total computation costs. Less frequently, the merging of two modules will allow us to
reduce computation costs by eliminating operations that are common to both components.

Reduced idle time. Recall that idle time represents time spent doing no useful work, either because
a processor has completed its part of a computation early or because the processor is waiting for
data. Idle time can be reduced in concurrent compositions if computation or communication in one
module can proceed when other modules mapped to the same processors are idle.

Increased communication. Composition often introduces a need for additional communication. In
sequential composition, communication may be required to redistribute data structures at
component boundaries. In parallel composition, communication is required to move data between
modules executing on different processors.

 Increased granularity. Parallel composition tends to increase computation and communication
granularity within composed components, because each executes within a subset of available
processors. This effect can improve overall performance.

Load imbalances. Parallel composition can increase idle time if the computational resources
allocated to different components do not allow the components to execute at equal rates. In this
situation, one module will complete some phase of a computation before another and must then
remain idle until the other module provides the data required to continue execution. This is a
variant of the load-balancing problem discussed in Chapter 2.

4.4 Case Study: Convolution
 In the remainder of this chapter, we apply the modular design techniques discussed in preceding
sections in three case studies. We start with an example from image processing, which we use to
study design tradeoffs that can arise when constructing parallel programs from several
components. We consider the problem of applying a series of convolution operations to a sequence

of images. Images, represented as arrays of size N N, are input in pairs on streams A and B ;
convolution generates a new array of the same size that is output on stream C (Figure 4.4). A
single convolution operation involves the transformation of two input arrays using independent
two-dimensional fast Fourier transforms (2-D FFTs), a pointwise multiplication of the two
transformed arrays, and the transformation of the resulting array using an inverse 2-D FFT,
thereby generating an output array. A 2-D FFT performs 1-D FFTs first on each row and then on
each column of an array. A 1-D Fourier transform, , of a sequence of N values,

, is given by

where . The FFT exploits symmetry to perform this computation in steps, each
involving operations.

Figure 4.4: Dataflow diagram for an image-processing pipeline. Two streams of images, A and B,
are passed through FFT modules and then into an inverse FFT module, which first multiplies them
and then applies an inverse FFT.

4.4.1 Components
 We first consider the three components from which the convolution algorithm is constructed:
forward 2-D FFT, multiplication, and inverse 2-D FFT. The pointwise multiplication is the
simplest: Its communication requirements are zero as long as the arrays on which it operates have
the same data distribution.

Figure 4.5: Two parallel algorithms for computing a series of 2-D FFTs. In each case, the activity
on each of four processors (P0--3) is shown over time, with arrows denoting communication and I
and O denoting input and output operations. The algorithm illustrated in the upper part of the
figure is a sequential composition of program components that perform 1-D FFTs, first on rows
and then on columns of each input 2-D array; all-to-all communication is required to transpose
the array after performing row FFTs and before performing column FFTs. In the second
algorithm, data flow from a first set of processors performing row FFTs (P0, P1) to a second set
performing column FFTs (P2, P3). Communication is required to move data from P0 and P1 to
P2 and P3.

A variety of parallel algorithms are possible for the forward and inverse 2-D FFTs. A fine-grained
algorithm can exploit concurrency within the 1-D FFTs performed on individual rows and
columns of the input array, at the cost of considerable communication. A more coarse-grained
algorithm performs independent 1-D FFTs in parallel, thereby avoiding a need for communication
within the 1-D FFTs, but requiring communication when moving from a row-based to a column-
based decomposition. We consider two algorithms based on the latter strategy. The first processes
the input image stream sequentially, performing row FFTs and then column FFTs on each image
in turn. The second algorithm pipelines the image stream, performing column FFTs for one image
in parallel with the row FFTs for the next (Figure 4.5). These two algorithms are in effect
sequential and parallel compositions, respectively, of code fragments that perform 1-D FFTs on
the rows and columns of a two-dimensional array.

 The first parallel algorithm is termed the transpose algorithm, since it performs a series of one-
dimensional transforms on P processors while the array is partitioned in one dimension, then
transposes the array and performs transforms in the second dimension using the same processors.
The transpose operation requires that each processor send one message of size to each of
the P-1 other processors. Hence, total communication costs summed over P processors are

 The second algorithm is termed the pipeline algorithm, since it partitions processors into two sets
of size P/2 which perform FFTs on rows and columns, respectively. Each processor in the first set
must communicate with each processor in the other set, for a total of messages. The entire
array is communicated. Hence, total communication costs are

Notice that communication costs are not necessarily distributed equally among processors in the
second algorithm, since the sending and receiving processors form distinct groups. Nevertheless,
Equations 4.1 and 4.2 give a rough idea of the relative performance of the two algorithms. The
second algorithm sends significantly fewer messages and hence should be more efficient in
situations in which message startup costs are dominant, for example, when N and/or are small or
when P or are large. On the other hand, the first algorithm probably incurs lower data transfer
costs and hence may be superior in other situations.

4.4.2 Composing Components
Having designed two alternative algorithms for the 2-D FFT, we now consider the parallel
convolution algorithm proper. Its four components---two parallel 2-D FFTs, one matrix
multiplication, and one inverse 2-D FFT (Figure 4.4)---can be combined using either sequential or
parallel composition. If sequential composition is used, the parallel convolution algorithm can be
represented as follows, with the fft and fft calls invoking the transpose 2-D parallel FFT.

 for each image

 A = fft(A)

 B = fft(B)

 C = A .B

 C = fft (C)

 endfor

If the input to this algorithm is decomposed appropriately (in one dimension, by rows), then
because each FFT involves a transpose, total communication requirements are three times the cost
of a single transpose:

Notice that because the forward FFT operates first on rows and then on columns, the inverse FFT
must operate first on columns and then on rows, so as to avoid the need for an additional transpose
operation between the forward and inverse FFTs.

If parallel composition is used, the three FFTs execute concurrently, each on one third of the
available processors. (Because the multiplication involves rather than
operations, we regard it as insignificant and compose it sequentially with the inverse FFT.)
Communication costing is required to move data from the processors handling
the forward FFTs to the processors handling the inverse FFT.

The 2-D FFTs within the parallel composition can be implemented by using either the transpose or
pipeline algorithms, yielding two algorithm variants. Costs are as specified by Equations 4.1 and
4.2, except that each algorithm is executed three times, with P/3 rather than P processors involved
in each execution. Combining these costs with the cost of the data movement between
components, we obtain the following models.

Table 4.1: Approximate total message counts and data volumes for three parallel convolution
algorithms, summed over P processors and assuming that P is reasonably large.

Figure 4.6: Performance of the sequential/transpose (Sequential) and parallel/transpose
(Parallel) convolution algorithms on an IBM SP computer for different problem sizes and numbers
of processors. The latter algorithm is more efficient for smaller problems and larger numbers of
processors.

The results of this brief analysis are summarized in Table 4.1. We see that the second and third
algorithms perform fewer message startups but send more data. Hence, they can be expected to be

more efficient on smaller problems and larger numbers of processors. This result can be confirmed
experimentally, as illustrated in Figure 4.6. A flexible parallel program might incorporate all three
algorithms and select the appropriate alternative at runtime. Of course, a programming tool that
supports only sequential composition will allow only the first algorithm to be used.

4.4.3 Convolution Problem Summary
The convolution problem illustrates the design tradeoffs that can arise when constructing even
relatively simple parallel programs. These tradeoffs can arise at multiple levels. First, we must
identify candidate parallel algorithms for the component modules: in this case, the 2-D FFT. Then,
we must decide how to compose these building blocks so as to construct a complete parallel
algorithm. Aspects of the complete design in turn influence the techniques used within
components, requiring for example that we operate on columns before rows in the inverse FFT.
The performance analysis must take into account all these design decisions.

4.5 Case Study: Tuple Space
 In the second case study, we illustrate how concurrent composition allows us to define reusable
program components that support asynchronous operations on distributed sets. Various types of set
can be defined, each distinguished by the particular operations that it supports. Here, we consider
the example of the tuple space, which forms the basis for the Linda parallel programming
language.

A tuple space is a collection of tuples ---terms with a key and zero or more arguments. Five
operations are supported: insert (out), blocking read (rd), nonblocking read (rdp), blocking read
and delete (in), and nonblocking read and delete (inp). An element can be updated by first
deleting it and then reinserting a modified version of it. The insert operation provides a key and
values for a new tuple's arguments, while the read and the read/delete operations specify the key
and arity (number of arguments) of the tuple that is to be retrieved. Duplicate tuples are supported,
so the element retrieved by a read or delete operation is not necessarily uniquely determined by the
key and arity provided. The predicate operations inp and outp are guaranteed to locate a matching
tuple if and only if it can be shown that a matching tuple must have been added to tuple space
before the request was generated and that this tuple could not have been removed before the
request was processed. Figure 4.7 shows the tuple space in action.

Figure 4.7: A tuple space, here used to contain personnel data. Tasks can generate asynchronous
requests to read (rd), remove (inp), and add (out) tuples.

The tuple space abstraction is a good candidate for encapsulation in a module. It is a useful
structure with a well-defined interface and hence is both likely to be reused and easy to
modularize. We may also wish to modify its implementation in order to optimize performance on
different parallel computers. Hence, we define a tuple space module suitable for concurrent
composition. This encapsulates the representation of the tuple space and provides an interface
comprising an array of channels on which can be sent messages representing the various types of
request.

4.5.1 Application
We first illustrate the use of the tuple space module by showing how it can be used to implement a
database search problem. We are given a file containing a set of search data, a target, and a routine
that computes a numeric score for a single datum/target pair. We are required to identify the search
datum that yields the highest score. This problem is prototypical of many database search
problems. For example, the target may be a new genetic sequence and the database a collection of
such sequences; in this case, a score is computed by a dynamic programming computation and
reveals the degree to which two sequences are ``related.'' Alternatively, the target may be a
description of a physical process and the database a collection of alternative parameter values; a
score is then obtained by simulating the process using a set of parameter values.

A straightforward solution to this programming problem is to create a single manager and a large
number of workers, with all tasks having access to a shared tuple space (Figure 4.8). The logic
executed by the manager and workers is summarized in Program 4.2. The manager makes a series
of out requests to place the search data in the tuple space and then performs in operations to
retrieve the results generated by workers. When all results have been retrieved, it signals the
workers to terminate by placing stop tuples into tuple space, a technique known as a ``poison
pill.'' Each worker repeatedly removes a search datum from tuple space, compares it with the
target, and puts the resulting score back in tuple space. Notice that this was essentially the
technique used to parallelize the parameter study problem in Section 1.4.4. However, here we use
a standard module (tuple space) in our solution---a good example of code reuse.

Figure 4.8: A database search program constructed by the concurrent composition of a tuple
space module, a manager task, and multiple worker tasks.

Notice that, because an in request blocks until a corresponding out request is processed by the
tuple space, the order in which requests are generated by the manager and workers does not affect
the result computed. In particular, workers can ``run ahead'' of the manager, generating in requests
for which there are not yet any matching tuples.

4.5.2 Implementation

Figure 4.9: Two alternative implementation strategies for a tuple space module. The structure on
the left uses a central server, while the structure on the right distributes the tuple space among
multiple tasks using a hash function. Both structures provide the same interface, an array of
channels.

A variety of implementation strategies can be pursued for the tuple space module (Figure 4.9).
One simple, although nonscalable, approach is to encapsulate the tuple space in a single task that
maintains a set of tuples and a set of pending rd requests. Both sets can be represented by using

hash tables. A hash function is applied to the key supplied with an out, rd, etc., operation, and the
value returned is used to identify the hash bucket in which the associated element is stored.

 The hashing approach is easily adapted to obtain a scalable parallel implementation. The first few
bits of the hash value are used to determine the processor on which an item is located; the rest of
the hash value locates the item within that processor. This strategy has the desirable property that
no tuple space operation requires more than two communications: one to forward the request to the
task in which the relevant tuple is located, and one to return a result. It also has the important
attributes of being both highly concurrent and well balanced: if requests are generated in a
distributed fashion and the hash function yields a balanced mapping of keys to processors, then

accesses can proceed concurrently on P processors.

4.6 Case Study: Matrix Multiplication
 In our third case study, we use the example of matrix-matrix multiplication to illustrate issues that
arise when developing data distribution neutral libraries. In particular, we consider the problem of
developing a library to compute C = A.B, where A, B, and C are dense matrices of size N N. (A
dense matrix is a matrix in which most of the entries are nonzero.) This matrix-matrix
multiplication involves operations, since for each element of C, we must compute

We wish a library that will allow each of the arrays A, B, and C to be distributed over P tasks in
one of three ways: blocked by row, blocked by column, or blocked by row and column. This
library may be defined with a subroutine interface suitable for sequential composition in an SPMD
program or with a channel interface suitable for parallel or concurrent composition. The basic
algorithmic issue remains the same: Does the library need to incorporate different algorithms for
different distributions of A, B, and C, or should incoming data structures be converted to a
standard distribution before calling a single algorithm?

Figure 4.10: Matrix-matrix multiplication A.B=C with matrices A, B, and C decomposed in one
dimension. The components of A, B, and C allocated to a single task are shaded black. During
execution, this task requires all of matrix A (shown stippled).

4.6.1 Parallel Matrix-Matrix Multiplication
We start by examining algorithms for various distributions of A, B, and C. We first consider a one-
dimensional, columnwise decomposition in which each task encapsulates corresponding columns
from A, B, and C. One parallel algorithm makes each task responsible for all computation
associated with its . As shown in Figure 4.10, each task requires all of matrix A in order to

compute its . data are required from each of P-1 other tasks, giving the following per-
processor communication cost:

Note that as each task performs computation, if N P, then the algorithm will have to
transfer roughly one word of data for each multiplication and addition performed. Hence, the
algorithm can be expected to be efficient only when N is much larger than P or the cost of
computation is much larger than .

Figure 4.11: Matrix-matrix multiplication A.B=C with matrices A, B, and C decomposed in two
dimensions. The components of A, B, and C allocated to a single task are shaded black. During
execution, this task requires corresponding rows and columns of matrix A and B, respectively
(shown stippled).

Next, we consider a two-dimensional decomposition of A, B, and C. As in the one-dimensional
algorithm, we assume that a task encapsulates corresponding elements of A, B, and C and that each
task is responsible for all computation associated with its . The computation of a single element

requires an entire row and column of A and B, respectively. Hence, as shown in Figure
4.11, the computation performed within a single task requires the A and B submatrices allocated to
tasks in the same row and column, respectively. This is a total of data, considerably
less than in the one-dimensional algorithm.

Figure 4.12: Matrix-matrix multiplication algorithm based on two-dimensional decompositions.
Each step involves three stages: (a) an A submatrix is broadcast to other tasks in the same row;
(b) local computation is performed; and (c) the B submatrix is rotated upwards within each
column.

To complete the second parallel algorithm, we need to design a strategy for communicating the
submatrices between tasks. One approach is for each task to execute the following logic (Figure
4.12):

 set

 for j=0 to

 in each row i, the th task broadcasts

 to the other tasks in the row

 accumulate .

 send to upward neighbor

 endfor

Each of the steps in this algorithm involves a broadcast to tasks (for A') and a
nearest-neighbor communication (for B'). Both communications involve data. Because the
broadcast can be accomplished in steps using a tree structure, the per-processor
communication cost is

Notice that because every task in each row must serve as the root of a broadcast tree, the total
communication structure required for this algorithm combines a hypercube (butterfly) structure
within each row of the two-dimensional task mesh and a ring within each column.

Figure 4.13: Reorganizing from a one-dimensional to a one-dimensional decomposition of a
square matrix when P=16. Shading indicates one set of four tasks that must exchange data during
the reorganization.

4.6.2 Redistribution Costs
Comparing Equations 4.3 with 4.4, we see that the two-dimensional decomposition yields the
more efficient parallel algorithm. Does this mean that our parallel library should convert input
arrays decomposed in one dimension to a two-dimensional decomposition before performing the
matrix multiplication? To answer this question, we need to know the cost of the reorganization.
The communication costs associated with the reorganization of a single array are as follows; each
task exchanges data with other tasks, with each message having size (Figure
4.13):

If A, B, and C are all decomposed in one dimension, we must perform three such conversions. This
gives a worst-case total communication cost for reorganization and multiplication using the two-
dimensional algorithm of

Comparing this expression with Equation 4.3, we see that the algorithm that reorganizes data
structures to a 2-D decomposition before performing the multiplication will be more efficient than
an algorithm that does not, when

This condition holds for all except small P. Hence, we conclude that our parallel matrix multiply
library should convert to a two-dimensional decomposition before performing computation, as
follows.

 procedure matrix_multiply(A, B, C)

 begin

 if 1d_distributed(A) then reorg_to_2d(A)

 if 1d_distributed(B) then reorg_to_2d(B)

 2d_matrix_multiply(A, B, C)

 if 1d_distributed(C) then reorg_to_1d(C)

 end

Figure 4.14: Layout of the A and B matrices in the systolic matrix-matrix multiplication algorithm
for a task mesh. The arrows show the direction of data movement during execution of the
systolic algorithm.

4.6.3 A Systolic Algorithm
We still have not said the last word about the ideal data distribution for matrix-matrix
multiplication! An alternative algorithm allows the broadcast operations used in the preceding
algorithm to be replaced with regular, nearest-neighbor (``systolic'') communications. However,
data must be distributed among tasks in a different fashion. As before, we assume that A, B, and C
are decomposed into submatrices. Each task (i,j) contains submatrices , , and

, where . This data layout is illustrated in Figure 4.14.

Computation proceeds in steps. In each step, contributions to C are accumulated in each task,
after which values of A move down and values of B move right. The entire computation requires a
total of messages per task, each of size , for a cost of

Communication costs are less by a factor of about than in Equation 4.4. Again, this
benefit must be weighed against the cost of converting matrices A, B, and C into the layout
required by this algorithm. This analysis is left as an exercise.

4.7 Summary
Modular design techniques are fundamental to good software engineering practice. In this chapter,
we have shown how these techniques can be applied to the design of parallel programs. The major
points are as follows:

1. The central tenets of modular design, such as simple interfaces and information hiding,
apply in parallel programming just as in sequential programming.

2. Data distribution is an important implementation detail that, if abstracted out of a module
interface, can facilitate code reuse.

3. It is useful to distinguish between sequential, parallel, and concurrent composition of
parallel modules. Sequential composition is simple but inflexible. Parallel composition can
be used to improve locality and scalability. Concurrent composition is the most general
form.

4. Performance models can be composed, but care must be taken to account for
communication costs at interfaces, overlapping of computation and communication, and
other factors.

In Part II, we show how the modular design techniques introduced in this chapter can be applied
when developing programs using a range of parallel programming tools.

Exercises
1. Discuss ways in which modular design techniques are used in the design of an automobile

engine, house, or suspension bridge.
2. Identify ways in which modularity ideas might apply to the management of an orchestra,

educational institution, or company.

3. Develop analytic models for the maximum throughput (in requests processed per second)
supported by the centralized and distributed tuple space implementations outlined in
Section 4.5.

4. Using a language that supports concurrent composition, such as CC++ \ or Fortran M,
implement centralized and distributed tuple space modules. Study the performance of these
modules in a simple parameter study problem, and relate performance to the models of
Exercise 3.

5. Discuss ways in which the database search algorithm of Section 4.5 could be modified to
avoid the central bottleneck inherent in a single manager.

6. An alternative parallel algorithm for the 2-D FFT considered in Section 4.4.1 assumes a
fixed 2-D decomposition of data structures; hence, communication is required within each
1-D FFT. Use a performance model to contrast this algorithm with those described in the
text. Assume that the communication costs for a 1-D FFT algorithm operating on N points

on P processors are .
7. A problem comprises two components, A and B. A can be solved in 1000 seconds on

computer C1 and in 5000 seconds on computer C2 ; B requires 4000 and 2000 seconds on
C1 and C2, respectively. The two computers are connected by a 1000-km optical fiber link
that can transfer data at 100 MB/sec with a latency of 10 msec. The two components can
execute concurrently but must transfer 10 MB of data 10,000 times during execution. Is it
cheapest (in terms of computational resources consumed) to solve the problem on
computer C1, on computer C2, or on both computers together?

8. A problem similar to that of Exercise 7 is found to use fewer computational resources
when run on the two networked computers than on either computer alone. Your public
relations office proposes to promote this as an example of superlinear speedup. Do you
agree?

9. A climate model consists of an atmosphere and ocean model. At each step, the models both
perform a finite difference computation and exchange five 2-D arrays. Develop
performance models for two alternative parallel implementations, based on sequential and
parallel composition respectively. Discuss the relative performance of the two
implementations.

10. Determine the problem size and processor count regimes in which each of the three
convolution algorithms described in Example 4.4 would be faster, assuming machine
parameters characteristic of (a) a multicomputer and (b) an Ethernet-connected LAN.

11. The performance analysis of the pipelined algorithms considered in Section 4.4 did not
take into account idle time incurred when starting up and shutting down pipelines. Refine
the performance models to account for these costs. How many images must be processed
before efficiency reaches 95 percent of that predicted in the absence of these costs?

12. Execute by hand for N=P=4 the matrix multiplication algorithm based on a 2-D
decomposition described in Section 4.6.1.

13. A simpler variant of the multiplication algorithm for matrices decomposed in two
dimensions uses a ring rather than a tree for the broadcast operations. Use performance
models to compare the two algorithm variants. (Note that a broadcast can be performed on
a P -node bidirectional ring in approximately P/2 steps.)

14. Extend the analysis and comparison of Exercise 13 to account for competition for
bandwidth in a 2-D mesh architecture.

15. Develop a performance model for the systolic matrix multiplication algorithm of Section
4.6, and use this to identify regimes in which this algorithm is faster than the simpler
algorithm based on regular 2-D decompositions. Account for data reorganization costs.

16. Another matrix multiplication algorithm collects the matrices that are to be multiplied on a
single processor. Use performance models to identify regimes in which this algorithm
might be competitive. Conduct empirical studies to validate your analytic results.

Chapter Notes
The merits of modular design are described in landmark papers by Parnas [220,221,223] and Wirth
[295]. The book by McConnell [198] provides an excellent survey of the software construction
process. Booch [40] and Cox and Novobilski [66] provide good introductions to modularity and
object-oriented programming. Milner [210], Hoare [154], and Chandy and Misra [54] provide
abstract treatments of modularity and program composition in parallel programming. Foster and
Taylor [107] explore the use of modular design techniques in concurrent logic programming.
Mead and Conway [199] and Ullman [286] provide introductions to VLSI design, another area in
which modular design techniques are used extensively.

Gropp and Smith emphasize the importance of data distribution neutrality in the design of SPMD
libraries [127]. This principle is applied extensively in their Portable Extensible Tools for
Scientific computing (PETSc) package. ScaLAPACK is described by Choi, Dongarra, and Walker
[59], Dongarra and Walker [85], and Dongarra, van de Geign, and Walker [84]. Dongarra, Pozo,
and Walker [83] describe the C++ interface. Other parallel SPMD libraries include Lemke and
Quinlan's [188] P++ library for grid applications, Skjellum's [262] Multicomputer Toolbox, and
Thinking Machine's [283] CMSSL. Skjellum et al. [265] discuss the use of the MPI message-
passing standard to develop parallel libraries. A variety of other issues relating to parallel SPMD
libraries are discussed in workshop proceedings edited by Skjellum [263,264].

The tuple space module discussed in Section 4.5 forms the basis for the Linda parallel
programming model of Carriero and Gelernter [47,48,49]. The tuple space used in Linda is more
general than that described here. In particular, any field can be used as a key when retrieving
tuples. The tuple space solution to the database search problem is based on a Linda program in
[48]. The convolution problem and the performance results in Section 4.4 are taken from a paper
by Foster et al. [101]. Foster and Worley [110] describe parallel algorithms for the fast Fourier
transform.

Part II: Tools
The second part of this book comprises five chapters that deal with the implementation of parallel
programs. In parallel as in sequential programming, there are many different languages and
programming tools, each suitable for different classes of problem. Because it would be neither
feasible nor useful to describe them all, we restrict our attention to four systems---Compositional
C++ (CC++), Fortran M (FM), High Performance Fortran (HPF), and the Message Passing
Interface (MPI)---and explain how each can be used to implement designs developed using the
techniques of Part I. We also describe, in Chapter 9, tools that aid in the collection and analysis of
performance data.

Except where material is explicitly cross-referenced, each chapter in Part II is self-contained.
Hence, it is quite feasible to base a practical study of parallel programming on just one of the four
tools described here. However, while each of these tools is of broad utility, each also is most

appropriate for different purposes, and we recommend that you become familiar with several
systems.

CC++, described in Chapter 5, is a small set of extensions to C++. These extensions provide the
programmer with explicit control over locality, concurrency, communication, and mapping and
can be used to build libraries that implement tasks, channels, and other basic parallel programming
abstractions. Designs developed using the techniques of Part I are easily expressed as CC++
programs.

FM, described in Chapter 6, is a small set of extensions to Fortran. These extensions provide
explicit support for tasks and channels and hence can implement designs developed using the
techniques of Part I directly. A distinguishing feature of FM is that programs can be guaranteed to
be deterministic, meaning that two executions with the same input will produce the same output.

HPF, described in Chapter 7, is an example of a data-parallel language and has emerged as a de
facto standard for scientific and engineering computation. Parallelism is expressed in terms of
array operations---statements that apply to many elements of an array at once. Communication
operations are inferred by the compiler, and need not be specified by the programmer.

MPI, described in Chapter 8, is a library of standard subroutines for sending and receiving
messages and performing collective operations. Like HPF, MPI has emerged as a standard and
hence supersedes earlier message-passing libraries such as PARMACS, p4, PVM, and Express.

When building parallel programs, our choice of tool will depend on the nature of the problem to be
solved. HPF is particularly appropriate for numeric algorithms based on regular domain
decompositions (for example, finite difference computations). CC++ and FM are better suited for
applications involving dynamic task creation, irregular communication patterns, heterogeneous
and irregular computation structures, and concurrent composition. They can also be used to build
data-parallel libraries for regular problems. MPI is a lower-level approach to parallel programming
than CC++, FM, or HPF and is particularly appropriate for algorithms with a regular SPMD
structure.

CC++, FM, HPF, and MPI represent very different approaches to parallel programming.
Nevertheless, we shall see that good design is independent of our choice of implementation
language. The design techniques introduced in Part I apply regardless of language. Issues of
concurrency, scalability, locality, and modularity must be addressed in any parallel program.

5 Compositional C++
In this chapter, we describe Compositional C++ (CC++), a small set of extensions to C++ for
parallel programming. CC++ provides constructs for specifying concurrent execution, for
managing locality, and for communication. It allows parallel programs to be developed from
simpler components using sequential, parallel, and concurrent composition. Hence, algorithms
designed using the techniques described in Part I can be translated into CC++ programs in a
straightforward manner.

Since the CC++ extensions are simple, we are able in this chapter to provide both a complete
language description and a tutorial introduction to important programming techniques. We also
provide a brief review of those C++ constructs used in this chapter, so as to make the presentation

intelligible to readers familiar with C but not C++. In the process, we show how the language is
used to implement various algorithms developed in Part I.

After studying this chapter, you should be able to write simple CC++ programs. You should know
how to create tasks; how to implement structured, unstructured, and asynchronous communication
patterns; and how to control the mapping of tasks to processors. You should also know both how
to write deterministic programs and when it is useful to introduce nondeterministic constructs.
Finally, you should understand how CC++ supports the development of modular programs, and
you should know how to specify both sequential and parallel composition.

5.1 C++ Review
We first review some of the basic C++ constructs used in the rest of this chapter, so as to make
subsequent material understandable to readers familiar with C but not C++. Readers familiar with
C++ can skip this section.

With a few exceptions, C++ is a pure extension of ANSI C. Most valid ANSI C programs are also
valid C++ programs. C++ extends C by adding strong typing and language support for data
abstraction and object-oriented programming.

5.1.1 Strong Typing and Memory Management
ANSI standard C introduced function prototypes to the C language. A function prototype defines
the type of each function argument and the function's return value (the function's signature). For
example:

/* A forward declaration to a_function */
int a_function(float b, double c);

/* The definition of a_function */
int a_function(float b, double c) {
 /* Function body */
}

C++ requires that function prototypes be provided for all functions before they are used and
enforces consistent function use between program files. Thus, it is possible to distinguish between
functions that have the same name but different signatures. C++ uses this capability to allow
function names to be overloaded. That is, more than one function can be defined with the same
name; the compiler compares function call arguments with function signatures to determine which
version to use.

In C programs, the library routines malloc and free are used for dynamic memory allocation.
C++ defines two additional operators, new and delete, as illustrated in the following code
fragments.

struct S {
 /* Structure body */
};

S *sPtr = new S; /* Allocate instance of S */
delete sPtr; /* Delete instance of S */

int *iPtr = new int[25]; /* Allocate array of integers */
delete [] iPtr; /* Delete array of integers */

Notice that new is given a description of the type of the data object to be allocated; it returns a
pointer to dynamically allocated data of that type. The delete operator is used to release
dynamically allocated storage. The programmer must indicate when an array of objects is being
deleted.

5.1.2 Classes
 The most significant feature that C++ adds to C is the concept of classes. A class can be thought
of as a generalization of a C structure. In C, a structure groups together data elements of various
types under a single name; in C++, structures can also contain member functions. Like data
elements of a C structure, member functions of a class can be accessed only through a reference to
an object of the appropriate type. In C++, a class defines a scope in which names referring to
functions and data can be defined. Classes can be introduced using the C keywords struct and
union or the C++ keyword class.

Program 5.1 illustrates various features of the C++ class mechanism. This program defines a class
named Datum containing a data member x, a member function get_x, and two constructor
functions. (Notice the C++ single-line comments; anything after a double slash // is a comment.)
These terms are defined in the following discussion.

The syntax Datum::get_x() is used to name a member function get_x of Datum. This name,
called a quantified name, specifies that we are referring to a function defined in the scope of
Datum. If we do not quantify the name, we are defining the global function get_x(), which is a
different function. Notice that within the definition of Datum::get_x() we can refer to the data
member x directly, because x and get_x are defined in the same scope. We also could incorporate
the definition for function get_x directly in the class definition, as follows.

public:
 int get_x() { return x; }
 ...

 The two member functions named Datum are constructor functions for the Datum class. A
constructor has the same name as the class to which it applies and, if defined, is called whenever
an object of the appropriate type is created. Constructor functions are used to perform initialization
and can be overloaded.

The function test in Program 5.1 creates and uses three Datum objects, two of which are declared
in the first two lines in the function body. Notice that the class name Datum can be used directly; in
C we would have to write struct Datum. In the third line, the new operator is used to allocate the
third Datum object.

Because constructors have been defined for Datum, they will be called whenever Datum objects are
created. The constructor with no arguments, called a default constructor, is called when a_datum
is created, thereby initializing the field x of a_datum to zero. The declaration of another_datum
and the new operator both specify an integer argument and hence use the second constructor,
thereby initializing the variable x to 23 in these two cases.

Recall that in C, the fields of a structure are accessed by using the dot operator
(struct.fieldname), while the fields of a structure accessible via a pointer are accessed with the
arrow operator (structptr->fieldname). As illustrated in the function test, these same
mechanisms can be used to refer to the member functions of a C++ class.

The C++ class mechanism also supports protection. Members of a C++ class can be designated as
being either public or private. A public class member can be used without restriction by any
program that has a reference to an instance of a class. Public data members can be read or written,
and public member functions may be called. In contrast, private members can be accessed only
from within the class object. Private data members can be accessed only by a class member
function, and private member functions can be called only from within another member function
of the class. For example, the variable x in the Datum class is a private variable and hence can be
accessed by the member function get_x but cannot be referenced directly as a_datum.x.

5.1.3 Inheritance
The final C++ feature described here is inheritance. As in C, a class or structure can be included as
a member of another class, hence defining a has-a relationship between the two classes. In C++,
inheritance is used to create an alternative relationship between classes, an is-a relationship. If a
class D inherits from class B, then all public members of B are also members of D. We say that D
is derived from B, and that D is a derived class while B is a base class. D includes all public
members of B and may also include additional members, which are defined in the usual way. We
can view D as being a specialized version of a B, hence the is-a relationship.

Program 5.2 illustrates the use of inheritance. The syntax for inheritance is to specify a list of base
classes after the derived class name. The base class list is separated from the derived class name by
a colon. The keywords public and private are associated with the base class names to specify
whether the inherited members are to be public or private members of the derived class.

Members of the base class can be redefined in the derived class. For example, in Program 5.2 class
D redefines func2. When func2 is called from an object of type B, we access the version of func2

defined in B. If func2 is called from an object of type D, we get the version of func2 defined in
D.

In some situations, we may want a base class to call functions that are defined in a derived class.
This facility is supported by a C++ mechanism called virtual functions. A function declared virtual
in a base class can be defined in a derived class. This feature, which allows a programmer to
specialize a generic base class for a specific application, is used in Section 5.8.2 to build a reusable
parallel library.

5.2 CC++ Introduction
CC++ is a general-purpose parallel programming language comprising all of C++ plus six new
keywords. It is a strict superset of the C++ language in that any valid C or C++ program that does
not use a CC++ keyword is also a valid CC++ program. The CC++ extensions implement six basic
abstractions:

1. The processor object is a mechanism for controlling locality. A computation may
comprise one or more processor objects. Within a processor object, sequential C++ code
can execute without modification. In particular, it can access local data structures. The
keyword global identifies a processor object class, and the predefined class proc_t
controls processor object placement.

2. The global pointer, identified by the type modifier global, is a mechanism for linking
together processor objects. A global pointer must be used to access a data structure or to
perform computation (using a remote procedure call, or RPC) in another processor object.

3. The thread is a mechanism for specifying concurrent execution. Threads are created
independently from processor objects, and more than one thread can execute in a processor
object. The par, parfor, and spawn statements create threads.

4. The sync variable, specified by the type modifier sync, is used to synchronize thread
execution.

5. The atomic function, specified by the keyword atomic, is a mechanism used to control the
interleaving of threads executing in the same processor object.

6. Transfer functions, with predefined type CCVoid, allow arbitrary data structures to be
transferred between processor objects as arguments to remote procedure calls.

These abstractions provide the basic mechanisms required to specify concurrency, locality,
communication, and mapping.

Example . Bridge Construction:

 Program 5.3 illustrates many CC++ features. It is an implementation of the bridge construction
algorithm developed in Example 1.1. The program creates two tasks, foundry and bridge, and
connects them with a channel. The channel is used to communicate a stream of integer values
1..100 from foundry to bridge, followed by the value --1 to signal termination.

While the concepts of task and channel are not supported directly in CC++, they can be
implemented easily by using CC++ mechanisms. Hence, the main program creates two tasks by
first using the new operator to create two processor objects and then using the par construct to
create two threads, one per processor object. The two tasks engage in channel communication by
invoking functions defined in a Channel class, which will be described in Section 5.11. A channel
is declared in the main program and passed as an argument to foundry and bridge. These
processes use access functions get_out_port and get_in_port to obtain pointers to out-port and
in-port objects to which can be applied functions send and receive, respectively.

5.3 Concurrency

Next, we give a more complete description of CC++. The presentation is loosely structured
according to the design methodology of Chapter 2. First, we describe how CC++ programs specify
concurrent execution. Then, we explain how CC++ programs specify locality. Next, we explain
how to specify various communication structures. Finally, we describe how CC++ programs
specify mapping. Along the way, we also address the issues of modularity and determinism.

A CC++ program, like a C++ program, executes initially as a single thread of control (task).
However, a CC++ program can use par, parfor, and spawn constructs to create additional
threads. A parallel block is distinguished from an ordinary C++ block by the keyword par, as
follows.

par {
 statement1;
 statement2;
 ...
 statementN;
 }

A parallel block can include any legal CC++ statement except for variable declarations and
statements that result in nonlocal changes in the flow of control, such as return.

Statements in a parallel block execute concurrently. For example, the following parallel block
creates three concurrent threads: two workers and one master.

par {
 worker();
 worker();
 master();
}

A parallel block terminates when all its constituent statements terminate; execution then proceeds
to the next executable statement. Thus, in the preceding parallel block, the thread that executed the
parallel block proceeds to the next statement only when both the master and the workers have
terminated.

A parallel for-loop creates multiple threads, all executing the same statements contained in the
body of the for-loop. It is identical in form to the for-loop except that the keyword parfor replaces
for. For example, the following code creates ten threads of control, each executing the function
myprocess.

parfor (int i=0; i<10; i++) {
 myprocess(i);
}

Only the loop body of the parfor executes in parallel. Evaluation of the initialization, test, and
update components of the statement follows normal sequential ordering. If the initialization
section uses a locally declared variable (for example, int i), then each instance of the loop body
has its own private copy of that variable.

CC++ parallel constructs can be nested arbitrarily. Hence, the following code creates ten worker
threads and one master.

par {
 master();
 parfor (int i=0; i<10; i++)
 worker(i);
}

Finally, the spawn statement can be used to specify unstructured parallelism. This statement can be
applied to a function to create a completely independent thread of control. The parent thread does
not wait for the new thread to terminate execution, and cannot receive a return value from the
called function. As we shall see in Section 5.10, one use for the spawn statement is to provide an
efficient implementation of RPCs that do not require a return value.

5.4 Locality
In the task/channel programming model of Part I, the concepts of locality and concurrency are
linked: a task is both a separate address space and a thread of control. In CC++, these two concepts
are separated. Processor objects represent address spaces, and threads represent threads of control.
Processor objects can exist independently of threads, and more than one thread can be mapped to a
processor object.

5.4.1 Processor Objects
A processor object is defined by a C++ class declaration modified by the keyword global. A
processor object is identical to a normal C++ class definition in all but two respects:

1. Names of C++ ``global'' variables and functions (that is, names with file scope) refer to
unique objects within different instances of a processor object. Hence, there is no sharing
between processor object instances.

2. Private members of a processor object need not be explicitly declared to be private. C++
``global'' functions and variables are defined implicitly to be private members of the
processor object in which they occur.

Processor object types can be inherited, and the usual C++ protection mechanisms apply, so
private functions and data are accessible only from a processor object's member functions or from
the member functions of derived objects. Hence, it is the member functions and data declared
public that represent the processor object's interface.

For example, the following code from Program 5.3 creates a processor object class Construction
with public member functions foundry and bridge. The class ChannelUser is specified as a base
class and provides access to channel operations (Section 5.11).

global class Construction : public ChannelUser {
public:
 void foundry(Channel, int);
 void bridge(Channel);
};

5.4.2 Global Pointers

A processor object is a unit of locality, that is, an address space within which data accesses are
regarded as local and hence cheap. A thread executing in a processor object can access data
structures defined or allocated within that processor object directly, by using ordinary C++
pointers.

Processor objects are linked together using global pointers. A global pointer is like an ordinary
C++ pointer except that it can refer to other processor objects or to data structures contained
within other processor objects. It represents data that are potentially nonlocal and hence more
expensive to access than data referenced by ordinary C++ pointers.

A global pointer is distinguished by the keyword global. For example:

float *global gpf; // global pointer to a float
char * *global gppc; // global pointer to pointer of type char
C *global gpC; // global pointer to an object of type C

When the new statement is used to create an instance of a processor object, it returns a global
pointer. For example, the statement

Construction *global foundry_pobj = new Construction;

from Program 5.3 creates a new processor object of type Construction and defines
foundry_pobj to be a pointer to that object.

5.4.3 Thread Placement
By default, a CC++ thread executes in the same processor object as its parent. Computation is
placed in another processor object via an RPC. A thread needs only a global pointer to another
processor object to be able to invoke any of its public member functions. For example, in the
following line from Program 5.3, bridge_pobj is a global pointer to the processor object on
which the consumer is to execute, and bridge is a public member function of that object.

bridge_pobj->bridge();

Remote procedure calls are discussed in more detail in Section 5.5 below.

A single thread executing in a processor object implements what in Part I we termed a task. Many
CC++ programs create exactly one thread per processor object, yielding computation structures
like those described in Part I. We discuss situations in which it is useful to create more than one
thread per processor object in Section 5.7.

Example . Search (I):

Program 5.4 uses processor objects and the par construct to implement a prototypical tree-
structured computation. The program explores a binary tree recursively in the manner of
Algorithm 1.1, creating a task (processor object + thread) for each tree node and returning the total
number of leaf nodes that represent solutions. Notice the use of a parallel block to create the
threads that search the two subtrees rooted at a nonleaf node. In this simple program, the tree is not

represented by an explicit data structure; instead, a process's position in the tree is represented by
an integer.

5.5 Communication
 CC++ does not provide low-level primitives for directly sending and receiving data between
threads. Instead, threads communicate by operating on shared data structures. For example, one
thread may append items to a shared list structure, from which another thread removes items; this
implements a form of channel communication. CC++ mechanisms can be used to implement a
wide variety of such communication structures.

In this section, we first explain how global pointers are used to communicate data between
processor objects. Then, we explain how sync variables and atomic functions are used to provide
synchronization and mutual exclusion. Finally, we show how data transfer functions are used to
communicate more complex data structures.

5.5.1 Remote Operations

Figure 5.1: Remote read and write operations. At the top of the figure, we show a global pointer
gp located in processor object pobj1 referencing an integer length in processor object pobj2.
The rest of the figure is a timeline depicting the activity in these two processor objects as a thread
in pobj1 first writes and then reads length. The thread in pobj1 is shown as a solid line when
active and as a dashed line when suspended waiting for a remote operation. The diagonal dashed
lines represent communications.

CC++ global pointers are used in the same way as C++ local pointers; the only difference is that
we use them to operate on data or to invoke functions that may be located in other processor
objects. Hence, the following code fragment first assigns to and then reads from the remote
location referenced by the global pointer gp.

global int *gp;
int len2;
*gp = 5;
len2 = (*gp) * 2;

As illustrated in Figure 5.1, these read and write operations result in communication.

If we invoke a member function of an object referenced by a global pointer, we perform what is
called a remote procedure call (RPC). An RPC has the general form

<type> *global gp;
result = gp->p(...)

where gp is a global pointer of an arbitrary <type>, p(...) is a call to a function defined in the
object referenced by that global pointer, and result is a variable that will be set to the value
returned by p(...). An RPC proceeds in three stages:

1. The arguments to the function p(...) are packed into a message, communicated to the
remote processor object, and unpacked. The calling thread suspends execution.

2. A new thread is created in the remote processor object to execute the called function.
3. Upon termination of the remote function, the function return value is transferred back to

the calling thread, which resumes execution.

Basic integer types (char, short, int, long, and the unsigned variants of these), floats, doubles,
and global pointers can be transferred as RPC arguments or return values without any user
intervention. Structures, regular pointers, and arrays can be transferred with the aid of transfer
functions, to be discussed later in this section.

Program 5.5 uses RPCs to access a variable length located in another processor object; contrast
this with the code fragment given at the beginning of this section, in which read and write
operations were used for the same purpose. The communication that results is illustrated in Figure
5.2.

Figure 5.2: Using remote procedure calls to read and write a remote variable. At the top of the
figure, we show a global pointer lp located in processor object pobj1 referencing processor
object pobj2. The rest of the figure is a timeline depicting the activity in these two processor
objects as a thread in pobj1 issues RPCs first to read and then to write the remote variable
length. The thread in pobj1 is shown as a vertical solid or dashed line when active or suspended,
waiting for a remote operation; the diagonal dashed lines represent communications. The solid
vertical lines in pobj2 represent the threads created to execute the remote procedure calls.

5.5.2 Synchronization

Figure 5.3: Alternative synchronization mechanisms. On the left, the channel: a receiver blocks
until a message is in the channel. On the right, the sync variable: a receiver blocks until the
variable has a value.

A producer thread can use an RPC to move data to a processor object in which a consumer thread
is executing, hence effecting communication. However, we also require a mechanism for
synchronizing the execution of these two threads, so that the consumer does not read the data
before it is communicated by the producer. In the task/channel model of Part I, synchronization is
achieved by making a consumer requiring data from a channel block until a producer makes data
available. CC++ uses a different but analogous mechanism, the single assignment or sync variable

(Figure 5.3). A sync variable is identified by the type modifier sync, which indicates that the
variable has the following properties:

1. It initially has a special value, ``undefined.''
2. It can be assigned a value at most once, and once assigned is treated as a constant (ANSI C

and C++ const).
3. An attempt to read an undefined variable causes the thread that performs the read to block

until the variable is assigned a value.

We might think of a sync variable as an empty box with its interior coated with glue; an object
cannot be removed once it has been placed inside.

Any regular C++ type can be declared sync, as can a CC++ global pointer. Hence, we can write
the following.

sync int i; // i is a sync integer
sync int *j; // j is a pointer to a sync integer
int *sync k; // k is a sync pointer to an integer
sync int *sync l; // l is a sync pointer to a sync integer

 We use the following code fragment to illustrate the use of sync variables. This code makes two
concurrent RPCs to functions defined in Program 5.5: one to read the variable length and one to
write that variable.

Length *global lp;
int val;
par {
 val = lp->read_len();
 lp->write_len(42);
}

What is the value of the variable val at the end of the parallel block? Because the read and write
operations are not synchronized, the value is not known. If the read operation executes before the
write, val will have some arbitrary value. (The Length class does not initialize the variable
length.) If the execution order is reversed, val will have the value 42.

This nondeterminism can be avoided by modifying Program 5.5 to make the variable length a
sync variable. That is, we change its definition to the following. sync int length;

Execution order now does not matter: if read_len executes first, it will block until the variable
length is assigned a value by write_len.

Example . Channel Communication:

Global pointers and sync variables can be used to implement a variety of communication
mechanisms. In this example, we use these constructs to implement a simple shared queue class.
This class can be used to implement channel communication between two concurrently executing
producer and consumer tasks: we simply allocate a queue object and provide both tasks with
pointers to this object. We shall see in Section 5.11 how this Queue class can be encapsulated in
the more convenient Channel class used in Program 5.3.

Recall that a channel is a message queue to which a sender can append a sequence of messages
and from which a receiver can remove messages. The only synchronization constraint is that the
receiver blocks when removing a message if the queue is empty. An obvious CC++ representation
of a message queue is as a linked list, in which each entry contains a message plus a pointer to the
next message. Program 5.6 takes this approach, defining a Queue class that maintains pointers to
the head and tail of a message queue represented as a list of IntQData structures. The data
structures manipulated by Program 5.6 are illustrated in Figure 5.4.

Figure 5.4: A message queue class, showing the internal representation of a queue as a linked list
of IntQData structures (two are shown) with message values represented as sync values that are
either defined (42) or undefined (<undef>). Producer and consumer tasks execute enqueue and
dequeue operations, respectively.

The Queue class provides enqueue and dequeue functions to add items to the tail of the queue and
remove items from the head, respectively. The sync variable contained in the IntQData structure
used to represent a linked list entry ensures synchronization between the enqueue and dequeue
operations. The queue is initialized to be a single list element containing an undefined variable as
its message.

The first action performed by dequeue is to read the message value associated with the first entry
in the queue. This read operation will block if the queue is empty, providing the necessary
synchronization. If the queue is not empty, the dequeue function will read the queue value, delete
the list element, and advance the head pointer to the next list element. Similarly, the enqueue
function first allocates a new list element and links it into the queue and then sets the msg field of
the current tail list element. Notice that the order in which these two operations are performed is
important. If performed in the opposite order,

tail->value = msg;
tail->next = new IntQData;

then a dequeue function call blocked on the list element tail->value and enabled by the
assignment tail->value=msg could read the pointer tail->next before it is set to reference a
newly created element.

5.5.3 Mutual Exclusion
The sync variable allows us to synchronize the transfer of data from a producer to a consumer. In
other situations, we may wish to allow two threads to operate on the same nonsync data structure
while ensuring that they do not interfere with each other's execution. For example, the enqueue
and dequeue operations of Example 5.3 allow a single sender and receiver to communicate by
enqueuing to and dequeuing from a shared queue. What if we want multiple senders to be able to
append messages to the same queue? We cannot allow two producers to make concurrent calls to

enqueue, as an arbitrary interleaving of two enqueue calls could have bizarre results. What we
need is a mechanism to ensure that only one message can be enqueued at a time.

This requirement is satisfied by CC++ 's atomic keyword. Member functions of an object can be
declared atomic. This declaration specifies that the execution of such a function will not be
interleaved with the execution of any other atomic function of the same object. For example, to
allow multiple producers to append to the same queue, we would declare the enqueue function to
be atomic, as follows.

atomic void Queue::enqueue(int msg) {
 tail->next = new IntQData;
 tail->value = msg;
 tail = tail->next;
}

This ensures that even if multiple producers attempt to append to the same queue concurrently, the
actual enqueue operations will occur in some sequential order and a valid queue will be generated.

5.5.4 Data Transfer Functions
In C++, declarations of the form

ostream& operator<<(ostream&, const TYPE& obj_in);
istream& operator>>(istream&, TYPE& obj_out);

in the class ios of the iostream library define infix operators << and >>, which can be used to
write and read data of a specified TYPE to and from files. These operators are predefined for simple
types and can be provided by the programmer for more complex types. This facility enhances
modularity by allowing a class definition to specify how its data structures should be read and
written. A program can then read and write instances of that class without being aware of their
internal structure.

CC++ uses an analogous mechanism for communicating data structures between processor
objects. Associated with every CC++ datatype is a pair of data transfer functions that define how
to transfer that type to another processor object. The function

CCVoid& operator<<(CCVoid&, const TYPE& obj_in);

defines how TYPE should be packaged for communication. It is called automatically by the
compiler whenever an object of TYPE needs to be transferred to another processor object, that is,
whenever an RPC call takes an argument of that type or returns a value of that type. Similarly, the
function

CCVoid& operator>>(CCVoid&, TYPE& obj_out);

defines how TYPE should be unpackaged. It is called by the compiler whenever an object of TYPE
is received from another processor object. Upon termination of this call, obj_out will be a copy of
the obj_in used as the argument to the operator << in the initial processor object.

Figure 5.5: Using data transfer functions to communicate an instance of the user-defined type
DVector between two processor objects. The global pointer gp is assumed to reference pobj2. The
function << is used to package the data structure at the source, and the function >> is used to
unpackage the data structure at the destination.

The type CCVoid is a compiler-defined type analogous to the types istream and ostream used in
the iostream library. Data transfer functions are generated automatically by the CC++ compiler
for simple data types, but must be constructed by the programmer for local pointers, arrays, and
structures that contain local pointers. For example, Program 5.7 shows both data transfer and
iostream functions for a type DVector comprising a vector of doubles. These functions send
(write) the vector length followed by the vector elements, and receive (read) these values in the
same order. (The C++ qualifier friend names nonmember functions that can access a class's
private variables.) Having defined these data transfer functions, we can make an RPC with a
DVector as an argument, as follows; the vector will be transferred correctly, as illustrated in
Figure 5.5.

DVector V;
V.elements = new double[2];
V.length = 2;
V.elements[0] = 42.0; V.elements[1] = 17.0;
gp->transfer(V);

5.6 Asynchronous Communication
 Recall that the need for asynchronous communication can arise when the tasks involved in a
computation must access elements of a shared data structure in an unstructured manner (Section
2.3.4). This requirement can be satisfied in CC++ in three different ways:

1. The shared data structure can be encapsulated in a set of specialized data tasks to which
read and write requests are directed by using channel operations.

2. The shared data structure can be distributed among the computation tasks. As discussed in
Section 2.3.4, each computation task must then poll periodically for pending requests. For
example, we can extend the Queue class of Program 5.6 to support a poll operation. The
IntQData structure is augmented with a full/empty field, which is initialized to empty
when a list element is created and set to full when a data value is placed in the list element.
The poll function simply checks the status of this field in the list element at the head of the
queue.

3. A third implementation approach exploits CC++ 's RPC mechanism more directly. The
shared data structure is distributed among the computation tasks. However, rather than
sending a message on a channel, a task accesses data in another processor object by making
an RPC to an appropriate member function. (The get_x function of Program 5.1 is a
simple example of the sort of RPC we might write.)

The third approach is explored in a case study in Section 5.12.

5.7 Determinism
We noted in Section 1.3.1 that determinism can greatly simplify program development. CC++
does not provide any guarantees of deterministic execution: indeed, the basic execution model is
highly nondeterministic, allowing as it does the interleaved execution of multiple threads in a
single address space. Nevertheless, there are simple rules that, if followed, allow us to avoid
unwanted deterministic interactions. In particular, a CC++ program is easily shown to be
deterministic if it uses a task-based concurrency model (one thread per processor object) and if
tasks interact only by using the channel library used in Program 5.3, with one sender and one
receiver per channel.

While a task/channel model ensures determinism, there are also circumstances in which it is
advantageous to use CC++ constructs in more flexible ways. For example:

1. Concurrent threads provide a mechanism for overlapping computation and communication.
When one thread is suspended waiting for a communication, another thread can be
executing. For example, the following code can perform computation while waiting for the
remote datum, value.

 par {
 value = pobj->get_remote_value();
 perform_computation();
 }
 use_remote_value(value);

2. RPCs that read and write data structures in other processor objects can be used to
implement a variety of asynchronous communication mechanisms; see, for example,
Section 5.12.

3. On a shared-memory computer, threads created in the same processor object can execute in
parallel (on different processors), communicating by reading and writing shared data rather
than sending and receiving data. This shared-memory programming model (Section 1.3.2)
can improve performance relative to channel-based communication by reducing data
movement and copying.

These more general forms of concurrency and communication introduce the possibility of
complex, nondeterministic interactions between concurrently executing threads. However, the risk
of nondeterministic interactions can be reduced substantially by avoiding the use of global
variables, by making shared data structures have the sync attribute, and by ensuring that accesses
to nonsync shared data structures occur within atomic functions.

5.8 Mapping
 A parallel program defined in terms of CC++ constructs can be executed on both uniprocessor
and multiprocessor computers. In the latter case, a complete program must also specify how the
processor objects created by a CC++ program are mapped to processors. Recall from Chapter 2
that this is an important part of parallel algorithm design.

Figure 5.6: Mapping in CC++. First, threads are mapped to processor objects. Then, processor
objects are mapped to physical processors.

Mapping in CC++ is a two-stage process (Figure 5.6). First, threads are mapped to processor
objects, and then processor objects are mapped to processors. The mapping of threads to processor
objects can be one-to-one, in which case it is the mapping of processor objects to physical
processors that is important. Alternatively, the mapping of processor objects to physical processors
may be one-to-one, in which case it is the mapping of threads to processor objects that is
important. If both mappings are one-to-one, then the mapping problem is straightforward.

An important aspect of the second mapping stage, processor object placement, is that it influences
performance but not correctness. Hence, we can develop a program on a uniprocessor and then
tune performance on a parallel computer by changing placement decisions. This is consistent with
the design methodology of Chapter 2, in which mapping is the fourth and final stage of the design
process. The first mapping stage, thread placement, has this property only if threads do not share
data structures.

5.8.1 Processor Object Placement
 By default, a newly created processor object is placed on the same processor as its creator. An
alternative placement can be specified by using the placement argument to the new operator. In
C++, this argument is used to position an object in memory space; in CC++, it can also be used to
position a processor object in processor space. (It can also be used to specify where in a file
system to find the code for a processor object; however, we do not discuss this facility here.) The
location is specified by an implementation-dependent class named proc_t. The constructor
functions proc_t and node_t defined in the CC++ library can be used to construct a placement
structure with a specified processor name. These are used in the following code fragment, which
creates a new processor object (of type MyClass) on a processor called mymachine.

MyClass *global G;
proc_t location(node_t("mymachine"));
G = new (location) MyClass;

The new statement creates a new processor object; the supplied proc_t object (location)
specifies the machine name. To place the new processor object on a different processor, one need
change only the second line of this code fragment, for example to the following.

proc_t location(node_t("yourmachine"));

As a further example, the following code creates 32 processor objects, placing each on a different
processor of a multicomputer with nodes named sp#0, sp#1, ..., sp#31. Notice how parfor is
used to create the different processor objects concurrently.

MyClass *global G[32];
parfor (int i=0; i<31; i++) {
 char node_name[256];
 sprintf(node_name,"sp#%
 proc_t location(node_t(node_name));
 G[i] = new (location) MyClass;
}

Although simple, this code represents bad programming practice, in that it embeds information
about the environment in which the program is executing. A better approach is to encapsulate
mapping decisions in a separate class, for example, the class Mapping defined in Program 5.8. This
class encapsulates two private variables (P and proc_names) that represent the environment in
which a program is to execute. The member function initmap is used to initialize these variables.
Two additional member functions, processor and random_p, return a proc_t object representing
the ith processor and a randomly-selected processor, respectively. Finally, two data transfer
functions (omitted for brevity) package and unpackage the node list associated with a mapping
object, allowing a mapping to be passed as an argument when creating a new processor object. The
use of the Mapping class is illustrated in the following example.

Example . Search (II):

Recall that Program 5.4 explores a search tree in parallel by creating new threads to explore the
subtrees rooted at each nonleaf node. Each thread executes in a new processor object. This
program does not specify a mapping strategy for these processor objects. One strategy is to place
each newly created processor object/thread pair on a processor selected at random. Program 5.9
uses the Mapping class of Program 5.8 to implement this behavior. There are three significant
differences between this program and Program 5.4. First, a global Mapping object is defined and
initialized at the beginning of main to contain the names of the processors on which the program is
to execute. These names are read from a file. Second, a constructor is provided for the processor
object class Tree that copies the Mapping object to each new processor object as it is created.

Third, one of the processor object allocation calls in the search function is augmented with a call
to random_p, which returns a proc_t structure on a randomly selected processor.

5.8.2 Mapping Threads to Processor Objects

 An alternative approach to mapping in CC++ is to create a fixed number of processor objects onto
which threads are then placed. This approach is often used in SPMD computations, in which case a
single thread is mapped to each processor object. Another important application is in situations
where a computation creates a large number of lightweight threads that interact only via global
pointers. We can map these threads to a static number of processor objects, hence avoiding the
overhead of creating a new processor object when creating a new thread; as the threads do not
share local data structures, the mapping of threads to processor objects does not influence the
result computed.

Program 5.10 supports this general approach by defining a class POArray that can be used to
create an array of processor objects of specified size and type. Each processor object is initialized
to contain an array of pointers to the other processor objects, so that communication between the
different processor objects can be achieved.

The class POArray provides an initialization function, init, that creates the processor objects. The
arguments to this function specify the number and names of the processors on which processor
objects are to be created. The init function first makes repeated calls to create_pobj to create an
array of processor objects with type POArrayNode. It then initializes these processor objects by
calling the function init_pobj with a copy of the POArray object (accessed by the C++ keyword
this) as an argument.

We would like to be able to use POArray to create processor objects of arbitrary type. Hence, we
use the keyword virtual and the notation =0 to declare create_pobj and init_pobj to be
virtual functions. This means that these functions can be defined in classes derived from the
classes POArrary and POArrayNode, respectively. To create an array of virtual functions of some
type T, we simply derive new classes from POArray and POArrayNode and define the functions
create_pobj and init_pobj in these classes to create and initialize new processor objects of type
T. This mechanism is used in the following example and in Program 5.16, both of which use
POArray for mapping.

Example . Coupled Climate Model:

 A coupled climate modeling system comprising an ocean model and an atmosphere model can be
structured as a parallel composition of the two component models, in which each model executes
on one half of P processors. This structure is implemented in Program 5.11. Mapping is achieved
using the POArray class of Program 5.10. The class AtmOcn is derived from POArray. It extends it
by defining the virtual function create_pobj used by POArray to create a processor object, as
well as the functions atmosphere and ocean that implement the atmosphere and ocean models.
Similarly, the processor object class AtmOcnNode is derived from POArrayNode and defines the
virtual function init_pobj that initializes an ocean/atmosphere model processor object, as well as

the functions atm_proc and ocn_proc that will be executed in each processor object. The
init_pobj function creates a local instance of the AtmOcn object passed as an argument, hence
providing each processor object with access to the other processor objects.

The main program first reads a list of processor names, nodes. Then, it creates two instances of the
AtmOcn class (atm and ocn), and uses the member function init to create arrays of processor
objects located on the lower P/2 and upper P/2 processors named in nodes, respectively. The
AtmOcn objects are passed as arguments to the ocean and atmosphere model components, which
use them to perform local mapping. The functions atmosphere and ocean initiate SPMD
computation, placing a distinct instance of atm_proc (or ocn_proc) on each of the posize
processor objects named in the AtmOcn object passed as an argument.

The advantage of the structure employed in Program 5.11 is that mapping decisions are specified
separately from other aspects of program logic. As a result, the same program can be structured as
a concurrent composition, in which the ocean and atmosphere models execute concurrently on the

same processors, simply by changing the calls to init in the main program, as shown in Program
5.12.

5.9 Modularity
 Example 5.5 showed how CC++ constructs can be used to implement parallel and concurrent
composition. The basic ideas are straightforward: each component of a multicomponent program
is implemented as a distinct task. Each such task is passed an array of proc_t objects representing
its computational resources. The task creates a distinct set of processor objects and performs
mapping and communication with respect to these proc_t objects and processor objects.

 In this section, we discuss the techniques used to implement sequential composition in CC++
programs. Recall that in sequential composition, different program components execute in
sequence on all processors (Section 4.2.2). These program components may themselves
communicate and synchronize, but they cannot create new tasks. Hence, each process executes the
same program, and the entire computation moves sequentially from one parallel operation to the
next. This is the single program multiple data (SPMD) programming model discussed in Section
1.3.2.

A CC++ implementation of an SPMD program comprises two components. The initialization
component creates the processor objects in which computation will be performed and the
communication structures (such as channels) required by the program components called in the
sequential composition. The execution component performs the actual computation, using the
structures created during the initialization phase. The execution component can be structured in
two different ways (Figure 5.7). In the first approach, the top-level program is structured as a
sequence of calls to routines that each use a parfor statement to create a thread on each processor
object. In the second approach a single parfor statement creates a set of long-lived threads (one
per processor object) that each make a sequence of calls to the various routines involved in the

sequential composition. The first approach can lead to simpler programs, but the latter tends to be
more efficient.

Figure 5.7: Two alternative approaches to the implementation of sequential composition in
CC++. The two figures are timelines, with the parent thread shown as a solid dark line when
active and a dashed dark line when suspended. In both cases, an initialization phase creates the
four processor objects in which computation will occur. In the first approach, a set of long-lived
threads is then created; each of these threads executes both components before terminating. In the
second approach, control returns to the parent thread after the first component executes; the
parent thread then creates a new set of threads for the second component.

Example . Finite Difference:

 We apply the two approaches to the SPMD finite difference computation used to illustrate
sequential composition in Section 4.2.2. This computation is structured as a sequence of calls to a
finite difference routine that performs nearest-neighbor communication and a reduction routine
used to detect termination; the latter routine performs global communication.

An implementation of this algorithm using the first approach is illustrated in Program 5.13. The
execution component is structured as a while loop containing a sequential composition of parallel
finite_difference and global_maximum routines. Concurrency and communication are
encapsulated in these routines, which use parfor and other parallel constructs to create threads of
control within the processor objects created in the initialization phase.

The second approach is illustrated in Program 5.14. Here, a single parfor statement creates one
thread of control in each processor object. This thread makes a sequence of calls to routines that

call local finite_difference and global_maximum routines. The resulting program is more
complex but potentially more efficient, as it avoids the cost of repeatedly creating and destroying
the threads used to perform the SPMD computation.

5.10 Performance Issues
CC++ programs do not explicitly send and receive messages, but instead perform read and write
operations on global pointers; make remote procedure calls; and use par, parfor, and spawn
statements to create new threads of control. Nevertheless, the communication operations
associated with a CC++ program can usually be determined easily. Normally, a read operation on
a global pointer, a write operation on a global pointer, or an RPC all result in two communications:
one to send the remote request and one to receive an acknowledgment or result. As noted in
Chapter 3, the cost of each message can be specified with reasonable accuracy in terms of a startup
cost and a per-word cost. It is necessary to distinguish between the communication costs incurred
when communicating CC++ processes are located on different processors (interprocessor
communication) or on the same processor (intraprocessor communication). Both these costs can
depend significantly on implementation technology. Typically, interprocessor communication
costs are similar to those in Table 3.1 in Chapter 3, and intraprocessor communication is cheaper.
However, on some multicomputers with fast interprocessor communication and relatively low
memory bandwidth, intraprocessor communication can actually be slower than interprocessor
communication.

The following issues must also be considered when examining the performance of CC++
programs.

 Reading and writing global pointers. Reading or writing a global pointer normally involves two
communications: one to send the read or write request, and one to return a result and/or signal
completion. Hence, global pointers must be used with caution, particularly on computers where

communication is expensive. If a data structure is referenced often, it may be worthwhile to move
that data structure to where it is used most often, or to replicate it. If a task requires many data
items from the same processor object, it may be better to use an RPC to transfer all the required
data in a single message.

Remote procedure calls. An RPC normally involves two communications: the first to transmit the
procedure call and its data to the remote processor, and the second to signal completion and to
return any result. In many situations, the return message is not required and hence represents
overhead. This overhead can be avoided by using the spawn statement to create an asynchronous
thread of control. For example, the performance of the following code from Program 5.15 below,
which sends a value on a channel,

void send(int val) { inport->enqueue(val); }

can be improved in cases where one does not care when the send operation completes, by
rewriting it to eliminate the reply, as follows.

void send(int val) { spawn inport->enqueue(val); }

Fairness. When two or more threads execute in the same processor object, CC++ guarantees that
execution is fair: that is, that no thread that is not blocked waiting for data will be prevented
indefinitely from executing. However, the time that a thread waits before executing can vary
significantly depending on characteristics of both the application and a particular CC++
implementation. Hence, care must be taken if application performance depends on obtaining
timely responses to remote requests.

Remote operations. As a general principle, operations involving global objects (processor object
creation, RPC, etc.) are more expensive than operations involving only local objects. However, the
cost of these operations can vary significantly from machine to machine. An RPC is typically less
expensive than a processor object creation, and a remote read or write operation is typically less
expensive than an RPC. The first processor object creation on a processor is often significantly
more expensive than subsequent processor object creation operations on the same processor.

Compiler optimization. Because CC++ is a programming language rather than a library, a compiler
may in some situations be able to reduce communication costs by eliminating replies, coalescing
messages, or otherwise reorganizing a program to improve performance.

5.11 Case Study: Channel Library
In the first of two more substantial examples, we present an implementation of the channel library
used in Program 5.3. This case study illustrates how CC++ can be used to develop libraries
implementing particular programming paradigms: in this case, channel communication.

Figure 5.8: Data structures used in the CC++ channel library. In addition to a queue, a channel
comprises an OutPort object and an InPort object used to encapsulate pointers to the queue.
Processes apply send and receive operations to the outport and inport, respectively.

The channel library provides functions to create a channel, to extract pointers to inport and outport
structures, and to send and receive messages. A channel is constructed from three basic data
structures: the message queue itself and outport and inport objects used to contain pointers to the
queue (Figure 5.8). The outport is created in the same processor object as the sender, while the
inport and message queue are created in the same processor object as the receiver.

The implementation, Program 5.15, defines the processor object ChannelUser and the classes
Channel, InPort, and OutPort. The processor object provides functions create_inport and
create_outport that create the inport and outport associated with a channel; any program
wanting to use the channel library must include this processor object as a base class. Recall that
this was done when defining the processor object Construction in Program 5.3.

The Channel class provides three public member functions: the constructor Channel, which
creates a new channel linking two specified processor objects; get_out_port, which returns a
pointer to the channel's outport; and get_in_port, which returns a pointer to the channel's inport.

The InPort class is derived from the Queue class of Program 5.6. It adds to the functions already
defined in that class a new function receive, which simply dequeues a message from the queue.

Finally, the OutPort class encapsulates a global pointer and provides a send function that invokes
an enqueue operation on the message queue referenced by this pointer.

5.12 Case Study: Fock Matrix Construction
 Our second case study illustrates the use of RPCs to implement asynchronous access to a
distributed data structure. Programs 5.16 and 5.17 sketch a CC++ implementation of the parallel
Fock matrix construction algorithm of Section 2.8. Recall that in this algorithm, P computation
tasks must be able to read and write distributed arrays. The programs presented here achieve this
capability by distributing the arrays over a set of processor objects. Computation threads, created
one per processor object, operate on the distributed array by invoking RPCs implementing
operations such as accumulate and read.

The distributed array itself is implemented by the class Fock and the processor object class
FockNode, presented in Program 5.16. These are derived from the classes POArray and
POArrayNode of Program 5.10, much as in the climate model of Program 5.11, and provide
definitions for the virtual functions create_pobj and init_pobj. The derived classes defined in
Program 5.16 are used to create the array of processor objects within which computation will
occur. The data structures that implement the distributed array are allocated within these same
processor objects, with each of the posize processor objects being assigned blocksize array
elements. Notice how the initialization function for FockNode allocates and initializes the elements
of the distributed array.

For brevity, Program 5.16 implements only an accumulate operation. This function is defined in
Program 5.17. Notice how it issues an RPC to a remote processor object (number
index/blocksize) requesting an operation on a specified sequence of values. The function
invoked by the RPC (accum_local) is an atomic function; this ensures that two concurrent
accumulate operations do not produce meaningless results.

Having defined the classes Fock and FockNode, the implementation of the rest of the ccode is
fairly straightforward. We first create and initialize P processor objects of type FockNode, as
follows.

Fock darray(1024); // 1024 is block size
darray.init(P, nodes); // P and nodes as usual

Then, we invoke on each processor object a task (fock_build) responsible for performing one
component of the Fock matrix computation. Each such task makes repeated calls to accumulate to
place the results of its computation into the distributed array.

5.13 Summary
In this chapter, we have learned about a programming language, CC++, that provides a small set of
extensions to C++ for specifying concurrency, locality, communication, and mapping. CC++ does
not support the task and channel abstractions of Part I directly, but its constructs can be used to
build libraries that provide these abstractions. In keeping with the design methodology of Chapter
2, CC++ allows mapping decisions to be changed independently of other aspects of a design. The
performance modeling techniques of Chapter 3 and the modular design techniques of Chapter 4
also apply directly. Table 5.1 summarizes the language constructs that have been introduced.

The CC++ programs presented in this chapter tend to be more verbose than the equivalent Fortran
M, High Performance Fortran, or Message Passing Interface programs to be presented in the
chapters that follow. To a greater extent than these other systems, CC++ provides basic
mechanisms that can be used to implement a variety of different parallel program structures. For
example, we must implement a channel library in order to use channels in a CC++ program, and a
processor object array library to create arrays of processor objects. Once these libraries have been
written, however, they can be reused in many situations. This reuse is facilitated by the object-
oriented features of C++.

Table 5.1: CC++ quick reference: the constructs described in this chapter, the section in which
they are described, and programs that illustrate their use.

Exercises
1. Extend Program 5.4 to allow for nonbinary trees: that is, trees with an arbitrary number of

subtrees rooted at each node.
2. Design and construct a CC++ implementation of the manager/worker structure used in the

parameter study problem described in Section 1.4.4.
3. Design and construct a decentralized version of the manager/worker structure developed in

Exercise 2. Design and carry out experiments to determine when each version is more
efficient.

4. Design and implement a program that can be used to quantify CC++ processor object and
thread creation costs, both within the same processor and on remote processors. Conduct
experiments to measure these costs, and obtain estimates for and .

5. Implement and instrument the channel library presented in Section 5.11, and use this code
to measure CC++ communication costs on various parallel computers.

6. Modify the program developed in Exercise 5 to use spawn to implement the RPC used for
a send operation, and conduct experiments to compare the performance of the two
versions.

7. Complete Program 5.13, using the channel library of Section 5.11 to perform
communication.

8. Complete Program 5.14, using the channel library of Section 5.11 to perform
communication.

9. Design and carry out experiments to compare the performance of the programs developed
in Exercises 7 and 8.

10. Use the POArray class of Program 5.10 to implement a version of Program 5.4 in which
search tasks are implemented as threads mapped to a fixed number of processor objects.

11. Extend the program developed in Exercise 7 to provide a 2-D decomposition of principal
data structures.

12. Extend the channel library presented in Section 5.11 to allow polling for pending
messages.

13. Extend the channel library presented in Section 5.11 to provide a merger that allows
multiple senders on a channel.

14. Implement a hypercube communication template (see Chapter 11). Use this template to
implement simple reduction, vector reduction, and broadcast algorithms.

15. Construct a CC++ implementation of the tuple space module described in Section 4.5. Use
this module to implement the database search problem described in that section.

Chapter Notes
The C programming language was designed by Kernighan and Ritchie [170]. C++, which extends
C in many respects, was designed by Stroustrup [92,270]. A book by Barton and Nackman [29]
provides an introduction to C++ for scientists and engineers. Objective C [66] is another object-
oriented extension to C.

 C* [281], Data-parallel C [136], and pC++ [38] are data-parallel C-based languages (see Chapter
7). COOL [50] and Mentat [125] are examples of parallel object-oriented languages. Concurrent C
[117] and Concert C [19] are parallel C-based languages; the latter supports both remote procedure
call and send/receive communication mechanisms. C-Linda [48] augments C with primitives for
creating processes and for reading and writing a shared tuple space (Section 4.5).

CC++ was designed by Chandy and Kesselman [53]. The monograph A Tutorial for CC++

[261] provides a tutorial and reference manual for the Caltech CC++ compiler. The sync or single-
assignment variable has been used in a variety of parallel languages, notably Strand [107] and
PCN [55,105].

6 Fortran M
 In this chapter, we describe Fortran M (FM), a small set of extensions to Fortran for parallel
programming. In FM, tasks and channels are represented explicitly by means of language
constructs. Hence, algorithms designed using the techniques discussed in Part I can be translated
into programs in a straightforward manner.

Because Fortran M is a simple language, we are able in this chapter to provide both a complete
language description and a tutorial introduction to important programming techniques. (Some
familiarity with Fortran is assumed.) In the process, we show how the language is used to
implement various algorithms developed in Part I.

After studying this chapter, you should be able to write simple FM programs. You should know
how to create tasks and channels, how to implement structured, unstructured, and asynchronous
communication patterns, and how to control the mapping of tasks to processors. You should also
know both how to guarantee deterministic execution and when it is useful to introduce
nondeterministic constructs. Finally, you should understand how FM supports the development of
modular programs, and know how to specify both sequential and parallel composition.

6.1 FM Introduction
Fortran M provides language constructs for creating tasks and channels and for sending and
receiving messages. It ensures that programs are deterministic if specialized constructs are not
used, and it provides the encapsulation properties needed for modular programming. Its mapping
constructs affect performance but not correctness, thereby allowing mapping decisions to be
modified without changing other aspects of a design. These features make it particularly easy to
translate algorithms designed using the techniques of Part I into executable FM programs.

 FM is a small set of extensions to Fortran. Thus, any valid Fortran program is also a valid FM
program. (There is one exception to this rule: the keyword COMMON must be renamed to PROCESS
COMMON. However, FM compilers usually provide a flag that causes this renaming to be performed
automatically.) The extensions are modeled whenever possible on existing Fortran concepts.
Hence, tasks are defined in the same way as subroutines, communication operations have a syntax
similar to Fortran I/O statements, and mapping is specified with respect to processor arrays.

The FM extensions are summarized in the following; detailed descriptions are provided in
subsequent sections. In this chapter, FM extensions (and defined parameters) are typeset in UPPER
CASE, and other program components in lower case.

1. A task is implemented as a process. A process definition has the same syntax as a
subroutine, except that the keyword PROCESS is substituted for the keyword subroutine.
Process common data are global to any subroutines called by that process but are not
shared with other processes.

2. Single-producer, single-consumer channels and multiple-producer, single-consumer
mergers are created with the executable statements CHANNEL and MERGER, respectively.
These statements take new datatypes, called inports and outports, as arguments and define
them to be references to the newly created communication structure.

3. Processes are created in process blocks and process do-loops, and can be passed inports
and outports as arguments.

4. Statements are provided to SEND messages on outports, to RECEIVE messages on inports,
and to close an outport (ENDCHANNEL). Messages can include port variables, thereby
allowing a process to transfer to another process the right to send or receive messages on a
channel or merger.

5. Mapping constructs can be used to specify that a program executes in a virtual processor
array of specified size and shape, to locate a process within this processor array, or to
specify that a process is to execute in a subset of this processor array.

6. For convenience, processes can be passed ordinary variables as arguments, as well as ports;
these variables are copied on call and return, so as to ensure deterministic execution.
Copying can be suppressed to improve performance.

 The FM language design emphasizes support for modularity. Program components can be
combined using sequential, parallel, or concurrent composition, as described in Chapter 4. In
parallel and concurrent composition, the process serves as the basic building block. A process can
encapsulate data, computation, concurrency, and communication; the ports and other variables
passed as arguments define its interface to the rest of the program. The techniques used to
implement sequential composition will be discussed in Section 6.9.

FM extensions can be defined for both the simpler and more established Fortran 77 and the more
advanced Fortran 90. For the most part, we use Fortran 77 constructs in this chapter, except when
Fortran 90 constructs are significantly more concise.

Example . Bridge Construction:

Program 6.1 illustrates many FM features. This is an implementation of the bridge construction
algorithm developed in Example 1.1. The program creates two processes, foundry and bridge,

and connects them with a channel. The channel is used to communicate a stream of integer values
1..100 from foundry to bridge.

This program comprises a main program and two process definitions. The main program creates a
channel and instances of the processes foundry and bridge. It first declares two port variables, pi
and po, that can be used to receive and send integer messages, respectively. The CHANNEL
statement creates a channel and initializes pi and po to be references to this channel. The process
block (PROCESSES/ ENDPROCESSES) creates the two concurrent processes, passing the port
variables as arguments.

The process definitions are distinguished by the PROCESS keyword. The foundry process uses the
SEND statement to add a sequence of messages to the message queue associated with the channel
referenced by po. The ENDCHANNEL statement terminates this sequence. The bridge process uses
the RECEIVE statement to remove messages from this message queue until termination is detected.

6.2 Concurrency
We next give a more complete description of FM. The presentation is loosely structured according
to the design methodology given in Chapter 2. First, we describe how FM programs define and
create processes. Then, we explain how to specify various communication structures. Finally, we
describe FM's mapping constructs. Along the way, we also address the issues of modularity and
determinism.

6.2.1 Defining Processes
 The first step in the development of an FM program is typically to define the tasks from which a
computation will be constructed. As noted in Example 6.1, a task is implemented in FM as a
process. A process definition has the same syntax as a subroutine except that the keyword PROCESS
is used in place of subroutine, and common data are labeled PROCESS COMMON to emphasize that
they are common only to the process and any subroutines that it calls. Processes cannot share
common data.

 A process definition also defines the process's interface to its environment. A process's dummy
arguments (formal parameters) are a set of typed port variables. (For convenience, conventional
argument passing is also permitted between a process and its parent. This feature is discussed in
Section 6.7.) A port variable declaration has the general form

port_type (data_type_list) name_list

 The port_type is OUTPORT or INPORT and specifies whether the port is to be used to send or
receive data, respectively. The data_type_list is a comma-separated list of type declarations and
specifies the format of the messages that will be sent on the port, much as a subroutine's dummy
argument declarations define the arguments that will be passed to the subroutine.

In Program 6.1, both pi and po are used to communicate messages comprising single integers. The
following are examples of more complex message formats. In the second and third declaration, the
names m and x have scope local to the port declaration. Notice how in the third declaration, the size
of the array x is specified in the message.

 INPORT (integer, real) p1 ! One integer, one real

 INPORT (real x(128)) p2 ! Array of 128 reals

 INPORT (integer m, real x(m)) p3 ! One integer (m); m reals

The value of a port variable is initially a distinguished value NULL and can be defined to be a
reference to a channel by means of the CHANNEL, RECEIVE, MERGER, or MOVEPORT statements, to be
defined in the following sections.

6.2.2 Creating Processes
 Having defined one or more processes, we next construct a concurrent computation by creating
instances of these processes. An FM program executes initially as a single process. This process

can both execute sequential Fortran code and use process block and process do-loop constructs to
create additional processes. A process block has the general form

 PROCESSES
 statement_1
 ...
 statement_n
 ENDPROCESSES

where and the statements are process calls, process do-loops, and/or at most one subroutine
call. A process call has the same syntax as a subroutine call except that the keyword PROCESSCALL
is used in place of the keyword call.

Statements in a process block execute concurrently. For example, the following parallel block
creates three concurrent processes: two workers and a single process_master.

 PROCESSES
 PROCESSCALL worker(pi1)
 PROCESSCALL worker(pi2)
 PROCESSCALL process_master(po1,po2)
 ENDPROCESSES

A process block terminates when all constituent statements terminate; execution then proceeds to
the next executable statement. Thus, the parent process in this example proceeds to the statement
after the parallel block only when both the the master and the workers have terminated execution.

A subroutine call in a parallel block allows the parent process to execute concurrently with the
newly created processes. For example, the following variant of the preceding parallel block causes
the current process to execute the subroutine subroutine_master concurrently with the two
worker processes. Only two new processes are created, rather than three, and the subroutine can
share common data with the calling process.

 PROCESSES
 PROCESSCALL worker(pi1)
 PROCESSCALL worker(pi2)
 call subroutine_master(po1,po2)
 ENDPROCESSES

A process do-loop creates multiple instances of the same process. It is identical in form to the do-
loop except that the keyword PROCESSDO is used in place of the keyword do and the body can
include only a process do-loop or a process call. For example, the following code creates ten
instances of myprocess.

 PROCESSDO i = 1,10
 PROCESSCALL myprocess
 ENDPROCESSDO

Process do-loops can be nested inside both process do-loops and process blocks. Hence, the
following code creates ten worker processes and one master.

 PROCESSES
 PROCESSCALL master
 PROCESSDO i = 1,10

 PROCESSCALL worker
 ENDPROCESSDO
 ENDPROCESSES

6.3 Communication
 FM processes, like the tasks introduced in Part I, cannot share data directly. Instead, they
coordinate their execution and exchange data by sending and receiving messages on single-
producer, single-consumer channels and multiple-producer, single-consumer mergers. Hence, the
next step in program implementation after processes have been defined is to establish the channels
and mergers needed for communication.

In this section, we focus on the constructs and techniques used to specify structured,
``synchronous'' communication operations (Section 2.3). In subsequent sections we examine both
unstructured and asynchronous communication.

6.3.1 Creating Channels
 The basic building block from which communication structures are constructed is the channel,
created by executing the CHANNEL statement. This statement has the general form

CHANNEL(in= inport, out= outport)

and both creates a new channel and defines inport and outport to be references to this channel,
with inport able to receive messages and outport able to send messages. The two ports must be of
the same type.

Optional iostat= and err= specifiers can be used to detect error conditions, as in Fortran file
input/output statements. An err= label specifier causes execution to continue at the statement with
the specified label if an error occurs while creating the channel. An iostat= intval specifier
causes the integer variable intval to be set to zero if no error occurs and to a nonzero value
otherwise. If neither err= nor iostat= specifiers are provided, an error causes the FM
computation to terminate.

For succinctness, we use Fortran 90 array sections in the CHANNEL statement. An array section is
like an array element but with a range rather than an index provided for one or more of its
subscripts. A range is represented by a triplet with the following general form. lower-bound :
upper-bound : stride

Bounds can be omitted if the corresponding bounds of the array are required; a stride of 1 is
assumed if stride is omitted. See Figure 7.1 in Chapter 7 for examples of array sections.

Array sections provided in the in= and out= components of a CHANNEL statement must be
conformant, that is, of the same size and shape. A channel is created for each pair of corresponding
elements, as illustrated in Figure 6.1.

Figure 6.1: Array sections and the FM CHANNEL statement. In (a), a single statement creates four
channels and, for i=1..4, defines outport po(i) and inport pi(i) to reference the same channel.
Hence, for example, a message sent on po(1) can be received on pi(1). In (b), two statements are
used to define a ``staggered'' mapping of inports to outports, in which outport qo(mod(i,4)+1)
and inport qi(i) reference the same channel. Therefore, a message sent on qo(1) can be received
on qi(4).

6.3.2 Sending Messages
 A process sends a message by applying the SEND statement to an outport. Doing this adds the
message to the message queue associated with the outport, with the outport declaration specifying
the message format. For example, in the following code fragment the SEND statement sends a
message consisting of the integer i followed by the first ten elements of the real array a.

 OUTPORT (integer, real x(10)) po
 ...
 SEND(po) i, a

A process sends a sequence of messages by repeated calls to SEND; it can also call ENDCHANNEL to
send an end-of-channel (EOC) message. This usage is illustrated in Program 6.1, where the
foundry process uses the SEND and ENDCHANNEL statements to send a total of 100 integer
messages. ENDCHANNEL also sets the value of the outport variable to be NULL, thereby preventing
further messages from being sent on that port.

Like Fortran's write and endfile statements, SEND and ENDCHANNEL are nonblocking
(asynchronous); that is, they complete immediately. Variables named in a SEND statement can be
modified in subsequent statements, without affecting the send operation.

An operation on an undefined port is treated as erroneous. Optional err= and iostat= specifiers
(described in Section 6.3.1) can be included in SEND and ENDCHANNEL statements to indicate how
to recover from this and other exceptional conditions.

6.3.3 Receiving Messages
A process receives a value by applying the RECEIVE statement to an inport. The inport declaration
specifies the message format. For example, the bridge process in Program 6.1 makes repeated
calls to the RECEIVE statement to receive a sequence of integer messages, detecting end-of-
sequence by using the iostat specifier. A RECEIVE statement is blocking (synchronous); that is, it
does not complete until data is available. Hence, a consumer process such as bridge cannot ``run
ahead'' of the corresponding producer.

An array size can be included in a message, thereby allowing arrays of different sizes to be
communicated on the same channel. For example, the following code fragment receives a message
comprising the integer num followed by num real values. The incoming data are placed in array
elements a(1,offset), a(1,offset+1), ..., a(1,offset+num-1).

 INPORT (integer n, real x(n)) pi
 integer num
 real a(128, 128)
 RECEIVE(pi) num, a(1,offset)

An operation on an undefined port is treated as erroneous. A RECEIVE statement can include
optional err= and iostat= specifiers to indicate how to recover from this and various exceptional
conditions. In addition, an end= label specifier causes execution to continue at the statement with
the specified label upon receipt of a end-of-channel message. This mechanism can be used to
rewrite the bridge process of Program 6.1 as follows.

 PROCESS bridge(pi) ! Process definition

 INPORT (integer) pi ! Argument: inport

 integer num ! Local variable

 do while(.true.) ! While not done:

 RECEIVE(port=pi, end=10) num ! Receive message

 call use_girder(num) ! Process message

 enddo !

 10 end ! End of process

Example . Ring Pipeline:

Program 6.2 implements the ring-based pairwise interactions algorithm of Section 1.4.2. It
comprises a main program and a process definition. The main program uses two channel
statements to create P channels (Figure 6.1) and a process do-loop to create P processes. One
inport and one outport are passed to each process as arguments, thereby connecting the processes
in a unidirectional ring (Figure 6.2). The variables i and P are also passed to the processes as
arguments; this capability is discussed in Section 6.7.

The ringnode process's four arguments are a unique identifier, the total number of processes, and
an inport and outport referencing channels from one neighbor and to the other neighbor in the ring.
The process first initializes its local state and then performs n-1 send-receive-compute steps
before terminating.

Figure 6.2: FM implementation of three-process ring pipeline showing channel connections.

Example . Search:

Program 6.3 implements a prototypical tree-structured computation. The program explores a
binary tree recursively in the manner of Algorithm 1.1, creating a task for each tree node and
returning the total number of leaf nodes that represent solutions. In this simple program, the tree is
not represented by an explicit data structure; instead, a process's position in the tree is represented
by an integer.

The main program makes an initial call to the process tree. This process uses a process block to
create recursively a set of 2n-1 (n a power of 2) processes connected in a binary tree of depth

. Each process is connected to its parent by a channel; nonleaf processes also have channels
from their two offspring. Notice the use of a subroutine call within a process block, as discussed in
Section 6.2.2.

6.4 Unstructured Communication
 In the preceding section, we saw how channels are used to implement regular communication
structures such as a ring and a tree. Next, we examine the techniques used to implement
unstructured communication algorithms in which the identity of communication partners changes
during program execution (Section 2.3.3). These patterns require many-to-one and many-to-many
communication structures, which can be implemented using FM's MERGER construct. They can also
require the dynamic creation of channels during program execution.

6.4.1 Many-to-One Communication
FM's MERGER statement creates a first-in/first-out message queue, just as CHANNEL does. Unlike
CHANNEL, however, it allows multiple outports to reference this queue and hence defines a many-
to-one communication structure. Messages sent on any outport are appended to the queue, with the
order of messages sent on each outport being preserved and any message sent on an outport

eventually appearing in the queue. The MERGER statement has the general form MERGER(in= inport,
out= outport_specifier)

where an outport_specifier can be a single outport, a comma-separated list of outport_specifiers,
or an array section from an outport array. The statement creates a new merger and associates the
named inport and outports with this merger. The inport and the outports must be of the same type.
Optional iostat= and err= specifiers can be used to detect error conditions, as in the CHANNEL
statement.

Figure 6.3: A many-to-one communication structure connecting four producer processes to a
single consumer.

The following code fragment implements a typical many-to-one communication structure. As
illustrated in Figure 6.3, this uses a merger to connect four producer processes with a single
consumer.

 INPORT (integer) pi ! Single inport

 OUTPORT(integer) pos(4) ! Four outports

 MERGER(in=pi,out=pos(:)) ! Merger

 PROCESSES !

 call consumer(pi) ! Single consumer

 PROCESSDO i=1,4 !

 PROCESSCALL producer(pos(i)) ! Four producers

 ENDPROCESSDO !

 ENDPROCESSES !

Example . Manager/Worker:

 As an additional example of many-to-one communication, we consider the manager/worker
structure used in the parameter study problem described in Section 1.4.4. As illustrated in Figure
1.14, this structure comprises one manager task, one output task, and multiple workers. The FM
implementation (Programs 6.4 and 6.5) comprises a main program and two process definitions.
The output process definition is not shown.

The main program (Program 6.4) creates two mergers to implement the many-to-one
communication structures connecting the workers to the manager and output tasks. It also creates
NW channels to connect the manager to each worker.

Each worker (Program 6.5) repeatedly requests a task descriptor from the manager, waits to
receive this task descriptor, and executes the task represented by the descriptor. A worker
terminates when the channel from the manager is closed. The manager repeatedly receives and
replies to requests for task descriptors until no more tasks remain. A request comprises the
identifier of the requesting worker, an integer in the range 1..NW. The manager responds to the
request by sending a new task descriptor (generated by the function newtask, and represented by a
real number) on the appropriate channel. When all task descriptors have been allocated, the
manager signals termination by closing the channels to the workers.

6.4.2 Many-to-Many Communication

Figure 6.4: A many-to-many communication structure connecting four producer processes to
three consumers. Each producer has an array of three outports, and each consumer has a single
inport. Three mergers connect the outports with the inports.

A many-to-many communication structure allows multiple senders to communicate with multiple
receivers. This structure is just a generalization of the many-to-one structure and can be
implemented in a similar fashion, by using multiple mergers. The following code fragment
implements a typical many-to-many structure. As illustrated in Figure 6.4, this code uses three
mergers to connect four producer processes with three consumers. Each producer has an array of
three outports; messages sent on outport i are routed to consumer i. Each consumer has a single
inport.

 aa¯ \
 OUTPORT(integer) pos(3,4) ! outports

 INPORT (integer) pis(4) ! 3 inports

 do i=1,3 ! 3 mergers

 MERGER(in=pis(i),out=pos(i,:)) !

 enddo !

 PROCESSES !

 PROCESSDO i=1,4 !

 PROCESSCALL producer(pos(1,i)) ! 4 producers

 ENDPROCESSDO !

 PROCESSDO i=1,3 !

 PROCESSCALL consumers(pis(i)) ! 3 consumers

 ENDPROCESSDO !

 ENDPROCESSES !

6.4.3 Dynamic Channel Structures
 Port variables can be incorporated in messages, hence transferring the ability to send or receive on
a channel from one process to another. A port that is to be used to communicate port values must
have an appropriate type. For example, the following declaration specifies that inport pi will be
used to receive integer outports.

INPORT (OUTPORT (integer)) pi

A receive statement applied to this port must specify as an argument an integer outport variable
into which the incoming port is to be placed. For example, the following code fragment first
declares an integer outport variable qo and then receives an outport of the same type into that
variable.

 aa¯ \
 INPORT (OUTPORT (integer)) pi ! Inport

 OUTPORT (integer) qo ! Outport

 RECEIVE(pi) qo ! Receive outport

Figure 6.5: Dynamic channel creation in the bridge construction problem. In (a), the bridge
process creates a new channel. In (b), the new channel's outport is communicated to the foundry
process. In (c), the new channel is used to return a datum (girder) to bridge. In (d), the
communication is complete.

Program 6.6 illustrates the transfer of ports in messages. This program implements a variant of the
bridge construction program (Program 6.1) in which the bridge process makes explicit requests
for data from the foundry process. Recall that in the original program, a stream of girders was
communicated on a channel connecting foundry to bridge. In Program 6.6, things are reversed. A
stream of requests is communicated on a channel connecting bridge to foundry. Each request
comprises an outport that foundry uses to return a single data value to bridge. Hence, when
bridge requires data, it creates a new channel, sends the outport to foundry, and waits for a reply
on the inport (Figure 6.5). This implements a synchronous communication protocol: the producer
(foundry) produces data at the rate specified by the consumer (bridge) and hence cannot ``run
ahead'' of the consumer.

 In this example, it would perhaps be simpler to specify the desired behavior by using static
``request'' and ``data'' channels. With this structure, the producer sends a datum on the data
channel each time it receives a request on the request channel. However, dynamic channels can be
useful in more complex communication structures where a request must be routed through several
intermediate steps before being serviced.

6.5 Asynchronous Communication

 Recall that the need for asynchronous communication can arise when the tasks involved in a
computation must access elements of a shared data structure in an unstructured manner (Section
2.3.4). One implementation approach is to encapsulate the data structure in a set of specialized
data tasks to which read and write requests can be directed. This approach is easily implemented
using FM constructs: for example, the process structure illustrated in Figure 6.4 could be used to
connect four computation tasks with three data tasks.

An alternative implementation approach is to distribute the shared data structure among the
computation tasks. Individual computation tasks must then poll periodically for pending read and
write requests. This approach is supported in FM by the PROBE statement, which allows a process
to determine whether messages are pending on the channel or merger associated with an inport.
This is a potentially nondeterministic operation, since the result returned by a PROBE statement can
vary depending on the time at which it is executed. A PROBE statement has the general form

PROBE(inport, empty= logical)

and sets the logical variable named by the empty specifier to true if the channel is empty (meaning
a RECEIVE on the inport would block) and to false otherwise.

Optional iostat= and err= specifiers can be included in the control list; these are as in the
Fortran inquire statement. Hence, applying a PROBE statement to an undefined port causes an
integer variable named in an iostat specifier to be set to a nonzero value and causes execution to
branch to a label provided in an err= specifier.

Knowledge about send operations is presumed to take a nonzero but finite time to become known
to a process probing an inport. Hence, a probe of an inport that references a nonempty channel
may signal true if a value was only recently communicated. However, if applied repeatedly
without intervening receives, PROBE will eventually signal false and will then continue to do so
until values are received.

The PROBE statement is useful whenever a process needs to interrupt local computation to handle
communications that arrive at some unpredictable rate. For example, the following code might be
used in an implementation of the branch-and-bound search algorithm of Section 2.7.

 inport (T) requests ! T an arbitrary type

 logical eflag

 do while (.true.) ! Repeat:

 call advance_local_search ! Compute

 PROBE(requests,empty=eflag) ! Poll for requests

 if(.not. eflag) call respond_to_requests

 enddo

This code fragment alternates between advancing a local search and responding to requests for
search problems from other processes.

The PROBE statement can also be used to receive data that arrive in a nondeterministic fashion from
several sources. For example, Program 6.7 handles messages of types T1 and T2 received on ports
data1 and data2, respectively. A disadvantage of this program is that if no messages are pending,
it consumes resources by repeatedly probing the two channels. This busy waiting strategy is
acceptable if no other computation can be performed on the processor on which this process is
executing. In general, however, it is preferable to use a different technique. If T1=T2, we can
introduce a merger to combine the two message streams, as follows. The handlemsgs2 process
then performs receive operations on its single inport, blocking until data are available.

 MERGER(in=datai, out=data1o, out=data2o)
 PROCESSES
 PROCESSCALL source1(data1o)
 PROCESSCALL source2(data2o)
 PROCESSCALL handlemsgs2(datai)
 ENDPROCESSES

6.6 Determinism
An important property of FM is that programs that do not use the nondeterministic constructs
MERGER or PROBE can be guaranteed to be deterministic even if tasks and channels are created and
deleted and channels are reconnected dynamically. The compiler and/or runtime system signal
nondeterministic execution of programs that do not use nondeterministic constructs. As noted in
Section 1.3.1, determinism can greatly simplify program development.

Individual FM processes execute deterministically. In addition, FM's send and receive operations
maintain determinism as long as each channel has at most a single writer and a single reader.
Hence, nondeterminism can arise only if an inport or outport is duplicated. This duplication would

allow two or more processes to read or write the same channel, in which case the value retrieved
from a channel with a receive operation would depend on the order in which different send and
receive operations were executed. Situations in which this undesirable behavior could occur, and
the FM mechanisms that avoid it, are as follows:

1. A port occurs more than once in a process block or process do-loop. The compiler and/or
runtime system detects this and signals an error.

2. A port is communicated in a message and then used locally. The compiler generates code
to invalidate a port that has been communicated. Hence, in the following code fragment the
second send statement is erroneous and would be flagged as such either at compile time or
at runtime.

 OUTPORT (OUTPORT (real)) po ! Interface port

 OUTPORT (real) qo ! Other port

 SEND(po) qo ! Send qo on po; invalidates qo

 SEND(qo) x ! Try to send on qo; error!

3. A port occurs in an assignment statement. This situation is detected and flagged as an error
by the compiler. The value of a port variable can be assigned to another port variable by
using the MOVEPORT statement, but in this case the source port variable is invalidated. For
example, the following code both sets p2 to the value of p1 and invalidates p1 by setting it
to NULL.

 INPORT (real) p1, p2 ! p1 and p2 are inports, type real

 MOVEPORT(from=p1, to=p2) ! Set p2 to p1; invalidate p1

6.7 Argument Passing
FM extends the basic task/channel model by allowing ordinary variables, as well as ports, to be
passed as actual arguments in a process call. These values can be both read and modified inside the
process, and updated values are available to the parent process when the process returns.

This capability is not essential: a value can always be passed to a process by defining a channel,
sending the value on the outport, and passing the inport to the process as an argument. A similar
strategy can be used to return a value from a process. However, normal argument passing often
produces more concise and easy-to-understand programs. See Program 6.8 for a comparison of the
two approaches.

6.7.1 Copying and Determinism
If unrestricted, argument passing could compromise determinism. The result computed by a
program that passed the same variable to two processes could depend on the order in which those
processes executed. For example, the following code fragments could be nondeterministic if a call
to proc modifies the argument x and this variable is used in subsequent computation.

 PROCESSDO i = 1,2 PROCESSES
 PROCESSCALL proc(i,x) PROCESSCALL proc(1,x)
 ENDPROCESSDO PROCESSCALL proc(2,x)
 ... ENDPROCESSES

FM semantics ensure deterministic execution in these situations. Variables named as process
arguments in a process block or do-loop are passed by value; that is, they are copied. In the case of
arrays, the number of values copied is determined by the dummy argument declaration in the
called process. Values are also copied back upon termination of the process block or do-loop, in
textual and do-loop order. These copy operations ensure deterministic execution even when
concurrent processes update the same value. Hence, these code fragments are deterministic even if
proc does modify its argument. In both cases, the value computed by the process proc(2,x) is
used to update x.

6.7.2 Avoiding Copying

Copying variables on process call and return can be expensive. Sometimes this copying is not
necessary; for example, if a variable is only read by a process, not modified, then there is no need
to copy it on return. We can provide INTENT declarations for dummy arguments to specify when
copying is not to be performed. Three INTENT declarations are supported, as follows.

 ¯ INTENT(in) var-list ¯ : Copy on call only.

 INTENT(out) var-list : Copy on return only.

 INTENT(inout) var-list : (Default) Copy on call and return.

We note that FM and Fortran 90 intent declarations have slightly different semantics. In a Fortran
90 subroutine, these declarations are assertions: intent(in) asserts that an argument is not
written by the subroutine, and intent(out) asserts that the argument is not read. These assertions
have no semantic content: a program with incorrect declarations is invalid. In contrast, INTENT
declarations in an FM process have semantic content: they specify whether copying is to be
performed, and they cannot be invalid.

Example . Ring Pipeline:

We use a modified version of Program 6.2 to illustrate the use of INTENT declarations. Program
6.9 extends Program 6.2 by incorporating statements that read input data and write output data.
The inport and outport declarations and the CHANNEL statements are as in Program 6.2 and are not
shown here. The main program uses routines ring_read and ring_write to read and write two-
dimensional arrays input and output, respectively. These arrays contain initial particle positions
and final particle positions, respectively.

Figure 6.6: Argument passing and INTENT declarations in the ring pipeline program. The parent
process reads the input array, which is of size , from a file and passes one column to each of
four ringnode processes. The ring processes communicate among themselves and compute a
column of the output array; upon termination, this array is copied back to the parent, which
writes it to a file.

Argument passing is used to pass the appropriate components of these arrays to the subdomain
processes, with INTENT declarations ensuring that input is copied only on call and output only
on return (Figure 6.6). This centralized I/O strategy has the advantage of simplicity. A
disadvantage on many computer systems is that it limits scalability, as the size of problem that can
be solved is constrained by the need to fit the input and output arrays into a single processor's
memory.

6.8 Mapping
 Process blocks and do-loops define concurrent processes; channels and mergers define how these
processes communicate and synchronize. A parallel program defined in terms of these constructs
can be executed on both uniprocessor and multiprocessor computers. In the latter case, a complete
program must also specify how processes are mapped to processors. Recall from Chapter 2 that
this is an important part of parallel algorithm design.

FM provides three mapping constructs. The PROCESSORS declaration specifies the shape and
dimension of a virtual processor array in which a program is assumed to execute, the LOCATION
annotation maps processes to specified elements of this array, and the SUBMACHINE annotation
specifies that a process should execute in a subset of the array. An important aspect of these
constructs is that they influence performance but not correctness. Hence, we can develop a
program on a uniprocessor and then tune performance on a parallel computer by changing

mapping constructs. This is consistent with the PCAM design methodology discussed in Chapter
2, in which mapping is the fourth and final stage of the design process.

6.8.1 Virtual Computers
FM's process placement constructs are based on the concept of a virtual computer, a collection of
virtual processors that may or may not have the same topology as the physical computer(s) on
which a program executes. For consistency with Fortran concepts, an FM virtual computer is an N
-dimensional array, and the constructs that control the placement of processes within this array are
modeled on Fortran's array manipulation constructs.

The PROCESSORS declaration is used to specify the shape and size of the (implicit) processor array
on which a process executes. This declaration is similar in form and function to the array
DIMENSION statement. It has the general form PROCESSORS(I ,...,I),

where and the I have the same form as the arguments to a DIMENSION statement. See Figure
6.7 for some examples.

Figure 6.7: Three different PROCESSORS configurations, all involving 16 processors.

The PROCESSORS declaration in the main (top-level) program specifies the shape and size of the
virtual processor array on which that program is to execute. The mapping of these virtual
processors to physical processors is specified at load time. This mapping may be achieved in
different ways on different computers. Usually, there is a one-to-one mapping of virtual processors
to physical processors. However, it can sometimes be useful to have more virtual processors than
physical processors, for example, if a multicomputer program is being developed on one
processor. The mapping of virtual processors to physical processors is not defined in FM, but is
typically specified using a configuration file or command line arguments.

A PROCESSORS declaration in a process definition specifies the shape and size of the virtual
processor array on which that particular process is to execute. As with a regular array passed as an
argument, this processor array cannot be larger than that declared in its parent, but it can be
smaller or of a different shape.

6.8.2 Process Placement
The LOCATION annotation is similar in form and function to an array reference. It has the general
form LOCATION(I , ..., I)

where and the I have the same form as the indices in an array reference, and specifies the
processor on which the annotated process is to execute. The indices must not reference a processor
array element that is outside the bounds specified by the PROCESSORS declaration provided in the
process or subroutine in which the annotation occurs.

The following code fragment shows how the ring pipeline code of Program 6.2 might be extended
to specify process placement. The PROCESSORS declaration indicates that this program is to execute
in a virtual computer with P processors, while the LOCATION annotation placed on the process call
specifies that each ringnode process is to execute on a separate virtual processor.

 program ring !

 parameter(P=3) !

 PROCESSORS(P) ! Three virtual processors

 ... !

 PROCESSDO i = 1,P ! Each process on a processor

 PROCESSCALL ringnode(i, P, pi(i), po(i)) LOCATION(i)

 ENDPROCESSDO !

6.8.3 Submachines
A SUBMACHINE annotation is similar in form and function to an array section passed as an
argument to a subroutine. It has the general form SUBMACHINE(I , ..., I)

where and the arguments I have the same form as an array section and denote a set of
processors in the current virtual computer. The annotated process executes in a new virtual
computer comprising just these virtual processors. The PROCESSORS declaration in the process
definition should agree in size and shape.

The SUBMACHINE annotation allows us to create ``subcomputers,'' each comprising a subset of
available processors, and hence to control resource allocation in programs comprising multiple
components.

Example . Coupled Climate Model:

 A coupled climate modeling system comprising an ocean model and an atmosphere model can be
structured as a parallel composition of the two component models. This organization is illustrated
in Figure 6.8(a) and can be specified as follows.

 parameter(P=4)
 PROCESSORS(P,2*P)
 ...
 PROCESSES
 PROCESSCALL atmosphere(...) SUBMACHINE(1:P, 1:P)
 PROCESSCALL ocean(...) SUBMACHINE(1:P, P+1:2*P)
 ENDPROCESSES

The ocean and atmosphere processes are invoked in disjoint virtual computers of size P P;
hence, both process definitions should incorporate a declaration PROCESSORS(P,P). In some
situations, it may be more efficient to structure the coupled model as a concurrent composition of
the two components, as illustrated in Figure 6.8 (b). This effect can be achieved by changing the
PROCESSORS declaration to PROCESSORS(P,P) and omitting the SUBMACHINE annotations. No
change to the component programs is required.

Figure 6.8: Alternative mapping strategies in climate model. In (a), the two components are
mapped to disjoint sets of processors. In (b), they are mapped to the same processors.

Example . Search:

The following code fragment shows how virtual computers and the SUBMACHINE annotation can be
used to control mapping in Program 6.3.

 PROCESS tree(id, n, toparent)

 PROCESSORS(n) ! Size of my computer

 ...

 PROCESSES ! Create children

 PROCESSCALL tree(id, n/2, lo) SUBMACHINE(1:n/2)

 PROCESSCALL tree(id+n/2, n/2, ro) SUBMACHINE(1+n/2:n)

 call nonleaf(id, li, ri, toparent)

 ENDPROCESSES

Recall that Program 6.3 creates a set of 2n-1 (n a power of 2) processes connected in a binary tree
of depth . As illustrated in Figure 6.9, mapping can be achieved by using SUBMACHINE
annotations to place processes located at the same depth in the tree on different processors
(assuming that at least n processors are available).

Figure 6.9: Using submachines to control mapping in a tree-based algorithm executing on four
processors. The figures shows both the nodes in the process tree (circles) and the virtual computer
in which each process executes (the shaded portion of the original four-processor virtual
computer).

6.9 Modularity
Example 6.6 showed how FM constructs can be used to implement parallel and concurrent
composition. The basic ideas are straightforward. A process (task) is defined for each component
of a multicomponent program. These processes are then composed using a process block, with
channels and/or mergers connecting ports in the different components. Mapping constructs control
resource allocation and hence determine whether program components execute on the same or
different processors.

In this section, we discuss the techniques used to implement sequential composition in FM
programs. Recall that in sequential composition, different program components execute in
sequence on all processors (Section 4.2.2). These program components may themselves
communicate and synchronize, but they cannot create new tasks. Hence, each process executes the
same program, and the entire computation moves sequentially from one parallel operation to the
next. This is the SPMD programming model discussed in Section 1.3.2.

An FM implementation of an SPMD program comprises two components: initialization and
execution. The initialization component creates the SPMD process structure and the
communication structures (channels and mergers) required by the program components called in
the sequential composition. The initialization typically comprises some channel and merger
creation code followed by a process do-loop that creates one process per processor, with the
appropriate ports passed as arguments.

The execution component implements the program executed by each process created by the
process do-loop. This program comprises a sequence of calls to the program components involved

in the sequential composition. These components can perform internal communication using the
communication structure established during the setup phase of the computation.

The important point to understand about this structure is that once appropriate communication
structures have been defined in the initialization phase, sequential composition can be used
directly in the main body of the program, without any special constructs.

Example . Sequential Composition:

 We consider the SPMD finite difference computation used to illustrate sequential composition in
Section 4.2.2. This computation is structured as a sequence of calls to a finite difference routine
that performs nearest-neighbor communication and a reduction routine used to detect termination;
the latter routine performs global communication. The basic logic executed by each process in this
computation is as follows, where localgrid is the local component of the grid data structure.

 subroutine node

 real localgrid(N,N/P)

 while(.not. done) do

 call finite_difference(localgrid, localmax)

 call global_maximum(localmax, globmax)

 if(globmax .lt. threshold) done = .true.

 enddo

 end

Programs 6.10 and 6.11 implement the initialization and execution components of an FM
implementation of this program. Because the program components invoked in the sequential
composition perform both nearest-neighbor and hypercube communication, the initialization code
first creates channels implementing these two communication structures. (The function xor is used
as in Algorithm 11.1.) Then, a process do-loop creates P instances of the node process, passing
each instance the appropriate ports.

The execution code comprises the process node, which calls first the procedure
finite_difference and then the procedure global_maximum. These procedures use the ports
passed as arguments to perform internal communication.

The various port variables passed as arguments in the execution component make for a rather
clumsy program. The program can be made tidier by storing the ports in PROCESS COMMON with a
series of MOVEPORT calls prior to calling user code. Each process can then execute the simpler code
presented at the beginning of this example.

Example . Message-passing Library:

 The initialization code in Program 6.10 defined a separate communication structure for each
component in the sequential composition. In this example, we present an alternative approach in
which the initialization component of an SPMD program creates a single, general-purpose

communication structure that can be used to perform any communication. In effect, we implement
a message-passing library that provides similar functionality to the MPI library described in
Chapter 8. We also use this example to show how port variables can be stored in PROCESS COMMON
to simplify program interfaces.

Program 6.12 is a skeleton message-passing library that implements just simple send and receive
functions. The main program first creates P mergers to implement a fully connected network, and
then creates P node processes, passing each a single inport and P outports. The node process
stashes the inport and outports in PROCESS COMMON and then calls the subroutine compute, which
performs the actual computation. The PROCESS COMMON is defined as follows (file
mp_stashed.com).

 C File "mp_stashed.com"

 PROCESS COMMON /stashed/ stashed_inp, stashed_outp

 INPORT (integer n, character x(n)) stashed_inp

 OUTPORT (integer n, character x(n)) stashed_outp(P)

 This initialization code makes it possible for the rest of the program to call mp_send and
mp_receive routines to send and receive messages to and from other processes.

6.10 Performance Issues

Because FM provides a direct implementation of the task/channel programming model, the
performance analysis techniques developed in Chapter 3 can be applied directly to FM programs.
Normally, a send on an outport results in a single communication. As noted in Chapter 3, the cost
of each message can be specified with reasonable accuracy in terms of a startup cost and a per-
word cost. It is necessary to distinguish between the communication costs incurred when
communicating processes are located on different processors (interprocessor communication) or
on the same processor (intraprocessor communication). Both these costs can depend significantly
on implementation technology. Typically, interprocessor communication costs are similar to those
in Table 3.1 in Chapter 3, and intraprocessor communication is cheaper. However, on some
multicomputers with fast interprocessor communication and relatively low memory bandwidth,
intraprocessor communication can actually be slower than interprocessor communication.

The following issues must also be considered when examining the performance of FM programs.

Process creation. Process creation and deletion costs will only be a significant contributor to total
execution time if a program creates and destroys many processes. These costs are influenced by
the location of the created process (remote creation is typically more expensive than local creation)
and by the number and size of process arguments (arguments must be copied upon call and return:
see Section 6.7). In addition, a compiler may implement FM processes as heavyweight Unix
processes, in which case process creation is relatively expensive, or as lightweight threads, in
which case process creation is cheap.

Fairness. When two or more processes execute on the same processor, FM guarantees that
execution is fair: that is, that no process that is not blocked waiting for data will be prevented
indefinitely from executing. However, the time that a process waits before executing can vary
significantly depending on characteristics of both the application and a particular FM
implementation. Hence, care must be taken if application performance depends on obtaining
timely responses to remote requests.

Compiler optimization. Because FM is a programming language rather than a library, a compiler
may in some situations be able to reduce communication costs by coalescing messages or
otherwise reorganizing a program to improve performance.

6.11 Case Study: Fock Matrix Construction
 Programs 6.13 and 6.14 sketch an FM implementation of the parallel Fock matrix construction
algorithm of Section 2.8. Recall that in this algorithm, P computation tasks must be able to read
and write two large distributed data structures. This capability is achieved by encapsulating these
data structures in separate data tasks. Each computation task repeatedly generates requests for data
values and then performs computation. The FM program implements computation and data tasks
as compute and data processes, respectively, and connects these processes using a many-to-many
communication structure, as illustrated in Figure 6.10. This structure uses P mergers to link P P
outports (To) with P inports (Ti). Each process is given an array of P outports, one connected to
each merger. In Programs 6.13 and 6.14, P=128, and 1024 data values are allocated to P data tasks
in a blocked fashion.

Figure 6.10: FM implementation of the Fock matrix problem, with P=3. Each of the P compute
processes has an array of P outports connected via mergers with P data processes.

For brevity, the FM programs presented here implement only an accumulate operation. A compute
process wanting to accumulate a value to address addr sends a message containing an offset (the
integer mod(addr,ND)) and the value to be accumulated (a real) on outport number addr/ND.
Notice that the compute and data processes are similar in structure to the manager and worker of
Program 6.5.

6.12 Summary
In this chapter, we have discussed a programming language, Fortran M, that provides a direct and
complete implementation of the task/channel programming model described in Part I. Fortran M
incorporates language constructs for defining tasks and channels. In keeping with the design
methodology discussed Chapter 2, it allows mapping decisions to be changed independently of
other design aspects. The performance modeling techniques given in Chapter 3 and the modular
design techniques given in Chapter 4 also apply directly. Table 6.1 summarizes the language
constructs that have been introduced.

Table 6.1: FM quick reference: the constructs described in this chapter, with an outline of their
syntax, the section in which they are described, and the programs that illustrate their use.

Exercises
1. Complete Programs 6.10 and 6.11. Modify each program to allow for fixed instead of

periodic boundary conditions. Implement them on a parallel computer, and compare their
performances with those predicted by the performance models developed in Chapter 3.

2. Extend the programs developed in Exercise 1 to provide a 2-D decomposition of the
principal data structures.

3. Complete Programs 6.4 and 6.5 and conduct experiments to study their performance.
4. A disadvantage of Program 6.4 is that a worker is idle while waiting for a task to arrive

from the manager. This problem can be avoided by having the worker generate a request
for the next task before processing the task just received. Write a variant of Program 6.4
based on this idea. Compare the performance of the two programs.

5. Design and implement a decentralized variant of the manager/worker structure described in
Example 6.4. Design and carry out experiments to determine when this code is more
efficient than the centralized code presented in the text.

6. Write programs that can be used to quantify process creation and communication costs on a
uniprocessor and on a networked or parallel computer system. Conduct experiments to
measure these costs, and obtain estimates for and .

7. Write programs that implement two-way communication (a) by using a pair of channels
and (b) with a single channel and dynamically-created reply channels. Compare the
performance of the two programs on a parallel computer. Draw conclusions regarding the
relative costs of the two mechanisms as implemented in your FM compiler.

8. Implement a variant of Programs 6.4 and 6.5 in which dynamically created reply channels,
rather than a static network of reply channels, are used to return tasks to workers.

9. Extend Program 6.10 to use INTENT declarations to pass input and output arrays to and
from subdomain processes.

10. Develop a program that receives data of different types from two sources, without busy
waiting. Hint : Use additional channels to communicate type information.

11. Show how the functionality provided by the PROBE statement can be implemented by using
a merger. Hint : A process sends a distinguished message to itself when it wants to check
for pending input.

12. Extend Program 6.13 to implement read requests.
13. Complete Program 6.12, extend it to support message tags (Chapter 8), and use the

resulting program to implement the symmetric pairwise interactions algorithm of Section
1.4.2.

14. Using the code in Programs 6.10 and 6.11 as a basis, implement a hypercube
communication template (see Chapter 11). Use this template to implement simple
reduction, vector reduction, and broadcast algorithms.

15. Construct an FM implementation of the tuple space module described in Section 4.5. Use
this module to implement the database search problem described in that section.

Chapter Notes
Fortran was one of the first computer programming languages and, despite its age, continues to be
widely used in science and engineering. An ongoing modernization process slowly introduces
features found in more modern languages. The result is the ANSI standards Fortran 77 and Fortran
90 [300,16]. The books by Metcalf and Reid [204], Adams et al. [3], and Brainerd, Goldberg, and
Adams [43] provide good introductions to Fortran 90. Kerrigan [171] addresses the topic of
migrating existing codes to Fortran 90. Chapter 7 reviews some Fortran 90 features.

Many parallel dialects of Fortran have been designed over the years. For example, Karp and Babb
survey ten such dialects [165]. Most were designed for specifying concurrency in shared-memory
computers and hence do not provide constructs for managing locality. Nor do they enforce
determinism or modularity. Several recent language designs have emphasized data-parallel
programming; these are discussed in Chapter 7, as is work on parallelizing compilers. Fortran M is
distinguished by its support for task parallelism, deterministic execution, and modularity. Chandy
and Foster provide both a language description and a more formal definition [102,51], while the
monograph Programming in Fortran M [106] provides a tutorial and reference manual for the
Argonne Fortran M compiler.

7 High Performance Fortran
 The term data parallelism refers to the concurrency that is obtained when the same operation is
applied to some or all elements of a data ensemble. A data-parallel program is a sequence of such
operations. A parallel algorithm is obtained from a data-parallel program by applying domain
decomposition techniques to the data structures operated on. Operations are then partitioned, often
according to the ``owner computes'' rule, in which the processor that ``owns'' a value is responsible
for updating that value. Typically, the programmer is responsible for specifying the domain
decomposition, but the compiler partitions the computation automatically.

In this chapter, we introduce the key concepts of data-parallel programming and show how designs
developed using the techniques discussed in Part I can be adapted for data-parallel execution. We
base our presentation on the languages Fortran 90 (F90) and High Performance Fortran (HPF).
Many of the ideas also apply to other data-parallel languages, such as C* and pC++. F90 provides

constructs for specifying concurrent execution but not domain decomposition. HPF augments F90
with additional parallel constructs and data placement directives, which allow many HPF
programs to be compiled with reasonable efficiency for a range of parallel computers.

After studying this chapter, you should know to write simple data-parallel programs using HPF.
You should also understand how the design principles developed in Part I relate to data-parallel
programs, and you should be able to evaluate the impact of HPF's data placement directives on
performance. Finally, you should be able to determine when algorithms are suitable for data-
parallel implementation.

7.1 Data Parallelism
We first provide a general introduction to data parallelism and data-parallel languages, focusing on
concurrency, locality, and algorithm design.

7.1.1 Concurrency
 Depending on the programming language used, the data ensembles operated on in a data-parallel
program may be regular (e.g., an array) or irregular (e.g., a tree or sparse matrix). In F90 and HPF,
the data structures operated on are arrays. In contrast, the data-parallel language pC++ allows
programs to operate not only on arrays but also on trees, sets, and other more complex data
structures.

 Concurrency may be implicit or may be expressed by using explicit parallel constructs. For
example, the F90 array assignment statement is an explicitly parallel construct; we write

 A = B*C ! A, B, C are arrays

to specify that each element of array A is to be assigned the product of the corresponding elements
of arrays B and C. This statement also implies conformality ; that is, the three arrays have the same
size and shape. In contrast, the following do-loop is implicitly parallel: a compiler may be able to
detect that the various do-loop iterations are independent (meaning that one iteration does not
write a variable read or written by another) and hence can be performed in parallel, but this
detection requires some analysis.

 do i = 1,m

 do j = 1,n

 A(i,j) = B(i,j)*C(i,j)

 enddo

 enddo

A data-parallel program is a sequence of explicitly and implicitly parallel statements. On a
distributed-memory parallel computer, compilation typically translates these statements into an
SPMD program (Section 1.3.2), in which each processor executes the same code on a subset of the
data structures. In many cases, the compiler can construct this program by first partitioning data
structures into disjoint subdomains, one per processor, and then applying the owner computes rule

to determine which operations should be performed on each processor. This rule states that the
computation required to produce a datum is performed on the processor on which that datum is
located. However, compilers can also use different techniques.

Compilation also introduces communication operations when computation mapped to one
processor requires data mapped to another processor. As an example, consider the following
program.

 real y, s, X(100) ! y, s scalars; X an array

 X = X*y ! Multiply each X(i) by y

 do i = 2,99

 X(i) = (X(i-1) + X(i+1))/2 ! Communication required

 enddo

 s = SUM(X) ! Communication required

The communication requirements of this program depend on how the variables X, y, and s are
distributed over processors. If X is distributed while y and s are replicated, then the first
assignment can proceed without communication, with each X(i) being computed by the processor
that owns X(i). The second assignment (in the do-loop) requires communication: the processor
computing X(i) requires the values of X(i-1) and X(i+1), which may be located on different
processors. The summation also requires communication.

7.1.2 Locality
 Data placement is an essential part of a data-parallel algorithm, since the mapping of data to
processors determines the locality of data references and hence, to a large extent, the performance
of a parallel program. For example, the simple array assignment A = B*C either can proceed
without any communication or can require communication for every assignment, depending on
whether corresponding elements of the arrays A, B, and C are located on the same or different
processors.

Identifying the best distribution of the various data structures operated on by a data-parallel
program is a global optimization problem and not generally tractable. Hence, data-parallel
languages often provide the programmer with the ability to define how data structures are to be
distributed. In HPF, the DISTRIBUTE directive fulfills this function. The statements

 !HPF$ PROCESSORS pr(16)
 real X(1024)
 !HPF$ DISTRIBUTE X(BLOCK) ONTO pr

indicate that the array X is to be distributed in a blocked fashion over 16 processors---processor 0
gets the first 1024/16 elements, processor 1 the second 1024/16 elements, and so on.

7.1.3 Design

The data-parallel programming model is both higher level and more restrictive than the
task/channel model introduced in Part I. It is higher level in that the programmer is not required to
specify communication structures explicitly: these are derived by a compiler from the domain
decomposition specified by the programmer. It is more restrictive because not all algorithms can
be specified in data-parallel terms. For these reasons, data parallelism, although important, is not a
universal parallel programming paradigm.

Despite these differences between the task/channel and data-parallel programming models, the
program design techniques developed in Part I are still applicable. Recall that we have
decomposed the design process into partitioning, communication, agglomeration, and mapping
phases. Data-parallel languages address the first phase directly, by providing implicit and explicit
constructs that can be used to specify a very fine grained partition of a computation, in which one
task is created for each data element. As noted in Section 2.2, a key concern at this stage is to
define a partition that identifies sufficient concurrency.

The PCAM design strategy of Chapter 2 requires that once we have developed a fine-grained
partition, we determine communication requirements, agglomerate fine-grained tasks into larger
tasks, and map tasks to processors. The beauty of the data-parallel approach is that the latter issues
can be addressed at a particularly high level, by means of directives, rather than in terms of
explicit communication and mapping operations. Directives indicate how arrays are to be aligned
and distributed over processors and hence specify agglomeration and mapping. Communication
operations are not specified explicitly by the programmer but are instead inferred by the compiler
from the program.

The translation from fine-grained source program and directives to executable (typically SPMD)
program is an automatic process that is performed by the data-parallel compiler. Nevertheless, the
programmer must understand the essential characteristics of this translation in order to write
efficient code and identify inefficient constructs. For example, an inappropriate choice of
directives may lead to load imbalances or unnecessary communication. Alternatively, a data-
parallel compiler may fail to recognize opportunities for concurrent execution. Generally, a data-
parallel language compiler can be expected to generate reasonably efficient code when a program's
communication structure is regular and local. Programs involving irregular and global
communication patterns are less likely to be compiled efficiently. These and other performance
issues are addressed in Section 7.7.

Finally, we note that the modular design techniques introduced in Chapter 4 apply to data-parallel
programs. The issues involved are straightforward. Because data-parallel programs have sequential
semantics, we need be concerned only with sequential composition of program components
(Section 4.2.2). The primary concern in a parallel environment is the choice of data distributions in
components that are to be composed. This issue is discussed in Section 7.5.

7.1.4 Data-Parallel Languages
In the remainder of this chapter, we first briefly introduce F90 and then describe HPF. Much of
this material also applies to other data-parallel languages. The chapter notes provide pointers to
relevant documentation.

 F90 is a data-parallel programming language in its own right. Its array assignment statement and
array intrinsic functions can be used to specify certain classes of data-parallel computations. Our

main interest in F90, however, is that it forms the basis for HPF, which augments F90 with data
distribution directives, a FORALL statement, the INDEPENDENT directive, and new intrinsics. Array
assignment, the FORALL statement, and the INDEPENDENT directive are used to identify concurrency
in an algorithm, while data distribution directives specify how data should be placed on physical
processors and hence provide control over locality.

Although HPF defines only a small set of extensions to F90, it is nevertheless a complex language.
The extensions have numerous variants and can interact with F90 constructs and with each other in
a wide variety of ways. In the interests of succinctness and clarity, our presentation does not aim
for completeness but rather seeks to present the essential ideas required to understand data-parallel
programming and the HPF constructs required to write simple programs. These constructs are
taken from the official HPF subset, which should in principle be supported by all HPF compilers.

7.2 Fortran 90
Fortran 90 (F90) is a complex language. It augments Fortran 77 (F77) with pointers, user-defined
datatypes, modules, recursive subroutines, dynamic storage allocation, array operations, new
intrinsic functions, and many other features. We focus here on those new features that are most
relevant to parallel programming: the array assignment statement and the array intrinsic functions.

7.2.1 Array Assignment Statement
F90 allows a variety of scalar operations---operations defined on single values---to be applied also
to entire arrays. This feature causes the scalar operation to be applied to each element of the array.
If an operation involves several values, all must be represented by conformable arrays, that is,
scalar values or arrays of the same size and shape. The operation is performed on corresponding
elements from each array. For example, consider the following scalar operation, which assigns the
sum b+c to a.

 integer a, b, c
 a = b + c

In F90, we can apply the same operation to arrays A and B and scalar c, as follows. This assigns
each element A(i,j) of A the sum B(i,j)+c.

 integer A(10,10), B(10,10), c
 A = B + c

In fact, all F90's unary and binary intrinsic operations can be applied to arrays, as the following
examples show.

 real A(10,20), B(10,20)

 logical L(10,20)

 A = A + 1.0 ! Adds 1.0 to each element of A

 A = SQRT(A) ! Computes square root of each element of A

 L = A .EQ. B ! Sets L(i,j) to .true. if A(i,j)= B(i,j);

 ! and to .false. otherwise

A conformable array section can be substituted for an entire array in an array operation. An array
section is represented by specifying a range for one or more subscripts. A range is represented by a
triplet that has the following general form. lower-bound : upper-bound : stride

A stride of 1 is assumed if : stride is omitted, and bounds can be omitted if the corresponding
bounds of the array are required. See Figure 7.1 for examples of array sections.

Figure 7.1: F90 array sections. The three examples show array sections comprising (a) all of row
2, (b) elements 2..7 of row 2, and (c) elements 1,3,5,7 of row 2, respectively.

When operations are performed on arrays and array sections, corresponding elements are selected
by position, not index. Hence, different array components do not need to have corresponding
subscripts, and we can write the following code to compute the sum A(i)=B(i)+B(i+1) for
1 i 7 (Figure 7.2).

A(1:7) = B(1:7) + B(2:8)

Figure 7.2: Use of array sections to compute the sum B(i)+B(i+1) for 1 i 7.

 Finally, a masked array assignment uses the WHERE construct to restrict the array elements on
which an assignment is performed. For example, the following statement replaces each nonzero
element of X with its reciprocal (the F90 /= operator is equivalent to .NE. in F77). WHERE(X /=
0) X = 1.0/X

7.2.2 Array Intrinsic Functions
All F90 intrinsic functions that apply to scalar values can also be applied to arrays, in which case
the function is applied to each array element. For example, ABS(A) returns an array containing the
absolute values of the elements of array A. In addition, F90 provides a number of transformational
functions which return a scalar or array result that depends on the values of many elements of an
array. Table 7.1 lists a representative selection of these functions.

Table 7.1: Selected F90 array intrinsic functions.

MAXVAL, MINVAL, SUM, and PRODUCT perform a reduction operation (Section 2.3.2) on an array,
returning a scalar value representing the maximum, minimum, sum, or product of the elements of
the array, respectively. Hence, the following code sets the scalar variable s to the sum of the
elements of the array X.

 real s, X(100)
 s = SUM(X)

Figure 7.3: The F90 CSHIFT function. In (a), a negative shift of one element is applied in
dimension 1; in (b), a negative shift of three elements is applied in dimension 2.

The CSHIFT function performs a circular shift on an array, returning a new array of the same size
and shape but with its elements in a different configuration. As illustrated in Figure 7.3, a call of
the form CSHIFT(A,s,d)

performs a circular shift on the elements of the array A, where the scalar or array s specifies the
size and direction (left is positive) of the shift and the optional argument d indicates the dimension
in which the shift is to be applied (it defaults to 1). This function is often used in expressions
involving index expressions. For example, consider the following F77 loop.

 real X(0:99), B(0:99)
 do i = 0,99
 B(i) = (X(mod(i+99,100) + X(mod(i+1,100)))/2
 enddo

This can be written in F90 as
 real X(100), B(100), L(100), R(100)
 L = CSHIFT(X,+1)
 R = CSHIFT(X,-1)
 B = (L + R)/2

or simply as follows.
 real X(100), B(100)
 B = (CSHIFT(X,+1) + CSHIFT(X,-1))/2

In both cases, an array assignment sets the array B to the sum of two arrays: X shifted left one
element, and X shifted right one element.

Although powerful, F90's array operations can be used to implement only a limited class of data-
parallel algorithms. Consequently, F90 programs often incorporate code that, although implicitly
parallel, must be executed sequentially if a compiler is unable to detect the implicit parallelism.
For example, the following code zeroes the diagonal of an array. Although clearly a parallel
operation, this cannot be expressed as such using the F90 array assignment statement.

 do i = 1,100
 X(i,i) = 0.0
 enddo

Example . Finite Difference:

 Program 7.1 illustrates F90's array assignment and array intrinsics. This program, for which both
F77 and F90 versions are given, first applies a five-point finite difference stencil to the array X to
obtain the array New and then computes the maximum difference between the two arrays. The F90
version uses an array assignment and the intrinsic functions ABS and MAXVAL.

7.3 Data Distribution
 Array expressions specify concurrency but not locality. That is, they specify opportunities for
parallel execution but not how these opportunities should be exploited so as to minimize
communication costs on a parallel computer. HPF introduces data distribution directives to
provide the programmer with control over locality. These directives work as follows. The

PROCESSORS directive is used to specify the shape and size of an array of abstract processors. The
ALIGN directive is used to align elements of different arrays with each other, indicating that they
should be distributed in the same manner. The DISTRIBUTE directive is used to distribute an object
(and any other objects that may be aligned with it) onto an abstract processor array. The mapping
of abstract processors to physical processors is implementation dependent and is not specified in
the language. The three directives are summarized in Figure 7.4.

Figure 7.5 illustrates the use of ALIGN and DISTRIBUTE. The two-phase mapping strategy reduces
the number of changes needed to move from one machine to another. A different machine may
necessitate a different partitioning strategy but is less likely to require changes to array alignments.

Figure 7.4: HPF data distribution directives.

Figure 7.5: HPF data allocation model. The mapping of data to abstract processors is performed
in two phases: ALIGN is used to create a relationship between objects and DISTRIBUTE is used to
partition onto processors both a specified object and any objects that are aligned with it.

Data distribution directives can have a major impact on a program's performance but do not affect
the result computed. In this sense, they are similar to FM mapping annotations. However, they
have a more profound effect on program structure: they affect partitioning, agglomeration, and
communication as well as mapping. As in FM, this orthogonality makes it possible to experiment
with alternative parallel algorithms simply by changing directives.

Data distribution directives are recommendations to an HPF compiler, not instructions. The
compiler does not have to obey them if, for example, it determines that performance can be
improved by ignoring them.

7.3.1 Processors
 A PROCESSORS directive declares a named arrangement of abstract processors. For example, both
of the following statements declare 32 abstract processors.

 !HPF$ PROCESSORS P(32)

 !HPF$ PROCESSORS Q(4,8)

Normally, one abstract processor is created for each physical processor, although an
implementation could in principle use a smaller number of physical processors to implement the
abstract processors. The mapping of abstract processors to physical processors is not specified in
HPF and can vary according to the implementation.

7.3.2 Alignment
 The ALIGN directive is used to specify array elements that should, if possible, be collocated ---
mapped to the same processor. Operations between aligned data objects are likely to be more
efficient than operations between objects that are not known to be aligned. An alignment directive
has the general form

 !HPF$ ALIGN array WITH target

which indicates that the specified array should be aligned with target. A list of subscripts
associated with the array and target control the alignment, For example, the following code
specifies a simple alignment of arrays B and C in which each B(i) is aligned with the
corresponding C(i).

 real B(50), C(50)

 !HPF$ ALIGN C(:) WITH B(:)

Figure 7.6: Six examples of the HPF ALIGN statement, with arrows and shading used to associate
representative aligned components in the two arrays being aligned. (a) A simple alignment of two
one-dimensional arrays. (b) Alignment with an offset. (c) An alignment of a smaller array onto a
larger. (d) Alignment with indices inverted (transpose). (e) Collapsing a dimension: aligning a
two-dimensional array with a one-dimensional array. (f) Replicating data: aligning a one-
dimensional array with a two-dimensional array.

 Dummy arguments can be used in ALIGN directives to name dimensions, integer expressions can
be used to specify offsets, and * can be used to collapse dimensions. See Figure 7.6 for examples
of the alignments that can be specified using these mechanisms. Notice that an ALIGN statement
can be used to specify that elements of an array should be replicated over processors. This can
improve efficiency if the array is read more often than it is written. For example, assume that the
two-dimensional array Y(N,N) is to be distributed by columns so that each processor performs
computation on one or more columns. If the computation performed at a single processor requires
data from a one-dimensional array X(N) that is not updated during a computation, replicating X
may be useful. This is accomplished by the following alignment directive

 !HPF$ ALIGN X(*) WITH Y(*,j)

Care must be taken not to replicate arrays that are frequently updated, as considerable
communication and/or redundant computation can result.

7.3.3 Distribution

 A DISTRIBUTE directive is used to indicate how data are to be partitioned among computer
memories. It specifies, for each dimension of an array, a mapping of array indices to abstract
processors in a processor arrangement. Each dimension of an array may be distributed in one of
three ways.

 * : No distribution

 BLOCK(n) : Block distribution (default: n= N/P)

 CYCLIC(n) : Cyclic distribution (default: n=1)

Figure 7.7: The HPF DISTRIBUTE statement, as used to specify different distributions of a two-
dimensional array of size onto four processors organized either as a one-dimensional array
(in the three examples with a `` *'') or as a array (in the other three examples). The data
mapped to processor 1 is shaded in each example.

Let N be the number of elements in an array dimension, and let P be the number of processors
assigned to that dimension. Then, as illustrated in Figure 7.7, a BLOCK distribution divides the
indices in a dimension into contiguous, equal-sized blocks of size N/P, while a CYCLIC distribution
maps every P th index to the same processor. The optional integer argument to BLOCK and CYCLIC
specifies the number of elements in a block.

 The ONTO specifier can be used to perform a distribution across a particular processor array. If no
processor array is specified, one is chosen by the compiler. Hence, both DISTRIBUTE statements in
the following code fragment are valid.

 !HPF$ PROCESSORS p(32)

 real D(1024), E(1024)

 !HPF$ DISTRIBUTE D(BLOCK)

 !HPF$ DISTRIBUTE E(BLOCK) ONTO p

 A DISTRIBUTE directive applies not only to the named array but also to any arrays that are aligned
with it. Thus, a DISTRIBUTE directive cannot be applied to an array that is aligned with another.
For example, in the following code fragment the DISTRIBUTE directive specifies a mapping for all
three arrays.

 !HPF$ PROCESSORS p(20)

 real A(100,100), B(100,100), C(100,100)

 !HPF$ ALIGN B(:,:) WITH A(:,:)

 !HPF$ ALIGN C(i,j) WITH A(j,i)

 !HPF$ DISTRIBUTE A(BLOCK,*) ONTO p

Example . HPF Finite Difference:

 Program 7.2 is an HPF version of Program 7.1. Notice that only three directives have been added:
PROCESSORS, DISTRIBUTE, and ALIGN. These directives partition each of the two arrays by row,
hence allocating 25 rows to each of four processors.

The following is an alternative set of directives that partitions the two arrays in two dimensions so
that each processor has a block of size 50 50. Notice that only the directives need to be changed to
specify this alternative algorithm.

 !HPF$ PROCESSORS pr(2,2)

 real X(100,100), New(100,100)

 !HPF$ ALIGN New(:,:) WITH X(:,:)

 !HPF$ DISTRIBUTE X(BLOCK,BLOCK) ONTO pr

As discussed in Example 3.4, the two-dimensional decomposition is typically more efficient than
the one-dimensional decomposition.

Example . Pairwise Interactions:

Consider the following version of the pairwise interactions problem of Section 1.4.2. We must
compute the total force force acting on each of N objects x . This is defined as follows, where
force and x are both 3-vectors and the function f computes the force between two objects:

An HPF formulation of this problem is presented in Program 7.3. This program is defined for an
array of ten processors. The arrays Force, Tmp, and X are aligned and distributed blockwise. The
N(N-1) interactions are computed in N-1 steps, with the i th step computing interactions between
each element X and the element offset by i in X. The CSHIFT operation is used to update a
temporary array containing the offset values. This temporary array is shifted one element at each
step. Each call to the function f computes N interactions.

 Naively, we might expect each of the CSHIFT operations to result in a communication operation.
On many machines, it will be more efficient to block these communications so that data circulates
among the ten processors in just nine communication steps, as described in Section 1.4.2. An HPF
compiler would normally be expected to perform this optimization.

7.4 Concurrency

At this point, we have presented all the HPF features needed to write simple programs. Array
assignment statements provide a mechanism for specifying fine-grained concurrency, while data
distribution directives provide control over agglomeration and mapping.

The F90 array assignment statement provides a convenient and succinct notation for specifying
data-parallel operations. However, it applies only to a limited set of such operations. For example,
it requires that operands of right-hand-side expressions be conformant with (of the same shape as)
the left-hand-side array. Two other HPF constructs allow an explicitly parallel representation of a
wider range of data-parallel operations. These are the FORALL statement and the INDEPENDENT
directive.

7.4.1 The FORALL Statement
 The FORALL statement allows for more general assignments to sections of an array. A FORALL
statement has the general form

 FORALL (triplet, ..., triplet, mask) assignment

where assignment is an arithmetic or pointer assignment and triplet has the general form

 subscript = lower-bound : upper-bound : stride

(with : stride being optional) and specifies a set of indices.

 The assignment statement is evaluated for those index values specified by the list of triplets that
are not rejected by the optional mask. For example, the following statements set each element of X
to the sum of its indices, zero the upper right triangle of Y, and zero the diagonal of Z, respectively.

 FORALL (i=1:m, j=1:n) X(i,j) = i+j
 FORALL (i=1:n, j=1:n, i<j) Y(i,j) = 0.0
 FORALL (i=1:n) Z(i,i) = 0.0

A FORALL statement is evaluated as follows. First, the right-hand-side expression is evaluated for
all index values; these evaluations can be performed in any order. Second, the assignments are
performed, again in any order. To ensure determinism, a FORALL statement cannot assign to the
same element of an array more than once. A compiler can attempt to detect that this requirement is
violated but is not required to do so. Hence, the following statement is valid only if the array
Index does not contain duplicate values.

FORALL (i=1:n) A(Index(i)) = B(i)

Example . Use of FORALL:

The array assignment used to update the array New in Program 7.2 can also be expressed using
FORALL, as follows.

 forall(i=2:99, j=2:99)

 $ New(i,j) = (X(i-1, j) + X(i+1, j) +

 $ X(i, j-1) + X(i, j+1))/4

Of course, in this case there is no reason not to use an array assignment.

7.4.2 The INDEPENDENT Directive and Do-Loops
An HPF program can reveal additional opportunities for parallel execution by using the
INDEPENDENT directive to assert that the iterations of a do-loop can be performed independently---
that is, in any order or concurrently---without changing the result computed. In effect, this
directive changes a do-loop from an implicitly parallel construct to an explicitly parallel construct.

The INDEPENDENT directive must immediately precede the do-loop to which it applies. In its
simplest form, it has no additional argument and asserts simply that no iteration of the do-loop can
affect any other iteration. (An iteration I affects an iteration J if I leads to an assignment to a value
read by J.) For example, in the following code fragment the assertion implies both that the array
Index does not contain duplicate indices and that A and B do not share storage, for example
because of an equivalence statement.

 !HPF$ INDEPENDENT
 do i=1,n
 A(Index(i)) = B(i)
 enddo

In the following code fragment, the directives indicate that the outer two loops are independent.
The inner loop assigns elements of A repeatedly and hence is not independent.

 !HPF$ INDEPENDENT

 do i=1,n1 ! Loop over i independent

 !HPF$ INDEPENDENT

 do j=1,n2 ! Loop over j independent

 do k=1,n3 ! Inner loop not independent

 A(i,j) = A(i,j) + B(i,j,k)*C(i,j)

 enddo

 enddo

 enddo

An INDEPENDENT directive can also specify that the assertion would be correct if distinct storage
were to be used for a specified set of variables for each iteration of the nested do-loop. This is
achieved by postfixing a NEW specifier, as in the following example. In this code fragment,
interleaved execution of different loop iterations would cause erroneous results if values of tmp1
and tmp2 computed in one iteration were used in another. The NEW specifier ensures that this
situation does not arise.

!HPF$ INDEPENDENT
 do i=1,n1
!HPF$ INDEPENDENT, NEW(tmp1,tmp2)
 do j=1,n2
 tmp1 = B(i,j) + C(i,j)
 tmp1 = B(i,j) - C(i,j)
 A(i,j) = tmp1*tmp2
 ENDDO
 ENDDO

Example . Parallel Fast Fourier Transform:

 A 2-D FFT applies a 1-D FFT operation first to each column of a two-dimensional array and then
to each row. An initial column distribution allows the first set of FFTs to proceed without
communication; the array is then transposed before performing the second set of FFTs. (A similar
technique is used in Section 4.4, but here we distribute by column to improve locality in a Fortran
implementation.) The transpose involves considerable communication but is frequently more
efficient than an algorithm based on a static decomposition and parallel FFTs. Program 7.4
implements the transpose algorithm. Notice the initial distribution of A (blocked, by column) and
the call to the transpose intrinsic. Notice also the use of the INDEPENDENT directive to specify
that the colfft calls in the do-loop can proceed independently, even though each is passed the
entire A array. This assertion is valid because each call to colfft operates on a single column.

7.5 Dummy Arguments and Modularity
 A large HPF program is typically constructed as a sequence of calls to subroutines and functions
that implement different aspects of program logic. In the terminology used in Chapter 4, the
program is a sequential composition of program components. As discussed in that chapter, one
critical issue that arises when using sequential composition is the distribution of data structures
that are shared by components.

Consider what happens when a subroutine is called in an HPF program. For a particular computer
and problem size, there is presumably a distribution of that subroutine's dummy arguments and
local variables that is optimal in the sense that it minimizes execution time in that subroutine.
However, this optimal distribution may not correspond to the distribution specified in the calling
program for variables passed as arguments. Hence, we have a choice of two different strategies at
a subroutine interface. These strategies, and the HPF mechanisms that support them, are as
follows.

1. We can ignore the distribution used in the calling program and specify a local distribution
that must apply, even if it requires a (potentially expensive) remapping operation. For this

purpose, we use the distribution directives DISTRIBUTE and ALIGN to specify the mapping
of the dummy arguments.

2. We can use whatever data distribution is used in the calling program, even though it may
not be locally optimal. For this purpose, we use the INHERIT directive.

As noted in Chapter 4, several tradeoffs must be evaluated when determining which strategy to
adopt in a particular circumstance. The cost of the remapping inherent in strategy 1 should be
weighed against the performance degradation that may occur if strategy 2 is used. Similarly, the
effort required to optimize a subroutine for a particular distribution must be weighed against the
subroutine's execution cost and frequency of use. These tradeoffs are more complex if a subroutine
may be used in several contexts. In some cases, it may be worthwhile for a subroutine to
incorporate different code for different distributions.

Strategy 1: Remap Arguments.

Strategy 1 is straightforward to apply. Ordinary distribution directives are applied to dummy
arguments. As for any other variable, these directives recommend that the requested distribution
hold. Any necessary data movement is performed automatically when the subroutine or function is
called. (In the absence of a DISTRIBUTE or ALIGN directive for a dummy argument, the compiler
may choose to use any distribution or alignment.) Any redistribution is undone upon return from
the subroutine, so any data movement costs introduced in this way are incurred twice. The
exception to this rule are arguments used for input or output only, as specified by the use of the
F90 intent directive.

Program 7.5 illustrates some of the issues involved in strategy 1. Arrays X and Y are distributed by
rows and columns in the calling program, respectively, while the dummy argument Z of the
subroutine fft is distributed by columns. Hence, the first call to fft requires that two matrix
transpose operations be performed to convert from one distribution to the other---one upon entry to
and one upon exit from the routine. In contrast, the second call to fft does not require any data
movement because the array Y is already distributed appropriately.

Strategy 2: Use Parent Mapping.

The second strategy is supported by the INHERIT directive, which, however, does not form part of
the HPF subset because of the difficulty of generating code that can handle multiple distributions.
For that reason, we do not consider this language feature in detail.

The following code fragment illustrates the use of INHERIT. This is an alternative version of the
fft routine in Program 7.5. The INHERIT directive indicates that no remapping is to occur; hence,
the two calls to fft in Program 7.5 will execute with (BLOCK,*) and (*,BLOCK) distribution,
respectively.

 subroutine fft(n, Z)

 real Z(n,n)

 ...

 !HPF$ INHERIT Z ! Z has parent mapping

 ...

 end

7.6 Other HPF Features
In this section, we discuss several miscellaneous aspects of HPF; we also list HPF features not
covered in this book.

7.6.1 System Inquiry Intrinsic Functions

 HPF introduces a small set of intrinsic functions in addition to those defined in F90. The two most
relevant to parallel program design are the system inquiry functions NUMBER_OF_PROCESSORS and
PROCESSORS_SHAPE. These functions allow a program to obtain information about the number of
physical processors on which it executes and the topology connecting these processors. This
information can be used to write programs that run efficiently on varying numbers of processors
and processor configuration. The functions are modeled on the F90 inquiry functions SIZE and
SHAPE, respectively, and provide a view of the underlying computer as a rectilinear,
multidimensional processor array. A call to NUMBER_OF_PROCESSORS has the general form
NUMBER_OF_PROCESSORS(dim)

where dim is an optional argument. A call to this function returns the number of processors in the
underlying array or, if the optional argument is present, the size of this array along a specified
dimension. A call to PROCESSORS_SHAPE has the following general form. PROCESSORS_SHAPE()

It returns an array with rank (dimension) one and with size the rank of the underlying processor
array. The i th element gives the size of the underlying array in its i th dimension.

Figure 7.8: Examples of values returned by HPF system inquiry intrinsic functions.

The representation of a particular physical computer as a processor array is implementation
dependent and not specified in HPF. Two representative examples are presented in Figure 7.8.
System inquiry functions can be included in array declarations and HPF directives, hence
permitting a program to declare abstract processor arrays that match available physical resources.
For example, in the following code the first directive declares an abstract processor array P with
size equal to the number of physical processors. The F90 inquiry function SIZE is then used to
declare an integer array Q with size corresponding to the rank (dimension) of the physical
processor array.

 !HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())
 integer Q(SIZE(PROCESSORS_SHAPE()))

7.6.2 Storage and Sequence Association
 Both F77 and F90 allow programmers to write programs that depend on a linear storage model,
that is, a view of memory as linear, one dimensional, and sequentially addressed. This is the case if
a program depends on storage association, using common or equivalence statements to align
storage locations. (This might be done to reuse storage, for example.) It is also the case if a
program relies on sequence association, for example, passing an array as an actual argument and
then declaring the corresponding dummy argument to have a different size or shape.

Storage and sequence association are not natural concepts when data are distributed over multiple
processors. If always enforced in an HPF compiler, they could compromise performance.
Therefore, HPF states that by default, storage and sequence association are not supported. Hence,
without the use of additional directives, it not possible to do the following:

1. Pass an array element as an actual argument to a subroutine, and declare the corresponding
dummy argument to be an array.

2. Pass an array or array section as an actual argument to a subroutine, and declare the
corresponding dummy argument to have a different size or shape.

3. Pass an assumed size array (an array declared with a dimension of *, for example,
DIMENSION(32,*)) as as an actual argument.

4. Declare the same COMMON block to contain different variables in different parts of a
program, or use the EQUIVALENCE statement except in certain restricted cases.

In order to support conversion of existing codes that rely on storage and sequence association to
HPF, the SEQUENCE directive is provided to request that storage and sequence association be
enabled for specified variables. Because this directive is intended only to support conversion of
existing Fortran 77 codes and is not directly relevant to data-parallel programming, we do not
discuss it further here.

7.6.3 HPF Features Not Covered
For simplicity, we have focused on a subset of the HPF language. In particular, we have described
most of the HPF subset, which is a set of HPF constructs providing sufficient functionality to
permit development of useful programs, while avoiding difficult implementation problems. Of
necessity, numerous subtleties have been omitted in this brief description, and the following HPF
features have not been covered at all.

1. Templates. The TEMPLATE directive allows a programmer to declare an abstract index space
that can be distributed and used as an alignment target in the same way as an array can.
This is useful when several arrays must be aligned relative to each other, but there is no
need to define a single array that spans the entire index space of interest.

2. Mapping inquiry intrinsic functions. These functions allow a program to determine the
actual mapping of an array to processors. They are useful when the extrinsic function
facility (described in item 7 of this list) is used to call non-HPF subprograms.

3. FORALL construct. This more general form of the FORALL statement can control multiple
assignments, masked array assignments, and nested FORALL statements and constructs. This
construct broadens the range of algorithms that can be expressed using FORALL.

4. PURE procedures. A function or subroutine declared to be PURE can be called in FORALL
statements. A PURE function causes no side effects; that is, it does not perform I/O or
modify dummy arguments or global data. A PURE subroutine may modify arguments but
not global variables. This facility broadens the range of algorithms that can be expressed
using the FORALL statement, for example by allowing the same function to be applied to
each row or column of an array.

5. Dynamic data distribution. The executable directives REDISTRIBUTE and REALIGN can be
used to modify the distribution and alignment of a data structure if that data structure is
declared to have attribute DYNAMIC. The HPF compiler and runtime system perform any
data movement that may be required. This facility makes it easier to use different
distributions in different parts of a computation, as discussed in Section 7.5.

6. Computational library. For each reduction operation in F90 (e.g., SUM and MAXVAL), HPF
provides corresponding combining scatter, parallel prefix, and parallel suffix operations
(e.g., SUM_SCATTER, SUM_PREFIX, and SUM_SUFFIX). Functions for sorting and for counting
bits in an integer array are also provided. This computational library broadens the set of
global operations available to the programmer. (The combining scatter operations allow
elements of one array to be scattered to the elements of another array, under the control of
index arrays. A parallel prefix using an operation of a sequence X yields a sequence Y of
the same size, with each element Y(j) = (X). That is, each element is a function of
the preceding elements. A parallel suffix is the same as a parallel prefix except that each
element is a function of the elements that follow it rather than those that precede it.)

7. Extrinsic functions. HPF programs can call non-HPF procedures as extrinsic procedures.
The non-HPF procedure is invoked on every processor, and the local components of
distributed arrays named in the interface are passed as arguments. This facility can be used
to invoke MIMD procedures developed with message-passing systems such as MPI.

7.7 Performance Issues
 The performance of an HPF program depends not only on the skill of the programmer but also on
the capabilities of the compiler, which in effect generates the actual parallel program from a high-
level specification provided by the programmer. The structure and hence the performance of this
program may not be intuitively obvious to the programmer. However, a good HPF compiler
should provide feedback identifying hard-to-parallelize components, and of course intuition can be
developed with experience.

Two major obstacles impact the efficient execution of an HPF program: sequential bottlenecks and
excessive communication costs. In the following sections, we first examine the compilation
process and then discuss these two obstacles in turn.

7.7.1 HPF Compilation
 Compilers for HPF and related languages generally proceed roughly as follows. Data
decomposition statements are analyzed to determine the decomposition of each array in a program.
Computation is then partitioned across processors, typically (but not always) using the owner
computes rule. This process allows nonlocal references, and hence communication requirements,
to be identified. Communication operations are then optimized. In particular, an attempt is made to
move messages out of loops so as to reduce communication costs.

As an illustration of how an HPF compiler operates, Program 7.6 gives the code that might be
generated for Program 7.2. Recall that Program 7.2 implements a parallel algorithm based on a
one-dimensional decomposition of a two-dimensional finite-difference problem and executes on
four processors. The generated code is a mixture of F90 statements and calls to library routines
that perform communication operations. In this example, two such routines are called:
stencil_exchange_1d and reduce_real. The first routine exchanges data with the processors
handling neighboring parts of the finite difference grid, and the second performs the reduction
operation required to compute a maximum difference. These routines account for the
communication requirements of the program.

In this example, communication costs are easy to determine. The nearest-neighbor exchange will
send two messages having a total size of 200 words; the reduction will generate

communications, each of size one word. Hence, total costs are 202. As in
addition, this program decomposes computation evenly across processors, it can be expected to
execute with reasonable efficiency.

7.7.2 Sequential Bottlenecks
A sequential bottleneck occurs when a code fragment does not incorporate sufficient parallelism or
when parallelism exists (in the sense that data dependencies do not prevent concurrent execution)
but cannot be detected by the compiler. In either case, the code fragment cannot be executed in
parallel. Sequential bottlenecks of this sort may not be serious if a program is intended to execute
on only a small number of processors, but they inevitably reduce a program's scalability. More
precisely, if some fraction 1/s of a program's total execution time executes sequentially, then
Amdahl's law applies, and the maximum possible speedup that can be achieved on a parallel
computer is s (Section 3.2.1).

An HPF compiler should provide information about constructs that it was unable to parallelize.
The programmer may then be able to restructure the code in question to enable parallelization.

7.7.3 Communication Costs
We next discuss a number of issues that affect the communication performance of HPF programs.

 Intrinsics. Many F90 and HPF intrinsic functions combine data from entire arrays (Table 7.1) and
hence involve considerable communication if the arrays to which they are applied are distributed.
For example, operations such as MAXVAL and SUM perform array reductions which, as noted in
Chapter 2, can be performed in steps on P processors, for a total communication cost of

. This cost is independent of the size of the arrays to be reduced. In contrast, the
cost of a TRANSPOSE or MATMUL operation depends on both the size and distribution of the
operation's arguments. Other operations such as DOT_PRODUCT involve communication only if their
arguments are not aligned.

Array operations. Array assignments and FORALL statements can result in communication if, in
order to compute some array element A(i), they require data values (e.g., B(j)) that are not on
the same processor. Program 7.6 showed one example: the references X(i,j-1) and X(i,j+1)
resulted in communication. The CSHIFT operation is another common source of communication.

 Cyclic distributions will often result in more communication than will block distributions.
However, by scattering the computational grid over available processors, they can produce better
load balance in some applications. (Recall that this strategy was discussed in Section 2.5.1.)

Figure 7.9: Communication requirements of various FORALL statements. The arrays A and B are
aligned and distributed in a blocked fashion on three processors, while the array C is distributed
in a cyclic fashion.

To help you develop intuition regarding communication costs, we present in Figure 7.9 the
communication requirements associated with a number of different FORALL statements for three
arrays A, B, and C distributed as follows.

 !HPF$ PROCESSORS pr(3)

 integer A(8), B(8), C(8)

 !HPF$ ALIGN B(:) WITH A(:)

 !HPF$ DISTRIBUTE A(BLOCK) ONTO pr

 !HPF$ DISTRIBUTE C(CYCLIC) ONTO pr

Different mappings. Even simple operations performed on nonaligned arrays can result in
communication. For example, the assignment A=B can require considerable communication if
arrays A and B have different distributions. The cost of this sort of communication must be
weighed against the cost of converting to a common distribution before performing the operation.

Procedure boundaries. As discussed in Sections 4.2.1 and 7.5, switching from one decomposition
of an array to another at a procedure boundary can result in considerable communication.
Although the precise amount of communication required depends on the decomposition, the total
cost summed over P processors of moving between decompositions of an M N array will often be
approximately S M N, where S is the size of an array element in four-byte words. This
cost arises because, generally, each of the P processors must communicate with every other
processor, and each M.N array element must be communicated.

Compiler optimization. A good HPF compiler does not compile a program statement by statement.
Instead, it seeks to reduce communication costs by combining communication operations and
otherwise reorganizing program statements. In addition, it may choose to use data distributions
different from those recommended by the programmer. Hence, it is always necessary to verify
analytic results using instrumentation data.

7.8 Case Study: Gaussian Elimination
 To further illustrate the use of HPF, we present a slightly more complex example. The problem
considered is the Gaussian elimination method used to solve a system of linear equations

where A is a known matrix of size N N, x is the required solution vector, and b is a known vector
of size N. This example is often used in discussions of HPF as it shows the benefits of cyclic
distributions. The method proceeds in two stages:

1. Gaussian elimination. The original system of equations is reduced to an upper triangular
form

where U is a matrix of size N N in which all elements below the diagonal are zero, and
diagonal elements have the value 1.

2. Back substitution. The new system of equations is solved to obtain the values of x.

Figure 7.10: The i th step of the Gaussian elimination algorithm in which nonzero subdiagonal
elements in column i are eliminated by subtracting appropriate multiples of the pivot row.

The Gaussian elimination stage of the algorithm comprises N-1 steps. In the basic algorithm, the i
th step eliminates nonzero subdiagonal elements in column i by subtracting the i th row from each
row j in the range [i+1,n], in each case scaling the i th row by the factor so as to make the
element zero. Hence, the algorithm sweeps down the matrix from the top left corner to the
bottom right corner, leaving zero subdiagonal elements behind it (Figure 7.10).

For numerical stability, this basic algorithm is modified so that instead of stepping through rows in
order, it selects in step i the row in the range [i,n] with the largest element in column i. This row
(called the pivot) is swapped with row i prior to performing the subtractions.

Program 7.7 is an HPF implementation of this algorithm. For efficiency, this program maintains
the vector b in the N+1 th column of the array A. The first do-loop implements Gaussian
elimination. The MAXLOC intrinsic is used to identify the pivot row. Rather than performing an
explicit swap with row i, an indirection array called indx is used to keep track of the actual indices
of selected rows. This array is updated once the pivot is identified. The next statement computes
the N scale factors; notice that the computation can be performed with a single array assignment.
Finally, the FORALL statement performs the subtractions. The mask ensures that the subtraction is
performed only for rows that have not been previously selected as pivots (Indx(j).EQ.0). Once
the do-loop is complete, a second FORALL is used to reorganize the matrix into upper triangular
form.

The last four lines of the program perform the back substitution. In reverse order from N to 1, each
element of the solution is computed and then substituted into A to simplify the matrix.

Figure 7.11: Communication and computation in the various phases of the HPF Gaussian
elimination algorithm. Arrows represent communication, and shading indicates tasks involved in
computation in each phase. The five phases are described in Section 7.8.

Before developing data distribution directives for this program, let us determine how much
concurrency it exposes and what data dependencies may lead to communication. We can think of
the data-parallel program as specifying a fine-grained partition comprising N N tasks, each
responsible for a single element of A. (These tasks characterize the computation that would be
associated with data elements by the owner-computes rule.) As illustrated in Figure 7.11, each of
the N-1 steps of the elimination algorithm involves five principal steps, as follows:

1. The MAXLOC statement involves a reduction operation by the N tasks in the i th column.
2. The maximum value identified by the reduction (max_indx) must be broadcast within the i

th column, since it is required for the computation of scale factors.
3. The computation of scale factors (the array Fac) requires N independent operations, one in

each task in the i th column.
4. A scale factor (Fac(j)) and a pivot row value (Row(k)) must be broadcast within each

column and row, respectively, since they are required for the update.
5. The FORALL statement involves independent operations, one per task.

Studying this algorithm, we see that it has two interesting attributes. First, there is little locality in
communication beyond the fact that broadcasts and reductions are performed in rows and columns.
Second, computation tends to be clustered: in each step, much of the computation is performed by
tasks in a single row and column (before the FORALL) and in the bottom right-hand corner (the
FORALL). These attributes can be exploited when developing data distribution directives to
complete the parallel algorithm.

In many grid-based problems, we prefer to use a BLOCK distribution of the principal data structures
because it reduces communication requirements by enhancing locality. However, in the Gaussian
elimination problem, a BLOCK distribution has no communication advantages; furthermore, it
causes many processors to be idle, particularly in the later stages of computation. In contrast, a

CYCLIC distribution scatters computation over many processors and hence reduces idle time.
Therefore, we could use the following data distribution directives.

 !HPF$ ALIGN Row(j) WITH A(1,j)
 !HPF$ ALIGN X(i) WITH A(i,N+1)
 !HPF$ DISTRIBUTE A(*,CYCLIC)

Of course, the number of processors that can be used efficiently by this one-dimensional
decomposition is limited. An alternative formulation, more efficient on large numbers of
processors, decomposes A in two dimensions. This can be specified as follows.

 !HPF$ ALIGN Row(j) WITH A(1,j)
 !HPF$ ALIGN X(i) WITH A(i,N+1)
 !HPF$ DISTRIBUTE A(CYCLIC,CYCLIC)

7.9 Summary
In this chapter, we have presented fundamental concepts of data-parallel programming and
illustrated the application of these concepts in the programming languages Fortran 90 and High
Performance Fortran. The eight HPF constructs described in this chapter are summarized in Table
7.2. These are in addition to the F90 array language described in Section 7.2.

Table 7.2: HPF quick reference: the HPF functions described in this chapter, the section in which
each is described, and the programs that illustrate the use of each.

F90's array language and HPF's data distribution directives and related constructs provide a
powerful notation for data-parallel computations in science and engineering. Their chief features
are as follows:

1. An array language comprising array assignments, array intrinsics, and (in HPF) FORALL
and INDEPENDENT constructs is used to reveal the fine-grained concurrency inherent in
data-parallel operations on arrays.

2. Data distribution directives are introduced to provide the programmer with control over
partitioning, agglomeration, and mapping (and hence locality).

3. An HPF compiler translates this high-level specification into an executable program by
generating the communication code implied by a particular set of data-parallel operations
and data distribution directives.

 The most attractive feature of the data-parallel approach as exemplified in HPF is that the
compiler takes on the job of generating communication code. This has two advantages. First, it

allows the programmer to focus on the tasks of identifying opportunities for concurrent execution
and determining efficient partition, agglomeration, and mapping strategies. Second, it simplifies
the task of exploring alternative parallel algorithms; in principle, only data distribution directives
need be changed.

A problematic feature of HPF is the limited range of parallel algorithms that can be expressed in
HPF and compiled efficiently for large parallel computers. However, the range of problems for
which HPF is an appropriate tool can be expected to grow as compiler technology improves.

Exercises
1. Write an HPF program to multiply two matrices A and B of size N N. (Do not use the

MATMUL intrinsic!) Estimate the communication costs associated with this program if A and
B are distributed blockwise in a single dimension or blockwise in two dimensions.

2. Compare the performance of your matrix multiplication program with that of the MATMUL
intrinsic. Explain any differences.

3. Complete Program 7.2 and study its performance as a function of N and P on one or more
networked or parallel computers. Modify the program to use a two-dimensional data
decomposition, and repeat these performance experiments. Use performance models to
interpret your results.

4. Compare the performance of the programs developed in Exercise 3 with equivalent CC++,
FM, or MPI programs. Account for any differences.

5. Complete Program 7.3 and study its performance on one or more parallel computers as a
function of problem size N and number of processors P. Compare with the performance
obtained by a CC++, FM, or MPI implementation of this algorithm, as described in Section
1.4.2. Explain any performance differences.

6. Develop an HPF implementation of the symmetric pairwise interactions algorithm of
Section 1.4.2. Compare its performance with an equivalent CC++, Fortran M, or MPI
program. Explain any differences.

7. Learn about the data-parallel languages Data-parallel C and pC++, and use one of these
languages to implement the finite-difference and pairwise interactions programs presented
in this chapter.

8. Develop a performance model for the HPF Gaussian elimination program of Section 7.8,
assuming a one-dimensional cyclic decomposition of the array A. Compare your model
with observed execution times on a parallel computer. Account for any differences that you
see.

9. Develop a performance model for the HPF Gaussian elimination program of Section 7.8,
assuming a two-dimensional cyclic decomposition of the array A. Is it more efficient to
maintain one or multiple copies of the one-dimensional arrays Row and X? Explain.

10. Study the performance of the HPF global operations for different data sizes and numbers of
processors. What can you infer from your results about the algorithms used to implement
these operations?

11. Develop an HPF implementation of the convolution algorithm described in Section 4.4.

Chapter Notes
 Early data-parallel programming notations included Kali [200], CM Fortran [282], Fortran D
[112], and Vienna Fortran [56]. Other data-parallel languages include *Lisp [281], C* [281], Data-

parallel C [136,137], pC++ [38], NESL [37], and DINO [247]. In a rather different approach,
several projects have explored the use of C++ class libraries to encapsulate data-parallel operations
on data objects such as arrays [83,188].

 The compilation of HPF and related languages requires specialized analysis and optimization
techniques. Hiranandani et al. [152] and Zima and Chapman [303] provide a good introduction to
these topics; see also papers by Albert, Lukas, and Steele [10], Bozkus et al. [42], Callahan and
Kennedy [45], Rogers and Pingali [245], and Zima, Bast, and Gerndt [302] and the monographs by
Banerjee [27] and Wolfe [296].

The description of F90 and HPF provided here is necessarily brief. See Chapter 6 for F90
references. Loveman [193] provides more information on both the HPF language and the process
by which it was designed. The HPF Language Specification prepared by the HPF Forum provides
a comprehensive, although sometimes impenetrable, description of the language [149]. The book
by Koelbel et al. [176] presents essentially the same information but in a more readable form, and
also provides a useful introduction to F90.

Extensions to the data-parallel programming model that would allow its application to a wider
range of problems is an active area of research. Chapman, Mehrotra, and Zima [57] propose a
range of extensions. Saltz, Berryman, and Wu [251] and Agrawal, Sussman, and Saltz [6] describe
techniques for irregular problems. Subhlok et al. [273] generate pipeline parallelism automatically
from HPF code augmented with additional directives. Foster [100] discusses issues relating to the
integration of task parallelism. Chandy et al. [52] address the integration of HPF and Fortran M.

8 Message Passing Interface
In the message-passing library approach to parallel programming, a collection of processes
executes programs written in a standard sequential language augmented with calls to a library of
functions for sending and receiving messages. In this chapter, we introduce the key concepts of
message-passing programming and show how designs developed using the techniques discussed in
Part I can be adapted for message-passing execution. For concreteness, we base our presentation
on the Message Passing Interface (MPI), the de facto message-passing standard. However, the
basic techniques discussed are applicable to other such systems, including p4, PVM, Express, and
PARMACS.

MPI is a complex system. In its entirety, it comprises 129 functions, many of which have
numerous parameters or variants. As our goal is to convey the essential concepts of message-
passing programming, not to provide a comprehensive MPI reference manual, we focus here on a
set of 24 functions and ignore some of the more esoteric features. These 24 functions provide more
than adequate support for a wide range of applications.

After studying this chapter, you should understand the essential features of the message-passing
programming model and its realization in MPI, and you should be able to write simple MPI
programs. In particular, you should understand how MPI implements local, global, and
asynchronous communications. You should also be familiar with the mechanisms that MPI
provides to support the development of modular programs and the sequential and parallel
composition of program components.

8.1 The MPI Programming Model
 In the MPI programming model, a computation comprises one or more processes that
communicate by calling library routines to send and receive messages to other processes. In most
MPI implementations, a fixed set of processes is created at program initialization, and one process
is created per processor. However, these processes may execute different programs. Hence, the
MPI programming model is sometimes referred to as multiple program multiple data (MPMD) to
distinguish it from the SPMD model in which every processor executes the same program.

Because the number of processes in an MPI computation is normally fixed, our focus in this
chapter is on the mechanisms used to communicate data between processes. Processes can use
point-to-point communication operations to send a message from one named process to another;
these operations can be used to implement local and unstructured communications. A group of
processes can call collective communication operations to perform commonly used global
operations such as summation and broadcast. MPI's ability to probe for messages supports
asynchronous communication. Probably MPI's most important feature from a software engineering
viewpoint is its support for modular programming. A mechanism called a communicator allows
the MPI programmer to define modules that encapsulate internal communication structures. In the
terminology used in Chapter 4, these modules can be combined by both sequential and parallel
composition.

Most parallel algorithms designed using the techniques of Part I are readily implemented using
MPI. Algorithms that create just one task per processor can be implemented directly, with point-
to-point or collective communication routines used to meet communication requirements.
Algorithms that create tasks in a dynamic fashion or that rely on the concurrent execution of
several tasks on a processor must be further refined to permit an MPI implementation. For
example, consider the first branch-and-bound search algorithm developed in Section 2.7, which
creates a tree of ``search'' tasks dynamically. This algorithm cannot be implemented directly in
MPI; however, as discussed in Chapter 2, it can be refined to obtain an algorithm that creates a
fixed set of worker processes that exchange messages representing tree nodes to be searched. The
resulting SPMD algorithm can be implemented as an MPI program. Algorithms that are not easily
modified in this way are better implemented using alternative technologies.

8.2 MPI Basics
Although MPI is a complex and multifaceted system, we can solve a wide range of problems using
just six of its functions! We introduce MPI by describing these six functions, which initiate and
terminate a computation, identify processes, and send and receive messages:

 MPI_INIT : Initiate an MPI computation.

 MPI_FINALIZE : Terminate a computation.

 MPI_COMM_SIZE : Determine number of processes.

 MPI_COMM_RANK : Determine my process identifier.

 MPI_SEND : Send a message.

 MPI_RECV : Receive a message.

Function parameters are detailed in Figure 8.1. In this and subsequent figures, the labels IN, OUT,
and INOUT indicate whether the function uses but does not modify the parameter (IN), does not use
but may update the parameter (OUT), or both uses and updates the parameter (INOUT).

Figure 8.1: Basic MPI. These six functions suffice to write a wide range of parallel programs. The
arguments are characterized as having mode IN or OUT and as having type integer, choice, handle,
or status. These terms are explained in the text.

All but the first two calls take a communicator handle as an argument. A communicator identifies

the process group and context with respect to which the operation is to be performed. As explained
later in this chapter, communicators provide a mechanism for identifying process subsets during
development of modular programs and for ensuring that messages intended for different purposes
are not confused. For now, it suffices to provide the default value MPI_COMM_WORLD, which
identifies all processes involved in a computation. Other arguments have type integer, datatype
handle, or status. These datatypes are explained in the following.

 The functions MPI_INIT and MPI_FINALIZE are used to initiate and shut down an MPI
computation, respectively. MPI_INIT must be called before any other MPI function and must be
called exactly once per process. No further MPI functions can be called after MPI_FINALIZE.

 The functions MPI_COMM_SIZE and MPI_COMM_RANK determine the number of processes in the
current computation and the integer identifier assigned to the current process, respectively. (The
processes in a process group are identified with unique, contiguous integers numbered from 0.) For
example, consider the following program. This is not written in any particular language: we shall
see in the next section how to call MPI routines from Fortran and C.

 program main

 begin

 MPI_INIT() Initiate computation

 MPI_COMM_SIZE(MPI_COMM_WORLD, count) Find # of processes

 MPI_COMM_RANK(MPI_COMM_WORLD, myid) Find my id

 print("I am", myid, "of", count) Print message

 MPI_FINALIZE() Shut down

 end

The MPI standard does not specify how a parallel computation is started. However, a typical
mechanism could be a command line argument indicating the number of processes that are to be
created: for example, myprog -n 4, where myprog is the name of the executable. Additional
arguments might be used to specify processor names in a networked environment or executable
names in an MPMD computation.

If the above program is executed by four processes, we will obtain something like the following
output. The order in which the output appears is not defined; however, we assume here that the
output from individual print statements is not interleaved.

 I am 1 of 4
 I am 3 of 4
 I am 0 of 4
 I am 2 of 4

Finally, we consider the functions MPI_SEND and MPI_RECV, which are used to send and receive
messages, respectively. A call to MPI_SEND has the general form MPI_SEND(buf, count,
datatype, dest, tag, comm)

and specifies that a message containing count elements of the specified datatype starting at
address buf is to be sent to the process with identifier dest. As will be explained in greater detail
subsequently, this message is associated with an envelope comprising the specified tag, the source
process's identifier, and the specified communicator (comm).

A call to MPI_RECV has the general form

MPI_RECV(buf, count, datatype, source, tag, comm, status)

and attempts to receive a message that has an envelope corresponding to the specified tag,
source, and comm, blocking until such a message is available. When the message arrives, elements
of the specified datatype are placed into the buffer at address buf. This buffer is guaranteed to be
large enough to contain at least count elements. The status variable can be used subsequently to
inquire about the size, tag, and source of the received message (Section 8.4).

Program 8.1 illustrates the use of the six basic calls. This is an implementation of the bridge
construction algorithm developed in Example 1.1. The program is designed to be executed by two
processes. The first process calls a procedure foundry and the second calls bridge, effectively
creating two different tasks. The first process makes a series of MPI_SEND calls to communicate
100 integer messages to the second process, terminating the sequence by sending a negative
number. The second process receives these messages using MPI_RECV.

8.2.1 Language Bindings
Much of the discussion in this chapter will be language independent; that is, the functions
described can be used in C, Fortran, or any other language for which an MPI library has been

defined. Only when we present example programs will a particular language be used. In that case,
programs will be presented using the syntax of either the Fortran or C language binding. Different
language bindings have slightly different syntaxes that reflect a language's peculiarities. Sources of
syntactic difference include the function names themselves, the mechanism used for return codes,
the representation of the handles used to access specialized MPI data structures such as
communicators, and the implementation of the status datatype returned by MPI_RECV. The use of
handles hides the internal representation of MPI data structures.

C Language Binding.

In the C language binding, function names are as in the MPI definition but with only the MPI
prefix and the first letter of the function name in upper case. Status values are returned as integer
return codes. The return code for successful completion is MPI_SUCCESS; a set of error codes is
also defined. Compile-time constants are all in upper case and are defined in the file mpi.h, which
must be included in any program that makes MPI calls. Handles are represented by special defined
types, defined in mpi.h. These will be introduced as needed in the following discussion. Function
parameters with type IN are passed by value, while parameters with type OUT and INOUT are passed
by reference (that is, as pointers). A status variable has type MPI_Status and is a structure with
fields status.MPI_SOURCE and status.MPI_TAG containing source and tag information. Finally,
an MPI datatype is defined for each C datatype: MPI_CHAR, MPI_INT, MPI_LONG,
MPI_UNSIGNED_CHAR, MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT, MPI_DOUBLE,
MPI_LONG_DOUBLE, etc.

Fortran Language Binding.

In the Fortran language binding, function names are in upper case. Function return codes are
represented by an additional integer argument. The return code for successful completion is
MPI_SUCCESS; a set of error codes is also defined. Compile-time constants are all in upper case and
are defined in the file mpif.h, which must be included in any program that makes MPI calls. All
handles have type INTEGER. A status variable is an array of integers of size MPI_STATUS_SIZE,
with the constants MPI_SOURCE and MPI_TAG indexing the source and tag fields, respectively.
Finally, an MPI datatype is defined for each Fortran datatype: MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION, MPI_COMPLEX, MPI_LOGICAL, MPI_CHARACTER, etc.

Example . Pairwise Interactions:

The pairwise interactions algorithm of Section 1.4.2 illustrate the two language bindings. Recall
that in this algorithm, T tasks (T an odd number) are connected in a ring. Each task is responsible
for computing interactions involving N data. Data are circulated around the ring in T-1 phases,
with interactions computed at each phase. Programs 8.2 and 8.3 are C and Fortran versions of an
MPI implementation, respectively.

The number of processes created is specified when the program is invoked. Each process is
responsible for 100 objects, and each object is represented by three floating-point values, so the
various work arrays have size 300. As each process executes the same program, the first few lines
are used to determine the total number of processes involved in the computation (np), the process's
identifier (myid), and the identify of the process's neighbors in the ring (lnbr, rnbr). The

computation then proceeds as described in Section 1.4.2 but with messages sent to numbered
processes rather than on channels.

8.2.2 Determinism
Before proceeding to more sophisticated aspects of MPI, we consider the important topic of
determinism. Message-passing programming models are by default nondeterministic: the arrival
order of messages sent from two processes, A and B, to a third process, C, is not defined.
(However, MPI does guarantee that two messages sent from one process, A, to another process, B,
will arrive in the order sent.) It is the programmer's responsibility to ensure that a computation is
deterministic when (as is usually the case) this is required.

 In the task/channel programming model, determinism is guaranteed by defining separate channels
for different communications and by ensuring that each channel has a single writer and a single
reader. Hence, a process C can distinguish messages received from A or B as they arrive on
separate channels. MPI does not support channels directly, but it does provide similar mechanisms.
In particular, it allows a receive operation to specify a source, tag, and/or context. (Recall that
these data constitute a message's envelope.) We consider the first two of these mechanisms in this
section.

The source specifier in the MPI_RECV function allows the programmer to specify that a message is
to be received either from a single named process (specified by its integer process identifier) or
from any process (specified by the special value MPI_ANY_SOURCE). The latter option allows a
process to receive data from any source; this is sometimes useful. However, the former is
preferable because it eliminates errors due to messages arriving in time-dependent order.

Message tags provide a further mechanism for distinguishing between different messages. A
sending process must associate an integer tag with a message. This is achieved via the tag field in
the MPI_SEND call. (This tag has always been set to 0 in the examples presented so far.) A
receiving process can then specify that it wishes to receive messages either with a specified tag or
with any tag (MPI_ANY_TAG). Again, the former option is preferable because it reduces the
possibility of error.

Example . Nondeterministic Program:

To illustrate the importance of source specifiers and tags, we examine a program that fails to use
them and that, consequently, suffers from nondeterminism. Program 8.4 is part of an MPI
implementation of the symmetric pairwise interaction algorithm of Section 1.4.2. Recall that in
this algorithm, messages are communicated only half way around the ring (in T/2-1 steps, if the
number of tasks T is odd), with interactions accumulated both in processes and in messages. As in
Example 8.1, we assume 100 objects, so the arrays to be communicated in this phase have size
100.3.2=600. In a final step, each message (with size 100.3=300) is returned to its originating
process. Hence, each process sends and receives N/2-1 data messages and one result message.

Program 8.4 specifies neither sources nor tags in its MPI_RECV calls. Consequently, a result
message arriving before the final data message may be received as if it were a data message,
thereby resulting in an incorrect computation. Determinism can be achieved by specifying either a
source processor or a tag in the receive calls. It is good practice to use both mechanisms. In effect,
each ``channel'' in the original design is then represented by a unique (source, destination, tag)
triple.

8.3 Global Operations
As explained in Chapter 2, parallel algorithms often call for coordinated communication
operations involving multiple processes. For example, all processes may need to cooperate to
transpose a distributed matrix or to sum a set of numbers distributed one per process. Clearly,
these global operations can be implemented by a programmer using the send and receive functions
introduced in Section 8.2. For convenience, and to permit optimized implementations, MPI also
provides a suite of specialized collective communication functions that perform commonly used
operations of this type. These functions include the following.

• Barrier: Synchronizes all processes.
• Broadcast: Sends data from one process to all processes.
• Gather: Gathers data from all processes to one process.
• Scatter: Scatters data from one process to all processes.
• Reduction operations: Sums, multiplies, etc., distributed data.

These operations are summarized in Figure 8.2. All are executed collectively, meaning that each
process in a process group calls the communication routine with the same parameters.

Figure 8.2: MPI global communication functions.

8.3.1 Barrier

MPI_BARRIER is used to synchronize execution of a group of processes. No process returns from
this function until all processes have called it. A barrier is a simple way of separating two phases
of a computation to ensure that messages generated in the two phases do not intermingle. For
example, a call to MPI_BARRIER could be inserted before the second send operation in Program 8.4
to ensure deterministic execution. Of course, in this example as in many others, the need for an
explicit barrier can be avoided by the appropriate use of tags, source specifiers, and/or contexts.

8.3.2 Data Movement
MPI_BCAST, MPI_GATHER, and MPI_SCATTER are collective data movement routines, in which all
processes interact with a distinguished root process to broadcast, gather, or scatter data,
respectively. The operation of these functions is illustrated in Figure 8.3. In each case, the first
three arguments specify the location (inbuf) and type (intype) of the data to be communicated
and the number of elements to be sent to each destination (incnt). Other arguments specify the
location and type of the result (outbuf, outtype) and the number of elements to be received from
each source (outcnt).

Figure 8.3: MPI collective data movement functions, illustrated for a group of 4 processes. In
each set of 16 boxes, each row represents data locations in a different process. Thus, in the one-
to-all broadcast, the data A is initially located just in process 0; after the call, it is replicated in
all processes. In each case, both incnt and outcnt are 1, meaning that each message comprises a
single data element.

MPI_BCAST implements a one-to-all broadcast operation whereby a single named process (root)
sends the same data to all other processes; each process receives this data from the root process. At

the time of call, the data are located in inbuf in process root and consists of incnt data items of a
specified intype. After the call, the data are replicated in inbuf in all processes. As inbuf is used
for input at the root and for output in other processes, it has type INOUT.

MPI_GATHER implements an all-to-one gather operation. All processes (including the root
process) send data located in inbuf to root. This process places the data in contiguous
nonoverlapping locations in outbuf, with the data from process i preceding that from process i+1.
Hence, the outbuf in the root process must be P times larger than inbuf, where P is the number
of processes participating in the operation. The outbuf in processes other than the root is ignored.

MPI_SCATTER implements a one-to-all scatter operation; it is the reverse of MPI_GATHER. A
specified root process sends data to all processes, sending the i th portion of its inbuf to process
i ; each process receives data from root in outbuf. Hence, the inbuf in the root process must be
P times larger than outbuf. Notice the subtle difference between this function and MPI_BCAST:
while in MPI_BCAST every process receives the same value from the root process, in MPI_SCATTER
every process receives a different value.

8.3.3 Reduction Operations
 The functions MPI_REDUCE and MPI_ALLREDUCE implement reduction operations. They combine
the values provided in the input buffer of each process, using a specified operation op, and return
the combined value either to the output buffer of the single root process (in the case of
MPI_REDUCE) or to the output buffer of all processes (MPI_ALLREDUCE). The operation is applied
pointwise to each of the count values provided by each process. All operations return count
values with the same datatype as the operands. Valid operations include maximum and minimum
(MPI_MAX and MPI_MIN); sum and product (MPI_SUM and MPI_PROD); logical and, or, and exclusive
or (MPI_LAND, MPI_LOR, and MPI_LXOR); and bitwise and, or, and exclusive or (MPI_BAND,
MPI_BOR, and MPI_BXOR).

Figure: Applications of MPI_REDUCE and MPI_ALLREDUCE. The first line shows the send buffers (of
size 2) in each of four processes; subsequent lines show the output buffers in each process
following four different global communication calls.

As an example, the following call would be used to compute the minimum of two sets of P values,
where P is the number of processes involved in the reduction.

MPI_REDUCE(inbuf, outbuf, 2, MPI_INT, MPI_MIN, 0, MPI_COMM_WORLD)

After the reduction, outbuf[0] in process 0 contains the minimum of the first element in each
input buffer (min(inbuf[0])); similarly, outbuf[1] contains min(inbuf[1]). The operation of
this and other calls to MPI reduction functions are illustrated in Figure 8.4.

Example . Finite Difference:

Once again we consider a finite difference problem, this time to illustrate the use of global
operations. The algorithm considered requires both nearest-neighbor communication (to exchange
boundary values) and global communication (to detect termination). Similar problems have
previously been discussed in Chapter 2. The MPI implementation given in Program 8.5 is for a
one-dimensional decomposition of a one-dimensional problem in which each process has two
neighbors. It uses MPI_SEND and MPI_RECV for nearest-neighbor communication and four MPI
global communication routines, for a total of five distinct communication operations. These are
summarized as follows and are illustrated in Figure 8.5:

Figure 8.5: Communication performed in the finite difference program, assuming three processes.
Each column represents a processor; each subfigure shows data movement in a single phase. The
five phases illustrated are (1) broadcast, (2) scatter, (3) nearest-neighbor exchange, (4) reduction,
and (5) gather.

1. MPI_BCAST to broadcast the problem size parameter (size) from process 0 to all np
processes;

2. MPI_SCATTER to distribute an input array (work) from process 0 to other processes, so that
each process receives size/np elements;

3. MPI_SEND and MPI_RECV for exchange of data (a single floating-point number) with
neighbors;

4. MPI_ALLREDUCE to determine the maximum of a set of localerr values computed at the
different processes and to distribute this maximum value to each process; and

5. MPI_GATHER to accumulate an output array at process 0.

The use of scatter and gather operations to transfer input and output data is particularly simple and
convenient. Note, however, that their use in this example is inherently nonscalable. As we solve
larger problems, storage limitations will eventually prevent us from accumulating all input and
output data in a single process. In addition, the associated communication costs may be
prohibitive.

8.4 Asynchronous Communication
 Recall from Chapter 2 that the need for asynchronous communication can arise when a
computation must access elements of a shared data structure in an unstructured manner. One
implementation approach is to encapsulate the data structure in a set of specialized data tasks to
which read and write requests can be directed. This approach is not typically efficient in MPI,
however, because of its MPMD programming model.

As noted in Section 2.3.4, an alternative implementation approach is to distribute the shared data
structure among the computational processes, which must then poll periodically for pending read
and write requests. This technique is supported by the MPI_IPROBE function, which is described in
this section along with the related functions MPI_PROBE and MPI_GET_COUNT. The three functions
are summarized in Figure 8.6.

Figure 8.6: MPI inquiry and probe operations.

The MPI_IPROBE function checks for the existence of pending messages without receiving them,
thereby allowing us to write programs that interleave local computation with the processing of
incoming messages. A call to MPI_IPROBE has the general form MPI_IPROBE(source, tag,
comm, flag, status)

and sets a Boolean argument flag to indicate whether a message that matches the specified
source, tag, and communicator is available. If an appropriate message is available, flag is set to
true; otherwise, it is set to false. The message can then be received by using MPI_RECV. The
receive call must specify the same source, tag, and communicator; otherwise, a different message
may be received.

Related to MPI_IPROBE is the function MPI_PROBE, which blocks until a message of the specified
source, tag, and communicator is available and then returns and sets its status argument. The
MPI_PROBE function is used to receive messages for which we have incomplete information.

The status argument constructed by an MPI_RECV call, an MPI_PROBE call, or a successful
MPI_IPROBE call can be used to determine the (pending) message's source, tag, and size. The
inquiry function MPI_GET_COUNT yields the length of a message just received. Its first two (input)
parameters are a status object set by a previous probe or MPI_RECV call and the datatype of the
elements to be received, while the third (output) parameter is an integer used to return the number
of elements received (Figure 8.6). Other information about the received message can be obtained
directly from the status object. In the C language binding, this object is a structure with fields
MPI_SOURCE and MPI_TAG. Thus, status.MPI_SOURCE and status.MPI_TAG contain the source
and tag of the message just received. In Fortran, the status object is an array of size
MPI_STATUS_SIZE, and the constants MPI_SOURCE and MPI_TAG are the indices of the array
elements containing the source and tag information. Thus, status(MPI_SOURCE) and
status(MPI_TAG) contain the source and tag of the message just received.

The following code fragment use these functions to receive a message from an unknown source
and containing an unknown number of integers. It first detects arrival of the message using
MPI_PROBE. Then, it determines the message source and uses MPI_GET_COUNT to determine the
message size. Finally, it allocates a buffer of the appropriate size and receives the message.

 int count, *buf, source;
 MPI_Probe(MPI_ANY_SOURCE, 0, comm, &status);
 source = status.MPI_SOURCE;
 MPI_Get_count(status, MPI_INT, &count);
 buf = malloc(count*sizeof(int));
 MPI_Recv(buf, count, MPI_INT, source, 0, comm, &status);

Example . Fock Matrix Construction:

The Fock matrix construction algorithm of Section 2.8 allocates to each processor a data task,
which manages part of the D and F matrices, and a computation task, which generates requests for
matrix elements. The two tasks execute concurrently, with the data task responding to requests for
data and the computation task performing computation. Briefly, the two tasks are defined as
follows.

 /* Data task */
 /* Computation task */

 while(done != TRUE) {

 while(done != TRUE) {

 receive(request);

 identify_next_task();

 reply_to(request);

 generate_requests();

 }

 process_replies();

 }

A polling version of this program integrates the functions of the database and computation tasks
into a single process, which alternates between checking for pending data requests and performing
computation. This integration can be achieved as in Program 8.6. The program uses the
MPI_IPROBE function to determine whether database messages are pending. If they are, these
messages are processed before further computation is performed.

For simplicity, the procedure process_request deals with a single type of request: a read
operation on a single array element. A process receiving such a request determines the source of
the message, retrieves the requested value, and returns the value to the source process.

8.5 Modularity
In Chapter 4, we distinguished three general forms of composition that can be used for the
modular construction of parallel programs: sequential, parallel, and concurrent. Recall that in
sequential composition, two program components execute in sequence on the same set of
processors. In parallel composition, two program components execute concurrently on disjoint sets
of processors. In concurrent composition, two program components execute on potentially
nondisjoint sets of processors.

 MPI supports modular programming via its communicator mechanism, which provides the
information hiding needed when building modular programs, by allowing the specification of
program components that encapsulate internal communication operations and provide a local name
space for processes. In this section, we show how communicators can be used to implement

various forms of sequential and parallel composition. MPI's MPMD programming model means
that the full generality of concurrent composition is not generally available.

An MPI communication operation always specifies a communicator. This identifies the process
group that is engaged in the communication operation and the context in which the communication
occurs. As we shall see, process groups allow a subset of processes to communicate among
themselves using local process identifiers and to perform collective communication operations
without involving other processes. The context forms part of the envelope associated with a
message. A receive operation can receive a message only if the message was sent in the same
context. Hence, if two routines use different contexts for their internal communication, there can
be no danger of their communications being confused.

In preceding sections, all communication operations have used the default communicator
MPI_COMM_WORLD, which incorporates all processes involved in an MPI computation and defines a
default context. We now describe four functions that allow communicators to be used in more
flexible ways. These functions, and their roles in modular design, are as follows.

1. MPI_COMM_DUP. A program may create a new communicator comprising the same process
group but a new context to ensure that communications performed for different purposes
are not confused. This mechanism supports sequential composition.

2. MPI_COMM_SPLIT. A program may create a new communicator comprising just a subset of
a given group of processes. These processes can then communicate among themselves
without fear of conflict with other concurrent computations. This mechanism supports
parallel composition.

3. MPI_INTERCOMM_CREATE. A program may construct an intercommunicator, which links
processes in two groups. This mechanism supports parallel composition.

4. MPI_COMM_FREE. This function can be used to release a communicator created using the
preceding three functions.

The four functions are summarized in Figure 8.7; their arguments and the ways they are called are
described next.

Figure 8.7: MPI communicator functions.

8.5.1 Creating Communicators

Figure 8.8: Errors can occur in a sequential composition of two parallel program components
(e.g., an application program and a parallel library) if the two components use the same message
tags. The figure on the left shows how this can occur. Each of the four vertical lines represents a
single thread of control (process) in an SPMD program. All call an SPMD library, which are
represented by the boxes. One process finishes sooner than the others, and a message that this
process generates during subsequent computation (the dashed arrow) is intercepted by the library.
The figure on the right shows how this problem is avoided by using contexts: the library
communicates using a distinct tag space, which cannot be penetrated by other messages.

As discussed in Section 8.2.2, message tags provide a mechanism for distinguishing between
messages used for different purposes. However, they do not provide a sufficient basis for modular
design. For example, consider an application that calls a library routine implementing (for

example) an array transpose operation. It is important to ensure that the message tags used in the
library are distinct from those used in the rest of the application (Figure 8.8). Yet the user of a
library routine may not know the tags the library uses; indeed, tag values may be computed on the
fly.

 Communicators provide a solution to this problem. A call of the form MPI_COMM_DUP(comm,
newcomm)

 creates a new communicator newcomm comprising the same processes as comm but with a new
context. This new communicator can be passed as an argument to the library routine, as in the
following code, which calls transpose to transpose an array A.

 integer comm, newcomm, ierr ! Handles are integers

 ...

 call MPI_COMM_DUP(comm, newcomm, ierr) ! Create new context

 call transpose(newcomm, A) ! Pass to library

 call MPI_COMM_FREE(newcomm, ierr) ! Free new context

The transpose routine itself will be defined to use the communicator newcomm in all
communication operations, thereby ensuring that communications performed within this routine
cannot be confused with communications performed outside.

8.5.2 Partitioning Processes

Figure 8.9: Different views of parallel composition. On the left is the task-parallel view, in which
new tasks are created dynamically to execute two different program components. Four tasks are
created: two perform one computation (dark shading) and two another (light shading). On the
right is the MPMD view. Here, a fixed set of processes (represented by vertical arrows) change
character, for example, by calling different subroutines.

Recall that we use the term parallel composition to denote the parallel execution of two or more
program components on disjoint sets of processors (Section 4.2). One approach to the
implementation of parallel composition is to create tasks dynamically and to place newly created
tasks on different processors. This task-parallel approach is taken in CC++ and Fortran M, for
example. In MPMD programs, parallel composition is implemented differently. As illustrated in
Figure 8.9, available processes are partitioned into disjoint sets, with each set executing the
appropriate program. This partitioning is achieved by using the function MPI_COMM_SPLIT. A call
of the form

MPI_COMM_SPLIT(comm, color, key, newcomm)

creates one or more new communicators. This function is a collective communication operation,
meaning that it must be executed by each process in the process group associated with comm. A
new communicator is created for each unique value of color other than the defined constant
MPI_UNDEFINED. Each new communicator comprises those processes that specified its value of
color in the MPI_COMM_SPLIT call. These processes are assigned identifiers within the new
communicator starting from zero, with order determined by the value of key or, in the event of
ties, by the identifier in the old communicator. Thus, a call of the form MPI_COMM_SPLIT(comm,
0, 0, newcomm)

in which all processes specify the same color and key, is equivalent to a call
MPI_COMM_DUP(comm, newcomm)

That is, both calls create a new communicator containing all the processes in the old
communicator comm. In contrast, the following code creates three new communicators if comm
contains at least three processes.

 MPI_Comm comm, newcomm;

 int myid, color;

 MPI_Comm_rank(comm, &myid);

 color = myid%3;

 MPI_Comm_split(comm, color, myid, &newcomm);

For example, if comm contains eight processes, then processes 0, 3, and 6 form a new
communicator of size three, as do processes 1, 4, and 7, while processes 2 and 5 form a new
communicator of size two (Figure 8.10).

Figure: Using MPI_COMM_SPLIT to form new communicators. The first communicator is a group
of eight processes. Setting color to myid%3 and calling MPI_COMM_SPLIT(comm, color, myid,
newcomm) split this into three disjoint process groups.

As a final example, the following code fragment creates a new communicator (newcomm)
containing at most eight processes. Processes with identifiers greater than eight in communicator
comm call MPI_COMM_SPLIT with newid=MPI_UNDEFINED and hence are not part of the new
communicator.

 MPI_Comm comm, newcomm;

 int myid, color;

 MPI_Comm_rank(comm, &myid);

 if (myid < 8) /* Select first 8 processes */

 color = 1;

 else /* Others are not in group */

 color = MPI_UNDEFINED;

 MPI_Comm_split(comm, color, myid, &newcomm);

8.5.3 Communicating between Groups
A communicator returned by MPI_COMM_SPLIT can be used to communicate within a group of
processes. Hence, it is called an intracommunicator. (The default communicator,
MPI_COMM_WORLD, is an intracommunicator.) It is also possible to create an intercommunicator that
can be used to communicate between process groups. An intercommunicator that connects two
groups A and B containing and processes, respectively, allows processes in group A to
communicate with processes 0.. in group B by using MPI send and receive calls (collective
operations are not supported). Similarly, processes in group B can communicate with processes
0.. in group A.

An intercommunicator is created by a collective call executed in the two groups that are to be
connected. In making this call, the processes in the two groups must each supply a local
intracommunicator that identifies the processes involved in their group. They must also agree on
the identifier of a ``leader'' process in each group and a parent communicator that contains all the
processes in both groups, via which the connection can be established. The default communicator
MPI_COMM_WORLD can always be used for this purpose. The collective call has the general form

 MPI_INTERCOMM_CREATE(comm, local_leader, peercomm,
 remote_leader, tag, intercomm)

where comm is an intracommunicator in the local group and local_leader is the identifier of the
nominated leader process within this group. (It does not matter which process is chosen as the
leader; however, all participants in the collective operation must nominate the same process.) The
parent communicator is specified by peercomm, while remote_leader is the identifier of the other
group's leader process within the parent communicator. The two other arguments are (1) a ``safe''
tag that the two groups' leader processes can use to communicate within the parent communicator's
context without confusion with other communications and (2) the new intercommunicator
intercomm.

Program 8.7 illustrates these ideas. It first uses MPI_COMM_SPLIT to split available processes into
two disjoint groups. Even-numbered processes are in one group; odd-numbered processes are in a
second. Calls to MPI_COMM_RANK are used to determine the values of the variables myid and
newid, which represent each process's identifier in the original communicator and the appropriate
new communicator, respectively. In this example, newid=myid/2. Then, the
MPI_INTERCOMM_CREATE call defines an intercommunicator that links the two groups (Figure
8.11). Process 0 within each group are selected as the two leaders; these processes correspond to
processes 0 and 1 within the original group, respectively. Once the intercommunicator is created,
each process in the first group sends a message to the corresponding process in the second group.
Finally, the new communicators created by the program are deleted.

Figure: Establishing an intercommunicator between two process groups. At the top is an original
group of eight processes; this is MPI_COMM_WORLD. An MPI_COMM_SPLIT call creates two process
groups, each containing four processes. Then, an MPI_INTERCOMM_CREATE call creates an
intercommunicator between the two groups.

8.6 Other MPI Features

In this section, we discuss MPI's derived datatype mechanism. We also list MPI features not
covered in this book.

8.6.1 Derived Datatypes
 In earlier sections of this chapter, MPI routines have been used to communicate simple datatypes,
such as integers and reals, or arrays of these types. The final set of MPI functions that we describe
implements derived types, a mechanism allowing noncontiguous data elements to be grouped
together in a message. This mechanism permits us to avoid data copy operations. Without it, the
sending of a row of a two-dimensional array stored by columns would require that these
noncontiguous elements be copied into a buffer before being sent.

Figure 8.12: MPI derived datatype functions.

Three sets of functions are applied for manipulating derived types. Derived datatypes are
constructed by applying constructor functions to simple or derived types; we describe three
constructor functions MPI_TYPE_CONTIGUOUS, MPI_TYPE_VECTOR, and MPI_TYPE_INDEXED. The
commit function, MPI_TYPE_COMMIT, must be applied to a derived type before it can be used in a

communication operation. Finally, the free function, MPI_TYPE_FREE, should be applied to a
derived type after use, in order to reclaim storage. These functions are summarized in Figure 8.12.

The constructor MPI_TYPE_CONTIGUOUS is used to define a type comprising one or more
contiguous data elements. A call of the form MPI_TYPE_CONTIGUOUS(count, oldtype,
newtype)

defines a derived type newtype comprising count consecutive occurrences of datatype oldtype.
For example, the sequence of calls

 call MPI_TYPE_CONTIGUOUS(10, MPI_REAL, tenrealtype, ierr)
 call MPI_TYPE_COMMIT(tenrealtype, ierr)
 call MPI_SEND(data, 1, tenrealtype, dest, tag,
 $ MPI_COMM_WORLD, ierr)
 CALL MPI_TYPE_FREE(tenrealtype, ierr)

is equivalent to the following single call.
 call MPI_SEND(data, 10, MPI_REAL, dest, tag,
 $ MPI_COMM_WORLD, ierr)

Both code fragments send a sequence of ten contiguous real values at location data to process
dest.

 The constructor MPI_TYPE_VECTOR is used to define a type comprising one or more blocks of data
elements separated by a constant stride in an array. A call of the form

MPI_TYPE_VECTOR(count, blocklen, stride, oldtype, newtype)

defines a derived type newtype comprising count consecutive blocks of data elements with
datatype oldtype, with each block containing blocklen data elements, and the start of successive
blocks separated by stride data elements. For example, the sequence of calls

 float data[1024];
 MPI_Datatype floattype;
 MPI_Type_vector(10, 1, 32, MPI_FLOAT, &floattype);
 MPI_Type_commit(&floattype);
 MPI_Send(data, 1, floattype, dest, tag, MPI_COMM_WORLD);
 MPI_Type_free(&floattype);

is equivalent to the following code.
 float data[1024], buff[10];
 for (i=0; i<10; i++) buff[i] = data[i*32];
 MPI_Send(buff, 10, MPI_FLOAT, dest, tag, MPI_COMM_WORLD);

Both send ten floating-point numbers from locations data[0], data[32],..., data[288].

Example . Finite Difference Stencil:

Program 8.8 uses derived types to communicate the north and south rows and the west and east
columns of a Fortran array. As illustrated in Figure 8.13, a column of this array is stored in
contiguous locations and can be accessed by using a contiguous derived type. On the other hand,
row i of this array (comprising elements array(i,1), (i,2), ..., (i,6)) is located in elements i, i
+4, ..., i +20. As these elements are not stored in contiguous locations, a call to MPI_TYPE_VECTOR
is used to define the appropriate type, rowtype.

Program 8.8 frees the derived types that it defines immediately after they are used. In practice, a
type might be reused many times before being freed.

Figure 8.13: A finite difference grid. Areas to be sent to west, east, north, and south
neighbors are highlighted.

The third constructor, MPI_TYPE_INDEXED, is used to define a type comprising one or more blocks
of a primitive or previously defined datatype, where block lengths and the displacements between
blocks are specified in arrays. A call of the form

MPI_TYPE_INDEXED(count, lengths, indices, oldtype, newtype)

defines a derived type newtype comprising count consecutive blocks of data elements with
datatype oldtype, with block i having a displacement of indices(i) data elements and
containing lengths(i) data elements.

Example . Fock Matrix Problem:

In Example 8.4 and Program 8.6, we developed an implementation for a Fock matrix task that
receives read requests containing the address of a single data value. A more realistic program
might support messages comprising len/2 indices followed by len/2 block lengths. The
MPI_TYPE_INDEXED constructor can then be used to return the required values, as follows.

 call MPI_TYPE_INDEXED(len/2, inbuf(len/2+1), inbuf(1),
 $ MPI_INTEGER, focktype, ierr)
 call MPI_TYPE_COMMIT(focktype, ierr);
 call MPI_SEND(data, 1, focktype, source, MPI_COMM_WORLD,
 ierr)
 call MPI_TYPE_FREE(focktype, ierr)

An alternative approach that does not use the constructor is to accumulate the values that are to be
returned in a buffer. The relative efficiency of the two approaches depends on several factors,
including the amount of data to be transferred and the capabilities of the computer used to execute
the program.

8.6.2 MPI Features Not Covered
For simplicity, we have focused on a subset of MPI in this chapter. Of necessity, numerous
subtleties have been omitted in this brief description. Also, the following MPI features have not
been covered.

1. Heterogeneous types. Different datatypes can be encapsulated in a single derived type,
thereby allowing communication of heterogeneous messages. In addition, data can be sent
in ``raw'' format, without data conversion in heterogeneous networks.

2. Environmental inquiry. A program can obtain information about the environment in which
it is running, including information that can be used to tune algorithm performance.

3. Additional global operations. These operations support all-to-all communication and
variable-sized contributions from different processes. Additional reduction operations can
be used to determine the location of minimum and maximum values and to perform
reductions with user-defined functions.

4. Specialized communication modes. These modes include synchronous communication,
which causes the sender to block until the corresponding receive operation has begun;
buffered communication, which allows the programmer to allocate buffers so as to ensure
that system resources are not exhausted during communications; and nonblocking
communication, which can be more efficient on computers that allow user computation to
be overlapped with some of the sending of a message.

8.7 Performance Issues
The performance analysis techniques developed in Chapter 3 can be applied directly to MPI
programs. We discuss some relevant costs here.

An MPI_SEND/ MPI_RECV pair communicates a single message. The cost of this communication
can be modeled with Equation 3.1. The cost of the blocking MPI_PROBE operation will normally be
similar to that of an ordinary receive. The cost of the nonblocking MPI_IPROBE operation can vary
significantly according to implementation: in some implementations it may be negligible, while in
others it can be higher than an ordinary receive.

The performance of global operations is less straightforward to analyze, as their execution can
involve considerable internal communication. Implementations of these functions can normally be
expected to use efficient communication algorithms, such as the hypercube algorithms described
in Chapter 11. In the absence of bandwidth limitations, these allow a barrier to complete in

steps on P processors, a broadcast of N words to proceed in time if N is
small and in time if N is large, and so on. The costs associated with these
algorithms are summarized in Table 8.1. Remember that on many architectures, bandwidth
limitations can increase actual costs, especially for larger messages (Section 3.7).

Table 8.1: Communication costs associated with various MPI global operations when
implemented using hypercube communication algorithms on the idealized multicomputer
architecture. The term represents the cost of a single reduction operation.

The MPI_COMM_DUP, MPI_COMM_SPLIT, and MPI_COMM_FREE operations should not normally
involve communication. The cost of the MPI_INTERCOMM_CREATE operation is implementation
dependent, but will normally involve at least one communication operation. The cost of the
MPI_INIT and MPI_FINALIZE operations is implementation dependent and can be high. However,
these functions are called once only in a program execution. Other functions can normally be
expected to execute without communication and with little local computation.

8.8 Case Study: Earth System Model

Figure 8.14: Communicators and intercommunicators in an earth system model. Available

processes are partitioned into three disjoint groups, each with its own communicator used for
internal communication. Intercommunicators allow the atmosphere model to communicate with
the ocean model and graphics model.

We conclude by showing how the earth system model introduced in Chapter 2 can be constructed
in a modular fashion by using MPI communicators. In particular, we consider a hypothetical
model constructed as a parallel composition of atmosphere, ocean, and graphics components. The
atmosphere and ocean models execute concurrently and exchange data periodically; in addition,
the atmosphere model sends data periodically to the graphics component, which performs data
reduction and rendering functions and outputs high-quality graphics. We allocate the same number
of processes to each component; this approach is unlikely to be efficient in practice, but simplifies
the presentation.

Program 8.9 implements this modular structure (Figure 8.14). The first two lines partition
available processes into the three equal-sized, disjoint process groups that will be used to execute
the three components. The code following the ``if'' statement establishes intercommunicators that
link the atmosphere model with the ocean and graphics components, and initiates execution of the
three components. Part of the ocean model code is shown also. This performs a reduction within
the ocean model processes by using MPI_ALLREDUCE and the intracommunicator comm. Then, it

exchanges data with corresponding processes in the atmosphere model by using the
intercommunicator atm_ocn.

8.9 Summary
This chapter has described the message-passing library approach to parallel programming and has
shown how parallel algorithm designs developed using the techniques from Part I can be translated
into message-passing programs. It has also provided a tutorial introduction to the MPI message-
passing standard. Table 8.2 summarizes the MPI routines described in this chapter; Tables 8.3 and
8.4 summarize the C and Fortran language bindings, respectively, for these functions and give the
types of each function's arguments.

Table 8.2: MPI quick reference: the functions included in the MPI subset, the figure in which each
is defined, the section in which each is described, and the programs that illustrate their use.

The principal features of the message-passing programming model as realized in MPI are as
follows.

1. A computation consists of a (typically fixed) set of heavyweight processes, each with a
unique identifier (integers 0..P--1).

2. Processes interact by exchanging typed messages, by engaging in collective
communication operations, or by probing for pending messages.

3. Modularity is supported via communicators, which allow subprograms to encapsulate
communication operations and to be combined in sequential and parallel compositions.

4. Algorithms developed using the techniques set out in Part I can be expressed directly if
they do not create tasks dynamically or place multiple tasks on a processor.

5. Algorithms that do create tasks dynamically or place multiple tasks on a processor can
require substantial refinement before they can be implemented in MPI.

6. Determinism is not guaranteed but can be achieved with careful programming.

Table 8.3: MPI quick reference: C language binding.

Table: MPI quick reference: Fortran language binding. For brevity, we adopt the convention that
arguments with an I prefix have type INTEGER unless specified otherwise. The ISTATUS argument
is always an integer array of size MPI_STATUS_SIZE.

Exercises

1. Devise an execution sequence for five processes such that Program 8.4 yields an incorrect
result because of an out-of-order message.

2. Write an MPI program in which two processes exchange a message of size N words a
large number of times. Use this program to measure communication bandwidth as a
function of N on one or more networked or parallel computers, and hence obtain estimates
for and .

3. Compare the performance of the program developed in Exercise 2 with an equivalent
CC++ or FM program.

4. Implement a two-dimensional finite difference algorithm using MPI. Measure
performance on one or more parallel computers, and use performance models to explain
your results.

5. Compare the performance of the program developed in Exercise 4 with an equivalent
CC++, FM, or HPF programs. Account for any differences.

6. Study the performance of the MPI global operations for different data sizes and numbers of
processes. What can you infer from your results about the algorithms used to implement
these operations?

7. Implement the vector reduction algorithm of Section 11.2 by using MPI point-to-point
communication algorithms. Compare the performance of your implementation with that of
MPI_ALLREDUCE for a range of processor counts and problem sizes. Explain any
differences.

8. Use MPI to implement a two-dimensional array transpose in which an array of size N N
is decomposed over P processes (P dividing N), with each process having N/P rows before
the transpose and N/P columns after. Compare its performance with that predicted by the
performance models presented in Chapter 3.

9. Use MPI to implement a three-dimensional array transpose in which an array of size N N
N is decomposed over processes. Each processor has (N/P) (N/P) x/y columns before

the transpose, the same number of x/z columns after the first transpose, and the same
number of y/z columns after the second transpose. Use an algorithm similar to that
developed in Exercise 8 as a building block.

10. Construct an MPI implementation of the parallel parameter study algorithm described in
Section 1.4.4. Use a single manager process to both allocate tasks and collect results.
Represent tasks by integers and results by real numbers, and have each worker perform a
random amount of computation per task.

11. Study the performance of the program developed in Exercise 10 for a variety of processor
counts and problem costs. At what point does the central manager become a bottleneck?

12. Modify the program developed in Exercise 10 to use a decentralized scheduling structure.
Design and carry out experiments to determine when this code is more efficient.

13. Construct an MPI implementation of the parallel/transpose and parallel/pipeline
convolution algorithms of Section 4.4, using intercommunicators to structure the program.
Compare the performance of the two algorithms, and account for any differences.

14. Develop a variant of Program 8.8 that implements the nine-point finite difference stencil of
Figure 2.22.

15. Complete Program 8.6, adding support for an accumulate operation and incorporating
dummy implementations of routines such as identify_next_task.

16. Use MPI to implement a hypercube communication template (see Chapter 11). Use this
template to implement simple reduction, vector reduction, and broadcast algorithms.

Chapter Notes

Message-passing functions were incorporated in specialized libraries developed for early
distributed-memory computers such as the Cosmic Cube [254], iPSC [227], and nCUBE [211].
Subsequent developments emphasized portability across different computers and explored the
functionality required in message-passing systems. Systems such as Express [219], p4 [44,194],
PICL [118], PARMACS [143,144], and PVM [275] all run on a variety of homogeneous and
heterogeneous systems. Each focused on a different set of issues, with the commercially supported
Express and PARMACS systems providing the most extensive functionality, p4 integrating
shared-memory support, PICL incorporating instrumentation, and PVM permitting dynamic
process creation. A special issue of Parallel Computing includes articles on many of these systems
[196].

An unfortunate consequence of this exploration was that although various vendor-supplied and
portable systems provided similar functionality, syntactic differences and numerous minor
incompatibilities made it difficult to port applications from one computer to another. This situation
was resolved in 1993 with the formation of the Message Passing Interface Forum, a consortium of
industrial, academic, and governmental organizations interested in standardization [203]. This
group produced the MPI specification in early 1994. MPI incorporates ideas developed previously
in a range of systems, notably p4, Express, PICL, and PARMACS. An important innovation is the
use of communicators to support modular design. This feature builds on ideas previously explored
in Zipcode [266], CHIMP [90,91], and research systems at IBM Yorktown [24,25].

The presentation of MPI provided in this chapter is intended to be self-contained. Nevertheless,
space constraints have prevented inclusion of its more complex features. The MPI standard
provides a detailed technical description [202]. Gropp, Lusk, and Skjellum [126] provide an
excellent, more accessible tutorial text that includes not only a description of MPI but also material
on the development of SPMD libraries and on MPI implementation.

9 Performance Tools
In Chapter 3, we emphasized the importance of using empirical data at each stage of the parallel
program design and implementation process, in order to calibrate and validate performance models
and implementations. However, we did not address the topic of how to collect or analyze these
data. Clearly, a stopwatch is not enough. In this chapter, we survey the various sorts of
performance data that may be of interest and describe tools that can assist in the tasks of gathering,
analyzing, and interpreting these data.

A discussion of tools for gathering and analyzing performance data is difficult because few
standards exist. The various public domain and commercial tools take different approaches, use
different performance data file formats, and provide different display technologies. Nevertheless,
we can identify basic principles that apply to most existing tools, and can illustrate these principles
by describing several popular systems.

We emphasize that performance measurement is not an end in itself but is useful only in the
context of a performance analysis methodology such as that described in Chapter 3. Hence, we do
not repeat material from Chapter 3 here but base our presentation on the assumption that
performance models have been developed and are guiding the data collection and analysis process,
thereby allowing us to pose performance questions, identify performance data of interest, and
isolate and correct performance problems.

After studying this chapter, you should be familiar with the basic ideas of data collection, data
reduction, and data visualization. You should understand the difference between profiles, counts,
and execution traces and the role each plays in performance analysis. You should also be familiar
with a number of popular performance analysis tools.

9.1 Performance Analysis
We distinguish three basic steps in the performance analysis process: data collection, data
transformation, and data visualization. Data collection is the process by which data about program
performance are obtained from an executing program. Data are normally collected in a file, either
during or after execution, although in some situations it may be presented to the user in real time.
Three basic data collection techniques can be distinguished:

• Profiles record the amount of time spent in different parts of a program. This information,
though minimal, is often invaluable for highlighting performance problems. Profiles
typically are gathered automatically.

• Counters record either frequencies of events or cumulative times. The insertion of counters
may require some programmer intervention.

• Event traces record each occurrence of various specified events, thus typically producing a
large amount of data. Traces can be produced either automatically or with programmer
intervention.

The raw data produced by profiles, counters, or traces are rarely in the form required to answer
performance questions. Hence, data transformations are applied, often with the goal of reducing
total data volume. Transformations can be used to determine mean values or other higher-order
statistics or to extract profile and counter data from traces. For example, a profile recording the
time spent in each subroutine on each processor might be transformed to determine the mean time
spent in each subroutine on each processor, and the standard deviation from this mean. Similarly, a
trace can be processed to produce a histogram giving the distribution of message sizes. Each of the
various performance tools described in subsequent sections incorporates some set of built-in
transformations; more specialized transformation can also be coded by the programmer.

Parallel performance data are inherently multidimensional, consisting of execution times,
communication costs, and so on, for multiple program components, on different processors, and
for different problem sizes. Although data reduction techniques can be used in some situations to
compress performance data to scalar values, it is often necessary to be able to explore the raw
multidimensional data. As is well known in computational science and engineering, this process
can benefit enormously from the use of data visualization techniques. Both conventional and more
specialized display techniques can be applied to performance data.

As we shall see, a wide variety of data collection, transformation, and visualization tools are
available. When selecting a tool for a particular task, the following issues should be considered:

1. Accuracy. In general, performance data obtained using sampling techniques are less
accurate than data obtained by using counters or timers. In the case of timers, the accuracy
of the clock must be taken into account.

2. Simplicity. The best tools in many circumstances are those that collect data automatically,
with little or no programmer intervention, and that provide convenient analysis capabilities.

3. Flexibility. A flexible tool can be extended easily to collect additional performance data or
to provide different views of the same data. Flexibility and simplicity are often opposing
requirements.

4. Intrusiveness. Unless a computer provides hardware support, performance data collection
inevitably introduces some overhead. We need to be aware of this overhead and account
for it when analyzing data.

5. Abstraction. A good performance tool allows data to be examined at a level of abstraction
appropriate for the programming model of the parallel program. For example, when
analyzing an execution trace from a message-passing program, we probably wish to see
individual messages, particularly if they can be related to send and receive statements in
the source program. However, this presentation is probably not appropriate when studying
a data-parallel program, even if compilation generates a message-passing program. Instead,
we would like to see communication costs related to data-parallel program statements.

9.2 Data Collection
Next, we examine in more detail the techniques used to collect performance data. We consider in
turn profiling, counters, and event traces, focusing in each case on the principles involved.
Individual tools are described in Section 9.4.

9.2.1 Profiles
The concept of a profile should be familiar from sequential computing. Typically, a profile shows
the amount of time spent in different program components. This information is often obtained by
sampling techniques, which are simple but not necessarily highly accurate. The value of the
program counter is determined at fixed intervals and used to construct a histogram of execution
frequencies. These frequences are then combined with compiler symbol table information to
estimate the amount of time spent in different parts of a program. This profile data may be
collected on a per-processor basis and may be able to identify idle time and communication time
as well as execution time.

 Profiles have two important advantages. They can be obtained automatically, at relatively low
cost, and they can provide a high-level view of program behavior that allows the programmer to
identify problematic program components without generating huge amounts of data. (In general,
the amount of data associated with a profile is both small and independent of execution time.)
Therefore, a profile should be the first technique considered when seeking to understand the
performance of a parallel program.

A profile can be used in numerous ways. For example, a single profile on a moderate number of
processors can help identify the program components that are taking the most time and that hence
may require further investigation. Similarly, profiles performed for a range of processor counts
and problem sizes can identify components that do not scale.

Profiles also have limitations. In particular, they do not incorporate temporal aspects of program
execution. For example, consider a program in which every processor sends to each other
processor in turn. If all processors send to processor 0, then to processor 1, and so on, overall
performance may be poor. This behavior would not be revealed in a profile, as every processor
would be shown to communicate the same amount of data.

Profilers are available on most parallel computers but vary widely in their functionality and
sophistication. The most basic do little more than collect sequential profile data on each processor;
the most sophisticated provide various mechanisms for reducing this data, displaying it, and
relating it to source code. Because efficient profiling requires the assistance of a compiler and
runtime system, most profiling tools are vendor supplied and machine specific.

9.2.2 Counters
As its name suggests, a counter is a storage location that can be incremented each time a specified
event occurs. Counters can be used to record the number of procedure calls, total number of
messages, total message volume, or the number of messages sent between each pair of processors.
Counts may be generated by compiler-generated code, by code incorporated in communication
libraries, or by user-inserted calls to counter routines.

Counters complement profilers by providing information that is not easily obtainable using
sampling techniques. For example, they can provide the total number and volume of messages,
information that can be combined with communication time data from a profile to determine the
efficiency of communication operations.

A useful variant of a counter is an interval timer, a timer used to determine the length of time spent
executing a particular piece of code. This information can be accumulated in a counter to provide
an accurate determination of the total time spent executing that program component. A
disadvantage of interval timers is that the logic required to obtain a timer value can be expensive.

The use of counters and interval timers in a computational chemistry code was illustrated in
Section 3.6: see in particular Tables 3.4 and 3.5.

9.2.3 Traces

Figure 9.1: Trace records generated by the Portable Instrumented Communication Library. The
various records contain information regarding the type of event, the processor number involved, a
time stamp, and other information. Clearly, these records are not meant to be interpreted by
humans.

An execution trace is the most detailed and low-level approach to performance data collection.
Trace-based systems typically generate log files containing time-stamped event records
representing significant occurrences in a program's execution, such as calling a procedure or
sending a message. Trace records may include information such as the type of event and the

procedure name or destination task, and can be generated either automatically or under
programmer control. Figure 9.1 shows an example of trace records.

Trace-based approaches support a particularly broad study of program behavior. They can be used
to examine causal relationships between communications, to localize sources of idle time, and to
identify temporary hot spots. For example, an execution trace could be used to determine that all
processors are sending to the same processor at the same time. An execution trace can also be
postprocessed to obtain profile, count, and interval timer information; to compute higher-order
statistics such as the means and variances of these values; and to obtain other data such as mean
message queue length in a message-passing system.

 The disadvantages of trace-based approaches stem primarily from the huge volume of data that
can be generated. Particularly when a program is executing on large numbers of processors, it is
easy to generate tens, hundreds, or even thousands of megabytes of data. (For example, if a 20-
byte record is logged for every message on a 128-processor system, then assuming messages are
sent at the rate of one every 10 milliseconds, trace data will be generated at 256 kilobytes per
second, or about 1 gigabyte per hour.) This large data volume has three unwelcome consequences.
First, the logging of this data tends to perturb performance, thereby leading to what is called the
probe effect in which the measuring of performance data changes their characteristics. Second, the
sheer volume of data makes postprocessing difficult. Frequently, sophisticated analysis is required
to extract relevant information. Third, the programmer, in order to combat the problems caused by
volume, may have to spend considerable effort tuning the data collection process so that only
relevant events are recorded while the phenomenon of interest is retained. Tracing then becomes a
labor-intensive process. For these reasons, tracing should be used with care and only if other data
collection techniques are not available or do not provide sufficient information.

Many parallel programming tools provide some automatic tracing capabilities, for example by
generating a trace record for every message generated or received. These capabilities are invoked
by linking with a specialized version of a communication library and/or by a runtime flag.
Mechanisms for generating user-defined events may also be provided.

In principle, event traces can be interpreted in various ways by using different tools. A stumbling
block here is a lack of standards for event log records. One proposed standard is the Pablo Self
Describing Data Format (SDDF) designed at the University of Illinois. As illustrated in Figure 9.2,
this associates an integer event type with a record description that specifies a type and name for
each field.

Figure 9.2: An example of the Pablo Self Describing Data Format. The data record "Procedure
Exit Trace" has an event type of 105 and six data fields, all integers.

9.2.4 Summary of Data Collection Tools
A broad spectrum of data collection mechanisms can be used to obtain information about parallel
program performance. In general, those requiring the least programmer intervention are also the
least intrusive and provide the highest-level, least-detailed view of program behavior; those
providing greater detail are progressively more intrusive and demand more programmer effort.
Hence, for maximum programmer efficiency, the process of collecting and interpreting
performance data should proceed in a staged manner, as follows.

1. Use profile and count information to obtain any parameter values needed to complete
performance models.

2. Measure execution times for a range of processor counts and problem sizes, and compare
these results with values predicted by performance models.

3. If observed and modeled performance differ significantly, use profile and count
information to verify the basic assumptions underlying your model. For example, check
that message counts and volumes match your predictions, and check for load imbalances
and replicated computation (Section 3.6).

4. If there are still unexplained aspects of program performance, incorporate simple tracing
(or enable automatic tracing capabilities), and study performance on a few processors.
Increase the number of processors as your understanding improves.

Of course, the actual path followed to obtain performance data will also depend on the
functionality provided in a particular parallel programming system.

9.3 Data Transformation and Visualization
Data transformation and visualization tools transform raw data collected during program execution
to yield data and images more easily understood by the programmer. In this section, we provide a
general discussion of transformation and display techniques, indicating which are useful for which

purposes. In the next section, we present examples of specific tools and describe specific
transformations and display formats.

9.3.1 Profile and Counts
 A typical profile provides information about the time spent in each procedure on each processor,
the number of times each procedure is called, the number of messages generated on each
processor, the volume of these messages, and so forth. Data reduction techniques can be used to
reduce this multidimensional data to a smaller number of dimensions, and various forms of display
can be used to visualize both the original and the reduced data.

Zero-dimensional (scalar) data are of course trivial to display, consisting of a single number: total
computation time, total number of messages, mean message size, and so forth. However, numbers
of this sort provide relatively little insight into program behavior. For example, we may notice that
total communication volume is greater than expected. This observation may stimulate us to ask
several questions. Is the additional communication concentrated in a subset of the processors? Is it
concentrated in a single procedure? In which phase of the computation does it occur? More data
are required if we are to answer these questions.

The histogram is often a convenient display format for one-dimensional data. If the number of
processors is large, the size of a histogram can be reduced by binning, in which case histogram
bars represent the number of processors (or procedures or whatever) that have computation time in
a specified range. Two-dimensional data can be displayed using color and a two-dimensional
matrix. For example, in Plate 7 and Plate 8

color is used, respectively, to indicate execution time per procedure per processor, and
communication volume between pairs of processors.

Plate 7 is not available in the online version.

Plate 8 is not available in the online version.

9.3.2 Traces
 Trace data can often be reduced to one, two, or three dimensions and then displayed using the
histogram techniques described in Section 9.3.1. For example, we can plot communication volume
or efficiency as a function of time, or plot histograms of trace values. Other forms of display can
provide more detailed views of temporal dependencies between different processors and program
components by sacrificing scalability and abstraction for detail. We describe just two displays of
this sort; others are illustrated in later sections.

 The Gantt chart is a horizontal bar chart in which each bar represents the status of each processor
as a function of time (Plate 8 and Plate 12).

Bars can simply represent status (computing, communicating, or idling) and/or indicate the
program component or procedure that is executing on each processor at a particular time. A Gantt
chart can highlight unexpected dependencies between program components. Note that
dependencies inferred from these sorts of displays are valid only if the computer and performance
tool that we are using ensure that times recorded for events occurring on different processors are
consistent. This will generally be the case if we use the performance tools described in this
chapter, as these all incorporate appropriate clock synchronization logic.

If we augment a Gantt chart by drawing lines to connect corresponding send and receive events on
different processors, we obtain a space-time diagram, illustrated in the lower part of Plate 8.

A space-time diagram can make it easier to infer temporal dependencies, because it is often
possible to identify the specific communication event for which a processor is waiting and hence
idle.

9.3.3 Data-Parallel Languages
 In data-parallel languages such as HPF and pC++, performance analysis is simplified by the fact
that each processor typically executes the same program. On the other hand, the semantic gap
between parallel program and executable code is particularly high. Apparently innocuous
assignment statements can cause large amounts of communication if distributions do not match,
while a compiler may restructure code to eliminate other communication operations that the
programmer may assume will occur. Similarly, the mapping of computation to processors may not
be obvious to the programmer. Therefore, low-level information about computation and
communication tends to have only limited value.

Performance tools for data-parallel languages both can take advantage of the SPMD nature of
data-parallel computation and overcome the semantic gap by relating performance data to the
program statements concerned. For example, they can label the source code with communication
costs or can color data arrays to indicate the computation costs and communication volumes
associated with each element. These forms of display can involve a considerable degree of
compiler assistance and/or postprocessing, since in many cases the executed code has been
transformed out of recognition. This approach is illustrated in Plate 9,

which shows a communication summary produced by Thinking Machine's Prism performance
tool. The program illustrated is the Gaussian elimination code used as a case study in Chapter 7.
The plate indicates sources of communication in a data-parallel Fortran program and the relative
cost of each communication operation.

Plate 9: Thinking Machine's PRISM performance tool, here applied to a Gaussian elimination
algorithm. Image courtesy of D. Reed.

9.4 Tools
Next, we describe a number of both public-domain and commercial performance tools, explaining
how each is used to collect and display performance data. While the tools exhibit important
differences, there are also many similarities, and frequently our choice of tool will be driven more
by availability than by the features provided.

9.4.1 Paragraph
 Paragraph is a portable trace analysis and visualization package developed at Oak Ridge National
Laboratory for message-passing programs. It was originally developed to analyze traces generated
by a message-passing library called the Portable Instrumented Communication Library (PICL) but
can in principle be used to examine any trace that complies to its format. Like many message-
passing systems, PICL can be instructed to generate execution traces automatically, without
programmer intervention.

Paragraph is an interactive tool. Having specified a trace file, the user instructs Paragraph to
construct various displays concerning processor utilization, communication, and the like. The trace
files consumed by Paragraph include, by default, time-stamped events for every communication
operation performed by a parallel program. Paragraph performs on-the-fly data reduction to
generate the required images. Users also can record events that log the start and end of user-
defined ``tasks.''

Paragraph's processor utilization displays allow the user to distinguish time spent computing,
communicating, and idling. Communication time represents time spent in system communication
routines, while idle time represents time spent waiting for messages. These displays can be used to
identify load imbalances and code components that suffer from excessive communication and idle
time costs. Some of these displays are shown in Plate 8,

which shows a Gantt chart (top part) and a space time diagram (bottom part) for a parallel climate
model executing on 64 Intel DELTA processors. In the space-time diagram, the color of the lines
representing communications indicates the size of the message being transferred. The climate
model is a complex program with multiple phases. Initially, only processor 0 is active.

Subsequently, the model alternates between computation and communication phases. Some of the
communication phases involve substantial idle time, which should be the subject of further
investigation.

Communication displays can be used both to obtain more detailed information on communication
volumes and communication patterns and to study causal relationships, for example between
communication patterns and idle time. Plate 10

shows some of these displays, applied here to the trace data set of Plate 8.

The communication matrix on the left and the circle on the right both show instantaneous
communication patterns. The colors in the communication matrix indicate communication volume,
as defined by the scale above the matrix. Most matrix entries are on the diagonal, which indicates
mostly nearest-neighbor communication. Another display in the top right presents cumulative data
on processor utilization.

Plate 10 is not available in the online version.

A disadvantage of Paragraph is that the relationship between performance data and program
source is not always clear. This problem can be overcome in part by explicitly logging events that
record the start and end of ``tasks'' corresponding to different phases of a program's execution.
Paragraph provides task Gantt and task histogram displays to examine this information.

Of the portable tools described here, Paragraph is probably the simplest to install and use. Because
it operates on automatically generated traces, it can be used with little programmer intervention.
Paragraph displays are particularly intuitive, although the inability to scroll within display
windows can be frustrating.

9.4.2 Upshot
 Upshot is a trace analysis and visualization package developed at Argonne National Laboratory
for message-passing programs. It can be used to analyze traces from a variety of message-passing
systems: in particular, trace events can be generated automatically by using an instrumented
version of MPI. Alternatively, the programmer can insert event logging calls manually.

Upshot's display tools are designed for the visualization and analysis of state data derived from
logged events. A state is defined by a starting and ending event. (For example, an instrumented
collective communication routine can generate two separate events on each processor to indicate
when the processor entered and exited the routine.) The Upshot Gantt chart display shows the state
of each processor as a function of time. States can be nested, thereby allowing multiple levels of
detail to be captured in a single display. States can be defined either in an input file or interactively
during visualization. A histogramming facility allows the use of histograms to summarize
information about state duration (Plate 11).

Plate 11: Gantt chart, state duration histogram, and instantaneous state diagram for a search
problem running on 16 processors, generated using Upshot. Image courtesy of E. Lusk.

Plate 12 illustrates the use of nested states within Upshot. This is a trace generated from a
computational chemistry code that alternates between Fock matrix construction (Section 2.8) and
matrix diagonalization, with the former taking most of the time. Each Fock matrix construction
operation (blue) involves multiple integral computations (green). A substantial load imbalance is
apparent---some processors complete their final set of integrals much later than do others. The
display makes it apparent why this load imbalance occurs. Integrals are being allocated in a
demand-driven fashion by a central scheduler to ensure equitable distribution of work; however,
smaller integrals are being allocated before larger ones. Reversing the allocation order improves
performance.

Plate 12 is not available in the online version.

Upshot provides fewer displays than does Paragraph, but has some nice features. The ability to
scroll and zoom its displays is particularly useful.

9.4.3 Pablo
The Pablo system developed at the University of Illinois is the most ambitious (and complex) of
the performance tools described here. It provides a variety of mechanisms for collecting,
transforming, and visualizing data and is designed to be extensible, so that the programmer can
incorporate new data formats, data collection mechanisms, data reduction modules, and displays.
Predefined and user-defined data reduction modules and displays can be combined in a mix-and-
match fashion by using a graphical editor. Pablo is as much a performance tool toolkit as it is a
performance tool proper and has been used to develop performance tools for both message-passing
and data-parallel programs.

A source code instrumentation interface facilitates the insertion of user-specified instrumentation
into programs. In addition, Pablo calls can be incorporated into communication libraries or
compilers to generate trace files automatically. When logging an event, Pablo can be requested to
invoke a user-defined event handler that may perform on-the-fly data reduction. For example, a

user-defined handler can compute communication statistics rather than logging every message or
can combine procedure entry and exit events to determine procedure execution times. This very
general mechanism provides great flexibility. A disadvantage is that the overhead associated with
logging an event is greater than in other, less general systems.

A novel feature of Pablo is its support for automatic throttling of event data generation. The user
can specify a threshold data rate for each type of event. If events are generated at a greater rate,
event recording is disabled or replaced by periodic logging of event counts, thereby enabling a
variety of events to be logged without the danger that one will unexpectedly swamp the system.

Pablo provides a variety of data reduction and display modules that can be plugged together to
form specialized data analysis and visualization networks. For example, most displays provided by
Paragraph can be constructed using Pablo modules. This feature is illustrated in Plate 13,

which shows a variety of Paragraph-like displays and the Pablo network used to generate them. As
noted earlier, Pablo uses its own SDDF.

Plate 13: Pablo display of performance data collected from a numerical solver. Image courtesy of
D.~Reed.

An interesting feature of the Pablo environment is its support for novel ``display'' technologies,
such as sound and immersive virtual environments. Sound appears to be particularly effective for
alerting the user to unusual events, while immersive virtual environments can be used to display
higher-dimensional data, as illustrated in Plate 14.

In this plate, each cube represents a different performance metric, and the spheres within the cubes
represent processors moving within a three-dimensional metric space. While both approaches are
still experimental at present, they are suggestive of future directions.

Plate 14: Pablo virtual reality display of performance data. Image courtesy of D. Reed.

9.4.4 Gauge
 The Gauge performance tool developed at the California Institute of Technology is distinguished
by its focus on profiles and counters rather than execution traces. The Gauge display tool allows
the user to examine a multidimensional performance data set in a variety of ways, collapsing along
different dimensions and computing various higher-order statistics. For example, a three-
dimensional view of an execution profile uses color to indicate execution time per processor and
per routine; corresponding two-dimensional displays provide histograms for time per routine
summed over all processors or for time per processor for all routines. Idle time is also measured on
a per-processor basis and associated with program components by determining which task is
enabled by arrival of a message. Some of these displays are illustrated in Plate 7.

9.4.5 ParAide
 The ParAide system developed by Intel's Supercomputer Systems Division is specialized for the
Paragon parallel computer. It incorporates a variety of different tools. Modified versions of the
standard Unix prof and gprof tools provide profiling on a per-node basis. An enhanced version of
Paragraph provides various data reduction and display mechanisms. The System Performance
Visualization system uses displays specialized for the Paragon's two-dimensional mesh
architecture to show data collected by hardware performance monitors. These provide detailed
low-level information regarding the utilization of the processor, communication network, and
memory bus. This fine level of detail is made possible by hardware and operating system support
in the Paragon computer.

9.4.6 IBM's Parallel Environment
 The IBM AIX Parallel Environment is specialized for IBM computers, in particular the SP
multicomputer. It incorporates a variety of different tools. A variant of the standard Unix prof and
gprof commands can be used to generate and process multiple profile files, one per task involved
in a computation. The Visualization Tool (VT) can be used to display a variety of different trace
data. Three types of trace data are supported, as follows:

1. A communication record represents a low-level communication event, such as a send,
receive, or call to a global (collective) communication routine.

2. A system statistics record samples low-level statistics such as CPU utilization, disk traffic,
and virtual memory statistics. The sampling rate can be selected by the programmer.

3. An application marker record is generated manually by a programmer and may be used to
delineate distinct stages in a program's execution.

Communication trace records and system statistics are generated automatically, although the
programmer can turn them on and off and can control their frequency.

VT displays are similar to those provided by Paragraph in many respects, but they give the
programmer greater flexibility in how data are displayed and can deal with a wider range of data.
Plate 15

shows one display, in this case a space-time diagram.

9.4.7 AIMS
The Automated Instrumentation and Monitoring System (AIMS) developed at the NASA Ames
Research Center provides both instrumentation tools and a variety of trace visualization
mechanisms for message-passing programs. Users can either specify trace events manually or
request AIMS to log communication events and procedure calls automatically. The resulting traces
can be visualized by using the AIMS View Kernel (VK), Pablo, or Paragraph. A strength of AIMS
is its tight integration with a source code browser that allows the user both to mark code blocks for
tracing and to relate communication events with source code. For example, the user can click on a
line representing a communication in a space-time diagram to identify the corresponding
communication operation in the source code. AIMS also provides statistical analysis functions that
can be used to determine average resource utilization and message latencies.

9.4.8 Custom Tools
We conclude this section by noting that while general-purpose tools have the advantage of being
easy to use, custom performance tools can also be valuable, particularly in understanding the
performance of a complex parallel program. Extensible tools such as Pablo can be useful in this
regard. So can text manipulation systems such as awk and PERL, statistical packages such as
Mathematica and Matlab, and general-purpose graphics packages such as AVS.

As an example of this approach, Plate 5 shows an image generated by a tool developed specifically
to help understand load imbalances in a parallel climate model. This tool collects timing data by
using interval timers and counters inserted manually into the parallel climate model. The data are
postprocessed to compensate for timer overhead and are then displayed by using a general-purpose
graphics package. Sequences of such images provide insights into how computational load varies
over time, and have motivated the design of load-balancing algorithms.

9.5 Summary
As discussed in Sections 3.5 and 3.6, parallel programming is an experimental discipline. An
analytic performance model is an idealization of program behavior that must be validated by
comparison with empirical results. This validation process can reveal deficiencies in both the
model and the parallel program. Performance analysis is most effective when guided by an

understanding rooted in analytic models, and models are most accurate when calibrated with
empirical data.

Because performance data tend to be complex and multidimensional, performance tools are a vital
part of any parallel programming toolkit. In this chapter, we have introduced basic techniques and
surveyed popular tools for collecting, transforming, and analyzing performance data. At the data
collection level, we distinguished between profiles, counters, and event traces. Each approach has
a role to play in performance analysis: profile and counter data are easier to obtain and to analyze,
while traces can show fine detail. At the data transformation and visualization levels, we have
emphasized the importance of data reduction techniques that are able to reduce raw performance
data to more meaningful and manageable quantities, and data visualization tools that can facilitate
the navigation of large multidimensional data sets.

Exercises
1. Use one or more performance tools to obtain and analyze performance data from programs

developed by using tools described in earlier chapters. Relate observed performance to
analytic models and explain any disparities.

2. Devise and carry out experiments to quantify the overhead of data collection in the
performance tool(s) used in Exercise 1.

3. Explain why reversing the order in which integrals are allocated can be expected to
improve performance in the computational chemistry code discussed in Section 9.4.2 and
illustrated in Plate 12.

Chapter Notes
 Cheng [58] surveys parallel programming tools, including tools for performance data collection
and analysis. Reed [240] provides both a useful review of techniques for parallel performance
analysis and an introduction to Pablo. Reed et al. [241] provide a more detailed description of
Pablo, including its sound and virtual reality displays. Herrarte and Lusk [148] describe Upshot.
Heath and Etheridge [139] describe Paragraph, and Heath [138] presents case studies showing how
it is used to tune parallel program performance. Kesselman [104,172] provides a detailed
description of Gauge; while originally developed for the parallel languages Strand and PCN, a
general-purpose implementation is under development. Ries et al. [244] describe Intel's ParAide
system. Yan et al. [301] describe AIMS.

Graham et al. [124] describe the sampling approach to profiling sequential programs. Lamport
[185] discusses clock synchronization algorithms. Tufte [285] provides a wonderful introduction
to the visual presentation of multidimensional data.

 Other systems not described here include Cray Research's MPP Apprentice, which provides
integrated performance analysis, optimization, and prediction capabilities; Thinking Machines's
Prism system, which provides specialized analysis capabilities for data-parallel programs;
Parasoft's Express message-passing system, which provides execution profiling, communication
profiling, and event trace analysis mechanisms; Applied Parallel Research's HPF profiler; and the
IPS-2 system from University of Wisconsin Madison [207]. Other systems are described in a
conference proceedings edited by Haring and Kotsis [132].

Plate 15: IBM's VT trace analysis tool. Image courtesy of IBM.

Part III: Resources
In Parts I and II of this book, we have described the fundamental concepts and tools required to
design and build parallel programs. In the process, we have also introduced a number of important
algorithms, communication structures, and problem-solving techniques that can serve as building
blocks in our programs. In Part III, we add to this set of building blocks. The goal is not to be in
any way comprehensive, but instead simply to indicate the range of parallel algorithms that have
been developed and to provide pointers to other information sources.

Hence, Chapter 10 introduces the important topic of parallel random numbers. Chapter 11 surveys
parallel algorithms based on an important communication structure, the hypercube. Chapter 12
provides additional bibliographical material.

10 Random Numbers
 Random numbers are used in computing to simulate apparently random processes in the external
world or to sample large parameter spaces. Well-known sequential techniques exist for generating,
in a deterministic fashion, number sequences largely indistinguishable from true random
sequences. The deterministic nature of these techniques is important because it provides for
reproducibility in computations.

 On parallel computers, random number generation becomes more complicated because many
concurrently executing tasks may require access to random numbers. Generally, efficiency

concerns will require that we generate these numbers in a distributed fashion; nevertheless, we
wish to preserve randomness and reproducibility. In this chapter, we introduce these issues by
showing how one commonly used sequential technique can be adapted to meet these potentially
conflicting requirements.

10.1 Sequential Random Numbers
 Although the casinos at Monte Carlo are, one hopes, based on random phenomena, true random
numbers are rarely used in computing. Not only would such numbers be difficult to generate
reliably, but also the lack of reproducibility would make the validation of programs that use them
extremely difficult. Instead, computers invariably use pseudo-random numbers: finite sequences
generated by a deterministic process but indistinguishable, by some set of statistical tests, from a
random sequence. (In the following, we use the term random to mean pseudo-random.) The
statistical methods used to validate random sequences are an important topic of research, but
beyond the scope of this book. See the chapter notes for further reading on this subject.

Methods for generating a sequence of random numbers have been extensively studied and are well
understood. A function called a generator is defined that, when applied to a number, yields the
next number in the sequence. For example, the linear congruential generators considered in this
chapter have the general form

where is the k th element of the sequence and , a, c, and m define the generator. Random
numbers in the range [0,1] are then obtained by dividing by m.

As numbers are taken from a finite set (for example, integers between 1 and), any generator
will eventually repeat itself. The length of the repeated cycle is called the period of the generator.
A good generator is one with a long period and no discernible correlation between elements of the
sequence.

The parameters , a, c, and m in the linear congruential generator are chosen to make the
sequence look as random as possible. Common choices for these values are

This generator has period m-1, that is, for . Other common choices are

in which case the period of the generator is . A typical choice for m in this case is the
word size of the machine on which we are executing. See the references in the chapter notes for
sources of appropriate values for a, c, and m.

A fundamental property of Equation 10.1 is that if c=0, then

That is, the (k+n) th element of the sequence is related to the k th in the same way as is the (k+1)
th, albeit with a different value for a. We shall exploit this property when developing parallel
generators.

10.2 Parallel Random Numbers
 We can distinguish three general approaches to the generation of random numbers on parallel
computers: centralized, replicated, and distributed. In the centralized approach, a sequential
generator is encapsulated in a task from which other tasks request random numbers. This avoids
the problem of generating multiple independent random sequences, but is unlikely to provide good
performance. Furthermore, it makes reproducibility hard to achieve: the response to a request
depends on when it arrives at the generator, and hence the result computed by a program can vary
from one run to the next.

In the replicated approach, multiple instances of the same generator are created (for example, one
per task). Each generator uses either the same seed or a unique seed, derived, for example, from a
task identifier. Clearly, sequences generated in this fashion are not guaranteed to be independent
and, indeed, can suffer from serious correlation problems. However, the approach has the
advantages of efficiency and ease of implementation and should be used when appropriate.

In the distributed approach, responsibility for generating a single sequence is partitioned among
many generators, which can then be parceled out to different tasks. The generators are all derived
from a single generator; hence, the analysis of the statistical properties of the distributed generator
is simplified. As only distributed generators are at all difficult to implement on parallel computers,
we focus on this topic in the rest of this chapter.

10.3 Distributed Random Generators
The techniques described here for constructing distributed random number generators are based on
an adaptation of the linear congruential algorithm called the random tree method. We first show
how this method can be applied to a single generator to construct a tree of generators in a
deterministic and reproducible fashion. This facility is particularly valuable in computations that
create and destroy tasks dynamically during program execution.

10.3.1 The Random Tree Method
The random tree method employs two linear congruential generators, L and R, that differ only in
the values used for a.

Figure 10.1: The random tree method. Two generators are used to construct a tree of random
numbers. The right generator is applied to elements of the sequence L generated by the left
generator to generate new sequences R, R', R'', etc.

 Application of the left generator L to a seed generates one random sequence; application of the
right generator R to the same seed generates a different sequence. By applying the right generator
to elements of the left generator's sequence (or vice versa), a tree of random numbers can be
generated. By convention, the right generator R is used to generate random values for use in
computation, while the left generator L is applied to values computed by R to obtain the starting
points , , etc., for new right sequences (Figure 10.1).

The strength of the random tree method is that it can be used to generate new random sequences in
a reproducible and noncentralized fashion. This is valuable, for example, in applications in which
new tasks and hence new random generators must be created dynamically. Before creating a new
task, a parent task uses the left generator to construct a new right generator, which it passes to its
new offspring. The new task uses this right generator to generate the random numbers required for
its computation. If it in turn must generate a new task, it can apply the left generator to its latest
random value to obtain a new random seed.

A deficiency of the random tree method as described here is that there is no guarantee that
different right sequences will not overlap. The period of R is usually chosen to be near to m,
because this maximizes the quality of the random numbers obtained by using the generator. Hence,
the starting points returned by the left generator are likely to be different points in the same
sequence, in which case we can think of L as selecting random starting points in the sequence
constructed by R. If two starting points happen to be close to each other, the two right sequences
that are generated will be highly correlated.

10.3.2 The Leapfrog Method
In some circumstances, we may know that a program requires a fixed number of generators. (For
example, we may require one generator for each task in a domain decomposition algorithm.) In
this case, a variant of the random tree method called the leapfrog method can be used to generate
sequences that can be guaranteed not to overlap for a certain period.

Let n be the number of sequences required. Then we define and as a and , respectively, so
that we have

Then, we create n different right generators .. by taking the first n elements of L as their
starting values. The name ``leapfrog method'' refers to the fact that the i th sequence consists of

and every n th subsequent element of the sequence generated by L (Figure 10.2). As this method
partitions the elements of L, each subsequence has a period of at least P/n, where P is the period of
L. (If n divides P, then the period of a subsequence is exactly P/n.) In addition, the n subsequences
are disjoint for their first P/n elements.

Figure 10.2: The leapfrog method with n=3. Each of the three right generators selects a disjoint
subsequence of the sequence constructed by the left generator's sequence.

The generator for the r th subsequence, , is defined by and . We can compute these
values as follows. We first compute and ; these computations can be performed in

time by taking advantage of the identity

We then compute members of the sequence as follows, to obtain n generators, each defined by a
triple , for .

The leapfrog method can be applied recursively: the subsequence corresponding to a generator
can be further subdivided by a second application of the leapfrog method. Doing this

can be useful when random numbers are required at several levels in a task hierarchy. However,
the periods of the resulting sequences become shorter, and their statistical properties are less
certain.

10.3.3 Modified Leapfrog
In other situations, we may know the maximum number, n, of random values needed in a
subsequence but not the number of subsequences required. In this case, a variant of the leapfrog

method can be used in which the role of L and R are reversed so that the elements of subsequence i
are the contiguous elements .. (Figure 10.3), as follows:

It is not a good idea to choose n as a power of two, as this can lead to serious long-term
correlations.

Figure 10.3: Modified leapfrog with n=3. Each subsequence contains three contiguous numbers
from the main sequence.

10.4 Summary
In this chapter, we have shown how one commonly used sequential random number generator, the
linear congruential method, can be adapted for parallel execution. This example shows how
parallel computation can introduce new issues even in apparently simple problems. In the case of
random numbers, these issues include reproducibility, scalability, the preservation of randomness,
and the greater number of random values consumed when executing on many processors.

Exercises
1. An application running on processors consumes random numbers per second per

processor. For how long can the application execute before it exhausts all available
numbers, assuming that the leapfrog method is applied to the linear congruential generator
of Equation 10.3 on a 32-bit machine? A 64-bit machine?

2. A Monte Carlo simulation must perform independent trials. How many random
numbers can be employed in each trial without duplication, assuming that the modified
leapfrog method is applied to the linear congruential generator of Equation 10.1 on a 32-bit
machine? A 64 bit machine?

3. Monte Carlo integration techniques are sometimes to compute integrals of high dimension.
They approximate the r-dimensional integral

of a function f as

where each is an r -vector of random values. Design and implement a parallel algorithm
for this method, and use it to compute the one-dimensional integral

Measure and account for the performance of the parallel program as a function of N and P.

Chapter Notes
 Knuth [175] provides a wealth of material on random number generation, including a table of
appropriate values for a and m and tests that can be used to determine the quality of a particular
generator. See in particular the table on page 102. Anderson [13] provides a more up-to-date
survey of random number generation algorithms. He includes a short but useful section on parallel
computers and provides numerous references. The random tree method was first described by
Frederickson et al. [114].

Random numbers are used extensively in the Monte Carlo method, in which a large, statistically
valid sequence of ``samples'' is used to compute properties of mathematical functions or physical
processes. Koonin [177] provides a good introduction to the computational issues associated with
Monte Carlo methods on sequential computers, and Kalos [163] provides a more detailed
discussion.

11 Hypercube Algorithms
 In Chapter 2, we pointed out that the communication requirements of a reduction operation can be
structured as a series of pairwise exchanges, one with each neighbor in a hypercube (butterfly)
structure. This structure allows a computation requiring all-to-all communication among P tasks to
be performed in just steps, rather than P steps as might be expected from a superficial
analysis.

It turns out that the hypercube structure can be used to implement many other parallel algorithms
requiring all-to-all communication; that is, algorithms in which each task must communicate with
every other task. In this chapter, we review three such algorithms: vector reduction, matrix
transposition, and sorting. The purpose of this discussion is both to describe some useful
algorithms and to introduce the concept of a parallel algorithm template. A template is a basic
program form that a programmer can augment with application-specific information to implement
a particular parallel algorithm. The hypercube communication structure described in this chapter is
one of the most useful templates in parallel computing.

After studying this chapter, you should have a good understanding of the hypercube
communication structure and how it is used to implement all-to-all communication in parallel
algorithms. You should also be familiar with the concept of a template and the role templates play
in parallel algorithm design and programming.

11.1 The Hypercube Template
Recall from Section 3.7.2 that a hypercube connects each of P tasks (P a power of 2) to other
tasks (Figure 3.16). The template considered in this chapter uses this communication structure in
an SPMD fashion, with each task executing Algorithm 11.1. A local state variable is first set to
be the supplied input data. Computation then proceeds in steps. In each step, each task first
exchanges its local state with one of its neighbors in the hypercube and then combines the
message received from the neighbor with state to generate a new state. The output of the
computation is the state generated in the final step.

In Algorithm 11.1, the XOR function denotes an exclusive or operation and is used to identify
neighbors. (Exclusive or is defined as follows: 0 XOR 0=0, 0 XOR 1=1, 1 XOR 0=1, 1 XOR 1=0.)
As noted in Section 3.7.2, the hypercube has the property that the binary labels of two nodes that
are neighbors in the d th dimension differ only in the d th place; hence, the expression myid XOR

yields the i th neighbor of node myid.

A particular parallel algorithm is defined by the operator OP used to combine state and message
at each step in the template. In the following, we shall show how this template can be used as a
basis for parallel vector reduction, matrix transposition, and sorting algorithms.

11.2 Vector Reduction
 Recall that in Section 2.4.1 we developed a parallel algorithm to sum P values distributed among
P tasks. This algorithm is essentially Algorithm 11.1 with an addition operator used as OP. That is,
the algorithm maintains a partial sum as the local state in each node, and in each step
accumulates a partial sum received from another node into this partial sum. After steps, the
sum of the P input values is available in every node.

This same algorithm can be used to perform a reduction using any commutative associative
operator, such as multiplication or maximum; the commutative associative operator is used as OP
in Algorithm 11.1. The algorithm can also be used to implement a barrier operation, which
synchronizes the tasks that execute it. In this case, the values communicated are simply null
tokens, and the operation performed on each pair of incoming messages is a synchronization
operation that waits for the two tokens to be available.

Figure 11.1: Using the hypercube algorithm to reduce four vectors of length N=4 distributed
among four tasks. The computation is performed in steps, with each task in each step
exchanging N data values with a neighbor and performing N combine operations. The labels in
the boxes denote the origin of the values that they contain; hence, 0.1 and 2.3 represent
intermediate results obtained when contributions from task 0 and 1, or 2 and 3, are combined. R
represents the final reduced values.

 In the related vector reduction problem, each of P tasks supplies a vector of N values and N
separate reductions are performed to produce a vector of N results. As illustrated in Figure 11.1,
these N reductions can be achieved in steps by using Algorithm 11.1. The operator OP is
defined as follows: take two vectors of N values as input and apply the commutative associative
operator N times to produce a vector of N results. The per-processor cost of this simple exchange
algorithm is

where is the cost of applying the reduction operator. This algorithm is efficient for small N,
when message startup costs dominate. However, for larger N it is inefficient, since it performs
many redundant operations.

 An alternative recursive halving algorithm utilizes the same hypercube communication structure
but applies a divide-and-conquer technique to reduce message volume (Figure 11.2). In effect,
Algorithm 11.1 is applied twice. In the reduction phase, each processor communicates (and
combines) N/2 data in the first stage, half as much (N/4) in the second, and so on, so that each
processor communicates a total of N(P-1)/P data in steps. The global sum is then complete,
and the vector of N reduced values is evenly distributed over the P processors. This process is
reversed (without the reductions) to broadcast the result. Communication cost is

Figure 11.2: Using the recursive halving algorithm to reduce four vectors of length N=4
distributed over four tasks. In the first stages, values are combined to compute the N
reduced values, represented as R; these values are distributed over the four tasks. In the third and
fourth stages, the process is reversed in order to broadcast the values.

The recursive halving algorithm sends twice as many messages as the simpler algorithm does, but
less data. It also performs less computation. Hence it will be more efficient for certain values of N
and P and on certain machines. A robust hybrid algorithm can be designed that starts with the
recursive halving approach and switches to an exchange algorithm after a certain number of stages
so as to avoid some of the broadcast communication.

We can use similar techniques to define an efficient vector broadcast algorithm. Here, the problem
is to replicate N values located in a single task (the ``root'') in each of P-1 other tasks. A simple
algorithm uses the binary tree communication structure illustrated in Figure 2.8. The root task first
sends the data to two other tasks; each of these tasks forwards the data to two other tasks, and so
on, until the data are completely distributed. Total cost is approximately

This algorithm is efficient for small N and P. For larger problems and processor configurations, it
has the disadvantage that most processors are idle most of the time and the total time is dominated
by the term. In these situations, it can be more efficient to break the message into pieces
and then to route these pieces separately by using the hypercube communication structure.
Communication costs are then approximately as follows (the chapter notes provide pointers to
descriptions of this algorithm):

11.3 Matrix Transposition
 The transposition of a two-dimensional N N matrix A yields a matrix A' of the same size, in
which . If A and/or A' are distributed between multiple tasks, then execution of the
transpose operation may involve communication. We consider here a one-dimensional,
columnwise decomposition of the input and output matrices among P tasks. Notice that this
transposition requires all-to-all communication.

One commonly used transposition algorithm proceeds in P-1 steps, with each task exchanging
data with another task in each step, for a per-processor communication cost of

This algorithm was used in the convolution example in Section 4.4. An alternative algorithm,
described here, uses the hypercube communication template to reduce message startup costs at the
expense of increased data transfer costs. The basic idea is similar to that used in the recursive
halving reduction algorithm, but because the operator used to combine messages in the transpose
is ``append'' rather than ``reduce,'' message sizes do not become smaller as the transpose proceeds.

Figure 11.3: The three steps of the matrix transpose algorithm when P=N=8. Initially,

each task has a single column of the matrix. After the transpose, each task has a single row. In
each step, each task exchanges one half of its data; this data is shaded in the upper part of the
figure. The lower part of the figure shows the origin of the eight values held by task 0 at each step
of the algorithm. Task 0 sends elements 4--7 in its first message and receives four elements from
task 4; these are stored in locations 4--7. In the second step, task 0 exchanges both elements 2--3
(its own) and 6--7 (from task 3) with task 2. In the third step, it exchanges elements 1 (its own), 3
(from task 2), 5 (from task 4), and 7 (from task 6) with task 1.

The algorithm proceeds as follows. Tasks are partitioned into two sets. Corresponding pairs of
tasks in the two sets exchange the one half of their data that is destined for tasks in the other set.
Tasks 0..(P/2)-1 communicate the lower half of their data, while tasks (P/2)..P-1 communicate the
upper half. This partitioning and exchange process is repeated until each set contains a single task.
See Figure 11.3 for more details.

As each of the messages has size , the communication cost is:

A comparison of Equations 11.3 and 11.4 shows that the hypercube algorithm sends about
fewer messages but times more data. In most situations, the data transfer term

dominates, and the algorithm is to be preferred. However, we can expect the
algorithm to be competitive on small problems and when message startups are expensive

and transfer costs are low.

11.4 Mergesort
 Sorting is a common and important problem in computing. Given a sequence of N data elements,
we are required to generate an ordered sequence that contains the same elements. Here, we present
a parallel version of the well-known mergesort algorithm. The algorithm assumes that the
sequence to be sorted is distributed and so generates a distributed sorted sequence. For simplicity,
we assume that N is an integer multiple of P, that the N data are distributed evenly among P tasks,
and that is an integer power of two. Relaxing these assumptions does not change the
essential character of the algorithm but would complicate the presentation.

Figure 11.4: Mergesort, used here to sort the sequence [6,2,9,5]. The two partition phases each
split the input sequence; the two merge phases each combine two sorted subsequences generated
in a previous phase.

The sequential mergesort algorithm is as follows; its execution is illustrated in Figure 11.4.

1. If the input sequence has fewer than two elements, return.
2. Partition the input sequence into two halves.
3. Sort the two subsequences using the same algorithm.
4. Merge the two sorted subsequences to form the output sequence.

The merge operation employed in step (4) combines two sorted subsequences to produce a single
sorted sequence. It repeatedly compares the heads of the two subsequences and outputs the lesser
value until no elements remain. Mergesort requires time to sort N elements, which is
the best that can be achieved (modulo constant factors) unless data are known to have special
properties such as a known distribution or degeneracy.

 We first describe two algorithms required in the implementation of parallel mergesort: compare-
exchange and parallel merge.

Compare-Exchange.

 A compare-exchange operation merges two sorted sequences of length M, contained in tasks A
and B. Upon completion of the operation, both tasks have M data, and all elements in task A are
less than or equal to all elements in task B. As illustrated in Figure 11.5, each task sends its data to
the other task. Task A identifies the M lowest elements and discards the remainder; this process
requires at least M/2 and at most M comparisons. Similarly, task B identifies the M highest
elements.

Figure 11.5: The compare-exchange algorithm, with M=4. (a) Tasks A and B exchange their
sorted subsequences. (b) They perform a merge operation to identify the lowest and highest M
elements, respectively. (c) Other elements are discarded, leaving a single sorted sequence
partitioned over the two tasks.

Notice that a task may not need all M of its neighbor's data in order to identify the M lowest (or
highest) values. On average, only M/2 values are required. Hence, it may be more efficient in some
situations to require the consumer to request data explicitly. This approach results in more
messages that contain a total of less than M data, and can at most halve the amount of data
transferred.

Figure 11.6: The parallel merge operation, performed in hypercubes of dimension one, two, and
three. In a hypercube of dimension d, each task performs d compare-exchange operations. Arrows
point from the ``high'' to the ``low'' task in each exchange.

Parallel Merge.

A parallel merge algorithm performs a merge operation on two sorted sequences of length ,
each distributed over tasks, to produce a single sorted sequence of length distributed over

tasks. As illustrated in Figure 11.6, this is achieved by using the hypercube communication
template. Each of the tasks engages in d+1 compare-exchange steps, one with each neighbor.
In effect, each node executes Algorithm 11.1, applying the following operator at each step.

 if (myid AND > 0) then
 state = compare_exchange_high(state,message)
 else
 state = compare_exchange_low(state,message)
 endif

In this code fragment, AND is a bitwise logical and operator, used to determine whether the task is
``high'' or ``low'' in a particular exchange; myid and i are as in Algorithm 11.1.

Mergesort.

We next describe the parallel mergesort algorithm proper. Each task in the computation executes
the following logic.

 procedure parallel_mergesort(myid, d, data, newdata)
 begin
 data = sequential_mergesort(data)
 for dim = 1 to d
 data = parallel_merge(myid, dim, data)
 endfor
 newdata = data
 end

First, each task sorts its local sequence using sequential mergesort. Second, and again using the
hypercube communication structure, each of the tasks executes the parallel merge
algorithm d times, for subcubes of dimension 1.. d. The i th parallel merge takes two sequences,
each distributed over tasks, and generates a sorted sequence distributed over tasks. After d
such merges, we have a single sorted list distributed over tasks.

Performance

 Parallel mergesort uses the hypercube communication template at multiple levels. We review
these uses and develop a performance model. We assume N data distributed over tasks (that
is,), with N an integer multiple of P. Hence, the total number of compare-exchanges is

Because each compare-exchange requires one message containing N/P data, the per-processor
communication cost is

The computation costs comprise the initial intraprocessor sort and the comparisons performed
during the interprocessor communication phase. The former involves a total of

comparisons, while the latter requires at most comparisons, thereby
giving computation costs summed over P processors of

Because the algorithm is perfectly balanced, we can assume that idle time is negligible. Thus, we
obtain the following model for parallel execution time:

11.5 Summary
The hypercube communication template (Algorithm 11.1) allows information to be propagated
among P tasks in just steps. Each algorithm considered in this case study has exploited this
property to perform some form of all-to-all communication. For example, in matrix transposition
each task requires values from every other task; in sorting, the position of each value in the final
sequence depends on all other values. Many other parallel algorithms can be naturally formulated
in terms of the same template, once the need for all-to-all communication is recognized.

The hypercube template described in this chapter is one of the most useful communication
structures in parallel computing. Another useful structure that we have encountered is nearest-
neighbor exchange on a two-dimensional torus: this template can be used to implement finite
difference computations, matrix multiplication (Section 4.6), and graph algorithms. The
manager/worker load balancing structure (Section 2.5.2) is a third example of a template.

Learning to recognize and apply templates such as the hypercube, torus, and manager/worker can
greatly simplify the task of designing and implementing parallel programs. When designing a
parallel algorithm, we can first seek to formulate communication requirements in terms of known
communication structures; if we are successful, the design problem then reduces to that of
specifying the application-specific part of the algorithm. A similar strategy can be applied when
implementing designs that have been formulated in terms of templates.

Exercises
1. Execute the hypercube summation algorithm by hand for N=8, and satisfy yourself that

you obtain the correct answer.
2. Use Equations 11.1 and 11.2 to identify problem size, processor count, and machine

parameter regimes in which each of the two vector reduction algorithms of Section 11.2
will be more efficient.

3. Implement the hybrid vector reduction algorithm described in Section 11.2. Use empirical
studies to determine the vector length at which the switch from recursive halving to
exchange algorithm should occur. Compare the performance of this algorithm with pure
recursive halving and exchange algorithms.

4. A variant of the parallel mergesort algorithm performs just compare-exchange
operations and then switches to a parallel bubblesort [174]. In the bubblesort phase, tasks
are connected in a logical ring and each task performs compare-exchange operations with
its neighbors until a global reduction shows that no exchanges occurred. Design an
implementation of this algorithm, using hypercube and ring structures as building blocks.

5. Implement the modified parallel mergesort of Exercise 4. Compare its performance with
regular parallel mergesort for different input sequences and for a variety of P and N.

6. Extend Equations 11.3 and 11.4 to account for bandwidth limitations in a one-dimensional
mesh.

7. Modify the performance models developed for the convolution algorithm in Section 4.4 to
reflect the use of the hypercube-based transpose. Can the resulting algorithms ever provide
superior performance?

8. Use the performance models given in Section 11.2 for the simple and recursive halving
vector reduction algorithms to determine situations in which each algorithm would give
superior performance.

9. Design and implement a variant of the vector sum algorithm that does not require the
number of tasks to be an integer power of 2.

10. Develop a CC++, Fortran M, or MPI implementation of a ``hypercube template.'' Use this
template to implement simple reduction, vector reduction, and broadcast algorithms.
Discuss the techniques that you used to facilitate reuse of the template.

11. Implement a ``torus template'' and use this together with the template developed in
Exercise 10 to implement the finite difference computation of Section 4.2.2.

12. Develop a performance model for a 2-D matrix multiplication algorithm that uses the
vector broadcast algorithm of Section 11.2 in place of the tree-based broadcast assumed in
Section 4.6.1. Discuss the advantages and disadvantages of this algorithm.

13. Implement both the modified matrix multiplication algorithm of Exercise 12 and the
original algorithm of Section 4.6.1, and compare their performance.

Chapter Notes
 Leighton [187] discusses basic properties of hypercubes and describes many parallel algorithms
that use a hypercube communication structure. The recursive halving vector reduction algorithm
considered in Section 11.2 is described by Fox et al. [111] and the hybrid algorithm by van de
Geijn [289]. Vector broadcast algorithms are described by Bertsekas and Tsitsiklis [35] and
Johnsson and Ho [160]. The parallel mergesort algorithm, often called bitonic mergesort, is due to
Batcher [30]; Akl [8] provides a good description. Fox et al. [111] describe a multicomputer
implementation of this algorithm and of the variant discussed in Exercise 4. Other algorithms that
are conveniently formulated in terms of a hypercube communication structure include the fast
Fourier transform [20,21,110,192,277], parallel prefix [238], and various computer vision [238]
and linear algebra computations [159]. See also the book by Kumar et al. [179] and papers by
Bertsekas et al. [36], McBryan and van der Velde [197], and Saad and Schultz [248,249].

 The book by Kumar et al. [179] describes parallel versions of several sorting algorithms,
including quicksort [153], one of the most commonly used sorting algorithms on sequential
computers. Their parallel quicksort algorithm partitions processors according to the number of
elements lesser than or greater than the pivot at each step. Fox et al. [111] describe an alternative
parallel quicksort algorithm that uses regular processor partitions. They address load imbalance by
performing some preliminary processing to identify pivots that approximately bisect the input
sequence. Knuth [174] and Aho et al. [7] are good references for sequential sorting algorithms. In
addition to standard algorithms such as mergesort and quicksort, Knuth describes various
specialized algorithms designed to exploit certain properties of the data to be sorted. Kumar et al.
[179] explain how many of these can be adapted for parallel computers. For example, if data are
highly redundant (that is, they have many identical items), we can count items on each node, then
do a global sum to obtain total counts. If the input data distribution is known, a parallel bucketsort
can be used. Each processor knows the location of each bucket and sends its data to the
appropriate location.

12 Further Reading
The literature on parallel programming and parallel computing is large and expanding rapidly. We
have provided numerous references to this literature in the chapter notes. Here, we provide
additional pointers.

 Numerous books on parallel computing provide other perspectives or more detailed treatments of
topics covered only briefly here. Of particular interest are the texts by Quinn [235] and Kumar et
al. [179], both of which complement Designing and Building Parallel Programs by describing a
wide range of parallel algorithms and communication structures; both also include excellent
bibliographies. The Association for Computing Machinery [1] has published a bibliography of
relevant material. Fox et al. [111,113] describe a range of parallel algorithms, focusing on
developments in the Caltech Concurrent Computation Project. Books by Akl [8], Gibbons and
Rytter [119], JáJá [157], Leighton [187], Miller and Stout [209], and Smith [267] provide more
theoretical treatments.

Texts describing parallel computer architecture include those by Almasi and Gottlieb [11],
DeCegama [75], Hwang [156], Reed and Fujimoto [242], Suaya and Birtwistle [272], Stone [269],
and Tabak [278]. See also the survey articles by Duncan [87,88] and a chapter in Hennessy and
Patterson's [134] book on computer architecture.

Books providing general introductions to parallel programming or describing particular
approaches include those by Andrews [14], Andrews and Olson [15], Ben Ari [32], Carriero and
Gelernter [48], Chandy and Taylor [55], Foster and Taylor [107], Gehani and Roome [117],
Hatcher and Quinn [136], Koelbel et al. [176], and Wallach [291]. See also the survey articles by
Karp [166] and Bal, Steiner, and Tanenbaum [23]. Feo, Cann, and Oldehoeft [95] describe SISAL,
a functional programming language for parallel computing.

Kumar et al. [179] describe many parallel numeric algorithms and provide detailed references to
the literature. Books by Bertsekas and Tsitsiklis [35], Carey [46], Dongarra et al. [82], Fox et al.
[111], Golub and Ortega [122], Lakshmivarahan and Dhall [184], and van der Velde [290] address
various aspects of parallel algorithms in numerical analysis and scientific computing. Survey
articles in this area include those by Gallivan, Plemmons, and Sameh [116] (dense matrix
algorithms); Demmel, Heath, and van der Vorst [77] (dense matrix algorithms); and Heath et al.
[140] (sparse matrix algorithms).

Useful resources in other areas include the books by Akl and Lyons [9] (computational geometry),
Banerjee [26] (VLSI design), Dew, Earnshaw, and Heywood [78] and Ranka and Sahni [238]
(computer vision), Gupta [128] (production systems), and Kowalik [178] (artificial intelligence).
An article by Manber [195] discusses concurrent data structures, while Singhal [260] surveys
deadlock detection algorithms.

Keeping up to date with the most recent developments in parallel computing is made difficult by
the large number of journals and conferences. IEEE Parallel and Distributed Technology
magazine covers many topics of interest to parallel programmers. IEEE Computational Science
and Engineering magazine focuses on the use of high-performance computers in science and
engineering. IEEE Transactions on Parallel and Distributed Systems emphasizes parallel
hardware and algorithms. Concurrency: Practice and Experience contains a mixture of application
and algorithm papers, typically with an empirical flavor. Other relevant journals include

International Journal of Parallel Programming, Journal of Parallel Algorithms and Applications,
Journal of Parallel and Distributed Computing, and Parallel Computing. In addition, the
following journals often include relevant articles: Communications of the ACM, Computer, Future
Generation Computer Systems, IEEE Transactions on Computers, IEEE Transactions on Software
Engineering, International Journal of Supercomputer Applications, Journal of Distributed
Systems, New Generation Computing, Scientific Programming, SIAM Journal of Scientific and
Statistical Computing, and SIAM Review.

The proceedings of various conferences in the field are also of interest. See, in particular, the
proceedings of the annual Supercomputing conference and the SIAM Conference on Parallel
Processing for Scientific Computing; both include papers on applications, tools, and algorithms for
parallel computers, with an emphasis on scientific computing. Other relevant meetings include the
Conference on Parallel Computational Fluid Dynamics, CONPAR, Frontiers of Massively Parallel
Processing, the International Conference on Parallel Programming, the International Parallel
Processing Symposium, PARCO, and the ACM Symposium on Principles and Practice of Parallel
Programming.

References
1 ACM. Resources in Parallel and Concurrent Systems. ACM Press, 1991.
2 G. Adams, D. Agrawal, and H. Siegel. A survey and comparison of fault-tolerant multistage

interconnection networks. IEEE Trans. Computs., C-20(6):14--29, 1987.
3 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener. The Fortran 90 Handbook.

McGraw-Hill, 1992.
4 A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.

Commun. ACM, 31(9):1116--1127, 1988.
5 G. Agha. Actors. MIT Press, 1986.
6 G. Agrawal, A. Sussman, and J. Saltz. Compiler and runtime support for structured and block

structured applications. In Proc. Supercomputing '93, pages 578--587, 1993.
7 A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-

Wesley, 1974.
8 S. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, 1989.
9 S. G. Akl and K. A. Lyons. Parallel Computational Geometry. Prentice-Hall, 1993.
10 E. Albert, J. Lukas, and G. Steele. Data parallel computers and the FORALL statement. J.

Parallel and Distributed Computing, 13(2):185--192, 1991.
11 G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin/Cummings, second

edition, 1994.
12 G. Amdahl. Validity of the single-processor approach to achieving large-scale computing

capabilities. In Proc. 1967 AFIPS Conf., volume 30, page 483. AFIPS Press, 1967.
13 S. Anderson. Random number generators. SIAM Review, 32(2):221--251, 1990.
14 G. R. Andrews. Concurrent Programming: Principles and Practice. Benjamin/Cummings,

1991.
15 G. R. Andrews and R. A. Olsson. The SR Programming Language: Concurrency in Practice.

Benjamin/Cummings, 1993.
16 ANSI X3J3/S8.115. Fortran 90, 1990.
17 S. Arvindam, V. Kumar, and V. Rao. Floorplan optimization on multiprocessors. In Proc. 1989

Intl Conf. on Computer Design, pages 109--113. IEEE Computer Society, 1989.
18 W. C. Athas and C. L. Seitz. Multicomputers: Message-passing concurrent computers.

Computer, 21(8):9--24, 1988.

19 J. Auerbach, A. Goldberg, G. Goldszmidt, A. Gopal, M. Kennedy, J. Rao, and J. Russell.
Concert/C: A language for distributed programming. In Winter 1994 USENIX Conference.
Usenix Association, 1994.

20 A. Averbuch, E. Gabber, B. Gordissky, and Y. Medan. A parallel FFT on an MIMD machine.
Parallel Computing, 15:61--74, 1990.

21 D. Bailey. FFTs in external or hierarchical memory. J. Supercomputing, 4:23--35, 1990.
22 J. Bailey. First we reshape our computers, then they reshape us: The broader intellectual impact

of parallelism. Daedalus, 121(1):67--86, 1992.
23 H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for distributed

computing systems. ACM Computing Surveys, 21(3):261--322, 1989.
24 V. Bala and S. Kipnis. Process groups: A mechanism for the coordination of and

communication among processes in the Venus collective communication library. Technical
report, IBM T. J. Watson Research Center, 1992.

25 V. Bala, S. Kipnis, L. Rudolph, and M. Snir. Designing efficient, scalable, and portable
collective communication libraries. Technical report, IBM T. J. Watson Research Center,
1992. Preprint.

26 P. Banerjee. Parallel Algorithms For VLSI Computer-Aided Design. Prentice-Hall, 1994.
27 U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, 1988.
28 S. Barnard and H. Simon. Fast multilevel implementation of recursive spectral bisection for

partitioning unstructured problems. Concurrency: Practice and Experience, 6(2):101--117,
1994.

29 J. Barton and L. Nackman. Scientific and Engineering C++. Addison-Wesley, 1994.
30 K. Batcher. Sorting networks and their applications. In Proc. 1968 AFIPS Conf., volume 32,

page 307. AFIPS Press, 1968.
31 BBN Advanced Computers Inc. TC-2000 Technical Product Summary, 1989.
32 M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice-Hall, 1990.
33 M. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors.

IEEE Trans. Computs., C-36(5):570--580, 1987.
34 F. Berman and L. Snyder. On mapping parallel algorithms into parallel architectures. J.

Parallel and Distributed Computing, 4(5):439--458, 1987.
35 D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.

Prentice-Hall, 1989.
36 D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis. Optimal

communication algorithms for hypercubes. J. Parallel and Distributed Computing, 11:263--
275, 1991.

37 G. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.
38 F. Bodin, P. Beckman, D. B. Gannon, S. Narayana, and S. Yang. Distributed pC++: Basic ideas

for an object parallel language. In Proc. Supercomputing '91, pages 273--282, 1991.
39 S. Bokhari. On the mapping problem. IEEE Trans. Computs., C-30(3):207--214, 1981.
40 G. Booch. Object-Oriented Design with Applications. Benjamin-Cummings, 1991.
41 R. Bordawekar, J. del Rosario, and A. Choudhary. Design and evaluation of primitives for

parallel I/O. In Proc. Supercomputing '93, pages 452--461. ACM, 1993.
42 Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. Fortran 90D/HPF compiler for

distributed memory MIMD computers: Design, implementation, and performance results. In
Proc. Supercomputing '93. IEEE Computer Society, 1993.

43 W. Brainerd, C. Goldberg, and J. Adams. Programmer's Guide to Fortran 90. McGraw-Hill,
1990.

44 R. Butler and E. Lusk. Monitors, message, and clusters: The p4 parallel programming system.
Parallel Computing, 20:547--564, 1994.

45 D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors. J.
Supercomputing, 2:151--169, 1988.

46 G. F. Carey, editor. Parallel Supercomputing: Methods, Algorithms and Applications. Wiley,
1989.

47 N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444--458, 1989.
48 N. Carriero and D. Gelernter. How to Write Parallel Programs. MIT Press, 1990.
49 N. Carriero and D. Gelernter. Tuple analysis and partial evaluation strategies in the Linda pre-

compiler. In Languages and Compilers for Parallel Computing. MIT-Press, 1990.
50 R. Chandra, A. Gupta, and J. Hennessy. COOL: An object-based language for parallel

programming. Computer, 27(8):14--26, 1994.
51 K. M. Chandy and I. Foster. A deterministic notation for cooperating processes. IEEE Trans.

Parallel and Distributed Syst., 1995. to appear.
52 K. M. Chandy, I. Foster, K. Kennedy, C. Koelbel, and C.-W. Tseng. Integrated support for task

and data parallelism. Intl J. Supercomputer Applications, 8(2):80--98, 1994.
53 K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object-oriented

programming notation. In Research Directions in Concurrent Object-Oriented Programming.
MIT Press, 1993.

54 K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.
55 K. M. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones and Bartlett,

1992.
56 B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific

Programming, 1(1):31--50, 1992.
57 B. Chapman, P. Mehrotra, and H. Zima. Extending HPF for advanced data-parallel

applications. IEEE Parallel and Distributed Technology, 2(3):15--27, 1994.
58 D. Y. Cheng. A survey of parallel programming languages and tools. Technical Report RND-

93-005, NASA Ames Research Center, Moffett Field, Calif., 1993.
59 J. Choi, J. Dongarra, and D. Walker. PUMMA: Parallel Universal Matrix Multiplication

Algorithms on distributed memory concurrent computers. Concurrency: Practice and
Experience, 6, 1994.

60 A. Choudhary. Parallel I/O systems, guest editor's introduction. J. Parallel and Distributed
Computing, 17(1--2):1--3, 1993.

61 S. Chowdhury. The greedy load-sharing algorithm. J. Parallel and Distributed Computing,
9(1):93--99, 1990.

62 M. Colvin, C. Janssen, R. Whiteside, and C. Tong. Parallel Direct-SCF for large-scale
calculations. Technical report, Center for Computational Engineering, Sandia National
Laboratories, Livermore, Cal., 1991.

63 D. Comer. Internetworking with TCP/IP. Prentice-Hall, 1988.
64 S. Cook. The classification of problems which have fast parallel algorithms. In Proc. 1983 Intl

Foundation of Computation Theory Conf., volume 158, pages 78--93. Springer-Verlag
LNCS, 1983.

65 T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.
66 B. Cox and A. Novobilski. Object-Oriented Programming: An Evolutionary Approach.

Addison-Wesley, 1991.
67 D. Culler et al. LogP: Towards a realistic model of parallel computation. In Proc. 4th Symp.

Principles and Practice of Parallel Programming, pages 1--12. ACM, 1993.
68 G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Parallel and

Distributed Computing, 7:279--301, 1989.
69 W. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Academic Publishers,

1987.
70 W. Dally and C. L. Seitz. The torus routing chip. J. Distributed Systems, 1(3):187--196, 1986.

71 W. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Trans. Computs., C-36(5):547--553, 1987.

72 W. J. Dally et al. The message-driven processor. IEEE Micro., 12(2):23--39, 1992.
73 C. R. Das, N. Deo, and S. Prasad. Parallel graph algorithms for hypercube computers. Parallel

Computing, 13:143--158, 1990.
74 C. R. Das, N. Deo, and S. Prasad. Two minimum spanning forest algorithms on fixed-size

hypercube computers. Parallel Computing, 15:179--187, 1990.
75 A. L. DeCegama. The Technology of Parallel Processing: Parallel Processing Architectures

and VLSI Hardware: Volume 1. Prentice-Hall, 1989.
76 J. del Rosario and A. Choudhary. High-Performance I/O for Parallel Computers: Problems and

Prospects. Computer, 27(3):59--68, 1994.
77 J. W. Demmel, M. T. Heath, and H. A. van der Vorst. Parallel numerical linear algebra. Acta

Numerica, 10:111--197, 1993.
78 P. M. Dew, R. A. Earnshaw, and T. R. Heywood. Parallel Processing for Computer Vision and

Display. Addison-Wesley, 1989.
79 D. DeWitt and J. Gray. Parallel database systems: The future of high-performance database

systems. Commun. ACM, 35(6):85--98, 1992.
80 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1:269--271, 1959.
81 E. W. Dijkstra, W. H. J. Feijen, and A. J. M. V. Gasteren. Derivation of a termination detection

algorithm for a distributed computation. Information Processing Letters, 16(5):217--219,
1983.

82 J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst. Solving Linear Systems on Vector and
Shared Memory Computers. SIAM, 1991.

83 J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK++: An object-oriented linear algebra
library for scalable systems. In Proc. Scalable Parallel Libraries Conf., pages 216--223.
IEEE Computer Society, 1993.

84 J. Dongarra, R. van de Geign, and D. Walker. Scalability issues affecting the design of a dense
linear algebra library. J. Parallel and Distributed Computing, 22(3):523--537, 1994.

85 J. Dongarra and D. Walker. Software libraries for linear algebra computations on high
performance computers. SIAM Review, 1995. to appear.

86 J. Drake, I. Foster, J. Hack, J. Michalakes, B. Semeraro, B. Toonen, D. Williamson, and P.
Worley. PCCM2: A GCM adapted for scalable parallel computers. In Proc. 5th Symp. on
Global Change Studies, pages 91--98. American Meteorological Society, 1994.

87 R. Duncan. A survey of parallel computer architectures. Computer, 23(2):5--16, 1990.
88 R. Duncan. Parallel computer architectures. In Advances in Computers, volume 34, pages 113--

152. Academic Press, 1992.
89 D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in parallel systems.

IEEE Trans. Computs., C-38(3):408--423, 1989.
90 Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Concepts, 1991.
91 Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Version 1.0 Interface,

1992.
92 M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley, 1990.
93 V. Faber, O. Lubeck, and A. White. Superlinear speedup of an efficient parallel algorithm is not

possible. Parallel Computing, 3:259--260, 1986.
94 T. Y. Feng. A survey of interconnection networks. IEEE Computer, 14(12):12--27, 1981.
95 J. Feo, D. Cann, and R. Oldehoeft. A report on the SISAL language project. J. Parallel and

Distributed Computing, 12(10):349--366, 1990.
96 M. Feyereisen and R. Kendall. An efficient implementation of the Direct-SCF algorithm on

parallel computer architectures. Theoretica Chimica Acta, 84:289--299, 1993.

97 H. P. Flatt and K. Kennedy. Performance of parallel processors. Parallel Computing, 12(1):1--
20, 1989.

98 R. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.
99 S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. ACM Symp. on

Theory of Computing, pages 114--118. ACM, 1978.
100 I. Foster. Task parallelism and high performance languages. IEEE Parallel and Distributed

Technology, 2(3):39--48, 1994.
101 I. Foster, B. Avalani, A. Choudhary, and M. Xu. A compilation system that integrates High

Performance Fortran and Fortran M. In Proc. 1994 Scalable High-Performance Computing
Conf., pages 293--300. IEEE Computer Society, 1994.

102 I. Foster and K. M. Chandy. Fortran M: A language for modular parallel programming. J.
Parallel and Distributed Computing, 25(1), 1995.

103 I. Foster, M. Henderson, and R. Stevens. Data systems for parallel climate models. Technical
Report ANL/MCS-TM-169, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., 1991.

104 I. Foster, C. Kesselman, and S. Taylor. Concurrency: Simple concepts and powerful tools.
Computer J., 33(6):501--507, 1990.

105 I. Foster, R. Olson, and S. Tuecke. Productive parallel programming: The PCN approach.
Scientific Programming, 1(1):51--66, 1992.

106 I. Foster, R. Olson, and S. Tuecke. Programming in Fortran M. Technical Report ANL-93/26,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill.,
1993.

107 I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, 1989.
108 I. Foster, J. Tilson, A. Wagner, R. Shepard, R. Harrison, R. Kendall, and R. Littlefield. High

performance computational chemistry: (I) Scalable Fock matrix construction algorithms.
Preprint, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Ill., 1994.

109 I. Foster and B. Toonen. Load-balancing algorithms for climate models. In Proc. 1994
Scalable High-Performance Computing Conf., pages 674--681. IEEE Computer Society,
1994.

110 I. Foster and P. Worley. Parallel algorithms for the spectral transform method. Preprint MCS-
P426-0494, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Ill., 1994.

111 G. Fox et al. Solving Problems on Concurrent Processors. Prentice-Hall, 1988.
112 G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D

language specification. Technical Report TR90-141, Dept. of Computer Science, Rice
University, 1990.

113 G. Fox, R. Williams, and P. Messina. Parallel Computing Works! Morgan Kaufman, 1994.
114 P. Frederickson, R. Hiromoto, T. Jordan, B. Smith, and T. Warnock. Pseudo-random trees in

Monte Carlo. Parallel Computing, 1:175--180, 1984.
115 H. J. Fromm, U. Hercksen, U. Herzog, K. H. John, R. Klar, and W. Kleinoder. Experiences

with performance measurement and modeling of a processor array. IEEE Trans. Computs.,
C-32(1):15--31, 1983.

116 K. Gallivan, R. Plemmons, and A. Sameh. Parallel algorithms for dense linear algebra
computations. SIAM Review, 32(1):54--135, 1990.

117 N. Gehani and W. Roome. The Concurrent C Programming Language. Silicon Press, 1988.
118 G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A user's guide to PICL: A portable

instrumented communication library. Technical Report TM-11616, Oak Ridge National
Laboratory, 1990.

119 A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press, 1990.

120 G. A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage. MIT Press,
1992.

121 H. Goldstine and J. von Neumann. On the principles of large-scale computing machines. In
Collected Works of John von Neumann, Vol. 5. Pergamon, 1963.

122 G. H. Golub and J. M. Ortega. Scientific Computing: An Introduction with Parallel
Computing. Academic Press, 1993.

123 A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir. The NYU
ultracomputer: Designing a MIMD, shared memory parallel computer. IEEE Trans.
Computs., C-32(2):175--189, 1983.

124 S. Graham, P. Kessler, and M. McKusick. gprof: A call graph execution profiler. In Proc.
SIGPLAN '92 Symposium on Compiler Construction, pages 120--126. ACM, 1982.

125 A. S. Grimshaw. An introduction to parallel object-oriented programming with Mentat.
Technical Report 91 07, University of Virginia, 1991.

126 W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, 1995.

127 W. Gropp and B. Smith. Scalable, extensible, and portable numerical libraries. In Proc.
Scalable Parallel Libraries Conf., pages 87--93. IEEE Computer Society, 1993.

128 A. Gupta. Parallelism in Production Systems. Morgan Kaufmann, 1987.
129 J. L. Gustafson. Reevaluating Amdahl's law. Commun. ACM, 31(5):532--533, 1988.
130 J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of parallel methods for a 1024-

processor hypercube. SIAM J. Sci. and Stat. Computing, 9(4):609--638, 1988.
131 A. Hac. Load balancing in distributed systems: A summary. Performance Evaluation Review,

16(2):17--19, 1989.
132 G. Haring and G. Kotsis, editors. Performance Measurement and Visualization of Parallel

Systems. Elsevier Science Publishers, 1993.
133 P. Harrison. Analytic models for multistage interconnection networks. J. Parallel and

Distributed Computing, 12(4):357--369, 1991.
134 P. Harrison and N. M. Patel. The representation of multistage interconnection networks in

queuing models of parallel systems. J. ACM, 37(4):863--898, 1990.
135 R. Harrison et al. High performance computational chemistry: (II) A scalable SCF code.

Preprint, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Ill., 1994.

136 P. Hatcher and M. Quinn. Data-Parallel Programming on MIMD Computers. MIT Press,
1991.

137 P. Hatcher, M. Quinn, et al. Data-parallel programming on MIMD computers. IEEE Trans.
Parallel and Distributed Syst., 2(3):377--383, 1991.

138 M. Heath. Recent developments and case studies in performance visualization using
ParaGraph. In Performance Measurement and Visualization of Parallel Systems, pages 175--
200. Elsevier Science Publishers, 1993.

139 M. Heath and J. Etheridge. Visualizing the performance of parallel programs. IEEE Software,
8(5):29--39, 1991.

140 M. Heath, E. Ng, and B. Peyton. Parallel algorithms for sparse linear systems. SIAM Review,
33(3):420--460, 1991.

141 M. Heath, A. Rosenberg, and B. Smith. The physical mapping problem for parallel
architectures. J. ACM, 35(3):603--634, 1988.

142 W. Hehre, L. Radom, P. Schleyer, and J. Pople. Ab Initio Molecular Orbital Theory. John
Wiley and Sons, 1986.

143 R. Hempel. The ANL/GMD macros (PARMACS) in Fortran for portable parallel
programming using the message passing programming model -- users' guide and reference
manual. Technical report, GMD, Postfach 1316, D-5205 Sankt Augustin 1, Germany, 1991.

144 R. Hempel, H.-C. Hoppe, and A. Supalov. PARMACS 6.0 library interface specification.
Technical report, GMD, Postfach 1316, D-5205 Sankt Augustin 1, Germany, 1992.

145 M. Henderson, B. Nickless, and R. Stevens. A scalable high-performance I/O system. In Proc.
1994 Scalable High-Performance Computing Conf., pages 79--86. IEEE Computer Society,
1994.

146 P. Henderson. Functional Programming. Prentice-Hall, 1980.
147 J. Hennessy and N. Joupp. Computer technology and architecture: An evolving interaction.

Computer, 24(9):18--29, 1991.
148 V. Herrarte and E. Lusk. Studying parallel program behavior with upshot. Technical Report

ANL-91/15, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Ill., 1991.

149 High Performance Fortran Forum. High Performance Fortran language specification, version
1.0. Technical Report CRPC-TR92225, Center for Research on Parallel Computation, Rice
University, Houston, Tex., 1993.

150 W. D. Hillis. The Connection Machine. MIT Press, 1985.
151 W. D. Hillis and G. L. Steele. Data parallel algorithms. Commun. ACM, 29(12):1170--1183,

1986.
152 S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD distributed-

memory machines. Commun. ACM, 35(8):66--80, 1992.
153 C. A. R. Hoare. Quicksort. Computer J., 5(1):10--15, 1962.
154 C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1984.
155 G. Hoffmann and T. Kauranne, editors. Parallel Supercomputing in the Atmospheric Sciences.

World Scientific, 1993.
156 K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programmability.

McGraw-Hill, 1993.
157 J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
158 J. Jenq and S. Sahni. All pairs shortest paths on a hypercube multiprocessor. In Proc. 1987

Intl. Conf. on Parallel Processing, pages 713--716, 1987.
159 S. L. Johnsson. Communication efficient basic linear algebra computations on hypercube

architectures. J. Parallel and Distributed Computing, 4(2):133--172, 1987.
160 S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communication in

hypercubes. IEEE Trans. Computs., C-38(9):1249--1268, 1989.
161 M. Jones and P. Plassmann. Parallel algorithms for the adaptive refinement and partitioning of

unstructured meshes. In Proc. 1994 Scalable High-Performance Computing Conf., pages
478--485. IEEE Computer Society, 1994.

162 R. Kahn. Resource-sharing computer communication networks. Proc. IEEE, 60(11):1397--
1407, 1972.

163 M. Kalos. The Basics of Monte Carlo Methods. J. Wiley and Sons, 1985.
164 L. N. Kanal and V. Kumar. Search in Artificial Intelligence. Springer-Verlag, 1988.
165 A. Karp and R. Babb. A comparison of twelve parallel Fortran dialects. IEEE Software,

5(5):52--67, 1988.
166 A. H. Karp. Programming for parallelism. IEEE Computer, 20(9):43--57, 1987.
167 A. H. Karp and H. P. Flatt. Measuring parallel processor performance. Commun. ACM,

33(5):539--543, 1990.
168 R. Katz, G. Gibson, and D. Patterson. Disk system architectures for high performance

computing. Proc. IEEE, 77(12):1842--1858, 1989.
169 W. J. Kaufmann and L. L. Smarr. Supercomputing and the Transformation of Science.

Scientific American Library, 1993.
170 B. Kernighan and D. Ritchie. The C Programming Language. Prentice Hall, second edition,

1988.

171 J. Kerrigan. Migrating to Fortran 90. O'Reilly and Associates, 1992.
172 C. Kesselman. Integrating Performance Analysis with Performance Improvement in Parallel

Programs. PhD thesis, UCLA, 1991.
173 L. Kleinrock. On the modeling and analysis of computer networks. Proc. IEEE, 81(8):1179--

1191, 1993.
174 D. Knuth. The Art of Computer Programming: Volume 3, Sorting and Searching. Addison-

Wesley, 1973.
175 D. Knuth. The Art of Computer Programming: Volume 2, Seminumerical Algorithms.

Addison-Wesley, 1981.
176 C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. The High Performance

Fortran Handbook. MIT Press, 1994.
177 S. Koonin and D. Meredith. Computational Physics. Addison-Wesley, 1990.
178 J. S. Kowalik. Parallel Computation and Computers for Artificial Intelligence. Kluwer

Academic Publishers, 1988.
179 V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing.

Benjamin/Cummings, 1993.
180 V. Kumar, A. Grama, and V. Rao. Scalable load balancing techniques for parallel computers.

J. Parallel and Distributed Computing, 22(1):60--79, 1994.
181 V. Kumar and V. Rao. Parallel depth-first search, part II: Analysis. Intl J. of Parallel

Programming, 16(6):479--499, 1987.
182 V. Kumar and V. Singh. Scalability of parallel algorithms for the all-pairs shortest-path

problem. J. Parallel and Distributed Computing, 13(2):124--138, 1991.
183 T. Lai and S. Sahni. Anomalies in parallel branch-and-bound algorithms. Commun. ACM,

27(6):594--602, 1984.
184 S. Lakshmivarahan and S. K. Dhall. Analysis and Design of Parallel Algorithms: Arithmetic

and Matrix Problems. McGraw-Hill, 1990.
185 L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,

21(7):558--565, 1978.
186 H. Lawson. Parallel Processing in Industrial Real-time Applications. Prentice Hall, 1992.
187 F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann,

1992.
188 M. Lemke and D. Quinlan. P++, a parallel C++ array class library for architecture-

independent development of structured grid applications. In Proc. Workshop on Languages,
Compilers, and Runtime Environments for Distributed Memory Computers. ACM, 1992.

189 E. Levin. Grand challenges in computational science. Commun. ACM, 32(12):1456--1457,
1989.

190 F. C. H. Lin and R. M. Keller. The gradient model load balancing method. IEEE Trans.
Software Eng., SE-13(1):32--38, 1987.

191 V. Lo. Heuristic algorithms for task assignment in distributed systems. IEEE Trans. Computs.,
C-37(11):1384--1397, 1988.

192 C. Loan. Computational Frameworks for the Fast Fourier Transform. SIAM, 1992.
193 D. Loveman. High Performance Fortran. IEEE Parallel and Distributed Technology, 1(1):25--

42, 1993.
194 E. Lusk, R. Overbeek, et al. Portable Programs for Parallel Processors. Holt, Rinehard, and

Winston, 1987.
195 U. Manber. On maintaining dynamic information in a concurrent environment. SIAM J.

Computing, 15(4):1130--1142, 1986.
196 O. McBryan. An overview of message passing environments. Parallel Computing, 20(4):417-

-444, 1994.

197 O. A. McBryan and E. F. V. de Velde. Hypercube algorithms and implementations. SIAM J.
Sci. and Stat. Computing, 8(2):227--287, 1987.

198 S. McConnell. Code Complete: A Practical Handbook of Software Construction. Microsoft
Press, 1993.

199 C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.
200 P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures using Kali.

In Advances in Languages and Compilers for Parallel Computing. MIT Press, 1991.
201 J. D. Meindl. Chips for advanced computing. Scientific American, 257(4):78--88, 1987.
202 Message Passing Interface Forum. Document for a standard message-passing interface.

Technical report, University of Tennessee, Knoxville, Tenn., 1993.
203 Message Passing Interface Forum. MPI: A message passing interface. In Proc.

Supercomputing '93, pages 878--883. IEEE Computer Society, 1993.
204 M. Metcalf and J. Reid. Fortran 90 Explained. Oxford Science Publications, 1990.
205 R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for local area networks.

Commun. ACM, 19(7):711--719, 1976.
206 J. Michalakes. Analysis of workload and load balancing issues in the NCAR community

climate model. Technical Report ANL/MCS-TM-144, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, Ill., 1991.

207 B. Miller et al. IPS-2: The second generation of a parallel program measurement system. IEEE
Trans. Parallel and Distributed Syst., 1(2):206--217, 1990.

208 E. Miller and R. Katz. Input/output behavior of supercomputing applications. In Proc.
Supercomputing '91, pages 567--576. ACM, 1991.

209 R. Miller and Q. F. Stout. Parallel Algorithms for Regular Architectures. MIT Press, 1992.
210 R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267--

310, 1983.
211 nCUBE Corporation. nCUBE 2 Programmers Guide, r2.0, 1990.
212 nCUBE Corporation. nCUBE 6400 Processor Manual, 1990.
213 D. M. Nicol and J. H. Saltz. An analysis of scatter decomposition. IEEE Trans. Computs., C-

39(11):1337--1345, 1990.
214 N. Nilsson. Principles of Artificial Intelligence. Tioga Publishers, 1980.
215 Grand challenges: High performance computing and communications. A Report by the

Committee on Physical, Mathematical and Engineering Sciences, NSF/CISE, 1800 G Street
NW, Washington, DC 20550, 1991.

216 D. Nussbaum and A. Agarwal. Scalability of parallel machines. Commun. ACM, 34(3):56--61,
1991.

217 R. Paige and C. Kruskal. Parallel algorithms for shortest paths problems. In Proc. 1989 Intl.
Conf. on Parallel Processing, pages 14--19, 1989.

218 C. Pancake and D. Bergmark. Do parallel languages respond to the needs of scientific
programmers? Computer, 23(12):13--23, 1990.

219 Parasoft Corporation. Express Version 1.0: A Communication Environment for Parallel
Computers, 1988.

220 D. Parnas. On the criteria to be used in decomposing systems into modules. Commun. ACM,
15(12):1053--1058, 1972.

221 D. Parnas. Designing software for ease of extension and contraction. IEEE Trans. Software
Eng., SE-5(2):128--138, 1979.

222 D. Parnas and P. Clements. A rational design process: How and why to fake it. IEEE Trans.
Software Eng., SE-12(2):251--257, 1986.

223 D. Parnas, P. Clements, and D. Weiss. The modular structure of complex systems. IEEE
Trans. Software Eng., SE-11(3):259--266, 1985.

224 J. Patel. Analysis of multiprocessors with private cache memories. IEEE Trans. Computs., C-
31(4):296--304, 1982.

225 J. Pearl. Heuristics---Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

226 G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harey, W. J. Kleinfelder, K. P. McAuliffe,
E. A. Melton, V. A. Norlton, and J. Weiss. The IBM research parallel processor prototype
(RP3): Introduction and architecture. In Proc. 1985 Intl Conf. on Parallel Processing, pages
764--771, 1985.

227 P. Pierce. The NX/2 operating system. In Proc. 3rd Conf. on Hypercube Concurrent
Computers and Applications, pages 384--390. ACM Press, 1988.

228 J. Plank and K. Li. Performance results of ickp---A consistent checkpointer on the iPSC/860.
In Proc. 1994 Scalable High-Performance Computing Conf., pages 686--693. IEEE
Computer Society, 1994.

229 J. Pool et al. Survey of I/O intensive applications. Technical Report CCSF-38, CCSF,
California Institute of Technology, 1994.

230 A. Pothen, H. Simon, and K. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Mat. Anal. Appl., 11(3):430--452, 1990.

231 D. Pountain. A Tutorial Introduction to OCCAM Programming. INMOS Corporation, 1986.
232 A research and development strategy for high performance computing. Office of Science and

Technology Policy, Executive Office of the President, 1987.
233 The federal high performance computing program. Office of Science and Technology Policy,

Executive Office of the President, 1989.
234 M. Quinn. Analysis and implementation of branch-and-bound algorithms on a hypercube

multicomputer. IEEE Trans. Computs., C-39(3):384--387, 1990.
235 M. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, 1994.
236 M. Quinn and N. Deo. Parallel graph algorithms. Computing Surveys, 16(3):319--348, 1984.
237 M. Quinn and N. Deo. An upper bound for the speedup of parallel best-bound branch-and-

bound algorithms. BIT, 26(1):35--43, 1986.
238 S. Ranka and S. Sahni. Hypercube Algorithms for Image Processing and Pattern Recognition.

Springer-Verlag, 1990.
239 V. Rao and V. Kumar. Parallel depth-first search, part I: Implementation. Intl. J. of Parallel

Programming, 16(6):501--519, 1987.
240 D. A. Reed. Experimental Performance Analysis of Parallel Systems: Techniques and Open

Problems. In Proc. 7th Intl Conf. on Modeling Techniques and Tools for Computer
Performance Evaluation, 1994.

241 D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F.
Tavera. Scalable Performance Analysis: The Pablo Performance Analysis Environment. In
Proc. Scalable Parallel Libraries Conf., pages 104--113. IEEE Computer Society, 1993.

242 D. A. Reed and R. M. Fujimoto. Multicomputer Networks: Message-Based Parallel
Processing. MIT Press, 1989.

243 A. Reinefeld and V. Schnecke. Work-load balancing in highly parallel depth-first search. In
Proc. 1994 Scalable High-Performance Computing Conf., pages 773--780. IEEE Computer
Society, 1994.

244 B. Ries, R. Anderson, W. Auld, D. Breazeal, K. Callaghan, E. Richards, and W. Smith. The
Paragon performance monitoring environment. In Proc. Supercomputing '93, pages 850--
859. IEEE Computer Society, 1993.

245 A. Rogers and K. Pingali. Process decomposition through locality of reference. In Proc.
SIGPLAN '89 Conf. on Program Language Design and Implementation. ACM, 1989.

246 K. Rokusawa, N. Ichiyoshi, T. Chikayama, and H. Nakashima. An efficient termination
detection and abortion algorithm for distributed processing systems. In Proc. 1988 Intl. Conf.
on Parallel Processing: Vol. I, pages 18--22, 1988.

247 M. Rosing, R. B. Schnabel, and R. P. Weaver. The DINO parallel programming language.
Technical Report CU-CS-501-90, Computer Science Department, University of Colorado at
Boulder, Boulder, Col., 1990.

248 Y. Saad and M. H. Schultz. Topological properties of hypercubes. IEEE Trans. Computs., C-
37:867--872, 1988.

249 Y. Saad and M. H. Schultz. Data communication in hypercubes. J. Parallel and Distributed
Computing, 6:115--135, 1989.

250 P. Sadayappan and F. Ercal. Nearest-neighbor mapping of finite element graphs onto
processor meshes. IEEE Trans. Computs., C-36(12):1408--1424, 1987.

251 J. Saltz, H. Berryman, and J. Wu. Multiprocessors and runtime compilation. Concurrency:
Practice and Experience, 3(6):573--592, 1991.

252 J. Schwartz. Ultracomputers. ACM Trans. Program. Lang. Syst., 2(4):484--521, 1980.
253 C. L. Seitz. Concurrent VLSI architectures. IEEE Trans. Computs., C-33(12):1247--1265,

1984.
254 C. L. Seitz. The cosmic cube. Commun. ACM, 28(1):22--33, 1985.
255 C. L. Seitz. Multicomputers. In C.A.R. Hoare, editor, Developments in Concurrency and

Communication. Addison-Wesley, 1991.
256 M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh generation by the

finite octree technique. Int. J. Num. Meth. Engng., 32(4):709--749, 1991.
257 J. Shoch, Y. Dalal, and D. Redell. Evolution of the Ethernet local computer network.

Computer, 15(8):10--27, 1982.
258 H. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems

in Engineering, 2(2/3):135--148, 1991.
259 J. Singh, J. L. Hennessy, and A. Gupta. Scaling parallel programs for multiprocessors:

Methodology and examples. IEEE Computer, 26(7):42--50, 1993.
260 M. Singhal. Deadlock detection in distributed systems. Computer, 22(11):37--48, 1989.
261 P. Sivilotti and P. Carlin. A tutorial for CC++. Technical Report CS-TR-94-02, Caltech, 1994.
262 A. Skjellum. The Multicomputer Toolbox: Current and future directions. In Proc. Scalable

Parallel Libraries Conf., pages 94--103. IEEE Computer Society, 1993.
263 A. Skjellum, editor. Proc. 1993 Scalable Parallel Libraries Conf. IEEE Computer Society,

1993.
264 A. Skjellum, editor. Proc. 1994 Scalable Parallel Libraries Conf. IEEE Computer Society,

1994.
265 A. Skjellum, N. Doss, and P. Bangalore. Writing libraries in MPI. In Proc. Scalable Parallel

Libraries Conf., pages 166--173. IEEE Computer Society, 1993.
266 A. Skjellum, S. Smith, N. Doss, A. Leung, and M. Morari. The design and evolution of

Zipcode. Parallel Computing, 20:565--596, 1994.
267 J. R. Smith. The Design and Analysis of Parallel Algorithms. Oxford University Press, 1993.
268 L. Snyder. Type architectures, shared memory, and the corollary of modest potential. Ann.

Rev. Comput. Sci., 1:289--317, 1986.
269 H. S. Stone. High-Performance Computer Architectures. Addison-Wesley, third edition, 1993.
270 B. Stroustrup. The C++ Programming Language. Addison-Wesley, second edition, 1991.
271 C. Stunkel, D. Shea, D. Grice, P. Hochschild, and M. Tsao. The SP1 high-performance

switch. In Proc. 1994 Scalable High-Performance Computing Conf., pages 150--157. IEEE
Computer Society, 1994.

272 R. Suaya and G. Birtwistle, editors. VLSI and Parallel Computation. Morgan Kaufmann,
1990.

273 J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Exploiting task and data parallelism on
a multicomputer. In Proc. 4th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming. ACM, 1993.

274 X.-H. Sun and L. M. Ni. Scalable problems and memory-bounded speedup. J. Parallel and
Distributed Computing, 19(1):27--37, 1993.

275 V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice
and Experience, 2(4):315--339, 1990.

276 Supercomputer Systems Division, Intel Corporation. Paragon XP/S Product Overview, 1991.
277 P. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197--210, 1987.
278 D. Tabak. Advanced Multiprocessors. McGraw-Hill, 1991.
279 A. Tantawi and D. Towsley. Optimal load balancing in distributed computer systems. J. ACM,

32(2):445--465, 1985.
280 R. Taylor and P. Wilson. Process-oriented language meets demands of distributed processing.

Electronics, Nov. 30, 1982.
281 Thinking Machines Corporation. The CM-2 Technical Summary, 1990.
282 Thinking Machines Corporation. CM Fortran Reference Manual, version 2.1, 1993.
283 Thinking Machines Corporation. CMSSL for CM Fortran Reference Manual, version 3.0,

1993.
284 A. Thomasian and P. F. Bay. Analytic queuing network models for parallel processing of task

systems. IEEE Trans. Computs., C-35(12):1045--1054, 1986.
285 E. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983.
286 J. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.
287 Building an advanced climate model: Program plan for the CHAMMP climate modeling

program. U.S. Department of Energy, 1990. Available from National Technical Information
Service, U.S. Dept of Commerce, 5285 Port Royal Rd, Springfield, VA 22161.

288 L. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103--111, 1990.
289 R. A. van de Geijn. Efficient global combine operations. In Proc. 6th Distributed Memory

Computing Conf., pages 291--294. IEEE Computer Society, 1991.
290 E. F. van de Velde. Concurrent Scientific Computing. Number 16 in Texts in Applied

Mathematics. Springer-Verlag, 1994.
291 Y. Wallach. Parallel Processing and Ada. Prentice-Hall, 1991.
292 W. Washington and C. Parkinson. An Introduction to Three-Dimensional Climate Modeling.

University Science Books, 1986.
293 R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh

calculations. Concurrency: Practice and Experience, 3(5):457--481, 1991.
294 S. Wimer, I. Koren, and I. Cederbaum. Optimal aspect ratios of building blocks in VLSI. In

Proc. 25th ACM/IEEE Design Automation Conf., pages 66--72, 1988.
295 N. Wirth. Program development by stepwise refinement. Commun. ACM, 14(4):221--227,

1971.
296 M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.
297 P. H. Worley. The effect of time constraints on scaled speedup. SIAM J. Sci. and Stat.

Computing, 11(5):838--858, 1990.
298 P. H. Worley. Limits on parallelism in the numerical solution of linear PDEs. SIAM J. Sci. and

Stat. Computing, 12(1):1--35, 1991.
299 J. Worlton. Characteristics of high-performance computers. In Supercomputers: Directions in

Technology and its Applications, pages 21--50. National Academy Press, 1989.
300 X3J3 Subcommittee. American National Standard Programming Language Fortran (X3.9-

1978). American National Standards Institute, 1978.

301 J. Yan, P. Hontalas, S. Listgarten, et al. The Automated Instrumentation and Monitoring
System (AIMS) reference manual. NASA Technical Memorandum 108795, NASA Ames
Research Center, Moffett Field, Calif., 1993.

302 H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD
parallelization. Parallel Computing, 6:1--18, 1988.

303 H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. Addison-
Wesley, 1991.

Index

*Lisp

Chapter Notes
Abstract processors in HPF

7.3.1 Processors
Actor model

Chapter Notes
Agglomeration

2.1 Methodical Design
 and granularity

2.4.1 Increasing Granularity, Surface-to-
Volume Effects.

 and granularity
2.4.1 Increasing Granularity, Surface-to-
Volume Effects.

 design checklist
2.4.4 Agglomeration Design Checklist

 for atmosphere model
Agglomeration.

 for floorplan optimization
Agglomeration.

 for Fock matrix problem
Communication and Agglomeration.

 in data-parallel model
7.1.3 Design

AIMS performance tool
9.4.7 AIMS, Chapter Notes

Amdahl's law
 application to HPF

7.7.2 Sequential Bottlenecks
 definition

3.2.1 Amdahl's Law, Chapter Notes
 definition

3.2.1 Amdahl's Law, Chapter Notes
Applied Parallel Research

Chapter Notes
ARPANET

Chapter Notes
Asymptotic analysis
 limitations of

3.2.3 Asymptotic Analysis, 3.2.3 Asymptotic
Analysis

 limitations of
3.2.3 Asymptotic Analysis, 3.2.3 Asymptotic
Analysis

 reference
Chapter Notes

Asynchronous communication
2.3.4 Asynchronous Communication

 in CC++
5.6 Asynchronous Communication

 in FM
6.5 Asynchronous Communication

 in MPI
8.4 Asynchronous Communication

Asynchronous Transfer Mode
1.2.2 Other Machine Models

Atmosphere model
 basic equations

2.6.1 Atmosphere Model Background
 description

(,)
 parallel algorithms

(,)
 references

Chapter Notes
BBN Butterfly

Chapter Notes
Bisection bandwidth

Exercises
Bisection width

Exercises, Chapter Notes
Bitonic mergesort

Chapter Notes
Bottlenecks in HPF

7.7.2 Sequential Bottlenecks
Branch-and-bound search
 description

2.7.1 Floorplan Background, Chapter Notes
 description

2.7.1 Floorplan Background, Chapter Notes
 in MPI

8.1 The MPI Programming
Breadth-first search

Partition.
Bridge construction problem
 definition

1.3.1 Tasks and Channels
 determinism

1.3.1 Tasks and Channels
 in CC++

5.2 CC++ Introduction
 in Fortran M

6.1 FM Introduction, 6.1 FM Introduction,
6.4.3 Dynamic Channel Structures

 in Fortran M
6.1 FM Introduction, 6.1 FM Introduction,
6.4.3 Dynamic Channel Structures

 in Fortran M
6.1 FM Introduction, 6.1 FM Introduction,
6.4.3 Dynamic Channel Structures

 in MPI
8.2 MPI Basics

Bubblesort
Exercises

Bucketsort
Chapter Notes

Bus-based networks
Bus-based Networks.

Busy waiting strategy
6.5 Asynchronous Communication

Butterfly
 bandwidth competition on

Multistage Interconnection Networks.
 description

Replicating Computation.
 hypercube formulation

Hypercube Network.
C*

Chapter Notes, 7 High Performance Fortran,
Chapter Notes

C++
Chapter Notes

 classes
5.1.2 Classes

 constructor functions
5.1.2 Classes

 default constructors
5.1.2 Classes

 inheritance
5.1.3 Inheritance, 5.1.3 Inheritance

 inheritance
5.1.3 Inheritance, 5.1.3 Inheritance

 member functions
5.1.2 Classes

 overloading
5.1.1 Strong Typing and

 protection
5.1.2 Classes

 virtual functions
5.1.3 Inheritance

Cache effect
3.6.2 Speedup Anomalies

Cache memory
1.2.2 Other Machine Models, Bus-based
Networks.

CC++
Part II: Tools

 asynchronous communication
5.6 Asynchronous Communication

 basic abstractions
5.2 CC++ Introduction

 channel communication

5.5.2 Synchronization
 communication costs

5.10 Performance Issues, 5.10 Performance
Issues

 communication costs
5.10 Performance Issues, 5.10 Performance
Issues

 communication structures
5.5 Communication

 compiler optimization
5.10 Performance Issues

 concurrency
h5.3 Concurrency

 library building
5.11 Case Study: Channel

 locality
5.4 Locality

 mapping
(,)

 modularity
5.9 Modularity

 modularity
5.9 Modularity

 modularity
5.9 Modularity

 modularity
5.9 Modularity

 nondeterministic interactions
5.7 Determinism

 sequential composition
5.9 Modularity, 5.9 Modularity

 sequential composition
5.9 Modularity, 5.9 Modularity

 synchronization mechanisms
5.5.2 Synchronization, 5.5.2 Synchronization,
5.5.2 Synchronization, 5.5.3 Mutual
Exclusion

 synchronization mechanisms
5.5.2 Synchronization, 5.5.2 Synchronization,
5.5.2 Synchronization, 5.5.3 Mutual
Exclusion

 synchronization mechanisms
5.5.2 Synchronization, 5.5.2 Synchronization,
5.5.2 Synchronization, 5.5.3 Mutual
Exclusion

 synchronization mechanisms
5.5.2 Synchronization, 5.5.2 Synchronization,
5.5.2 Synchronization, 5.5.3 Mutual
Exclusion

 threads
5.2 CC++ Introduction

 tutorial
Chapter Notes

 unstructured parallelism
5.3 Concurrency

CHAMMP climate modeling program
Chapter Notes

Channels
1.3.1 Tasks and Channels

 and data dependencies

1.3.1 Tasks and Channels
 connecting outport/inport pairs

1.3.1 Tasks and Channels
 creation in Fortran M

6.3.1 Creating Channels
 dynamic in Fortran M

6.4.h3 Dynamic Channel Structures
 for argument passing in Fortran M

6.7 Argument Passing
 in communication

2.3 Communication
 in CSP

Chapter Notes
Checkpointing

3.8 Input/Output, Chapter Notes
CHIMP

Chapter Notes
Classes in C++

5.1.2 Classes
Climate modeling

1.1.1 Trends in Applications, 2.2.2
Functional Decomposition, 2.6 Case Study:
Atmosphere , 9.4.1 Paragraph

 in CC++
5.8.2 Mapping Threads to

 in Fortran M
6.8.3 Submachines

 in MPI
8.8 Case Study: Earth

Clock synchronization
9.3.2 Traces, Chapter Notes

CM Fortran
Chapter Notes

Collaborative work environments
1.1.1 Trends in Applications

Collective communication
8.3 Global Operations, 9.4.2 Upshot

Collocation of arrays
7.3.2 Alignment

Combining scatter
7.6.3 HPF Features Not

Communicating Sequential Processes
Chapter Notes

Communication
 and channels

2.3 Communication
 collective

8.1 The MPI Programming , 8.3 Global
Operations

 collective
8.1 The MPI Programming , 8.3 Global
Operations

 design checklist
2.3.5 Communication Design Checklist

 disadvantages of local
2.3.2 Global Communication

 for atmosphere model
Communication.

 for floorplan optimization
Communication.

 for Fock matrix problem
Communication and Agglomeration.

 in CC++
5.5 Communication

 in data-parallel model
7.1.3 Design

 in Fortran M
6.3 Communication

 in MPI
8.1 The MPI Programming

 synchronous
6.4.3 Dynamic Channel Structures, 8.6.2 MPI
Features Not

 synchronous
6.4.3 Dynamic Channel Structures, 8.6.2 MPI
Features Not

Communication costs
Communication Time.

 bandwidth competition
3.7 A Refined Communication

 in CC++
5.10 Performance Issues

 in HPF
7.7.3 Communication Costs

 in MPI
8.7 Performance Issues, 8.7 Performance
Issues

 in MPI
8.7 Performance Issues, 8.7 Performance
Issues

 of unaligned array mapping
7.7.3 Communication Costs

 with cyclic distribution
7.7.3 Communication Costs

Communication patterns
2.3 Communication

 asynchronous
2.3 Communication, 2.3.4 Asynchronous
Communication, 6.5 Asynchronous
Communication, 7.6.2 Storage and Sequence
, 8.4 Asynchronous Communication

 asynchronous
2.3 Communication, 2.3.4 Asynchronous
Communication, 6.5 Asynchronous
Communication, 7.6.2 Storage and Sequence
, 8.4 Asynchronous Communication

 asynchronous
2.3 Communication, 2.3.4 Asynchronous
Communication, 6.5 Asynchronous
Communication, 7.6.2 Storage and Sequence
, 8.4 Asynchronous Communication

 asynchronous
2.3 Communication, 2.3.4 Asynchronous
Communication, 6.5 Asynchronous
Communication, 7.6.2 Storage and Sequence
, 8.4 Asynchronous Communication

 asynchronous
2.3 Communication, 2.3.4 Asynchronous
Communication, 6.5 Asynchronous

Communication, 7.6.2 Storage and Sequence
, 8.4 Asynchronous Communication

 dynamic
2.3 Communication, 2.3.3 Unstructured and
Dynamic

 dynamic
2.3 Communication, 2.3.3 Unstructured and
Dynamic

 local
2.3 Communication

 many-to-many
6.4.2 Many-to-Many Communication

 many-to-one
1.4.4 Parameter Study, 6.4.1 Many-to-One
Communication

 many-to-one
1.4.4 Parameter Study, 6.4.1 Many-to-One
Communication

 point-to-point
8.1 The MPI Programming

 static
2.3 Communication

 structured
2.3 Communication

 synchronous
2.3 Communication, 6.4.3 Dynamic Channel
Structures

 synchronous
2.3 Communication, 6.4.3 Dynamic Channel
Structures

 unstructured
2.3.3 Unstructured and Dynamic , 6.4
Unstructured Communication

 unstructured
2.3.3 Unstructured and Dynamic , 6.4
Unstructured Communication

Communication time
Communication Time.

Communication/computation ratio
Surface-to-Volume Effects.

Communicators
 see MPI
Competition for bandwidth
 examples

Multistage Interconnection Networks.,
Multistage Interconnection Networks.

 examples
Multistage Interconnection Networks.,
Multistage Interconnection Networks.

 idealized model of
3.7.1 Competition for Bandwidth

 impact
3.7 A Refined Communication

Compilers
 data-parallel

7.1.3 Design, 7.7.1 HPF Compilation
 data-parallel

7.1.3 Design, 7.7.1 HPF Compilation
 for CC++

5.10 Performance Issues

 for Fortran M
6.10 Performance Issues

 for HPF
7.7.1 HPF Compilation, Chapter Notes

 for HPF
7.7.1 HPF Compilation, Chapter Notes

Composition
 concurrent

4.2 Modularity and Parallel , 4.2.4
Concurrent Composition

 concurrent
4.2 Modularity and Parallel , 4.2.4
Concurrent Composition

 definition
4 Putting Components Together

 parallel
4.2 Modularity and Parallel

 sequential
4.2 Modularity and Parallel , 4.2.2 Sequential
Composition

 sequential
4.2 Modularity and Parallel , 4.2.2 Sequential
Composition

Compositional C++
 see CC++
Computation time

Computation Time.
Computational chemistry

2.8 Case Study: Computational , Chapter
Notes

Computational geometry
12 Further Reading

Computer architecture
1.2.2 Other Machine Models, 3.7.2
Interconnection Networks

 references
Chapter Notes, Chapter Notes, 12 Further
Reading

 references
Chapter Notes, Chapter Notes, 12 Further
Reading

 references
Chapter Notes, Chapter Notes, 12 Further
Reading

 trends
1.1.4 Summary of Trends

Computer performance improvement
1.1.2 Trends in Computer , 1.1.2 Trends in
Computer

Computer trends
1.1.4 Summary of Trends

Computer vision
Chapter Notes, 12 Further Reading

Computer-aided diagnosis
1.1.1 Trends in Applications

Concert C
Chapter Notes

Concurrency
 explicit vs. implicit

7.1.1 Concurrency

 in CC++
5.3 Concurrency

 in data-parallel programs
7.1.1 Concurrency

 in Fortran M
6.2 Concurrency

 parallel software requirement
1.1.2 Trends in Computer

Concurrent C
Chapter Notes

Concurrent composition
4.2 Modularity and Parallel , 4.2.4
Concurrent Composition

 benefits
4.2.4 Concurrent Composition, 4.2.4
Concurrent Composition

 benefits
4.2.4 Concurrent Composition, 4.2.4
Concurrent Composition

 cost
4.2.4 Concurrent Composition

 example
4.2.4 Concurrent Composition

 in CC++
5.8.2 Mapping Threads to

 in Fortran M
6.8.3 Submachines

 tuple space example
4.5 Case Study: Tuple

Concurrent Computation Project
12 Further Reading

Concurrent data structures
12 Further Reading

Concurrent logic programming
Chapter Notes

Conferences in parallel computing
12 Further Reading

Conformality
 definition

7.1.1 Concurrency
 in Fortran M

6.3.1 Creating Channels
 of array sections

7.2.1 Array Assignment Statement
Constructor functions in C++

5.1.2 Classes
Convolution algorithm
 application in image processing

4.4 Case Study: Convolution
 components

4.4.1 Components
 parallel 2-D FFTs

4.4.1 Components
 parallel composition

4.4.2 Composing Components
 sequential composition

4.4.2 Composing Components
COOL

Chapter Notes
Cosmic Cube

Chapter Notes, Chapter Notes, Chapter Notes
Counters

9.1 Performance Analysis, 9.2.2 Counters
Cray T3D

1.2.2 Other Machine Models, Chapter Notes
Crossbar switching network

Crossbar Switching Network.
Cycle time trends

1.1.2 Trends in Computer
Cyclic mapping

Cyclic Mappings., Mapping, Chapter Notes
 in HPF

7.3.3 Distribution, 7.7.3 Communication
Costs, 7.8 Case Study: Gaussian

 in HPF
7.3.3 Distribution, 7.7.3 Communication
Costs, 7.8 Case Study: Gaussian

 in HPF
7.3.3 Distribution, 7.7.3 Communication
Costs, 7.8 Case Study: Gaussian

Data collection
 basic techniques

9.1 Performance Analysis
 counters

9.2.2 Counters
 process

9.2.4 Summary of Data
 traces

9.2.3 Traces
Data decomposition
 see Domain decomposition
Data dependency

1.3.1 Tasks and Channels
Data distribution
 at module boundaries

4.2.1 Data Distribution
 dynamic

7.6.3 HPF Features Not
 in data-parallel languages

7.1.2 Locality
 in HPF

(,)
Data distribution neutrality
 benefits

4.2.1 Data Distribution
 example

(,)
 in ScaLAPACK

4.2.2 Sequential Composition
 in SPMD libraries

Chapter Notes
Data fitting

3.5.3 Fitting Data to
Data parallelism

1.3.2 Other Programming Models, 7 High
Performance Fortran

 and Fortran 90
7.1.4 Data-Parallel Languages, 7.2.2 Array
Intrinsic Functions

 and Fortran 90

7.1.4 Data-Parallel Languages, 7.2.2 Array
Intrinsic Functions

 and HPF
7.1.4 Data-Parallel Languages

 and modular design
7.1.3 Design

 and task parallelism
Chapter Notes

 for irregular problems
Chapter Notes

 languages
7.1.4 Data-Parallel Languages, 9.3.3 Data-
Parallel Languages

 languages
7.1.4 Data-Parallel Languages, 9.3.3 Data-
Parallel Languages

Data reduction
9.3.1 Profile and Counts, 9.3.2 Traces

Data replication
3.9.3 Shortest-Path Algorithms Summary

Data transformation
9.1 Performance Analysis

Data visualization
9.1 Performance Analysis, 9.3.2 Traces

Data-parallel C
Chapter Notes, Chapter Notes

Data-parallel languages
7.1.4 Data-Parallel Languages, 9.3.3 Data-
Parallel Languages

Data-parallel model
1.3.2 Other Programming Models, 7.1.3
Design, 7.1.3 Design, 7.1.3 Design

Databases
Chapter Notes, Chapter Notes, 4.5.1
Application

Deadlock detection
12 Further Reading

Decision support
1.1.h1 Trends in Applications

Dense matrix algorithms
12 Further Reading

Depth-first search
Agglomeration.

Design checklists
 agglomeration

2.4.4 Agglomeration Design Checklist
 communication

2.h3.5 Communication Design Checklist
 mapping

2.5.3 Mapping Design Checklist
 modular design

Design checklist.
 partitioning

2.2.3 Partitioning Design Checklist
Determinism

1.3.1 Tasks and Channels
 advantages

1.3.1 Tasks and Channels, Chapter Notes
 advantages

1.3.1 Tasks and Channels, Chapter Notes

 in CC++
5.7 Determinism

 in Fortran M
6.6 Determinism

 in MPI
8.2.2 Determinism

Diagonalization
Exercises, 9.4.2 Upshot

Diameter of network
3.7.1 Competition for Bandwidth

Dijkstra's algorithm
3.9.2 Dijkstra's Algorithm, 3.9.3 Shortest-
Path Algorithms Summary

DINO
Chapter Notes

DISCO
Communication and Agglomeration.

Distributed computing
1.1.3 Trends in Networking

Distributed data structures
 Fock matrix

2.8 Case Study: Computational
 for load balancing

Decentralized Schemes.
 implementation

(,)
 in CC++

5.12 Case Study: Fock
 in Fortran M

6.11 Case Study: Fock
 in MPI

8.4 Asynchronous Communication
 tuple space

4.5 Case Study: Tuple
Divide-and-conquer

Uncovering Concurrency: Divide
Domain decomposition

2.2 Partitioning, 2.2.1 Domain
Decomposition

 communication requirements
2.3 Communication

 for atmosphere model
2.6 Case Study: Atmosphere

 for Fock matrix problem
Partition.

Efficiency
3.3.2 Efficiency and Speedup, 3.3.2
Efficiency and Speedup, 3.3.2 Efficiency and
Speedup

Embarrassingly parallel problems
1.4.4 Parameter Study

Entertainment industry
1.1.1 Trends in Applications

Environmental
enquiry;tex2html_html_special_mark_quot;in MPI

8.6.2 MPI Features Not
Ethernet

1.2.2 Other Machine Models, Chapter Notes
 performance

Communication Time., Ethernet., Multistage
Interconnection Networks., Multistage
Interconnection Networks.

 performance
Communication Time., Ethernet., Multistage
Interconnection Networks., Multistage
Interconnection Networks.

 performance
Communication Time., Ethernet., Multistage
Interconnection Networks., Multistage
Interconnection Networks.

 performance
Communication Time., Ethernet., Multistage
Interconnection Networks., Multistage
Interconnection Networks.

Event traces
9.1 Performance Analysis, 9.3.2 Traces

Execution profile
3.4.3 Execution Profiles, 3.6 Evaluating
Implementations

Execution time
 as performance metric

3.3 Developing Models
 limitations of

3.3.2 Efficiency and Speedup
Exhaustive search

2.7.1 Floorplan Background
Experimental calibration

3.5.1 Experimental Design, 3.5.1
Experimental Design, 3.5.3 Fitting Data to

Express
Part II: Tools, 8 Message Passing Interface,
Chapter Notes, Chapter Notes

Fairness
 in CC++

5.10 Performance Issues
 in Fortran M

6.10 Performance Issues
Fast Fourier transform

4.4 Case Study: Convolution
 in convolution

(,)
 in HPF

7.4.2 The INDEPENDENT Directive
 performance

Multistage Interconnection Networks.
 using hypercube

Chapter Notes
Fine-grained decomposition

2.2 Partitioning
Finite difference algorithm
 computation cost

3.5.3 Fitting Data to
 efficiency

3.3.2 Efficiency and Speedup
 execution time

Idle Time.
 in CC++

5.9 Modularity
 in Fortran 90

7.2.2 Array Intrinsic Functions
 in Fortran M

6.9 Modularity
 in HPF

7.3.3 Distribution
 in MPI

8.3.3 Reduction Operations
 isoefficiency analysis

3.4.2 Scalability with Scaled
Finite element method

2.3.h3 Unstructured and Dynamic
Fixed problem analysis

3.4.1 Scalability with Fixed
Floorplan optimization problem
 description

(,)
 parallel algorithms

(,)
Floyd's algorithm

(,)
Fock matrix problem
 algorithms for

Chapter Notes
 description

(,)
 in CC++

5.12 Case Study: Fock
 in Fortran M

6.11 Case Study: Fock
 in MPI

8.4 Asynchronous Communication, 8.4
Ashynchronous Communication, 8.6.1
Derived Datatypes

 in MPI
8.4 Asynchronous Communication, 8.4
Asynchronous Communication, 8.6.1
Derived Datatypes

 in MPI
8.4 Asynchronous Communication, 8.4
Asynchronous Communication, 8.6.1
Derived Datatypes

 performance
9.4.2 Upshot

Fortran 90
 array assignment

7.2.1 Array Assignment Statement, 7.4
Concurrency

 array assignment
7.2.1 Array Assignment Statement, 7.4
Concurrency

 array intrinsics
7.2.2 Array Intrinsic Functions

 as basis for HPF
7.1.4 Data-Parallel Languages

 conformality
7.1.1 Concurrency, 7.2.1 Array Assignment
Statement

 conformality
7.1.1 Concurrency, 7.2.1 Array Assignment
Statement

 CSHIFT function
7.2.2 Array Intrinsic Functions

 explicit parallelism in
7.1.h1 Concurrency

 finite difference problem
7.2.2 Array Intrinsic Functions

 implicit parallelism in
7.1.1 Concurrency

 inquiry functions
7.6h.1 System Inquiry Intrinsic

 limitations as data-parallel language
7.2.2 Array Intrinsic Functions

 SIZE function
7h.6.1 System Inquiry Intrinsic

 transformational functions
7.2.2 Array Intrinsic Functions

 WHERE
7.2.1 Array Assignment Statement

Fortran D
Chapter Notes

Fortran M
Part II: Tools

 and SPMD computations
6.9 Modularity

 argument passing
6.7 Argument Passing

 busy waiting strategy
6.5 Asynchronous Communication

 communication
6.3 Communication

 communication
6.3 Communication

 communication
6.3 Communication

 communication
6.3 Communication

 communication
6.3 Communication

 communication
6.3 Communication

 communication
6.3 hCommunication

 communication
6.3 Communication

 communication
6.3 Communication

 communication
6.3h Communication

 compiler optimization
6.10 Performance Issues

 concurrency
6.2 Concurrency

 concurrency
6.2 Concurrency

 concurrency
6.2 Concurrency

 concurrency
6.2 Concurrency

 concurrency
6.2 Concurrency

 conformality
6.3.1 Creating Channels

 determinism
6.6 Determinism, 6.7.1 Copying and
Determinism

 determinism
6.6 Determinism, 6.7.1 Copying and
Determinism

 distribution of data
6.5 Asynchronous Communication

 list of extensions
6.1 FM Introduction

 mapping
(,)

 message passing
6.9 Modularity, 6.9 Modularity, 6.9
Modularity

 message passing
6.9 Modularity, 6.9 Modularity, 6.9
Modularity

 message passing
6.9 Modularity, 6.9 Modularity, 6.9
Modularity

 modularity
6.1 FM Introduction

 modularity
6.1 FM Introduction

 modularity
6.1 FM Introduction

 modularity
6.1 FM Introduction

 performance analysis
6.10 Performance Issues

 port variables
6h.2.1 Defining Processes

 process creation
6.2.2 Creating Processes

 quick reference
6.12 Summary, 6.12 Summary

 quick reference
6.12 Summary, 6.12 Summary

 sequential composition
6.9 Modularity

 tree-structured computation
6.3.3 Receiving Messages

Fujitsu VPP 500
Crossbar Switching Network.

Functional decomposition
 appropriateness

2.2.2 Functional Decomposition
 communication requirements

2.3 Communication
 complement to domain decomposition

2.2.2 Functional Decomposition
 design complexity reduced by

2.2.2 Functional Decomposition
 for climate model

2.2.2 Functional Decomposition
 for Fock matrix problem

Partition.

Functional programming
Chapter Notes, 12 Further Reading

Gantt chart
9.3.2 Traces, 9.4.1 Paragraph, 9.4.2 Upshot

Gauge performance tool
9.4.4 Gauge, Chapter Notes

Gauss-Seidel update
2.3.1 Local Communication, 2.3.1 Local
Communication

Gaussian elimination
7.8 Case Study: Gaussian , 9.3.3 Data-
Parallel Languages

Genetic sequences
4.5.1 Application

GIGAswitch
Crossbar Switching Network.

Global communication
2.3.2 Global Communication

Grand Challenge problems
Chapter Notes

Granularity
2.2 Partitioning

 agglomeration used to increase
2.4 Agglomeration

 flexibility related to
2.2 Partitioning

 of modular programs
4.3 Performance Analysis

Handles in MPI
8.2.1 Language Bindings

Hash tables
4.5.2 Implementation

High Performance Fortran
 see HPF
Histograms

9.3.1 Profile and Counts
HPF

Part II: Tools
 abstract processors

7.3.1 Processors
 advantages

7.9 Summary
 collocation of arrays

7.3.2 Alignment
 compilation

7.7.1 HPF Compilation
 data distribution

(,)
 extrinsic functions

7.6.3 HPF Features Not
 language specification

Chapter Notes
 mapping inquiry functions

7.6.3 HPF Features Not
 modularity

7.5 Dummy Arguments and
 modularity

7.5 Dummy Arguments and
 pure functions

7.6.3 HPF Features Not

 remapping of arguments
Strathqegy 1: Remap

 sequence association
7.6.2 Storage and Sequence

 storage association
7.6.2 Storage and Sequence

 subset (official)
7.1.4 Data-Parallel Languages

 system inquiry functions
7.6.1 System Inquiry Intrinsic

Hypercube algorithms
 all-to-all communication

11 Hypercube Algorithms
 matrix transposition

11.3 Matrix Transposition
 parallel mergesort

11.4 Mergesort
 template for

11 Hypercube Algorithms
 vector broadcast

11.2 Vector Reduction
 vector reduction

11.2 Vector Reduction, 11.2 Vector
Reduction

 vector reduction
11.2 Vector Reduction, 11.2 Vector
Reduction

Hypercube network
Hypercube Network.

I/O, parallel
 applications requiring

3.8 Input/Output, Chapter Notes
 applications requiring

3.8 Input/Output, Chapter Notes
 performance issues

3.8 Input/Output, 3.8 Input/Output
 performance issues

3.8 Input/Output, 3.8 Input/Output
 two-phase strategy

3.8 Input/Output, Chapter Notes
 two-phase strategy

3.8 Input/Output, Chapter Notes
IBM RP3

Chapter Notes
IBM SP

Chapter Notes
Idle time

Idle Time., 4.3 Performance Analysis
Image processing

Exercises, 4.4 Case Study: Convolution
Immersive virtual environments

9.4.3 Pablo
Incremental parallelization

3.2.1 Amdahl's Law
Information hiding

Ensure that modules
Inheritance in C++

5.1.3 Inheritance
Intel DELTA

3.6.2 Speedup Anomalies, Multistage
Interconnection Networks., Multistage
Interconnection Networks., Chapter Notes

Intel iPSC
Chapter Notes, Chapter Notes

Intel Paragon
1.2.2 Other Machine Models, Chapter Notes,
9.4.5 ParAide

Intent declarations
6.7.2 Avoiding Copying

Interconnection Networks
 see Networks
IPS-2 performance tool

Chapter Notes
Isoefficiency

3.4.2 Scalability with Scaled , Chapter Notes
J machine

Chapter Notes
Jacobi update

2.3.1 Local Communication
Journals in parallel computing

12 hFurther Reading
Kali

Chapter Notes
Latency

3.1 Defining Performance
Leapfrog method

10.3.2 The Leapfrog Method, 10.3.2 The
Leapfrog Method, 10.3.3 Modified Leapfrog

Least-squares fit
3.5.3 Fitting Data to , 3.5.3 Fitting Data to

 scaled
3.5.3 Fitting Data to

 simple
3.5.3 Fitting Data to

Linda
Chapter Notes

 and tuple space
4.5 Case Study: Tuple , Chapter Notes

 and tuple space
4.5 Case Study: Tuple , Chapter Notes

 types of parallelism with
Chapter Notes

Load balancing
 cyclic methods

Cyclic Mappings.
 dynamic methods

2.5 Mapping
 local methods

2.5 Mapping, Local Algorithms.
 local methods

2.5 Mapping, Local Algorithms.
 manager/worker method

Manager/Worker.
 probabilistic methods

2.5 Mapping, Probabilistic Methods.
 probabilistic methods

2.5 Mapping, Probabilistic Methods.
 recursive bisection methods

Recursihve Bisection.

Local area network
1.2.2 Other Machine Models

Local communication
 definition

2.3.1 Local Communication
 finite difference example

(,)
Locality
 and task abstraction

1.3.1 Tasks and Channels
 definition

1.2.1 The Multicomputer
 in CC++

5.4 Locality
 in data-parallel programs

7.1.2 Locality, 7.8 Case Study: Gaussian
 in data-parallel programs

7.1.2 Locality, 7.8 Case Study: Gaussian
 in multicomputers

1.2.1 The Multicomputer
 in PRAM model

1.2.2 Other Machine Models
Locks

1.3.2 Other Programming Models
Machine parameters

Communication Time.
Mapping

2.1 Methodical Design
 design rules

2.5.3 Mapping Design Checklist
 in CC++

5.8 Mapping, 5.8.2 Mapping Threads to
 in CC++

5.8 Mapping, 5.8.2 Mapping Threads to
 in data-parallel model

7.1.3 Design
 in Fortran M

6.8 Mapping
Mapping independence

1.3.1 Tasks and Channels
MasPar MP

1.2.2 Other Machine Models
Matrix multiplication
 1-D decomposition

4.6.1 Parallel Matrix-Matrix Multiplication
 2-D decomposition

4.6.1 Parallel Matrix-Matrix Multiplication,
4.6.1 Parallel Matrix-Matrix Multiplication

 2-D decomposition
4.6.1 Parallel Matrix-Matrix Multiplication,
4.6.1 Parallel Matrix-Matrix Multiplication

 and data distribution neutral libraries
4.6 Case Study: Matrix

 communication cost
4.6.2 Redistribution Costs

 communication structure
4.6.1 Parallel Matrix-Matrix Multiplication

 systolic communication
4.6.3 A Systolic Algorithm

Matrix transpose

 see Transpose
Meiko CS-2

1.2.2 Other Machine Models
Member functions in C++

5.1.2 Classes
Mentat

Chapter Notes
Mergesort
 parallel

Compare-Exchange.
 parallel algorithms

(,)
 performance

Performance
 references

Chapter Notes
 sequential algorithm

11.4 Mergesort, 11.4 Mergesort
 sequential algorithm

11.4 Mergesort, 11.4 Mergesort
Mesh networks

Mesh Networks.
Message Passing Interface
 see MPI
Message-passing model
 description

Chapter Notes
 in HPF

7.7 Performance Issues
 task/channel model comparison

1.3.2 Other Programming Models
MIMD computers

1.2.2 Other Machine Models
Modular design
 and parallel computing

1.3 A Parallel Programming
 and parallel computing

1.3 A Parallel Programming
 and parallel computing

1.3h A Parallel Programming
 design checklist

Design checklist.
 in CC++

5.9 Modularity
 in Fortran M

6.9 Modularity
 in HPF

7.1.3 Design, 7.5 Dummy Arguments and
 in HPF

7.1.3 Design, 7.5 Dummy Arguments and
 in MPI

8.5 Mhodularity
 in task/channel model

1.3.1 Tasks and Channels
 performance analysis

4.3 Performance Analysis
 principles

(,)
Monte Carlo methods

Chapter Notes

MPI
Part II: Tools

 basic functions
8.2 MPI Basics

 C binding
C Language Binding.

 collective communication functions
(,)

 communicators
8.5 Modularity, 8.5.1 Creating
Communicators

 communicators
8.5 Modularity, 8.5.1 Creating
Communicators

 communicators
8.5 Modularity, 8.5.1 Creating
Communicators

 communicators
8.5 Modularity, 8.5.1 Creating
Communicators

 communicators
8.5 Modularity, 8.5.1 Creating
Communicators

 communicators
8.5 hModularity, 8.5.1 Creating
Cohmmunicators

 derived datatypes
8.6.1 Derived Datatypes, 8.6.1 Derived
Datatypes

 derived datatypes
8.6.1 Derived Datatypes, 8.6.1 Derived
Datahtypes

 determinism
8.2.2 Determinism, 8.2.2 Determinism

 determinism
8.2h.2 Determinism, 8.2.2 Determinism

 environmental enquiry
8.6.2 MPI Features Not

 Fortran binding
Fortran Language Binding.

 handles
8.h2.1 Language Bindings

 message tags
8.h2.2 Determinism

 modularity
(,)

 MPMD model
8.1h The MPI Programming

 performance issues
8.7 Performance Issues

 probe operations
8.4 Asynchronous Communication

 starting a computation
8.2 MPI Basics

MPI Forum
Chapter Notes

MPMD model
8.1 The MPI Programming

MPP Apprentice
Chapter Notes

Multicomputer model
1.2.1 The Multicomputer, 3.3 Developing
Models

 and locality
1.2.1 The Multicomputer

 early examples
Chapter Notes

Multicomputer Toolbox
Chapter Notes

Multiprocessors
1.2.2 Other Machine Models, 1.2.2 Other
Machine Models

Multistage networks
Multistage Interconnection Networks.,
Multistage Interconnection Networks.

nCUBE
1.2h.2 Other Machine Models, Chapter
Notes, Chapter Notes

NESL
Chapter Notes

Networks
 ATM

1.2.2 Other Machine Models
 bus-based

Bus-based Networks.
 crossbar switch

Crossbar Switching Network.
 Ethernet

Ethernet.
 hypercube

Hypercube Network.
 LAN

1.2.2 Other Machine Models
 shared memory

Bus-based Networks.
 torus

Mesh Networks.
 trends in

1.1.3 Trends in Networking
 WAN

1.2.2 Other Machine Models
Nondeterminism
 from random numbers

3.5.2 Obtaining and Validating
 in Fortran M

6.6 Determinism
 in message-passing model

8.2.2 Determinism
 in MPI

8.2.2 Determinism
 in parameter study problem

1.4.4 Parameter Study, 1.4.4 Parameter Study
 in parameter study problem

1.4.4 Parameter Study, 1.4.4 Parameter Study
Notation

Terminology
Numerical analysis

12 Further Reading
Object-oriented model

1.3.1 Tasks and Channels

Objective C
Chapter Notes

Out-of-core computation
3.8 Input/Output

Overhead anomalies
3.6.1 Unaccounted-for Overhead

Overlapping computation and communication
2.4.2 Preserving Flexibility, Idle Time.

Overloading in C++
5.1.1 Strong Typing and

Owner computes rule
7 High Performance Fortran, 7.1.1
Concurrency, 7.8 Case Study: Gaussian

P++ library
Chapter Notes

p4
Part II: Tools, 8 Message Passing Interface,
Chapter Notes

Pablo performance tool
9.4.3 Pablo, Chapter Notes

Pairwise interactions
 in Fortran M

6.3.3 Receiving Messages
 in HPF

7.3.3 Distribution
 in MPI

Fortran Language Binding., Fortran
Language Binding., 8.2.2 Determinism

 in MPI
Fortran Language Binding., Fortran
Language Binding., 8.2.2 Determinism

 in MPI
Fortran Language Binding., Fortran
Language Binding., 8.2.2 Determinism

Paragraph performance tool
9.4.1 Paragraph, Chapter Notes

ParAide performance tool
9.4.5 ParAide, Chapter Notes

Parallel algorithm design
 bibliography

12 Further Reading
 and performance

3.10 Summary
 case studies

(,)
 methodology

2.1 Methodical Design, 2.9 Summary
 methodology

2.1 Methodical Design, 2.9 Summary
Parallel algorithms
 branch and bound search

2.7.1 Floorplan Background
 convolution

4.4 Case Study: Convolution
 fast Fourier transform

4.4 Case Study: Convolution
 Gaussian elimination

7.8 Case hStudy: Gaussian , 9.3.3 Data-
Parallel Languages

 Gaussian elimination

7.8 Case Study: Gaussian , 9.3.3 Data-
Parallel Languages

 matrix multiplication
(,)

 mergesort
11.4 Mergesort

 parallel prefix
7.6.3 HPF Features Not

 parallel suffix
7.6.3 HPF Features Not

 quicksort
Chapter Notes

 random number generation
10 Random Numbers

 reduction
2.3.2 Global Communication

 search
Chapter Notes

 shortest paths
3.9 Case Study: Shortest-Path

 spectral transform
Multistage Interconnection Networks.

 transpose
Exercises, 11.3 Matrix Transposition

 transpose
Exercises, 11.3 Matrix Transposition

 vector reduction
11.1 The Hypercube Template

Parallel composition
4.2 Modularity and Parallel

 in CC++
5.9 Modularity

 in convolution algorithm
4.4.2 Composing Components

 in Fortran M
6.1 FM Introduction

 in MPI
8.5 Modularity

 load imbalances due to
4.3 Performance Analysis

 task parallel approach
8.5.2 Partitioning Processes

 vs. SPMD model
4.2.3 Parallel Composition

Parallel computers
 applications

1.1.1 Trends in Applications
 architecture

(,)
 definition

1.1 Parallelism and Computing
 performance trends

1.1.2 Trends in Computer
Parallel computing conferences

12 Further Reading
Parallel computing journals

12 Further Reading
Parallel database machines

Chapter Notes
Parallel I/O

 see I/O, parallel
Parallel prefix

7.6.3 HPF Features Not
Parallel programming models
 message passing

1.3.2 Other Programming Models
 data parallelism

1.3.2 Other Programming Models
 MPMD

8.1 The MPI Programming
 shared memory

1.3.2 Other Programming Models
 SPMD

1.3.2 Other Programming Models
 survey

Chapter Notes
 task/channel

1.3.1 Tasks and Channels
Parallel software requirements
 concurrency

1.1.2 Trends in Computer , 1.1.4 Summary of
Trends

 concurrency
1.1.2 Trends in Computer , 1.1.4 Summary of
Trends

 locality
1.2.1 Theh Multicomputer

 modularity
1.3 A Parallel Programming

 scalability
1.1.4 Summary of Trends

Parallel suffix
7.6.3 HPF Features Not

Parallelism trends
 in applications

1.1.1 Trends in Applications
 in computer design

1.1.2 Trends in Computer
Parameter study problem

1.4.4 Parameter Study, 1.4.4 Parameter
Study, 1.4.4 Parameter Study, 1.4.4
Parameter Study

PARMACS
Part II: Tools, 8 Message Passing Interface,
Chapter Notes

Partitioning
 and domain decomposition

2.2 Partitioning
 and functional decomposition

2.2 Partitioning
 design checklist

2.2.3 Partitioning Design Checklist
Partitioning algorithms

2.5.1 Load-Balancing Algorithms
pC++

Chapter Notes, 7 High Performance Fortran,
7.1.1 Concurrency, Chapter Notes

PCAM
2.1 Methodical Design, 2.1 Methodical
Design, 7.1.3 Design

Per-hop time
Exercises

Per-word transfer time
Communication Time.

Performance modeling
 Amdahl's law

3.2.1 Amdahl's Law, 3.2.1 Amdahl's Law
 Amdahl's law

3.2.1 Amdahl's Law, 3.2.1 Amdahl's Law
 asymptotic analysis

3.2.3 Asymptotic Analysis
 design considerations

3.4 Scalability Analysis
 empirical studies

3.2.2 Extrapolation from Observations, 3.4
Scalability Analysis, 3.5 Experimental
Studies

 empirical studies
3.2.2 Extrapolation from Observations, 3.4
Scalability Analysis, 3.5 Experimental
Studies

 empirical studies
3.2.2 Extrapolation from Observations, 3.4
Scalability Analysis, 3.5 Experimental
Studies

 for evaluation of algorithm implementation
3.6 Evaluating Implementations

 for I/O
3.8 Input/Output

 impact of interconnection networks
3.7.2 Interconnection Networks

 methodology
Chapter Notes, 9.1 Performance Analysis,
9.2.2 Counters

 methodology
Chapter Notes, 9.1 Performance Analysis,
9.2.2 Counters

 methodology
Chapter Notes, 9.1 Performance Analysis,
9.2.2 Counters

 metrics
3.3 Developing Models, 3.3.2 Efficiency and
Speedup

 metrics
3.3 Developing Models, 3.3.2 Efficiency and
Speedup

 qualitative analysis
3.4 Scalability Analysis

 with multiple modules
4.3 Performance Analysis

Performance tools
 see Tools, performance
Performance trends
 in networking

1.1.3 Trends in Networking
 in parallel computers

1.1.1 Trends in Applications
Performance, definition

3.1 Defining Performance
Performance, metrics

3.1 Defining Performance
PETSc

Chapter Notes
PICL

Chapter Notes, Chapter Notes
Pipelining

Avoiding Communication., 4.4.1
Components

Poison pill technique
4.5.1 Application

Polling
2.3.4 Asynchronous Communication

 costs
2.3.4 Asynchronous Communication

 for load balancing
Decentralized Schemes.

 in CC++
5.6 Asynchronous Communication

 in Fortran M
6.5 Asynchronous Communication

 in MPI
(,)

Ports
1.3.1 Tasks and Channels, 6.2.1 Defining
Processes

PRAM model
1.2.2 Other Machine Models, Chapter Notes,
Chapter Notes, 3.2.3 Asymptotic Analysis

Prefetching
1.4.4 Parameter Study, Manager/Worker.

Prefix product
Communication.

Prism performance tool
9.3.3 Data-Parallel Languages, Chapter Notes

Probabilistic methods for load balancing
Probabilistic Methods.

Probe effect
9.2.3 Traces

Processes in MPI
8.1 The MPI Programming

Production systems
12 Further Reading

Profiles
9.1 Performance Analysis, 9.2.1 Profiles

 advantages
9.1 Performance Analysis, 9.2.1 Profiles

 advantages
9.1 Performance Analysis, 9.2.1 Profiles

 data reduction techniques
9.3.1 Profile and Counts

 disadvantages
9.2.1 Profiles

 sampling approach
Chapter Notes

Protection in C++
5.1.2 Classes

Pruning
2.7.1 Floorplan Background, 2.7.1 Floorplan
Background

Pseudo-random numbers

 see Random numbers
PVM

Part II: Tools, 8 Message Passing Interface,
Chapter Notes

Quick references
 for CC++

5.13 Summary, 5.13 Summary
 for CC++

5.13 Summary, 5.13 Summary
 for Fortran M

6.12 Summary, 6.12 Summary
 for Fortran M

6.12 Summary, 6.12 Summary
Quicksort

Chapter Notes
Random numbers
 centralized generators

10.2 Parallel Random Numbers
 distributed generators

10.2 Parallel Random Numbers
 leapfrog method

10.3.2 The Leapfrog Method
 linear congruential generators

10.1 Sequential Random Numbers, 10.3.1
The Random Tree

 linear congruential generators
10.1 Sequential Random Numbers, 10.3.1
The Random Tree

 modified leapfrog method
10.3.3 Modified Leapfrog

 parallel
10 Rhandom Numbers, 10.2 Parallel Random
Numbers

 parallel
10 Random Numbers, 10.2 Parallel Random
Numbers

 period of the generator
10.1 Sequential Random Numbers

 random tree method
10.3 Distributed Random Generators, 10.3.1
The Random Tree

 random tree method
10.3 Distributed Random Generators, 10.3.1
The Random Tree

 replicated generators
10.2 Parallel Random Numbers

 sequential
10 Random Numbers, 10.1 Sequential
Random Numbers

 sequential
10 Random Numbers, 10.1 Sequential
Random Numbers

 tests for generators
Chapter Notes

 use with Monte Carlo methods
Chapter Notes

Random tree method
10.3.1 The Random Tree , 10.3.1 The
Random Tree

Real-time applications

Chapter Notes
Receiver-initiated strategy

Chapter Notes
Recursive bisection
 coordinate

Recursive Bisection., Chapter Notes
 coordinate

Recursive Bisection., Chapter Notes
 graph

Recursive Bisection.
 spectral

Recursive Bisection.
 unbalanced

Recursive Bisection.
Recursive halving algorithm

11.2 Vector Reduction, 11.2 Vector
Reduction

Red-black algorithm
2.3.1 Local Communication

Reduction
2.3.2 Global Communication

 in Fortran 90
7.2.2 Array Intrinsic Functions

 in MPI
8.3 Global Operations, 8.3.3 Reduction
Operations

 in MPI
8.3 Global Operations, 8.3.3 Reduction
Operations

Remote procedure call
5.12 Case Study: Fock

Replication
 of computation

Replicating Computation., Replicating
Computation.

 of computation
Replicating Computation., Replicating
Computation.

 of data
Communication and Agglomeration.,
Cohmmunication and Agglomeration.

 of data
Communication and Agglomeration.,
Communication and Agglomeration.

Ring pipeline
 see Pairwise interactions
RPC

5.12 Case Study: Fock
Scalability

1.3.1 Tasks and Channels
Scalability analysis

(,)
ScaLAPACK

4.2.2 Sequential Composition, 4.2.2
Sequential Composition, Chapter Notes

Scale analysis
3.3 Developing Models

Scaled speedup
Chapter Notes

Search

Chapter Notes
Self Describing Data Format

9.2.3 Traces, 9.4.3 Pablo
Self-consistent field method

Exercises
Semaphores

1.3.2 Other Programming Models
Sender-initiated strategy

Chapter Notes
Sequence association

7.6.2 Storage and Sequence
Sequent Symmetry

1.2.2 Other Machine Models
Sequential bottlenecks in HPF

7.7.2 Sequential Bottlenecks
Sequential composition

4.2 Modularity and Parallel
 advantages

4.2.2 Sequential Composition, 4.2.2
Sequential Composition

 advantages
4.2.2 Sequential Composition, 4.2.2
Sequential Composition

 and parallel libraries
4.2.2 Sequential Composition

 convolution example
4.4.2 Composing Components

 example
4.2.2 Sequential Composition

 in CC++
5.9 Modularity, 5.9 Modularity, 5.9
Modularity

 in CC++
5.9 Modulharity, 5.9 Modularity, 5.9
Modularity

 in CC++
5.9 Modularity, 5.9 hModularity, 5.9
Modularity

 in Fortran M
6.9 Modularity, 6.9 Modularity

 in Fortran M
6.9 Modularity, 6.9 Modularity

 in HPF
7.5 Dummy Arguments and

 in MPI
8.5 Modularity

Sets, distributed
4.5 Case Study: Tuple

Shared-memory model
1.3.2 Other Programming Models, Chapter
Notes, Bus-based Networks.

Shortest-path problem
 algorithm comparison

3.9.3 Shortest-Path Algorithms Summary
 all-pairs

3.9.1 Floyd's Algorithm
 Dijkstra's algorithm

3.9.2 Dijkstra's Algorithm
 Floyd's algorithm

3.9.1 Floyd's Algorithm

 requirements
3.9 Case Study: Shortest-Path

 single-source
3.9 Case Study: Shortest-Path , 3.9.2
Dijkstra's Algorithm

 single-source
3.9 Case Study: Shortest-Path , 3.9.2
Dijkstra's Algorithm

Silicon Graphics Challenge
1.2.2 Other Machine Models

SIMD computer
1.2.2 Other Machine Models, 1.2.2 Other
Machine Models, Chapter Notes

Single program multiple data
 see SPMD model
Single-assignment variable

Chapter Notes
SISAL

12 Further Reading
Sorting

11.4 Mergesort, Chapter Notes
Space-time diagrams

9.3.2 Traces
Sparse matrix algorithms

12 Further Reading
Spectral bisection

Recursive Bisection., Chapter Notes
Spectral transform

Multistage Interconnection Networks.
Speed of light

3.7.1 Competition for Bandwidth
Speedup
 absolute

3.3.2 Efficiency and Speedup
 anomalies

3.6.h2 Speedup Anomalies, Chapter Notes
 anomalies

3.6.2 Speedup Anomalies, Chapter Notes
 relative

3.3.2 Efficiency and Speedup
 superlinear

3.6.2 Speedup Anomalies, Chapter Notes
 superlinear

3.6.2 Speedup Anomalies, Chapter Notes
SPMD model

1.4 Parallel Algorithm Examples
 agglomeration phase

2.4 Agglomeration
 and parallel composition

4.2.h3 Parallel Composition
 and PCAM methodology

2.1 Methodical Design
 and sequential composition

4.2.2 Sequential Composition
 in CC++

5.8.2 Mapping Threads to
 in Fortran M

6.9 Modhularity
 in HPF

7.1.1 Concurrency

 in MPI
8.1 The MPI Programming

 limitations
1.3.2 Other Programming Models

Startup time
Communication Time.

Stencil of grid point
2.3.1 Local Communication

Storage association
7.6.2 Storage and Sequence

Superlinear speedup
3.6.2 Speedup Anomalies, 3.6.2 Speedup
Anomalies

 arguments against
Chapter Notes

Surface-to-volume effect
Surface-to-Volume Effects., Surface-to-
Volume Effects., 3.4.2 Scalability with
Scaled

Synchronization
1.4.1 Finite Differences, 5.5.2
Synchronization, 8.3.1 Barrier, 11.2 Vector
Reduction

Systolic communication
4.6.3 A Systolic Algorithm

t
 see startup time
t
 see per-word transfer time
t
 see per-hop time
Task parallelism

8.5.2 Partitioning Processes
Task scheduling
 decentralized control

Decentralized Schemes.
 for floorplan optimization

Mapping.
 for short-lived tasks

2.5 Mapping
 hierarchical

Hierarchical Manager/Worker.
 manager/worker

Mahnager/Worker.
 problem allocation

2.5.2 Task-Scheduling Algorithms
 termination detection

Termination Detection.
 with task pool

2.5.2 Task-Scheduling Algorithms
Task/channel model
 data-parallel model comparison

7.1.3 Design
 description

Chapter Notes
 determinism

1.3.1 Tasks and Channels
 locality

1.3.1 Tasks and Channels
 mapping

1.3.1 Tasks and Channels, 1.3.1 Tasks and
Channels

 mapping
1.3.1 Tasks and Channels, 1.3.1 Tasks and
Channels

 message-passing model comparison
1.3.2 Other Programming Models

 modularity
1.3.1 Tasks and Channels

 object-oriented model comparison
1.3.1 Tasks and Channels

 performance
1.3.1 Tasks and Channels

 scalability
1.3.1 Tasks and Channels

Template
 definition

11 Hypercube Algorithms
 for hypercube

11 Hhypercube Algorithms
 in HPF

7.6.3 HPF Features Not
Termination detection

Decentralized Schemes., Chapter Notes
Terminology

Terminology
Thinking Machines CM2

Chapter Notes
Thinking Machines CM5

1.2.2 Other Machine Models
Threads in CC++

5.2 CC++ Introduction
Throughput

3.1 Defining Performance
Timers

9.2.2 Counters
Timing variations

3.5.2 Obtaining and Validating
Tools, performance

AIMS
Chapter Notes

 customized
9.4.8 Custom Tools

 Gauge
9.4.4 Gauge

 IPS-2
Chapter Notes

 MPP Apprentice
Chapter Notes

 Pablo
9.4.3 Pablo

 Paragraph
9.4.1 Paragraph

 ParAide
Chapter Notes

 Prism
9.3.3 Data-Parallel Languages, Chapter Notes

 Prism
9.3.3 Data-Parallel Languages, Chapter Notes

 selection of

9.1 Performance Analysis
 standards lacking for

9 Performance Tools
 Upshot

9.4.2 Upshot
 VT

9.4.6 IBM's Parallel Environment
Torus networks

Mesh Networks.
Traces

9.3.2 Traces
 disadvantages

9.2.3 Traces, 9.2.3 Traces
 disadvantages

9.2.3 Traces, 9.2.3 Traces
 standards lacking for

9.2.3 Traces
Transformation of data

9.1 Performance Analysis
Transpose

Exercises
 hypercube algorithm

11.3 Matrix Transposition
 in convolution

4.4.1 Components
Tree search

1.4.3 Search
 in CC++

5.4.3 hThread Placement
 in Fortran M

6.3.3 Receiving Messages
Trends
 in applications

1.1.1 Trends in Applications
 in computer design

1.1.2 Trends in Computer
Tuple space

4.5 Case Study: Tuple , 4.5.2 Implementation
Ultracomputer

Chapter Notes, Chapter Notes
Unbalanced recursive bisection

Recursive Bisection.
Unity

Chapter Notes
Unstructured communication

2.3.3 Unstructured and Dynamic , 2.3.3
Unstructured and Dynamic

Upshot performance tool
Chapter Notes

 state data analysis
9.4.2 hUpshot

 use with MPI
9.4.2h Upshot

Vector broadcast algorithm
11.2 Vehctor Reduction

Vector reduction
11.2 Vector Reduction

Video servers
1.1.1 Trends in hApplications

Vienna Fortran

Chapter Notes
Virtual computers

6.8.1 Virtual Computers
Virtual functions in C++

5.1.3 Inheritance
Visualization of performance data

9.3.2 Traces, Chapter Notes
VLSI design

1.1.2 Trends in Computer , 2.7.1 Floorplan
Background, Chapter Notes, 12 Further
Reading

Von Neumann computer
 derivation

Chapter Notes
 exposition on

Chapter Notes
 illustration

1.2 A Parallel Machine
 model

1.2 A Parallel Machine
 program structure

1.3 A Parallel Programming
VT performance tool

9.4.6 IBM's Parallel Environment
Wide area network

1.2.2 Other Machine Models
Zipcode

Chapter Notes

