
BIG DATA ANALYTICS USING HADOOP TOOLS

A Thesis

Presented to the

Faculty of

San Diego State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Chinnu Padman Chullipparambil

Spring 2016

iii

Copyright © 2016

by

Chinnu Padman Chullipparambil

All Rights Reserved

iv

DEDICATION

To Sankaran.

v

ABSTRACT OF THE THESIS

Big Data Analytics Using Hadoop Tools

by

Chinnu Padman Chullipparambil

Master of Science in Computer Science

San Diego State University, 2016

 Big data technologies continue to gain popularity as large volumes of data are

generated around us every minute and the demand to understand the value of big data grows.

Big data means large volumes of complex data that are difficult to process with traditional

data processing technologies. More organizations are using big data for better decision

making, growth opportunities, and competitive advantages. Research is ongoing to

understand the applications of big data in diverse domains such as e-Commerce, Healthcare,

Education, Science and Research, Retail, Geoscience, Energy and Business.

As the significance of creating value from big data grows, technologies to address big

data are evolving at a rapid pace. Specific technologies are emerging to deal with challenges

such as capture, storage, processing, analytics, visualization, and security of big data. Apache

Hadoop is a framework to deal with big data which is based on distributed computing

concepts.

The Apache Hadoop framework has Hadoop Distributed File System (HDFS) and

Hadoop MapReduce at its core. There are a number of big data tools built around Hadoop

which together form the ‘Hadoop Ecosystem.’ Two popular big data analytical platforms

built around Hadoop framework are Apache Pig and Apache Hive. Pig is a platform where

large data sets can be analyzed using a data flow language, Pig Latin. Hive enables big data

analysis using an SQL-like language called HiveQL. The purpose of this thesis is to explore

big data analytics using Hadoop. It focuses on Hadoop’s core components and supporting

analytical tools Pig and Hive.

vi

TABLE OF CONTENTS

PAGE

ABSTRACT ...v

LIST OF FIGURES ... viii

ACKNOWLEDGEMENTS ...x

CHAPTER

1 INTRODUCTION ...1

1.1 Big Data and Hadoop ...1

1.2 Thesis Organization ...1

2 HADOOP ARCHITECTURE ...3

2.1 Introduction ..3

2.2 Hadoop Architecture ..4

2.2.1 Hadoop Distributed File System (HDFS) ...5

2.2.1.1 NameNode and DataNode ...5

2.2.1.2 File Write in HDFS ..6

2.2.1.3 File Read in HDFS ...7

2.2.2 MapReduce ...8

2.2.2.1 YARN / MRv2 ...9

2.2.2.2 Steps in MapReduce Job Execution ...10

3 SET UP SINGLE-NODE HADOOP CLUSTER USING CLOUDERA

QUICKSTART VM ...12

3.1 Set Up Cloudera Quickstart VM ..12

3.1.1 HADOOP Configuration Files ..14

3.2 Running Wordcount Example ..15

4 MAPREDUCE PROGRAMMING ...18

4.1 Use Case...18

4.2 Source Code ...19

4.3 Execution ...20

5 DATA ANALYSIS USING APACHE PIG ..24

vii

5.1 Execution Modes ...24

5.2 Using Pig For Data Analysis..24

5.3 Using Pig Editor In Hue ...28

6 DATA ANALYSIS USING APACHE HIVE ...31

6.1 Using Hive For Data Analysis ...31

7 BIG DATA ANALYTICS ON AMAZON CLOUD ...36

7.1 Amazon Web Services ...36

7.2 Create An Emr Cluster ...36

7.3 Connect To The Master Node ..41

7.4 View Web Interfaces Hosted on the Master Node ...44

7.5 Submit A Job To The Cluster ..47

7.6 Using Hue On Amazon EMR ..49

7.6.1 Using Hive Editor in Hue ...50

8 SUMMARY AND FUTURE WORK ...57

REFERENCES ..59

viii

LIST OF FIGURES

 PAGE

Figure 2.1. Hadoop 2.x Components ...5

Figure 2.2. File Write in HDFS ...6

Figure 2.3. File Read in HDFS ..7

Figure 2.4. Example to Illustrate How MapReduce Works ...9

Figure 2.5. Steps in MapReduce Job Execution ..10

Figure 3.1. Cloudera VM Listed in VMware Player ...13

Figure 3.2. Browser in the Cloudera VM with Bookmark Links ..14

Figure 3.3. Hadoop Configuration Files ..14

Figure 3.4. Running wordcount Program ..16

Figure 3.5. MapReduce Job Counters and Framework Details in the Execution Log17

Figure 3.6. MapReduce Job Output ...17

Figure 4.1. Executing MapReduce Application ...21

Figure 4.2. Displaying the Output File ..22

Figure 5.1. Execution Logs on the Console ...26

Figure 5.2. Pig Script Output (Column 1: MovieID, Column 2: Title, Column 3:

Average Rating) ...27

Figure 5.3. Output of DUMP avg_rating ...27

Figure 5.4. Pig Editor in Hue ...28

Figure 5.5. Creating a Pig Script in Hue ..29

Figure 5.6. Running a Pig Script in Hue ..29

Figure 5.7. Displaying Pig Script Output in Hue ...30

Figure 6.1. Hive Query Execution ...34

Figure 6.2. Hive Query Output ..35

Figure 7.1. AWS Console with Available Services ...36

Figure 7.2. Create Cluster - Quick Options ...37

Figure 7.3. Create Cluster - Software Configuration ...38

Figure 7.4. Create Cluster - Hardware Configuration..38

Figure 7.5. Create Cluster - General Options ..39

ix

Figure 7.6. Create Cluster - Security Options ..39

Figure 7.7. Cluster in Starting State ...40

Figure 7.8. Cluster in Waiting State...40

Figure 7.9. PuTTYgen ...41

Figure 7.10. Converting Private Key to .ppk Format ..42

Figure 7.11. Public DNS Name of Cluster Master Node Displayed in EMR Console43

Figure 7.12. Setting up an SSH Tunnel to the Master Node Using Dynamic Port

Forwarding ...44

Figure 7.13. Instructions to Setup Web Connection ..45

Figure 7.14. Web Links for the Web Interfaces Hosted on the Cluster47

Figure 7.15. Upload MapReduce Program Jar File to S3 ..47

Figure 7.16. Upload Input File to S3 ...47

Figure 7.17. Add Step to a Running Cluster ..48

Figure 7.18. Add Step to Execute a Custom Jar File ...48

Figure 7.19. Output Folder in S3 ...49

Figure 7.20. Hue Login Screen ..49

Figure 7.21. Using WinSCP to Copy Files to Master Node ..50

Figure 7.22. Provide Private Key File for Authentication ...51

Figure 7.23. Create Database Using Metastore Manager ..52

Figure 7.24. Create Tables Using Metastore Manager ..53

Figure 7.25. Create a New Table From a File - Choose File ...53

Figure 7.26. Create a New Table From a File - Choose Delimiter ..54

Figure 7.27. Create a New Table From a File - Define Columns ..54

Figure 7.28. 'ratings' Table Created ...55

Figure 7.29. Executing a Hive Query ..55

Figure 7.30. Hive Query and Result to Calculate Average Movie Rating56

x

ACKNOWLEDGEMENTS

 I would like to thank my thesis Chair Professor Carl Eckberg for his continuous

guidance and support. I would like to thank Professor Alan Riggins and Professor Carmelo

Interlando for serving on the thesis committee. I would also like to express my gratitude to

my family and friends for their constant encouragement throughout the graduate program.

1

CHAPTER 1

INTRODUCTION

Data is growing at a rate we never imagined. Large volumes of digital data are generated

at a rapid rate by sources like social media sites, mobile phones, sensors, web servers,

multimedia, medical devices and satellites, leading to a data explosion. The importance of

capturing this data and creating value out of it has become more important than ever in every

sector of the world economy. While the potential of creating meaningful insights out of big data

in various domains like Business, Health Care, Public Sector Administration, Retail and

Manufacturing are being studied, data science related technologies are expanding to capture,

store and analyze big data efficiently.

1.1 BIG DATA AND HADOOP

Apache Hadoop is the most popular open source framework to deal with big data. It

makes use of distributed computing concepts at the data storage level using Hadoop Distributed

File System (HDFS), and at the data processing level using MapReduce framework. In

MapReduce, a large programming task is divided into a ‘Map’ phase which is performed in a

distributed fashion and a ‘Reduce’ phase where the consolidation occurs. There are Hadoop

related data analytical technologies like Pig which uses a data flow language called Pig Latin and

Hive which helps users to analyze big data using SQL-like Hive queries.

The aim of this thesis is to understand the Hadoop framework and data analysis using

MapReduce, Hive and Pig, and communicate typical usage of these technologies to a reader.

This document can be used for self-study of Hadoop, Pig and Hive and will be shared on SDSU

website. There are no texts or other sources that provide the step by step usage examples found

in this document for these technologies, using the same presentation style and level of detail.

1.2 THESIS ORGANIZATION

The initial chapters discuss the Hadoop framework, followed by data analysis using

MapReduce, Hive and Pig on sample use cases. Big data analysis using Amazon Elastic

MapReduce (Hadoop on Amazon cloud) is also explained in detail.

2

 Chapter 2 focuses on the Hadoop architecture. Chapter 3 explains the Hadoop setup using

Cloudera QuickStart VM. In Chapter 4, MapReduce is explained using a data analytics use case.

Chapter 5 and Chapter 6 explain Apache Pig and Apache Hive respectively and show how these

technologies can be used for solving data analysis problems. Chapter 7 explains big data

analytics using Amazon Web Services (AWS). Chapter 8 concludes the study.

3

CHAPTER 2

HADOOP ARCHITECTURE

Apache Hadoop is an open-source framework which allows distributed storage and

processing of large volumes of structured or unstructured data across clusters of commodity

hardware.

2.1 INTRODUCTION

One of the early big data problems was faced by web search engines where millions of

web pages had to be indexed in a fraction of second in a cost-effective way. Hadoop was created

by Doug Cutting and originated in Apache Nutch, a web search engine project initiated by Doug

Cutting and Mike Cafarella [1]. In 2005, Apache Nutch became an independent subproject of

Apache Lucene, a text search engine library created by Doug Cutting. Nutch’s implementation of

distributed file system and MapReduce were inspired by Google’s white papers [2]

on Google’s

distributed file system (GFS) and MapReduce [3] respectively, which described the distributed

file system and distributed computing architecture Google used for intensive data processing

needs. Nutch’s distributed file system and MapReduce implementations were moved to Apache

Hadoop as an independent subproject of Apache Lucene in 2006 to build a generic framework to

solve various big data problems.

One of the main design features of Hadoop is its high scalability in data storage and

processing capability that can be achieved by adding more nodes to the cluster. It also enables

cost effectiveness as it does not demand high-end servers, instead using inexpensive commodity

machines. Since it uses ordinary hardware which fails more often than high-end machines, data

is replicated for fault tolerance.

Hadoop use cases are vast and cover almost all sectors of the world economy like

Politics, Data Storage, Financial Services, Health Care, Human Sciences, Telecoms, Travel,

Energy, Retail and Logistics [4]. For example, use of big data and cloud computing using

Amazon Web Services for election campaigns played an important role in Team Obama’s win in

the 2012 U.S. presidential election. In the financial domain, banks use Hadoop solutions for

4

maintaining data accuracy and compliance with regulations, and this was more complex and time

consuming before Hadoop. In health care, it is used for storage, processing and analysis of

millions of medical records and claims, and for capturing and analyzing massive volumes of

medical sensor data. In Telecom, large volumes of mobile call records can be stored and

processed in real time. In energy, insights on household energy usage can be made by processing

large volumes of energy usage data and potential energy saving plans can be derived. A list of

companies using Hadoop and the related use cases can be found at Hadoop wiki [5].

2.2 HADOOP ARCHITECTURE

Hadoop’s underlying principle is distributed data storage and computation. Data transfer

speed of hard drives is not growing proportionally with storage capacities, which slows down

read and write operations. One feasible solution to this is distributed computing, where data is

distributed over multiple disks and data is read and written in parallel. Since failure of one disk

should not result in data loss, data must be replicated. Hadoop’s file system, called Hadoop

Distributed File System (HDFS), is based on this principle. When data is distributed, it’s

processing needs to be done in a distributed fashion. Hadoop’s MapReduce framework takes care

of this. In MapReduce programming model, the processing is done in two steps: in ‘Map’ phase,

data is processed locally and in ‘Reduce’ phase, the results are consolidated. This also makes use

of the principle that moving computation closer to data is cheaper than moving data closer to

computation, especially when the size of the dataset is huge.

HDFS and MapReduce layers in Hadoop 2.x are shown below. The data storage layer

consists of a NodeManager (one per cluster) and DataNodes (one per slave node). The data

computation layer consists of a ResourceManager (one per cluster) and NodeManagers (one per

slave node). These components are explained in detail in the coming sections.

5

Figure 2.1. Hadoop 2.x Components

2.2.1 Hadoop Distributed File System (HDFS)

In HDFS [6] [7], files are split into blocks. The default block size is 128 MB in Hadoop

2.x generation. (In Hadoop 1.x, it was 64 MB). In a filesystem, a block is the minimum size of

data that can be read or written from disk. Each block of data is replicated by a replication factor

which has a default value of three and then stored on data nodes. Both block size and replication

factor are configurable per file.

2.2.1.1 NAMENODE AND DATANODE

HDFS follows master-slave architecture. A cluster consists of a NameNode (master) and

a set of DataNodes (slaves). NameNode and DataNodes are Java processes running on master

and slave machines, respectively. Master is usually a server-grade machine and slaves are

commodity machines. NameNode stores the file system metadata in persistent mode and controls

file access by clients. File system metadata is stored persistently in FsImage file on NameNode’s

local disk. EditLog logs changes made to the file system metadata (such as creation of new files,

changing file replication factor, etc.) and is also stored persistently on the NameNode’s local

disk. When the NameNode starts, it loads the FsImage into RAM and applies the transactions

from the EditLog. It then creates a new persistent FsImage file creating a checkpoint. The old

EditLog is cleared at this point.

6

The data blocks are stored on DataNodes. These service data read and write operations of

data blocks from clients. DataNode periodically sends its block list to NameNode and

NameNode stores blocks to DataNode mapping in memory.

An HDFS cluster may span multiple racks in the same or different data centers. Data

centers may exist in geographically different locations. Determining on which nodes the replicas

are to be placed is important in HDFS, since write operations on a remote rack are more

expensive than those on local racks. HDFS follows the following replica placement policy by

default: The first replica is placed on the same node as the client node. If the client is outside the

cluster, a random node is chosen. The second and third replicas are placed on different nodes on

a rack other than the first one. The remaining replicas are placed on random nodes and no single

node should contain more than one replica and no single rack should contain more than two

replicas.

2.2.1.2 FILE WRITE IN HDFS

 The sequence of steps in a file write operation in HDFS is explained below [8].

Figure 2.2. File Write in HDFS

1. Client requests NameNode to create a new file.

7

2. NameNode checks for client permission and duplicates and grants a lease for writing

the file.

3. Client requests a list of data nodes to store block replicas.

4. NameNode returns a unique block id and a list of data node addresses.

5. The DataNodes form a pipeline and data is pushed as a sequence of packets. Client

writes the packets to the first DataNode and each DataNode forwards it to the

subsequent one in the pipeline. Along with the data, the checksum for each block is

also sent to the DataNodes and gets stored in a metadata file.

6. For each received packet, an acknowledgement is sent back.

2.2.1.3 FILE READ IN HDFS

The sequence of steps in a file read operation in HDFS is explained below [8].

Figure 2.3. File Read in HDFS

1. Client requests the NameNode for the list of DataNodes where replicas are stored for

each block of the file.

2. NameNode sends back the list of DataNode addresses sorted in the order of their

distance from the client.

3. Client contacts the first DataNode in the list for each block and reads all the blocks in

order. Along with the data, the block’s checksum is also sent to the client and client

calculates the checksum for the read data and checks if it is corrupted. If a read fails

for a DataNode (DataNode is unavailable or data is corrupted), client goes to the next

8

DataNode in the list for block replica. The failed DataNodes will not be contacted for

further block reads.

2.2.2 MapReduce

MapReduce [9] is a programming framework for distributed processing of large data sets

on a cluster of computers. A MapReduce program typically consists of Map tasks and Reduce

tasks. The initial input is split into smaller chunks called InputSplits, and processed by Map tasks

in parallel. The output of Map tasks are then processed by Reduce tasks to produce the final

output. The execution and monitoring of the tasks are handled by the framework itself. The

framework typically schedules tasks local to the data and also handles re-execution of failed

tasks.

InputFormat represents the input format for a MapReduce job. Default InputFormat is

TextInputFormat. InputSplit represents the data to be processed by an individual Mapper.

Default InputSplit is FileSplit. Default behavior of InputFormat is to split the input into byte-

oriented logical input splits based on total input size with file system block size (default 128 MB

in Hadoop 2.x) as the upper bound. The InputSplit is passed to a RecordReader which converts

the byte-oriented input splits into record-oriented input splits. RecordReader reads InputSplit and

generates <key, value> pairs. TextInputFormat uses LineRecordReader by default which returns

a <key, value> pair with the key as the offset in file and value as the line.

One Mapper task is assigned for each InputSplit. Mapper takes input key-value pairs and

transforms them into a set of intermediate key-value pairs. The transformation is performed by a

map() method which is called for each key/value pair in the InputSplit. Intermediate outputs

from Mapper are sorted and partitioned across the Reducers available. In the shuffle and sort step

of the Reducer, relevant partitions are fetched and grouped based on the same key. In the reduce

step of the Reducer, on each <key, (list of values)> pair in the input, reduce() method is called to

produce the final output. Sometimes a Combiner is used which acts a local Reducer, which

locally aggregates intermediate outputs from Mappers, thus reducing the data transfer from

Mapper to Reducer.

MapReduce framework is illustrated by the word count example below:

9

Figure 2.4. Example to Illustrate How MapReduce Works

There are two Mappers above which take each InputSplit and process it. Input to the

map() function is each line and its offset in the file. The line is split into words and the

intermediate outputs (<word>, 1) are generated. The combiner function which also runs locally

to the Mapper, combines the count for the same word in the Mapper output. Finally, output is

generated by a single Reducer where outputs from different combiners are fetched, sorted based

on the key and processed to find the total count per word.

2.2.2.1 YARN / MRV2

MapReduce in Hadoop 2.x is called MapReduce 2.0 (MRv2) or YARN (Yet Another

Resource Negotiator) [10]. MapReduce 1.0, the MapReduce in Hadoop 1.x, underwent many

architectural changes in Hadoop 2.x.

Per-cluster ResourceManager manages resources across the cluster. Per-application

ApplicationMaster is responsible for the individual MapReduce job execution and monitoring. It

coordinates the Map and Reduce tasks for each MapReduce application. Per-node NodeManager

is responsible for launching and monitoring the containers running in each node and reporting

their status back to the ResourceManager. Containers run ApplicationMaster and MapReduce

tasks with certain allocated computation resources.

10

2.2.2.2 STEPS IN MAPREDUCE JOB EXECUTION

Figure 2.5. Steps in MapReduce Job Execution [8] [11]

1. Job Submission

1.1. Client asks for an application ID from the ResourceManager.

1.2. Check if output directory is specified and does not already exist. Checks input

files are specified and calculates input splits.

1.3. Copy resources like job jar file, configuration file and input splits to HDFS.

1.4. Submit the job to ResourceManager.

2. Job Initialization

2.1. ResourceManager’s scheduler allocates container for ApplicationMaster and

starts the container by contacting the NodeManager.

2.2. ApplicationMaster initializes the job by creating the objects required for job

progress tracking.

2.3. ApplicationMaster retrieves the input splits from filesystem and creates map

task for each input split. It also creates the required number of reducer tasks.

3. Task Assignment

ApplicationMaster requests resources for map and reduce tasks to

ResourceManager’s scheduler. Scheduler tries to allocate map task on nodes where

the data (input split) is already stored.

4. Task Execution

11

4.1. ApplicationMaster contacts the NodeManagers and asks to start the containers

for map and reduce tasks.

4.2. Resources are retrieved from the filesystems.

Map/Reduce tasks are executed.

5. Job Progression and Completion

5.1. Map and reduce tasks send the progress (how much data is processed), status

(running, completed, failed) updates and a set of counter values to the

ApplicationMaster every three seconds. Thus ApplicationMaster gets notified when

the job is finished.

5.2. Client polls ApplicationMaster for job status and learns when job is finished.

12

CHAPTER 3

SET UP SINGLE-NODE HADOOP CLUSTER USING

CLOUDERA QUICKSTART VM

Specialized Hadoop vendors such as Cloudera, HortonWorks, and MapR provide data

management and analytical platforms packaged around Apache Hadoop. Commercialized

Hadoop solutions are also available from well-known enterprises like Microsoft (Microsoft

HDInsight on Microsoft cloud (Microsoft Azure), IBM (IBM BigInsights on IBM cloud (IBM

SmartCloud), Amazon (Amazon Elastic MapReduce (EMR) on Amazon cloud (Amazon Web

Services (AWS)). A complete list of companies who provide products that include Apache

Hadoop or derivative works and commercial support can be found in Hadoop wiki [12]. The

enterprise users make use of the support and services provided by these vendors to avoid

complications related to Hadoop setup and maintenance and to solve their business challenges

more efficiently. Cloudera’s Hadoop distribution [13], CDH (Cloudera Distribution Including

Apache Hadoop), comes in many flavors. Cloudera QuickStart VM provides a single-node

Hadoop cluster setup and makes it easy for beginners to gain hands-on experience on Hadoop

from their local machines.

3.1 SET UP CLOUDERA QUICKSTART VM

Below are the system requirements:

 64-bit host OS

 Player 4.x or higher (Windows) or Fusion 4.x or higher (Mac)

 Minimum RAM requirement is 4GB. Allocate more memory for larger workloads.

Follow below steps to install Cloudera QuickStart VM:

1. Download VMware Player [14].

2. Download QuickStart VM from Cloudera web site for VMware format [15].

(Downloads are available for VMware, KVM, and VirtualBox formats as Zip

archives.)

3. Unzip the package. (Cloudera recommends using 7-Zip to extract files)

13

4. Open VMware Player and click on ‘Open a Virtual Machine’. Browse to the extracted

folder and select the file cloudera-quickstart-vm-<version>-vmware.vmx (VMware

virtual machine configuration file). Cloudera VM will be listed as below.

Figure 3.1. Cloudera VM Listed in VMware Player

5. Select the VM and click on ‘Play virtual machine’. (If Virtualization Support is not

enabled on your Windows host machine, related errors may pop up. This can be

solved by enabling Virtualization Technology in BIOS setting.) The VM runs CentOS

6.4. The VM starts and the user is automatically logged in as the cloudera user (both

username and password are ‘cloudera’). A browser opens up as below with useful

links to various Hadoop tools on the Bookmarks bar.

14

Figure 3.2. Browser in the Cloudera VM with Bookmark Links

6. Open Terminal and go to /usr/bin. Hadoop, Pig, Hive, HBase, Sqoop, Flume etc. are

installed under the directories with the respective names.

3.1.1 HADOOP Configuration Files

The configuration files can be found under etc/Hadoop directory in Hadoop installation

directory.

Figure 3.3. Hadoop Configuration Files

 hadoop-env.sh

 Environment settings for Hadoop scripts found in bin directory of Hadoop

distribution

 core-site.xml

 Settings common to HDFS and MapReduce

15

 hdfs-site.xml

 Configurations for NameNode and DataNode

 yarn-site.xml

 Configurations for ResourceManager and NodeManager

 mapred-site.xml

 Configurations for MapReduce Applications and MapReduce JobHistory Server

3.2 RUNNING WORDCOUNT EXAMPLE

Hadoop distribution comes with MapReduce examples jar file which has a number of

example MapReduce programs. We will see how to execute the wordcount program from this

jar. The word count problem was explained in section 2.2.2 and the same sample data is used

here.

1. To display all the programs available within hadoop-mapreduce-examples.jar:

2. Create input files for the wordcount program. Create files input1.txt and input2.txt on

Desktop.

3. Copy the input files to HDFS. Create an input folder under /user/cloudera/in and copy

the input files.

$ cd /usr/lib/hadoop-mapreduce

$ hadoop jar hadoop-mapreduce-examples.jar

[cloudera@quickstart ~]$ cat /home/cloudera/Desktop/input1.txt

red green blue

blue green white

[cloudera@quickstart ~]$ cat /home/cloudera/Desktop/input2.txt

white black red

blue green white

[cloudera@quickstart ~]$ $ hdfs dfs -mkdir /user/cloudera/in

[cloudera@quickstart ~]$ $ hdfs dfs -copyFromLocal /home/cloudera/Desktop/input1.txt

/user/cloudera/in

[cloudera@quickstart ~]$ $ hdfs dfs -copyFromLocal /home/cloudera/Desktop/input2.txt

/user/cloudera/in

[cloudera@quickstart ~]$ hdfs dfs -ls /user/cloudera/in

Found 2 items

-rw-r--r-- 1 cloudera cloudera 32 2015-12-29 22:50

/user/cloudera/in/input1.txt

-rw-r--r-- 1 cloudera cloudera 33 2015-12-29 22:51

/user/cloudera/in/input2.txt

16

Note: The user can interact with HDFS using HDFS shell, which can be invoked by

hdfs dfs <command> <args>. ‘args’ are file path URIs. URI format is

scheme://authority/path. If the scheme and authority are not specified, the default

values from configuration will be used. For example, hdfs://host/path and /path are

identical, if the configuration is set to point to hdfs://host/. [16]

4. Run wordcount program. Make sure the output folder does not exist already.

Figure 3.4. Running wordcount Program

[cloudera@quickstart ~]$ hadoop jar hadoop-mapreduce-examples.jar wordcount
/user/cloudera/in/input /user/cloudera/output

17

Figure 3.5. MapReduce Job Counters and Framework Details in the Execution Log

5. Verify output.

Figure 3.6. MapReduce Job Output

18

CHAPTER 4

MAPREDUCE PROGRAMMING

In this chapter, we will see how to develop a MapReduce program using eclipse as the

development environment.

4.1 USE CASE

 The dataset used is the MovieLens 1M Dataset [17] provided by GroupLens Research.

The dataset is obtained by GroupLens from MovieLens, a movie recommendation website. This

data set contains 10000054 ratings and 95580 tags applied to 10681 movies by 71567 users in

three files, movies.dat, ratings.dat and tags.dat.

 Movies.dat files contains movie information with format MovieID::Title::Genres (sample

row: 1356::Star Trek: First Contact (1996)::Action|Adventure|Sci-Fi). Ratings.dat file contains

movie rating given by users with format UserID::MovieID::Rating::Timestamp (sample row:

2::647::3::978299351).

 We will develop a MapReduce application to find the average movie rating using

rating.dat file.

 First copy the input files to HDFS.

 In the Cloudera VM, open eclipse. Create a new java project. Add dependencies jars.

Right click on the project -> Build Path -> Configure Build Path. On Libraries tab,

select Add External Jars. Browse and add the jars under /usr/lib/Hadoop/client-0.20.

cloudera@quickstart ~]$ hdfs dfs –mkdir /user/cloudera/input

[cloudera@quickstart ~]$ hdfs dfs -copyFromLocal /home/cloudera/Desktop/ratings.dat

/user/cloudera/input

19

4.2 SOURCE CODE

// MovieAvgRating.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.FloatWritable;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MovieAvgRating {

 public static class Map extends

 Mapper<LongWritable, Text, Text, IntWritable> {

 public void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {

 String[] tokens = value.toString().split("::");

 String movie = tokens[1];

 int rating = Integer.parseInt(tokens[2]);

 context.write(new Text(movie), new IntWritable(rating));

 }

 }

 public static class Reduce extends

 Reducer<Text, IntWritable, Text, FloatWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,

 Context context) throws IOException, InterruptedException {

 int counter = 0; int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 counter++;

 }

 float avg = sum / counter;

 context.write(key, new FloatWritable(avg));

 }

 }

20

A MapReduce application typically implements map and reduce methods of Mapper and

Reduce classes, respectively. Here the map method processes the input file line by line, splits the

lines based on the given delimiter “::” and creates the mapper output key-value pair as (MovieID,

Rating). The reduce method calculates the average of values (ratings) for each key (MovieID)

and gives the output key-value pair (MovieID, Average Rating).

 It is important to give the correct types for input and output key-value pairs. For example,

since the average rating calculated is a float value, the type of output value of Reduce method is

given as FloatWritable.

 In the main method, the MapReduce job configuration is created via Job instance.

Mapper, Reducer, key/value types, input files and output paths can be configured in a Job.

job.waitForCompletion submits the job and monitors its progress.

4.3 EXECUTION

1. For debugging, the program can be executed in eclipse using a sample input file. In

this case, Hadoop runs in LocalJobRunner mode, where all daemons run in a single

JVM. The built-in debug features of eclipse can be handy at this stage. Also, the input

and output files will be in local file path, not HDFS.

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = Job.getInstance(conf, "movie rating");

 job.setJarByClass(MovieAvgRating.class);

 job.setMapperClass(Map.class);

 job.setReducerClass(Reduce.class);

 job.setOutputKeyClass(Text.class);

 job.setMapOutputValueClass(IntWritable.class);

 job.setOutputValueClass(FloatWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

 }

}

21

2. Create a sample input file data.txt with a few lines of data from ratings.dat within the

project folder.

3. Next create a Run Configuration for the application. Go to Run -> Run Configuration

-> Java Application, right click and select New. In the arguments tab, enter the input

file data.txt and name of output folder which will be created inside the project folder

for the program output. Click on Run and verify the output.

4. To run the program in the cluster mode, the project needs to be exported into a jar

file. Right click on the project and select Export. Select Java -> Jar File -> Enter the

export destination (say home/cloudera/Desktop/movierating.jar) -> Next -> Next. For

‘Select the class of the application entry point’, click on Browse and select the class

name MovieAvgRating and click on Finish.

5. On the terminal, go to Desktop and enter the following command to execute the

MapReduce application.

Figure 4.1. Executing MapReduce Application

cloudera@quickstart ~]$ hadoop jar movierating.jar /user/cloudera/input/ratings.dat

/user/cloudera/output

22

 If the application entry point was not set with the class name in the jar, the main class

name needs to be specified during the execution as below:

6. Verify output.

Figure 4.2. Displaying the Output File

cloudera@quickstart ~]$ hadoop jar movierating.jar MovieAvgRating

/user/cloudera/data/rating.dat /user/cloudera/output

[cloudera@quickstart ~]$ hdfs dfs -ls /user/cloudera/output

Found 2 items

-rw-r--r-- 1 cloudera cloudera 0 2016-01-31 00:13

/user/cloudera/output/_SUCCESS

-rw-r--r-- 1 cloudera cloudera 32221 2016-01-31 00:13

/user/cloudera/output/part-r-00000

[cloudera@quickstart ~]$ hdfs dfs -cat /user/cloudera/output/part-r-00000

23

7. Output can be copied from HDFS to local file path and opened in a file editor or

shared as needed.

[cloudera@quickstart ~]$ hdfs dfs –copyToLocal /user/cloudera/output/ part-r-00000

/home/cloudera/Desktop

24

CHAPTER 5

DATA ANALYSIS USING APACHE PIG

Pig [18] is a data analysis platform for big data which runs on top of Hadoop. Pig uses a

procedural language called Pig Latin and Pig compiler converts it into a sequence of MapReduce

jobs. Pig allows the user to perform complex data analysis easily without the need to write the

equivalent MapReduce programs in Java.

5.1 EXECUTION MODES

 Pig can be run either in interactive mode or batch mode. To run in interactive mode,

invoke Grunt shell using ‘pig’ command and then enter the Pig commands and statements

interactively in the Grunt shell. Pig can be run in batch mode using Pig scripts. Pig script is a

group of Pig commands and statements put into a single file. The pig script files usually use .pig

extension, though it is not mandatory.

 Interactive mode or batch mode can be run either in local or MapReduce mode. In local

mode, there is no distributed execution; rather it uses the local host and file system where Pig is

running.

 $ pig -x local

In MapReduce mode, which is the default mode, the execution is done in a distributed

fashion on the Hadoop cluster.

 $ pig Or $ pig -x mapreduce

5.2 USING PIG FOR DATA ANALYSIS

 The dataset used is the MovieLens 1M Dataset [14] mentioned earlier in chapter 4. We

will write a pig script to compute the average movie rating using movies.dat and ratings.dat files.

1. PigStorage, the built-in default load function is used here to load the input files. Since

it takes only a single character as field delimiter, we are doing a simple preprocessing

of input files to change the delimiter form ‘::’ to ‘:’. (Another option would be to

write a user-defined load function to load input in a specific format.)

 $ sed -i 's/::/:/g' movies.dat ratings.dat

2. Copy the input files to HDFS.

25

3. Create a pig script, named MovieRatings.pig, as below.

 First, data is loaded from input files using LOAD operator to form relations ‘movies’ and

‘ratings’. Ratings are grouped by MovieID using GROUP operator and the average rating is then

calculated for each Movie. Relations movies and avg_rating are joined based on the common

field MovieID using JOIN operator so that movie title from movies relation can be mapped to the

average rating from avg_rating relation. Final output is generated by picking the columns

MovieID, Title and Avg_Rating. Output is sorted in descending order of average rating. STORE

command is used to save the final output on HDFS.

4. Execute the pig script.

$ pig MovieRating.pig

cloudera@quickstart ~]$ hdfs dfs –mkdir /user/cloudera/data

cloudera@quickstart ~]$ hdfs dfs -copyFromLocal /home/cloudera/Desktop/movies.dat

/user/cloudera/data

cloudera@quickstart ~]$ hdfs dfs -copyFromLocal /home/cloudera/Desktop/ratings.dat

/user/cloudera/data

-- Load movies.dat

movies = LOAD '/user/cloudera/data/movies.dat' USING PigStorage(':') As

(MovieID:chararray, Title:chararray, Genres:chararray);

-- Load ratings.dat

ratings = LOAD '/user/cloudera/data/ratings.dat' USING PigStorage(':') AS

(UserID:chararray, MovieID:chararray, Rating:float, Timestamp:chararray);

-- Group by MovieID and compute average rating per movie

grp_movies = GROUP ratings by (MovieID);

avg_rating = FOREACH grp_movies GENERATE group as MovieID,

ROUND(AVG(ratings.Rating)*100.0)/100.0 as Avg_Rating;

-- Join average ratings and movies based on MovieID to map the movie title to the

average rating

join_movies_avg_rating = JOIN movies by MovieID, avg_rating by MovieID;

-- Generate the final output and sort by average rating

movies_avg_rating = FOREACH join_movies_avg_rating GENERATE $0 as MovieID, $1 as

Title, $4 as Avg_Rating;

movies_avg_rating_sorted = ORDER movies_avg_rating BY Avg_Rating DESC;

STORE movies_avg_rating_sorted INTO '/user/cloudera/pig/out'

26

Figure 5.1. Execution Logs on the Console

5. Verify output.

[cloudera@quickstart ~]$ hdfs dfs -ls /user/cloudera/pig/out

Found 2 items

-rw-r--r-- 1 cloudera cloudera 0 2016-01-31 23:40

/user/cloudera/pig/out/_SUCCESS

-rw-r--r-- 1 cloudera cloudera 32221 2016-01-31 23:40

/user/cloudera/pig/out/part-r-00000

[cloudera@quickstart ~]$ hdfs dfs -cat /user/cloudera/pig/out/part-r-00000

27

Figure 5.2. Pig Script Output (Column 1: MovieID, Column 2: Title, Column 3: Average

Rating)

6. DUMP command is useful for debugging. DUMP, unlike STORE, will not store the

results persistently in the file system; rather it will display the results on the screen.

You can create a relation and then ‘DUMP’ it to verify the correctness of the result.

 For example, DUMP avg_rating will give the result below:

Figure 5.3. Output of DUMP avg_rating

28

7. DESCRIBE is another useful operator. It is useful to understand the schema of a

relation. For example, DESCRIBE join_movie_avg_rating will display the

schema as:

 join_movie_avg_rating: {movie::MovieID: chararray, movie::Title:

chararray, movie::Genres: chararray, avg_rating::MovieID: chararray,

 avg_rating::Avg_Rating: double}

5.3 USING PIG EDITOR IN HUE

 Hue [19] provides a user friendly web interface for data analysis using Hadoop. Open

Hue interface (http://quickstart.cloudera:8888/). If prompted for user/password, enter

cloudera/cloudera.

1. Choose Query Editors -> Pig. ‘Editor’ screen is displayed. Previously created scripts

can be managed from ‘Scripts’ screen. Previously executed jobs can be viewed on

Dashboard screen.

Figure 5.4. Pig Editor in Hue

2. Click on New Script on the left panel, create the script and save it by giving a name.

http://quickstart.cloudera:8888/

29

Figure 5.5. Creating a Pig Script in Hue

3. Execute the script by clicking Submit. The progress bar is displayed showing the

percentage of progress along with the execution logs.

Figure 5.6. Running a Pig Script in Hue

4. To view the output, either click on the output folder link in the log or navigate to the

output folder using File Browser application. File Browser lets you manage the

30

HDFS. By default, the output file is displayed as binary. Click on ‘View as text’

button under ACTIONS and the output is displayed as shown below.

Figure 5.7. Displaying Pig Script Output in Hue

31

CHAPTER 6

DATA ANALYSIS USING APACHE HIVE

 Apache Hive is another popular data processing platform built on top of Hadoop. Hive

uses a query language HiveQL, which is very similar to SQL. The queries are converted to a

series of MapReduce jobs.

 Users interact with Hive through a command-line interface called Hive shell, which can

be invoked by ‘hive’ command.

 % hive

 hive>

The user can execute the commands in interactive mode by typing in the commands in the Hive

shell. Commands must be terminated by a semicolon. To run Hive queries in a batch/non-

interactive mode, invoke Hive shell using –e or –f option.

 $ hive –f <file path>

This will execute the queries mentioned in the specified file.

 $ hive –e ‘<query 1; … query n;>’;

-e option is used to specify the queries inline.

6.1 USING HIVE FOR DATA ANALYSIS

Let us solve the same problem of finding the average movie rating that was discussed in

the earlier chapters.

1. The command below lists all the hive databases. Default database can be referred to

by ‘default’.

2. Create a database.

The specified database will be used for all subsequent commands.

hive> SHOW DATABASES;

hive> CREATE DATABASE movie_analytics;

hive> use movie_analytics;

32

3. Create ‘movies’ table with three columns MovieID (integer), Title (string) and Genres

(string). ROW FORMAT here says the files in arrow are delimited by the character

‘:’. The data will be stored as plain text file. TEXTFILE is the default file storage

format.

4. Similarly create a table for ratings.

5. Verify the table columns using DESCRIBE statement

6. Now load the data stored earlier on HDFS into these tables. (The data files were

stored on HDFS in the directory /user/cloudera/data/ during the analysis using pig.)

6.1. Files can be loaded from local filesystem using LOCAL keyword as below:

6.2. LOAD command puts the specified files in Hive’s warehouse directory which is

set by the hive.metastore.warehouse.dir property which defaults to

/user/hive/warehouse.

To display the property value:

movies.dat and ratings.dat are copied to /user/hive/warehouse/movies_analytics.db

directory.

hive> CREATE TABLE movies (MovieID INT, Title STRING, Genres STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ':'

STORED AS TEXTFILE;

hive> CREATE TABLE ratings (UserID INT, MovieID STRING, Rating FLOAT, Timestamp

STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ':'

STORED AS TEXTFILE;

hive> DESCRIBE movies;

hive> DESCRIBE ratings;

hive> LOAD DATA INPATH '/user/cloudera/data/movies.dat' OVERWRITE INTO TABLE movies;

hive> LOAD DATA INPATH '/user/cloudera/data/ratings.dat' OVERWRITE INTO TABLE ratings;

hive> LOAD DATA LOCAL INPATH '/home/cloudera/Desktop/movies.dat' OVERWRITE INTO TABLE

movies;

hive > SET hive.metastore.warehouse.dir

33

6.3. Hive follows ‘schema on read.’ During load operation, data is not verified

against the table schema. Data files are simply copied to the Hive directory, which

makes loading data very fast. The schema is verified only during query operations.

6.4. The actual data is thus stored in HDFS. The table metadata is stored in a

relational database. Hive uses an embedded Derby database by default, which runs in

the same process as the main Hive service. It can be configured to use a standalone

database which is JDBC compliant like MySQL for metadata storage.

7. Verify the table content using SELECT statement.

8. Find the average movie ratings from the ratings table and join it with movies table to

map the movie details with average rating. The output is displayed in the ascending

order of average rating.

hive> SELECT * from movies;

hive> SELECT * from ratings;

hive> SELECT a.MovieID , a.Title, b.avg_rating from movies a

JOIN (SELECT MovieID , avg(Rating) avg_rating FROM ratings GROUP BY MovieID) b

ON (a.MovieID = b.MovieID)

SORT BY avg_rating ASC;

34

Figure 6.1. Hive Query Execution

35

Figure 6.2. Hive Query Output

36

CHAPTER 7

BIG DATA ANALYTICS ON AMAZON CLOUD

7.1 AMAZON WEB SERVICES

Amazon Web Services (AWS) [20] is a cloud computing platform from Amazon.

Amazon Elastic Compute Cloud (EC2) provides the computing resources. EC2 provides

different instance types with a range of resource combinations to meet different requirements.

You can reserve the resources according to your computing requirements and scale them easily.

The resource costs are per the actual usage, i.e. for the duration when the servers are up and

running. Amazon Elastic MapReduce (EMR) is basically the Hadoop framework running on

cloud. Amazon Simple Storage Service (S3) provides data storage service where bulk input and

output data can be stored.

7.2 CREATE AN EMR CLUSTER

Follow the steps below to create an EMR cluster using AWS console [21].

1. Create an AWS account (http://aws.amazon.com/). Some services are free under the Free

Tier registration and additional services can be used at applicable rates [22].

Figure 7.1. AWS Console with Available Services

http://aws.amazon.com/

37

(EC2 under Compute, S3 under Storage & Content Delivery, EMR under Analytics)

2. Go to S3 (Scalable Storage in the Cloud) console at https://console.aws.amazon.com/s3/

and create an S3 Bucket and folders for data and log files.

3. Create an Amazon EC2 key pair which is required to connect to the nodes in the

cluster over Secure Shell (SSH) protocol later.

Go to Amazon EC2 console at https://console.aws.amazon.com/ec2/ and select NETWORK &

SECURITY -> Key Pairs. Create a key pair and download the private key file (.pem

format).

4. Go to Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/ and create

a cluster.

Figure 7.2. Create Cluster - Quick Options

5. Click on Go to advanced options for a detailed view.

6. Go with the default Software Configuration. By default, Hadoop, Pig, Hive and Hue

are selected.

6.1. Steps like Hive program, Pig program, Custom JAR (MapReduce program) etc.

can be specified so that these will be executed once the cluster is up.

6.2. Marking the check box ‘Auto-terminate cluster after the last step is completed’

will create a transient cluster. A transient cluster automatically terminates when all

the steps are executed (even if Termination Protection is turned on in the next screen).

If auto-termination is disabled, it will create a long-running cluster which persists

even after all the steps are executed.

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/elasticmapreduce/

38

Figure 7.3. Create Cluster - Software Configuration

7. By default, a cluster with one master and two slaves with m3.xlarge (vCPU: 4, Mem

(GiB):15) instance type [23] is configured under Hardware Configuration.

Figure 7.4. Create Cluster - Hardware Configuration

8. In General Option screen, select the S3 folder created in step 2 for logging. Bootstrap

Actions can be specified which are setup scripts to be executed before Hadoop starts

on each cluster node.

39

8.1. By default Termination protection is turned on to protect the cluster from

termination by accident. This must be disabled before a cluster has to be terminated.

When a user terminates a running cluster for which the termination protection was

turned on, user will be prompted to turn off the termination protection before the

cluster can be terminated.

Figure 7.5. Create Cluster - General Options

9. In Security Options screen, choose the EC2 key pair created in step 3.

Figure 7.6. Create Cluster - Security Options

40

10. Click on Create Cluster. Cluster will be in Starting state while the EC2 instances are

being provisioned.

Figure 7.7. Cluster in Starting State

11. If Steps were specified, those will be executed in order. Cluster goes into Running

state while processing the steps. If auto-termination was on, the cluster will be

terminated after the steps are completed, or the cluster will go into Waiting state.

Figure 7.8. Cluster in Waiting State

41

7.3 CONNECT TO THE MASTER NODE

To connect to the master node of the cluster using PuTTY, an SSH client, on Windows:

1. PuTTY needs private key in .ppk format.

1.1. Use PuTTYgen to convert the private key .pem file stored earlier to .ppk format.

Figure 7.9. PuTTYgen

1.2. Select SSH-2 RSA for the type of key to generate. Click on Load and select All

Files (*.*) and select the .pem file. Click OK in the pop up.

42

Figure 7.10. Converting Private Key to .ppk Format

1.3. Save the private key in .ppk format by clicking ‘Save private key’.

2. Open PuTTY. For Host Name, enter hadoop@<Public DNS name of Master node>.

Public DNS name of Master node can be obtained by going to the cluster in Amazon

EMR console.

43

Figure 7.11. Public DNS Name of Cluster Master Node Displayed in EMR Console

3. Select Category -> Connection -> SSH -> Auth and select the .ppk file from step 1 for

‘Private key file for authentication’.

4. To view the web interfaces Hosted on the Master Node (as explained in detail in the

following section), an SSH Tunnel needs to be set up to the Master Node Using

Dynamic Port Forwarding.

4.1. Select Category -> Connection -> SSH ->Tunnels. Enter 8157 (an unused local

port) for ‘Source port’.

4.2. Leave the Destination field blank. Select Dynamic and Auto options. Choose

Add.

44

Figure 7.12. Setting up an SSH Tunnel to the Master Node Using

Dynamic Port Forwarding

5. Click on ’Open’ to connect.

7.4 VIEW WEB INTERFACES HOSTED ON THE MASTER

NODE

 Web connection needs to be enabled in order to view the web interfaces for Hue,

Resource Manager, etc. hosted on the master node. Enable Web Connection link is displayed on

the cluster creation page with instructions on how to set up the web connection.

45

Figure 7.13. Instructions to Setup Web Connection

1. Set up an SSH Tunnel to the Master Node Using Dynamic Port Forwarding by

performing step 1 - 4 above for connecting to the Master using PuTTY.

2. Configure Proxy Settings in the browser.

To configure FoxyProxy for Chrome:

 Download and install FoxyProxy Standard from http://getfoxyproxy.org/downloads.html

Chrome

 Restart Chrome

 Create foxyproxy-settings.xml file containing the following:

46

 Open Chrome and click on Firefox icon on the toolbar and choose Options.

 Select Import/Export. Click Choose File, select foxyproxy-settings.xml, and click

Open. In the Import FoxyProxy Settings dialog, click Add.

 For Proxy mode, choose Use proxies based on their pre-defined patterns and

priorities.

 Now that the web connection set up is done, on the Cluster Details screen, active

links for the web interfaces hosted on the cluster will be displayed (Click on the

cluster name in the cluster list in EMR to go to the Cluster Details screen.)

<?xml version="1.0" encoding="UTF-8"?>

<foxyproxy>

 <proxies>

 <proxy name="emr-socks-proxy" id="2322596116" notes=""

fromSubscription="false" enabled="true" mode="manual" selectedTabIndex="2"

lastresort="false" animatedIcons="true" includeInCycle="true"

color="#0055E5" proxyDNS="true" noInternalIPs="false" autoconfMode="pac"

clearCacheBeforeUse="false" disableCache="false"

clearCookiesBeforeUse="false" rejectCookies="false">

 <matches>

 <match enabled="true" name="*ec2*.amazonaws.com*"

pattern="*ec2*.amazonaws.com*" isRegEx="false" isBlackList="false"

isMultiLine="false" caseSensitive="false" fromSubscription="false" />

 <match enabled="true" name="*ec2*.compute*"

pattern="*ec2*.compute*" isRegEx="false" isBlackList="false"

isMultiLine="false" caseSensitive="false" fromSubscription="false" />

 <match enabled="true" name="10.*" pattern="http://10.*"

isRegEx="false" isBlackList="false" isMultiLine="false"

caseSensitive="false" fromSubscription="false" />

 <match enabled="true" name="*10*.amazonaws.com*"

pattern="*10*.amazonaws.com*" isRegEx="false" isBlackList="false"

isMultiLine="false" caseSensitive="false" fromSubscription="false" />

 <match enabled="true" name="*10*.compute*"

pattern="*10*.compute*" isRegEx="false" isBlackList="false"

isMultiLine="false" caseSensitive="false" fromSubscription="false"/>

 <match enabled="true" name="*.compute.internal*"

pattern="*.compute.internal*" isRegEx="false" isBlackList="false"

isMultiLine="false" caseSensitive="false" fromSubscription="false"/>

 <match enabled="true" name="*.ec2.internal* "

pattern="*.ec2.internal*" isRegEx="false" isBlackList="false"

isMultiLine="false" caseSensitive="false" fromSubscription="false"/>

 </matches>

 <manualconf host="localhost" port="8157" socksversion="5"

isSocks="true" username="" password="" domain="" />

 </proxy>

 </proxies>

</foxyproxy>

47

Figure 7.14. Web Links for the Web Interfaces Hosted on the Cluster

7.5 SUBMIT A JOB TO THE CLUSTER

To submit a job to a running cluster:

1. Upload the jar file and input file to S3.

Figure 7.15. Upload MapReduce Program Jar File to S3

Figure 7.16. Upload Input File to S3

48

2. Go to the cluster in the Cluster List in Elastic MapReduce console and click on Add

Step.

Figure 7.17. Add Step to a Running Cluster

3. Provide the jar location in S3 and input and output path as arguments. Make sure

output path given does not exist already. If the class of the application entry point was

not specified while exporting the jar (This can be verified by checking if Main-Class

was specified in the jar’s manifest file), specify the main class as the first argument.

Figure 7.18. Add Step to Execute a Custom Jar File

4. The step will be in Pending state initially. It will then move to Running state and

finally to Completed state when the execution is complete. If the step execution fails,

it will move to Failed state. Output folder is created and the output can be verified

from the S3 console. Logs are generated in the configured S3 logs location and it can

be used for debugging failed steps.

49

Figure 7.19. Output Folder in S3

7.6 USING HUE ON AMAZON EMR

Go to Hue at http://<public DNS Name of Master>:8888 or by clicking the link for Hue

on the Cluster Details screen (Figure 7.14). Give username as hadoop and create a password.

Note: Username other than hadoop can also be used. Since the SSH connections uses hadoop

user, it is safe to use the same user in hue to avoid file ownership issues.

Figure 7.20. Hue Login Screen

Using Pig Editor in Hue was already explained in chapter 6. In this section, using Hive

Editor in Hue to run the Hive queries and using Hue’s Metastore Manager to manage Hive

metastore are discussed.

50

7.6.1 Using Hive Editor in Hue

1. Copy input files to the master node using WinSCP

1.1 Give public DNS name of the master node in Host name and Hadoop as user

name. Click on Advanced and under SSH -> Authentication.

Figure 7.21. Using WinSCP to Copy Files to Master Node

1.2 Select .ppk generated earlier in the private key file and click Ok. Click on

Login.

51

Figure 7.22. Provide Private Key File for Authentication

1.3 Copy movies.dat and ratings.dat to /home/Hadoop directory.

2. Connect to the master node via PuTTy (section 7.3) and copy these files to HDFS.

52

3. Hive metastore can be managed by MetaStore Manager in Hue. Go to MetaStore

Manager. Click on Databases link and select Create a new database named

movie_analytics. Give a database name and by default it gets stored in

/user/hive/warehouse/database_name or another location in HDFS can be specified.

Figure 7.23. Create Database Using Metastore Manager

4. Select the created database and create tables. A table can be created either from a file

or manually. Select the option to create a new table from a file.

[hadoop@ip-172-31-17-242 ~]$ pwd

/home/hadoop

[hadoop@ip-172-31-17-242 ~]$ ll

total 21248

-rw-rw-r-- 1 hadoop hadoop 163542 Feb 13 07:43 movies.dat

-rw-rw-r-- 1 hadoop hadoop 21593504 Feb 13 07:43 ratings.dat

[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -mkdir /user/hadoop/data

[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -copyFromLocal movies.dat

/user/hadoop/data

[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -copyFromLocal ratings.dat

/user/hadoop/data

[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -ls ratings.dat /user/hadoop/data

ls: `ratings.dat': No such file or directory

Found 2 items

-rw-r--r-- 1 hadoop hadoop 163542 2016-02-13 07:50

/user/hadoop/data/movies.dat

-rw-r--r-- 1 hadoop hadoop 21593504 2016-02-13 07:50

/user/hadoop/data/ratings.dat

53

Figure 7.24. Create Tables Using Metastore Manager

4.1. Give table name ‘movies’ and input file path on

HDFS(/user/hadoop/data/movies.dat) from where the table definition is to be used

and data is to be imported. Keep the checkbox for ‘Import data from file’ checked.

Note the warning that the selected file is going to be moved during the import.

Figure 7.25. Create a New Table From a File - Choose File

4.2. Tables can be imported from HDFS to a database stored in HDFS. For example,

the database movie_analytics megastore exists in HDFS (in /user/hive/warehouse/

movie_analytics.db). The procedure is different to import a table from Amazon S3

[24].

4.3. Specify the delimiter as “:” and the table data can be previewed to verify the

correctness.

54

Figure 7.26. Create a New Table From a File - Choose Delimiter

4.4. Specify column names and column type.

Figure 7.27. Create a New Table From a File - Define Columns

4.5. Click create table. Table gets created and data is imported.

Select the table movies under the database movie_analytics. The schema can be verified

under the Columns tab. Verify if the data is imported successfully by checking Sample tab which

displays sample rows of the table.

55

4.6. Similarly, create table ‘ratings’ from the file on HDFS

/user/hadoop/data/ratings.dat.

Figure 7.28. 'ratings' Table Created

5. To run the Hive queries, go to Hive Editor by selecting Query Editors -> Hive.

‘Editor’ screen is displayed.

6. Select the database from the DATABSE drop down. (Click the refresh button if the

newly created database is not listed.)

7. In the editor, enter single or multiple queries and click Execute.

For example, type in “select * from movies”. The result is displayed under Results tab.

Figure 7.29. Executing a Hive Query

56

8. Queries can be saved and later accessed from ‘Saved Queries’ tab. ‘My Queries’ tab

will show recent saved and run queries.

9. Execute below query to calculate the average movie rating:

10. The result can be exported to xls/csv or saved to HDFS or a new hive table. Logs can

be viewed from Logs tab. The results can be viewed in different chart formats (Bars,

Lines, Pie, and Map) in the Chart tab.

Figure 7.30. Hive Query and Result to Calculate Average Movie Rating

SELECT a.MovieID , a.Title, b.avg_rating from movies a

JOIN (SELECT MovieID , avg(Rating) avg_rating FROM ratings GROUP BY MovieID)

ON (a.MovieID = b.MovieID)

57

CHAPTER 8

SUMMARY AND FUTURE WORK

 We live in a data flooded age. More organizations are becoming aware of the need to

analyze their data to get insights, increase efficiency, derive competitive advantage and create

new business dimensions. As the need to create value from large volumes of data increases, so

do the technologies to store and process such data. There is an increased demand in the market

for efficient and cost effective big data technologies as more industries seek these for their data

analytical needs.

 Apache Hadoop is a popular open source big data framework for distributed data storage

and processing. We saw how HDFS and MapReduce, the two core components of Hadoop,

enable data storage and data processing of big data. There are a number of supporting tools built

around Hadoop’s core components, which together form the ‘Hadoop Ecosystem’ and aid in data

analysis, data transfer, scheduling, monitoring, performance and visualization. We saw how Pig

and Hive, two data analytical platforms built around Hadoop, enable big data analysis. The main

advantage of Pig and Hive is that they abstract data processing from the underlying MapReduce.

Writing multi stage map and reduce functions to perform complex data processing tasks in

MapReduce can be difficult and time consuming. High-level frameworks like Pig and Hive

provide ease of programming with their powerful abstracted built-in capabilities. For example,

we saw the ease of using the join operation in Pig and Hive to join data from two data sets.

Writing MapReduce code to perform join operations would be more challenging and time

consuming. Pig and Hive also provide capabilities to integrate user defined functions for specific

processing needs.

 Since both Pig and Hive aid in analysis of large volumes of data, these are often

compared against each other to see which is best in specific scenarios. Pig is suitable for data

preparation needs like ETL (Extract Transform Load) tasks, whereas Hive is widely used for

data warehousing/analysis needs [25]. Pig is comparatively more efficient than Hive for complex

queries with lots of joins and filters. Another difference is the type of data that these tools can

process efficiently. Hive is efficient for structured data, whereas Pig handles both structured and

unstructured data efficiently. Hive is easy to use for developers who are already familiar with

58

SQL queries since HiveQL, Hive’s query language, is very SQL-like. Users who are new to Pig

Latin, the data-flow language used by Pig, would need to be familiarized with the language

initially.

 There are other Hadoop related projects such as Apache Spark, Apache HBase, Apache

Sqoop, Apache Flume, Apache Zookeeper and Apache Oozie. Spark is a distributed computing

engine for fast large-scale data processing. Instead of the MapReduce execution engine, it uses

its own runtime engine. Spark runs programs up to 100x faster than Hadoop MapReduce in

memory, or 10x faster on disk [26], which makes it suitable for low-latency applications. In

MapReduce, data is always loaded from disk, whereas Spark uses in-memory caching to store

datasets in memory in between jobs. This makes Spark more efficient for iterative tasks where

the operations need to be repeated on a data set. HBase is a distributed, non-relational database

built on top of HDFS to provide random, real-time read/write access to big data [27]. It was

inspired from Google's BigTable [28]. Sqoop is a tool used for transferring data between Hadoop

and relational databases [29]. Flume is used as a log aggregator for collecting large log data from

multiple sources and moving to a centralized location [30]. Zookeeper provides centralized

coordination services for managing and monitoring large distributed systems [31]. Oozie is a

workflow scheduler system to manage Hadoop jobs [32]. It would be interesting to explore the

features and use cases of these supporting big data tools to see how these technologies fit

together to form the larger ecosystem for efficient storage, processing, and analysis of big data.

59

REFERENCES

[1] M. CAFARELLA AND D. CUTTING, Building nutch: Open source search, ACM Queue, 2

(2004), pp. 1-7.

[2] S. GHEMAWAT, H. GOBIOFF, AND S.-T. LEUNG, The Google file system, Symposium on

Operating Systems Principles, New York, 2003, Association for Computing Machinery.

[3] J. DEAN AND S. GHEMAWAT, MapReduce: Simplified data processing on large clusters, 6th

Symposium on Operating Systems Design & Implementation, San Francisco, California,

2004, USENIX.

[4] HADOOP ILLUMINATED, Chapter 10. Hadoop Use Cases and Case Studies. Hadoop

Illuminated, http://hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html,

accessed March 2016, n.d.

[5] APACHE HADOOP, Powered By. Hadoop Wiki, http://wiki.apache.org/hadoop/PoweredBy,

accessed March 2016, n.d.

[6] APACHE HADOOP, HDFS architecture. The Apache Software Foundation, http://hadoop.

apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, accessed

March 2016, n.d.

[7] R. CHANSLER, H. KUANG, S. RADIA, K. SHVACHKO, AND S. SRINIVAS, The Hadoop

distributed file system. The Architecture of Open Source Applications,

http://www.aosabook.org/en/hdfs.html, accessed March 2016, n.d.

[8] T. WHITE, Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol, California,

2015.

[9] APACHE HADOOP, MapReduce tutorial. The Apache Software Foundation, http://hadoop.

apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/

MapReduceTutorial.html, accessed March 2016, n.d.

[10] APACHE HADOOP, Apache Hadoop YARN. The Apache Software Foundation,

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html,

accessed March 2016, n.d.

[11] S. BARDHAN AND D. A. MENASCE, The Anatomy of MapReduce Jobs, Scheduling, and

Performance Challenges, Conf. of the Computer Measurement Group, San Diego,

California, November 2013.

[12] APACHE HADOOP, Products that include Apache Hadoop or derivative works and

commercial support. Hadoop Wiki, https://wiki.apache.org/hadoop/Distributions

%20and%20Commercial%20Support, accessed March 2016, n.d.

[13] CLOUDERA’S HADOOP DISTRIBUTION, Apache Hadoop. Cloudera, https://www.cloudera.

com/products/apache-hadoop.html, accessed March 2016, n.d.

http://wiki.apache.org/hadoop/PoweredBy

60

[14] VMWARE, Download VMware player. My VMware, https://my.vmware.com/web

/vmware/free#desktop_end_user_computing/vmware_player/6_0|PLAYER-607, accessed

March 2016, n.d.

[15] CLOUDERA, QuickStart downloads for CDH 5.5. Cloudera, http://www.cloudera.com

/content/www/en-us/downloads/quickstart_vms/5-5.html, accessed March 2016, n.d.

[16] HADOOP, HDFS shell commands. The Apache Software Foundation, http://hadoop.

apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html,

accessed March 2016, n.d.

[17] GROUPLENS, MovieLens 1M dataset. Grouplens, http://grouplens.org/datasets

/movielens/1m/, accessed March 2016, n.d.

[18] APACHE, Welcome to Apache Pig. Apache, http://pig.apache.org/, accessed March 2016,

n.d.

[19] HUE, Let’s big data. Hue, http://gethue.com/, accessed March 2016, n.d.

[20] AMAZON, AWS documentation. Amazon, http://aws.amazon.com/documentation/, accessed

March 2016, n.d.

[21] AMAZON, What is Amazon EMR?. Amazon, http://docs.aws.amazon.com/

ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html, accessed March 2016,

n.d.

[22] AMAZON, Amazon EC2 pricing. Amazon, https://aws.amazon.com/ec2/pricing/, accessed

March 2016, n.d.

[23] AMAZON, Amazon EC2 instance types. Amazon, https://aws.amazon.com/ec2/instance-

types/, accessed March 2016, n.d.

[24] AMAZON, Amazon EMR, Metastore manager restrictions. Amazon, http://docs.aws.

amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hue-s3-metastore.html,

accessed March 2016, n.d.

[25] ALAN GATES, Pig and Hive at Yahoo!. Yahoo, https://developer.yahoo.com/blogs/

hadoop/pig-hive-yahoo-464.html, accessed March 2016, n.d.

[26] APACHE SPARK, Apache Spark is a fast and general engine for large-scale data processing.

Apache, http://spark.apache.org/, accessed March 2016, n.d.

[27] APACHE HBASE, Welcome to Apache HBase. Apache, http://hbase.apache.org/, accessed

March 2016, n.d.

[28] F. CHANG, J. DEAN, S. GHEMAWAT, W. C. HSIEH, D. A. WALLACH, M. BURROWS, T.

CHANDRA, A. FIKES, AND R. E. GRUBER, Bigtable: A distributed storage system for

structured data, ACM Trans. on Com. Sys., 26 (2006), pp. 1-26.

[29] APACHE, Apache Sqoop. The Apache Software Foundation, http://sqoop.apache.org/,

accessed March 2016, n.d.

[30] APACHE FLUME, Welcome to Apache Flume. Apache Flume, http://flume.apache.org/,

accessed March 2016, n.d.

61

[31] APACHE ZOOKEPPER, Welcome to Apache ZooKeeper. Apache ZooKeeper,

http://zookeeper.apache.org/, accessed March 2016, n.d.

[32] APACHE OOZIE, Apache Oozie workflow scheduler for Hadoop. Apache Oozie,

http://oozie.apache.org/, accessed March 2016, n.d.

