BIG DATA ANALYTICS USING HADOOP TOOLS

A Thesis
Presented to the
Faculty of

San Diego State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in

Computer Science

by
Chinnu Padman Chullipparambil

Spring 2016

SAN DIEGO STATE UNIVERSITY

The Undersigned Faculty Committee Approves the

Thesis of Chinnu Padman Chullipparambil:

Big Data Analytics Using Hadoop Tools

Copnl L (= I,

Carl Eckberg, Chair e
Department of Computer Science

T,
o }
}

/

TN
L le A Gacd e 2

e 284 2
Alan Riggins &~ / ‘j
Department of Computer Science

7O S /?(;’b/fé/z Yy

J. Carmelo Interlando
Department of Mathematics & Statistics

A/ 4 s
Match 23 0/t
Approval Date

Copyright © 2016
by
Chinnu Padman Chullipparambil
All Rights Reserved

DEDICATION

To Sankaran.

ABSTRACT OF THE THESIS

Big Data Analytics Using Hadoop Tools
by
Chinnu Padman Chullipparambil
Master of Science in Computer Science
San Diego State University, 2016

Big data technologies continue to gain popularity as large volumes of data are
generated around us every minute and the demand to understand the value of big data grows.
Big data means large volumes of complex data that are difficult to process with traditional
data processing technologies. More organizations are using big data for better decision
making, growth opportunities, and competitive advantages. Research is ongoing to
understand the applications of big data in diverse domains such as e-Commerce, Healthcare,
Education, Science and Research, Retail, Geoscience, Energy and Business.

As the significance of creating value from big data grows, technologies to address big
data are evolving at a rapid pace. Specific technologies are emerging to deal with challenges
such as capture, storage, processing, analytics, visualization, and security of big data. Apache
Hadoop is a framework to deal with big data which is based on distributed computing
concepts.

The Apache Hadoop framework has Hadoop Distributed File System (HDFS) and
Hadoop MapReduce at its core. There are a number of big data tools built around Hadoop
which together form the ‘Hadoop Ecosystem.” Two popular big data analytical platforms
built around Hadoop framework are Apache Pig and Apache Hive. Pig is a platform where
large data sets can be analyzed using a data flow language, Pig Latin. Hive enables big data
analysis using an SQL-like language called HiveQL. The purpose of this thesis is to explore
big data analytics using Hadoop. It focuses on Hadoop’s core components and supporting
analytical tools Pig and Hive.

Vi

TABLE OF CONTENTS
PAGE
ABSTRACT ...ttt ettt b s bt e bt e b et e st e b e b e Re e b e et et e R et b n e ne et neans Y
LIST OF FIGURESottt ettt e et e et e e et e e s e e nnes viil
ACKNOWLEDGEMENTS ...ttt sttt e e e e e sna e e e te e e e neeeanes X
CHAPTER

1 INTRODUCTION ...ttt e et se e e srae e e nne e e e nnaaeaneaeaneeens 1
1.1 Big Data and HadOoPcoeiiiiieiecie ettt 1
1.2 TheSiS OrganiZationc.cooeiirieieieie it 1
2 HADOOP ARCHITECTUREcovoiiiiiceseeece e 3
220 I 11 0o [od 1 o SR RPSU PSSR 3
2.2 Hadoop AICHITECIUIEccveeee e 4
2.2.1 Hadoop Distributed File System (HDFS)ccoviiiiiiiicicieeeee, 5
2.2.1.1 NameNode and DataNOdecccooeviiiiiiiiieiee e, 5
2.2.1.2 File Write INHDFSoooiiiieciee e e 6
2.2.1.3 File Read in HDFS........coiiiiiiciceseee e 7
2.2.2 MAPREUUCE ...t 8
2.2.2.LYARN T MRVZ ..ottt 9
2.2.2.2 Steps in MapReduce Job EXECULION........cccooeiiieiiniiinieieieeee 10

3 SET UP SINGLE-NODE HADOOP CLUSTER USING CLOUDERA
QUICKSTART VM .ttt e et e e e are e annee e 12
3.1 Set Up Cloudera QUICKStart VMc.coiviiiiieiic e 12
3.1.1 HADOOP Configuration FIlES...........ccooovriiiriniiiieieie s 14
3.2 Running Wordcount EXample............cooiieiiiieiic e 15
4 MAPREDUCE PROGRAMMINGooooiiiiiie ettt 18
A1 USE CBSE....eeieieie ittt ettt ettt b et n e nre e 18
4.2 SOUICE COUReeieeeieciie ittt te e te et e re e seeseesnaenteeneesreeneens 19
A.3 EXECULION ...ttt ettt st ne e bt e 20

5 DATA ANALYSIS USING APACHE PIG ..ot 24

5.1 EXECULION IMOUEScvviiiiiieieeiie sttt 24

5.2 Using Pig For Data ANAlYSIS..........cccveviiieieeiie e ieesie e seese e e 24

5.3 UsINg Pig EdItor IN HUE.........ooiiiiiieee e 28

6 DATA ANALYSIS USING APACHE HIVEcccoiiiiiiiieise e 31
6.1 Using Hive FOr Data ANAIYSISccooieiiiiiiiieresieseeeeee e 31

7 BIG DATA ANALYTICS ON AMAZON CLOUD......cccciiiiiiieieesesieese e 36
7.1 AMAzON WED SEIVICESeeiuiiiiiieiiieie sttt nne e 36

7.2 Create AN EME CIUSTETccoiiiiiiciceee e e 36

7.3 Connect To The Master NOGE.........cccvviiiieiiie e 41

7.4 View Web Interfaces Hosted on the Master Node..........ccccoevveriniinnininnienn, 44

7.5 Submit A JOD TO The CIUSTENccuveieee et 47

7.6 Using Hue On AMAazon EMRcov oo 49

7.6.1 Using Hive EdItor i HUEccooviiiiee e 50

8 SUMMARY AND FUTURE WORKccooiiiiieiiiiese e 57

REFERENGCESottt nn e 59

viii

LIST OF FIGURES

PAGE
Figure 2.1. HAadoop 2.X COMPONENESoiviiiiiiiiiieiieieie ettt 5
Figure 2.2. File WIIte IN HDFScoooiieeceee et 6
Figure 2.3. File Read iN HDFS ..o e 7
Figure 2.4. Example to lllustrate How MapReduce WOrKS............ccccoveveiieiicie e, 9
Figure 2.5. Steps in MapReduce JOb EXECULIONc.c.ooiiiiiiiiiiicececeee e 10
Figure 3.1. Cloudera VM Listed in VMWware PIAYerccccveiiiieiieie e 13
Figure 3.2. Browser in the Cloudera VM with Bookmark Linkscccoceiiiiiiiniiinnicnen, 14
Figure 3.3. Hadoop Configuration FIlEScceviiiiiieii e 14
Figure 3.4. RUNning WOordcount PrOgramccooueiirieneneiesesieseeee e 16
Figure 3.5. MapReduce Job Counters and Framework Details in the Execution Log............. 17
Figure 3.6. MapReduce JOD OULPULccoiiiiiiiiece e 17
Figure 4.1. Executing MapReduce APPlCatioN...........cccveviiieiieieie e 21
Figure 4.2. Displaying the OULPUL FIlecooiiiii e 22
Figure 5.1. Execution Logs 0N the CONSOIE..........ccueiieiieieciece e 26

Figure 5.2. Pig Script Output (Column 1: MovielD, Column 2: Title, Column 3:
AVEIAgE RALING) ...cveeiiceie ettt ettt e et e st e beetesneenreereens 27
Figure 5.3. Output Of DUMP @VQ_TatiNGcoieiiieiiieiesiesiesesie e 27
Figure 5.4. Pig EAItOr INHUEccioiiiieece ettt 28
Figure 5.5. Creating a Pig SCrPt iN HUEcoiiiiiiieee e 29
Figure 5.6. Running a Pig SCrpt iN HUEccviiiei e 29
Figure 5.7. Displaying Pig Script OUIPUL IN HUE........ccoiiiiiiiiiiiceee e 30
Figure 6.1. Hive QUEIY EXECULIONc.coivieiiiic ettt 34
Figure 6.2. HiVe QUETY OULPULoviiiiiiiiiieieieeee et 35
Figure 7.1. AWS Console with Available SErviCes.........ccccoeiiiiiiiiiiie i 36
Figure 7.2. Create Cluster - QUICK OPLIONScoiiiiiiiiieiiene e 37
Figure 7.3. Create Cluster - Software Configuration.............cccccevvveiieiiienic e 38
Figure 7.4. Create Cluster - Hardware Configuration..............ccccucvrereienineineneneesc s 38
Figure 7.5. Create Cluster - General OPLIONScccoiiuviiieiiiieiie st 39

Figure 7.6. Create Cluster - SECUrity OPLIONS.......cc.oiieiieiiiieieeieeie e 39
Figure 7.7. Cluster in Starting STate...........ccviieiieie e 40
Figure 7.8. Cluster in Waiting STate..........ccooiiiiiiieice e 40
Lo O T o U I o T o ISR 41
Figure 7.10. Converting Private Key to .ppK FOrmat ... 42
Figure 7.11. Public DNS Name of Cluster Master Node Displayed in EMR Console 43
Figure 7.12. Setting up an SSH Tunnel to the Master Node Using Dynamic Port

0T 1T o [T USSR 44
Figure 7.13. Instructions to Setup Web CONNECLIONccceviiiiieieiee e 45
Figure 7.14. Web Links for the Web Interfaces Hosted on the Cluster..........c.cccccccovvvevvennne. 47
Figure 7.15. Upload MapReduce Program Jar File t0 S3 ... 47
Figure 7.16. Upload INPUt FIIE 10 S3cvioiiieicece e 47
Figure 7.17. Add Step t0 @ RUNNING CIUSTENooiiiiiiieice e 48
Figure 7.18. Add Step to Execute a Custom Jar File ..o 48
Figure 7.19. OUtput FOIAEI IN S3 ... 49
Figure 7.20. HUE LOQIN SCIEEN ...c..iiuviieiecie ettt ettt sttt e e sreenreans 49
Figure 7.21. Using WinSCP to Copy Files to Master NOGecccceveiereninininieieeiee 50
Figure 7.22. Provide Private Key File for Authentication..............ccccooeviviiiiieie e 51
Figure 7.23. Create Database Using Metastore Managerccooveeerereneneneniesicseeeeeenes 52
Figure 7.24. Create Tables Using Metastore Managerccccecvevveieeveeiesiese e 53
Figure 7.25. Create a New Table From a File - Choose File ... 53
Figure 7.26. Create a New Table From a File - Choose Delimiter.............ccccoevviveieeivenenne. 54
Figure 7.27. Create a New Table From a File - Define Columns...........ccooeiiiiiiiiicicien, 54
Figure 7.28. 'ratings’ Table Createdcocooveiiei i 55
Figure 7.29. Executing @ HIVE QUETYoouiiiiiiiiieeie et 55
Figure 7.30. Hive Query and Result to Calculate Average Movie Ratingccccccvvennnne. 56

ACKNOWLEDGEMENTS

I would like to thank my thesis Chair Professor Carl Eckberg for his continuous
guidance and support. | would like to thank Professor Alan Riggins and Professor Carmelo
Interlando for serving on the thesis committee. | would also like to express my gratitude to
my family and friends for their constant encouragement throughout the graduate program.

CHAPTER 1

INTRODUCTION

Data is growing at a rate we never imagined. Large volumes of digital data are generated
at a rapid rate by sources like social media sites, mobile phones, sensors, web servers,
multimedia, medical devices and satellites, leading to a data explosion. The importance of
capturing this data and creating value out of it has become more important than ever in every
sector of the world economy. While the potential of creating meaningful insights out of big data
in various domains like Business, Health Care, Public Sector Administration, Retail and
Manufacturing are being studied, data science related technologies are expanding to capture,

store and analyze big data efficiently.

1.1 BIG DATA AND HADOOP

Apache Hadoop is the most popular open source framework to deal with big data. It
makes use of distributed computing concepts at the data storage level using Hadoop Distributed
File System (HDFS), and at the data processing level using MapReduce framework. In
MapReduce, a large programming task is divided into a ‘Map’ phase which is performed in a
distributed fashion and a ‘Reduce’ phase where the consolidation occurs. There are Hadoop
related data analytical technologies like Pig which uses a data flow language called Pig Latin and
Hive which helps users to analyze big data using SQL-like Hive queries.

The aim of this thesis is to understand the Hadoop framework and data analysis using
MapReduce, Hive and Pig, and communicate typical usage of these technologies to a reader.
This document can be used for self-study of Hadoop, Pig and Hive and will be shared on SDSU
website. There are no texts or other sources that provide the step by step usage examples found

in this document for these technologies, using the same presentation style and level of detail.

1.2 THESIS ORGANIZATION
The initial chapters discuss the Hadoop framework, followed by data analysis using
MapReduce, Hive and Pig on sample use cases. Big data analysis using Amazon Elastic

MapReduce (Hadoop on Amazon cloud) is also explained in detail.

Chapter 2 focuses on the Hadoop architecture. Chapter 3 explains the Hadoop setup using
Cloudera QuickStart VM. In Chapter 4, MapReduce is explained using a data analytics use case.
Chapter 5 and Chapter 6 explain Apache Pig and Apache Hive respectively and show how these
technologies can be used for solving data analysis problems. Chapter 7 explains big data

analytics using Amazon Web Services (AWS). Chapter 8 concludes the study.

CHAPTER 2

HADOOP ARCHITECTURE

Apache Hadoop is an open-source framework which allows distributed storage and
processing of large volumes of structured or unstructured data across clusters of commodity

hardware.

2.1 INTRODUCTION

One of the early big data problems was faced by web search engines where millions of
web pages had to be indexed in a fraction of second in a cost-effective way. Hadoop was created
by Doug Cutting and originated in Apache Nutch, a web search engine project initiated by Doug
Cutting and Mike Cafarella [1]. In 2005, Apache Nutch became an independent subproject of
Apache Lucene, a text search engine library created by Doug Cutting. Nutch’s implementation of
distributed file system and MapReduce were inspired by Google’s white papers [2] on Google’s
distributed file system (GFS) and MapReduce [3] respectively, which described the distributed
file system and distributed computing architecture Google used for intensive data processing
needs. Nutch’s distributed file system and MapReduce implementations were moved to Apache
Hadoop as an independent subproject of Apache Lucene in 2006 to build a generic framework to
solve various big data problems.

One of the main design features of Hadoop is its high scalability in data storage and
processing capability that can be achieved by adding more nodes to the cluster. It also enables
cost effectiveness as it does not demand high-end servers, instead using inexpensive commodity
machines. Since it uses ordinary hardware which fails more often than high-end machines, data
is replicated for fault tolerance.

Hadoop use cases are vast and cover almost all sectors of the world economy like
Politics, Data Storage, Financial Services, Health Care, Human Sciences, Telecoms, Travel,
Energy, Retail and Logistics [4]. For example, use of big data and cloud computing using
Amazon Web Services for election campaigns played an important role in Team Obama’s win in

the 2012 U.S. presidential election. In the financial domain, banks use Hadoop solutions for

maintaining data accuracy and compliance with regulations, and this was more complex and time
consuming before Hadoop. In health care, it is used for storage, processing and analysis of
millions of medical records and claims, and for capturing and analyzing massive volumes of
medical sensor data. In Telecom, large volumes of mobile call records can be stored and
processed in real time. In energy, insights on household energy usage can be made by processing
large volumes of energy usage data and potential energy saving plans can be derived. A list of

companies using Hadoop and the related use cases can be found at Hadoop wiki [5].

2.2 HADOOP ARCHITECTURE

Hadoop’s underlying principle is distributed data storage and computation. Data transfer
speed of hard drives is not growing proportionally with storage capacities, which slows down
read and write operations. One feasible solution to this is distributed computing, where data is
distributed over multiple disks and data is read and written in parallel. Since failure of one disk
should not result in data loss, data must be replicated. Hadoop’s file system, called Hadoop
Distributed File System (HDFS), is based on this principle. When data is distributed, it’s
processing needs to be done in a distributed fashion. Hadoop’s MapReduce framework takes care
of this. In MapReduce programming model, the processing is done in two steps: in ‘Map’ phase,
data is processed locally and in ‘Reduce’ phase, the results are consolidated. This also makes use
of the principle that moving computation closer to data is cheaper than moving data closer to
computation, especially when the size of the dataset is huge.

HDFS and MapReduce layers in Hadoop 2.x are shown below. The data storage layer
consists of a NodeManager (one per cluster) and DataNodes (one per slave node). The data
computation layer consists of a ResourceManager (one per cluster) and NodeManagers (one per

slave node). These components are explained in detail in the coming sections.

‘ Master | ‘ Slave 1 | Slave 2 | Slave 3 |

] | |

NameMode

DataNode DataNode DataNode

NodeManager NodeManager NodeManager
ResourceManager

| | |

Figure 2.1. Hadoop 2.x Components

2.2.1 Hadoop Distributed File System (HDFS)
In HDFS [6] [7], files are split into blocks. The default block size is 128 MB in Hadoop
2.X generation. (In Hadoop 1., it was 64 MB). In a filesystem, a block is the minimum size of
data that can be read or written from disk. Each block of data is replicated by a replication factor
which has a default value of three and then stored on data nodes. Both block size and replication

factor are configurable per file.

2.2.1.1 NAMENODE AND DATANODE

HDFS follows master-slave architecture. A cluster consists of a NameNode (master) and
a set of DataNodes (slaves). NameNode and DataNodes are Java processes running on master
and slave machines, respectively. Master is usually a server-grade machine and slaves are
commodity machines. NameNode stores the file system metadata in persistent mode and controls
file access by clients. File system metadata is stored persistently in FsImage file on NameNode’s
local disk. EditLog logs changes made to the file system metadata (such as creation of new files,
changing file replication factor, etc.) and is also stored persistently on the NameNode’s local
disk. When the NameNode starts, it loads the Fsimage into RAM and applies the transactions
from the EditLog. It then creates a new persistent Fslmage file creating a checkpoint. The old

EditLog is cleared at this point.

The data blocks are stored on DataNodes. These service data read and write operations of
data blocks from clients. DataNode periodically sends its block list to NameNode and
NameNode stores blocks to DataNode mapping in memory.

An HDFS cluster may span multiple racks in the same or different data centers. Data
centers may exist in geographically different locations. Determining on which nodes the replicas
are to be placed is important in HDFS, since write operations on a remote rack are more
expensive than those on local racks. HDFS follows the following replica placement policy by
default: The first replica is placed on the same node as the client node. If the client is outside the
cluster, a random node is chosen. The second and third replicas are placed on different nodes on
a rack other than the first one. The remaining replicas are placed on random nodes and no single
node should contain more than one replica and no single rack should contain more than two

replicas.

2.2.1.2 FILE WRITE IN HDFS

The sequence of steps in a file write operation in HDFS is explained below [8].

1. Client requests NN to create new file r//-
2.MN grants permission

3. Client requests NN to allocate data NameNode
nodes for first block to store block replicas
4. NN returns block id and list of data node

addresses, e.g. DN3, DN7, DNS \

doctxt : 200 MB
Bl: 12BME B2: 72MB

=)
5. Client writes block to first 7. Signals file write is complete | \
DM in the list packet by A —_—
packet. The data nodes in the &. Packet acknowledgement is ~ Steps 3 through Gare
list form a pipeline, and each sent back to the client < repeated for each block >
DN writes the packet to the ~— ofthefile -
subsequent DN I —

D @ D @
[ons | : [on7 | : [ons |
DataNode 5 DataNode 5 DataNode
4 A 4

Figure 2.2. File Write in HDFS

1. Client requests NameNode to create a new file.

2. NameNode checks for client permission and duplicates and grants a lease for writing
the file.

Client requests a list of data nodes to store block replicas.
NameNode returns a unique block id and a list of data node addresses.

5. The DataNodes form a pipeline and data is pushed as a sequence of packets. Client
writes the packets to the first DataNode and each DataNode forwards it to the
subsequent one in the pipeline. Along with the data, the checksum for each block is
also sent to the DataNodes and gets stored in a metadata file.

6. For each received packet, an acknowledgement is sent back.

2.2.1.3 FILE READ IN HDFS
The sequence of steps in a file read operation in HDFS is explained below [8].

/"'"_551335_1 through 7 are
\ repeated till all blocks >
= of thefileareread
‘4‘{"{#-_#-
1. Client requests MM for block locations for
first few blocks -
2. NN sends the list of data nodes for each NameNode
block sorted in the order of client proximity,
e.g. B1: DN3, DN7, DNE, B2: DN1, DN7, DN8
3. Client connects to the first data node in
the list and reads blocks in order
(= 1= [=1C=]
DataNode DataNode DataNode DataNode

Figure 2.3. File Read in HDFS

1. Client requests the NameNode for the list of DataNodes where replicas are stored for
each block of the file.

NameNode sends back the list of DataNode addresses sorted in the order of their
distance from the client.

Client contacts the first DataNode in the list for each block and reads all the blocks in
order. Along with the data, the block’s checksum is also sent to the client and client
calculates the checksum for the read data and checks if it is corrupted. If a read fails
for a DataNode (DataNode is unavailable or data is corrupted), client goes to the next

N

w

DataNode in the list for block replica. The failed DataNodes will not be contacted for
further block reads.
2.2.2 MapReduce

MapReduce [9] is a programming framework for distributed processing of large data sets
on a cluster of computers. A MapReduce program typically consists of Map tasks and Reduce
tasks. The initial input is split into smaller chunks called InputSplits, and processed by Map tasks
in parallel. The output of Map tasks are then processed by Reduce tasks to produce the final
output. The execution and monitoring of the tasks are handled by the framework itself. The
framework typically schedules tasks local to the data and also handles re-execution of failed
tasks.

InputFormat represents the input format for a MapReduce job. Default InputFormat is
TextInputFormat. InputSplit represents the data to be processed by an individual Mapper.
Default InputSplit is FileSplit. Default behavior of InputFormat is to split the input into byte-
oriented logical input splits based on total input size with file system block size (default 128 MB
in Hadoop 2.x) as the upper bound. The InputSplit is passed to a RecordReader which converts
the byte-oriented input splits into record-oriented input splits. RecordReader reads InputSplit and
generates <key, value> pairs. TextlnputFormat uses LineRecordReader by default which returns
a <key, value> pair with the key as the offset in file and value as the line.

One Mapper task is assigned for each InputSplit. Mapper takes input key-value pairs and
transforms them into a set of intermediate key-value pairs. The transformation is performed by a
map() method which is called for each key/value pair in the InputSplit. Intermediate outputs
from Mapper are sorted and partitioned across the Reducers available. In the shuffle and sort step
of the Reducer, relevant partitions are fetched and grouped based on the same key. In the reduce
step of the Reducer, on each <key, (list of values)> pair in the input, reduce() method is called to
produce the final output. Sometimes a Combiner is used which acts a local Reducer, which
locally aggregates intermediate outputs from Mappers, thus reducing the data transfer from
Mapper to Reducer.

MapReduce framework is illustrated by the word count example below:

Inputsplit Map Combine Reduce
red, 1
red green blue green, 1 blue, 2
.| blue 1 o | green, 2
green blue white | green, 1 T red, 1
blue, 1 white, 1
white, 1
black, 1
blue, 3
green, 3
red, 2
white, 1 o white, 3
white black red black, 1 "
red 1 blue, 1
| ’ |- 1
blue green white "1 blue, 1 o i;‘T'
green, 1 !
white, 1 white, 2

Figure 2.4. Example to Illustrate How MapReduce Works

There are two Mappers above which take each InputSplit and process it. Input to the
map() function is each line and its offset in the file. The line is split into words and the
intermediate outputs (<word>, 1) are generated. The combiner function which also runs locally
to the Mapper, combines the count for the same word in the Mapper output. Finally, output is
generated by a single Reducer where outputs from different combiners are fetched, sorted based

on the key and processed to find the total count per word.

2.2.2.1 YARN /MRV2

MapReduce in Hadoop 2.x is called MapReduce 2.0 (MRv2) or YARN (Yet Another
Resource Negotiator) [10]. MapReduce 1.0, the MapReduce in Hadoop 1.x, underwent many
architectural changes in Hadoop 2.x.

Per-cluster ResourceManager manages resources across the cluster. Per-application
ApplicationMaster is responsible for the individual MapReduce job execution and monitoring. It
coordinates the Map and Reduce tasks for each MapReduce application. Per-node NodeManager
is responsible for launching and monitoring the containers running in each node and reporting
their status back to the ResourceManager. Containers run ApplicationMaster and MapReduce

tasks with certain allocated computation resources.

10

2.2.2.2 STEPS IN MAPREDUCE JOB EXECUTION

ResourceManager

5b. Poll job status

2a. Start container
for AppMaster
-

3. Request resources

1a. Get application ID

AppMaster

4

5a. Progress/Status
update

1b. Output dir check,
compute input splits

| 2c_ Retrieve input splits |

4a._ Start container for

| 1c. Copy job resources |
map/reduce task

‘ NodeManager ‘

| 4b. Retrieve job resources |

Container

‘ Map or Reduce task

Figure 2.5. Steps in MapReduce Job Execution [8] [11]

1. Job Submission
1.1. Client asks for an application ID from the ResourceManager.

1.2. Check if output directory is specified and does not already exist. Checks input
files are specified and calculates input splits.

1.3. Copy resources like job jar file, configuration file and input splits to HDFS.
1.4. Submit the job to ResourceManager.
2. Job Initialization

2.1. ResourceManager’s scheduler allocates container for ApplicationMaster and
starts the container by contacting the NodeManager.

2.2. ApplicationMaster initializes the job by creating the objects required for job
progress tracking.

2.3. ApplicationMaster retrieves the input splits from filesystem and creates map
task for each input split. It also creates the required number of reducer tasks.

3. Task Assignment

ApplicationMaster requests resources for map and reduce tasks to
ResourceManager’s scheduler. Scheduler tries to allocate map task on nodes where
the data (input split) is already stored.

4. Task Execution

11

4.1. ApplicationMaster contacts the NodeManagers and asks to start the containers
for map and reduce tasks.

4.2. Resources are retrieved from the filesystems.
Map/Reduce tasks are executed.
. Job Progression and Completion

5.1. Map and reduce tasks send the progress (how much data is processed), status
(running, completed, failed) updates and a set of counter values to the
ApplicationMaster every three seconds. Thus ApplicationMaster gets notified when
the job is finished.

5.2. Client polls ApplicationMaster for job status and learns when job is finished.

CHAPTER 3

SET UP SINGLE-NODE HADOOP CLUSTER USING
CLOUDERA QUICKSTART VM

Specialized Hadoop vendors such as Cloudera, HortonWorks, and MapR provide data
management and analytical platforms packaged around Apache Hadoop. Commercialized
Hadoop solutions are also available from well-known enterprises like Microsoft (Microsoft
HDInsight on Microsoft cloud (Microsoft Azure), IBM (IBM Biglnsights on IBM cloud (IBM
SmartCloud), Amazon (Amazon Elastic MapReduce (EMR) on Amazon cloud (Amazon Web
Services (AWS)). A complete list of companies who provide products that include Apache
Hadoop or derivative works and commercial support can be found in Hadoop wiki [12]. The
enterprise users make use of the support and services provided by these vendors to avoid
complications related to Hadoop setup and maintenance and to solve their business challenges
more efficiently. Cloudera’s Hadoop distribution [13], CDH (Cloudera Distribution Including
Apache Hadoop), comes in many flavors. Cloudera QuickStart VM provides a single-node
Hadoop cluster setup and makes it easy for beginners to gain hands-on experience on Hadoop

from their local machines.

3.1 SET UpP CLOUDERA QUICKSTART VM
Below are the system requirements:
e 64-bit host OS
e Player 4.x or higher (Windows) or Fusion 4.x or higher (Mac)
e Minimum RAM requirement is 4GB. Allocate more memory for larger workloads.
Follow below steps to install Cloudera QuickStart VM:
1. Download VMware Player [14].

2. Download QuickStart VM from Cloudera web site for VMware format [15].
(Downloads are available for VMware, KVM, and VirtualBox formats as Zip
archives.)

3. Unzip the package. (Cloudera recommends using 7-Zip to extract files)

12

13

4. Open VMware Player and click on ‘Open a Virtual Machine’. Browse to the extracted
folder and select the file cloudera-quickstart-vm-<version>-vmware.vmx (VMware
virtual machine configuration file). Cloudera VM will be listed as below.

é:-ﬂ cloudera-quickstart-vrn-5.5.0-0-vmware

cloudera-quickstart-vin-5.5.0-0-
vimware

State: Suspended
0S5: Red Hat Enterprise Linux 6 54-bit
Yersion: Workstation 8.0 virtual machine
RANM: 4GB

@ Play wirtual machine

f Edit virtual machine settings

'Figure 3.1. Cloudera VM Listed in VMware Player

5. Select the VM and click on ‘Play virtual machine’. (If Virtualization Support is not
enabled on your Windows host machine, related errors may pop up. This can be
solved by enabling Virtualization Technology in BIOS setting.) The VM runs CentOS
6.4. The VM starts and the user is automatically logged in as the cloudera user (both
username and password are ‘cloudera’). A browser opens up as below with useful
links to various Hadoop tools on the Bookmarks bar.

14

Cloudera Live : Welcom... % | 4

quickstart.cloudera v * B +$ &£ & =

iCloudera WyHue [Hadoopv [HBase~ [@impalav @Spark~ []Solr {iOozie []Cloudera Manager [Getting Started

cloudera LIVE

Welcome to Your Cloudera QuickStart VM!

Your Cluster
Node Address
Mansager Node 127001
Warker Nod 1 127001

o Get Started

The tutorial below guides you through some analylic use cases, using the most popular open source tools included with CDH
(including Cloudera Impala, Cloudera Search, and Hue)

- SR

Analyze Your Data

- Hue is the open source web interface for Hadoop that lets you analyze your data. Simply load in your data and then easily begin
10 analyze, search, and visualize it In the QuickStart VM, the administrative username for Hue is ‘cloudera’ and the password is
‘cloudera’

Launch Hue Ul

Manage Your Cluster

Cloudera Manager provides end-to-end system management for simple deployment and administration of CDH. Cloudera
Manager also seamlessly integrates with existing third-party tools.

Click "Launch Cloudera Express™ or "Launch Cloudera Enterprise (iial)” on the Desktop to get started.

Figure 3.2. Browser in the Cloudera VM with Bookmark Links

6. Open Terminal and go to /usr/bin. Hadoop, Pig, Hive, HBase, Sqoop, Flume etc. are
installed under the directories with the respective names.

3.1.1 HADOOP Configuration Files
The configuration files can be found under etc/Hadoop directory in Hadoop installation

directory.

cloudera@quickstart:/usr/lib/hadoop/etc/hadoop

[cloudera@quickstart ~1% cd /usr/lib/hadoop/etc/hadoop/
[cloudera@quickstart hadoopl$ 11
total 48

rw-rw-r-- 1 root root 1915 Nov 18 18:18 core-site.xml
-rwxr-xr-x 1 root root 1366 Oct 12 15:59

-rwxr-xr-x 1 root root 2890 Oct 12 15:539

rw-ru-r-- 1 root root 3739 Nov 18 18:18 hdfs-site.xml
-rwxr-xr-x 1 root root 11291 Nov 9 12:59

rw-rw-r-- 1 root root 1546 Nov 18 10:18 mapred-site.xml
-rwxr-xr-x 1 root root 1184 Oct 12 15:59

-rwxr-xr-x 1 root root 2375 Oct 12 15:59
[cloudera@quickstart hadoop]$]

Figure 3.3. Hadoop Configuration Files

e hadoop-env.sh

e Environment settings for Hadoop scripts found in bin directory of Hadoop
distribution

e core-site.xml

e Settings common to HDFS and MapReduce

15

e hdfs-site.xml

e Configurations for NameNode and DataNode

e yarn-site.xml

e Configurations for ResourceManager and NodeManager

e mapred-site.xml

e Configurations for MapReduce Applications and MapReduce JobHistory Server

3.2 RUNNING WORDCOUNT EXAMPLE
Hadoop distribution comes with MapReduce examples jar file which has a number of
example MapReduce programs. We will see how to execute the wordcount program from this
jar. The word count problem was explained in section 2.2.2 and the same sample data is used
here.
1. Todisplay all the programs available within hadoop-mapreduce-examples.jar:

$ cd /usr/lib/hadoop-mapreduce
$ hadoop jar hadoop-mapreduce-examples.jar

2. Create input files for the wordcount program. Create files inputl.txt and input2.txt on
Desktop.

[cloudera@Qquickstart ~]$ cat /home/cloudera/Desktop/inputl.txt
red green blue
blue green white

[cloudera@Rquickstart ~]$ cat /home/cloudera/Desktop/input2.txt
white black red
blue green white

3. Copy the input files to HDFS. Create an input folder under /user/cloudera/in and copy
the input files.

[clouderalRquickstart ~]$ $ hdfs dfs -mkdir /user/cloudera/in

[cloudera@quickstart ~]1$ $ hdfs dfs -copyFromLocal /home/cloudera/Desktop/inputl.txt
/user/cloudera/in

[cloudera@quickstart ~]$ $ hdfs dfs -copyFromLocal /home/cloudera/Desktop/input2.txt
/user/cloudera/in

[clouderalRquickstart ~]$ hdfs dfs -1ls /user/cloudera/in
Found 2 items

—rW-r—-—-r—-— 1 cloudera cloudera 32 2015-12-29 22:50
/user/cloudera/in/inputl.txt
—rW-r—-—-r—-— 1 cloudera cloudera 33 2015-12-29 22:51

/user/cloudera/in/input2.txt

16

Note: The user can interact with HDFS using HDFS shell, which can be invoked by
hdfs dfs <command> <args>. ‘args’ are file path URIs. URI format is
scheme://authority/path. If the scheme and authority are not specified, the default
values from configuration will be used. For example, hdfs://host/path and /path are
identical, if the configuration is set to point to hdfs://host/. [16]

4. Run wordcount program. Make sure the output folder does not exist already.

[cloudera@quickstart ~]$ hadoop jar hadoop-mapreduce-examples.jar wordcount
/user/cloudera/in/input /user/cloudera/output

cloudera@quickstart:/usr/lib/hadoop-mapreduce

File Edit View Search Terminal Help
[cloudera@quickstart hadoop-mapreduce]$ hadoop jar hadocop-mapreduce-examples.jar wordcount /user/cloudera/in fuser/cloudera/outp(+|
ut
15/12/29 22:54:16 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/12/29 22:54:17 INFO input.FileInputFormat: Total input paths to process : 2
15/12/29 22:54:17 INFO mapreduce.JobSubmitter: number of splits:2
15/12/29 22:54:17 INFO mapreduce.JobSubmitter: Submitting tokens for job: job 1450421134661 80683
15/12/29 22:54:17 INFO impl.YarnClientImpl: Submitted application application 1450421134661 8883
15/12/29 22:54:17 INFO mapreduce.Job: The url to track the job: http://guickstart.cloudera:8888/proxy/application_ 1450421134661
| CEEER
15/12/29 22:54:17 INFO mapreduce.Job: Running job: job 1450421134661 86803
15/12/29 22:54:27 INFO mapreduce.Job: Job job 1458421134661 8883 running in uber mode : false
15/12/29 22:54:27 INFO mapreduce.Jlob: map 0% reduce 8%
15/12/29 22:54:45 INFO mapreduce.Job: map 50% reduce 6%
15/12/29 22:54:46 INFO mapreduce.Job: map 108% reduce 0%
15/12/29 22:54:55 INFO mapreduce.Job: map 108% reduce 100%
15/12/29 22:54:55 INFO mapreduce.Job: Job job 1450421134661 8883 completed successfully
15/12/29 22:54:55 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: MNumber of bytes read=108
FILE: Number of bytes written=335591
FILE: Number of read operations=0
FILE: Number of large read operations=e
FILE: Number of write operations=e
HDFS: Number of bytes read=305
HDES: Numbher nf hvtes written=37

Figure 3.4. Running wordcount Program

cloudera@quickstart:/usr/lib/hadoop-mapreduce

File Edit View Search Terminal Help
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=31417
Total time spent by all reduces in occupied slots (ms)=6678
Total time spent by all map tasks (ms)=31417
Total time spent by all reduce tasks (ms)=6670
Total vcore-seconds taken by all map tasks=31417
Total vcore-seconds taken by all reduce tasks=6670
Total megabyte-seconds taken by all map tasks=32171008
Total megabyte-seconds taken by all reduce tasks=6830080
Map-Reduce Framework

Map input records=4
Map output records=12
Map output bytes=113
Map output materialized bytes=114
Input split bytes=240
Combine input records=12
Combine output records=9
Reduce input groups=5
Reduce shuffle bytes=114
Reduce input records=9
Reduce output records=5
Spilled Records=18
Shuffled Maps =2
Failed Shuffles=8
Merged Map outputs=2

[>]

Figure 3.5. MapReduce Job Counters and Framework Details in the Execution Log

5. Verify output.

cloudera@quickstart:/usr/lib/hadoop-mapreduce

[cloudera@quickstart hadoop-mapreducel$ hdfs dfs -1ls fuser/cloudera/output
Found 2 items

-rw-r--r-- 1 cloudera cloudera 8 2015-12-29 22:54 /user/cloudera/output/ SUCCESS
-TW-r--r-- 1 cloudera cloudera 37 2815-12-29 22:54 Juser/cloudera/output/part-r-0eeee
[cloudera@quickstart hadoop-mapreduce]$ hdfs dfs -cat /user/cloudera/output/part-r-86000

black 1

blue 3

green 3

red 2

white 3

[cloudera@quickstart hadoop-mapreduce]$ [

Figure 3.6. MapReduce Job Output

18

CHAPTER 4

MAPREDUCE PROGRAMMING

In this chapter, we will see how to develop a MapReduce program using eclipse as the

development environment.

4.1 USE CASE

The dataset used is the MovieLens 1M Dataset [17] provided by GroupLens Research.
The dataset is obtained by GroupLens from MovielLens, a movie recommendation website. This
data set contains 10000054 ratings and 95580 tags applied to 10681 movies by 71567 users in
three files, movies.dat, ratings.dat and tags.dat.

Movies.dat files contains movie information with format MovielD::Title::Genres (sample
row: 1356::Star Trek: First Contact (1996)::Action|Adventure|Sci-Fi). Ratings.dat file contains
movie rating given by users with format UserID::MovielD::Rating:: Timestamp (sample row:
2::647::3::978299351).

We will develop a MapReduce application to find the average movie rating using
rating.dat file.

e First copy the input files to HDFS.

cloudera@quickstart ~]$ hdfs dfs —-mkdir /user/cloudera/input

[cloudera@quickstart ~]$ hdfs dfs -copyFromLocal /home/cloudera/Desktop/ratings.dat
/user/cloudera/input

e Inthe Cloudera VM, open eclipse. Create a new java project. Add dependencies jars.
Right click on the project -> Build Path -> Configure Build Path. On Libraries tab,
select Add External Jars. Browse and add the jars under /usr/lib/Hadoop/client-0.20.

19

4.2 SOURCE CODE

// MovieAvgRating.java

import
import
import
import
import
import
import
import
import
import
import
import

public

java.io.IOException;
org.apache.hadoop.conf.Configuration;
org.apache.hadoop.fs.Path;
org.apache.hadoop.io.FloatWritable;
org.apache.hadoop.io.IntWritable;
org.apache.hadoop.io.LongWritable;
org.apache.hadoop.io.Text;
org.apache.hadoop.mapreduce.Job;
org.apache.hadoop.mapreduce.Mapper;
org.apache.hadoop.mapreduce.Reducer;
org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
class MovieAvgRating {
public static class Map extends
Mapper<LongWritable, Text, Text, IntWritable> ({
public void map (LongWritable key, Text value, Context context)
throws IOException, InterruptedException ({
String[] tokens = value.toString() .split("::");
String movie = tokens[1l];
int rating = Integer.parselnt (tokens[2]) ;

context.write (new Text (movie), new IntWritable(rating))

}
public static class Reduce extends
Reducer<Text, IntWritable, Text, FloatWritable> {
public void reduce (Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException ({
int counter = 0; int sum = 0;
for (IntWritable val : values) {
sum += val.get();
counter++;
}
float avg = sum / counter;

context.write (key, new FloatWritable (avg));

20

public static void main(String[] args) throws Exception ({
Configuration conf = new Configuration() ;
Job job = Job.getInstance (conf, "movie rating");
job.setJarByClass (MovieAvgRating.class) ;
Jjob.setMapperClass (Map.class) ;
job.setReducerClass (Reduce.class) ;
Jjob.setOutputKeyClass (Text.class) ;
job.setMapOutputValueClass (IntWritable.class);
Jjob.setOutputValueClass (FloatWritable.class) ;
FileInputFormat.addInputPath (job, new Path(args[0]));
FileOutputFormat.setOutputPath (job, new Path(args([l]));
System.exit (job.waitForCompletion(true) 2 0 : 1);

A MapReduce application typically implements map and reduce methods of Mapper and
Reduce classes, respectively. Here the map method processes the input file line by line, splits the
lines based on the given delimiter “::” and creates the mapper output key-value pair as (MovielD,
Rating). The reduce method calculates the average of values (ratings) for each key (MovielD)
and gives the output key-value pair (MovielD, Average Rating).

It is important to give the correct types for input and output key-value pairs. For example,
since the average rating calculated is a float value, the type of output value of Reduce method is
given as FloatWritable.

In the main method, the MapReduce job configuration is created via Job instance.
Mapper, Reducer, key/value types, input files and output paths can be configured in a Job.

job.waitForCompletion submits the job and monitors its progress.

4.3 EXECUTION

1. For debugging, the program can be executed in eclipse using a sample input file. In
this case, Hadoop runs in LocalJobRunner mode, where all daemons run in a single
JVM. The built-in debug features of eclipse can be handy at this stage. Also, the input
and output files will be in local file path, not HDFS.

21

2. Create a sample input file data.txt with a few lines of data from ratings.dat within the
project folder.

3. Next create a Run Configuration for the application. Go to Run -> Run Configuration
-> Java Application, right click and select New. In the arguments tab, enter the input
file data.txt and name of output folder which will be created inside the project folder
for the program output. Click on Run and verify the output.

4. To run the program in the cluster mode, the project needs to be exported into a jar
file. Right click on the project and select Export. Select Java -> Jar File -> Enter the
export destination (say home/cloudera/Desktop/movierating.jar) -> Next -> Next. For
‘Select the class of the application entry point’, click on Browse and select the class
name MovieAvgRating and click on Finish.

5. On the terminal, go to Desktop and enter the following command to execute the
MapReduce application.

cloudera@quickstart ~]$ hadoop jar movierating.jar /user/cloudera/input/ratings.dat
/user/cloudera/output

E cloudera@quickstart:~/Desktop - 8 x
File Edit View Search Terminal Help
[cloudera@quickstart Desktop]$ hadoop jar movierating.jar /user/cloudera/input/ratings.dat /user/cloudera/output (=]

16/63/04 15:23:29 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
16/03/04 15:23:38 WARN mapreduce.JobResourceUpleoader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRu
nner to remedy this.

16/83/04 15:
16/03/04 15:
16/83/04 15:
16/83/04 15:
16/03/04 15:
16/83/04 15:
16/03/04 15:
16/83/04 15:
16/83/04 15:
16/03/04 15:
16/83/04 15:
16/03/04 15:

File System Counters

23:
23:
23:
23:
23:
23:
23:
23:
23:
24;
24:
24:

Map -Redu

30
30
31
31
31
31
40
48
53
04
a5
85

INFO input.FileInputFormat: Total input paths to process : 1

INFO mapreduce.JobSubmitter: number of splits:1

INFO mapreduce.JobSubmitter: Submitting tokens for job: job 1457132358481 60063
INFO impl.YarnClientImpl: Submitted application application_1457132358481_6003
INFO mapreduce.Job: The url to track the job: http://quickstart.cloudera:8088/proxy/application 1457132358481 0003/
INFO mapreduce.Job: Running job: job_1457132358481_0003

INFO mapreduce.Job: Job job 1457132358481 0803 running in uber mode : false
INFO mapreduce.Job: map 0% reduce 8%

INFO mapreduce.Job: map 100% reduce 8%

INFO mapreduce.Job: map 160% reduce 100%

INFO mapreduce.Job: Job job_1457132358481 0003 completed successfully

INFO mapreduce.Job: Counters: 49

FILE: Mumber of bytes read=10722845
FILE: Number of bytes written=21667233
FILE: Mumber of read operations=@

FILE: Number of large read operations=8
FILE: Mumber of write operations=0
HDFS: Mumber of bytes read=24594259
HDFS: Number of bytes written=32312
HDFS: Mumber of read operations=6

HDFS: Number of large read operations=8
HDFS: Mumber of write operations=2

Job Counters

Launched map tasks=1

Launched reduce tasks=1

Data-local map tasks=1

Total time spent by all maps in occupied slots (ms)=10855
Total time spent by all reduces in occupied slots (ms)=8799
Total time spent by all map tasks (ms)=10855

Total time spent by all reduce tasks (ms)=8799

Total vcore-seconds taken by all map tasks=10855

Total vcore-seconds taken by all reduce tasks=8739

Total megabyte-seconds taken by all map tasks=11115520
Total megabyte-seconds taken by all reduce tasks=9610176

ce Framework

Map input records=1000209

Map output records=1800209
Map output bytes=8721621

Map output materialized bytes=107220845
Input split bytes=128

Combine input records=0
Combine output records=0
Reduce input groups=3706
Reduce shuffle bytes=107220845
Reduce input records=1000209
Reduce output records=3706
Spilled Records=2000418

Shuffled Maps =1

Failed Shuffles=0

Merged Map outputs=1

GC time elapsed (ms)=209
CPU time spent (ms)=6580

Physical memory (bytes) snapshot=373567488

Figure 4.1. Executing MapReduce Application

If the application entry point was not set with the class name in the jar, the main class

name needs to be specified during the execution as below:

22

cloudera@quickstart ~]$ hadoop jar movierating.jar MovieAvgRating
/user/cloudera/data/rating.dat /user/cloudera/output

6. Verify output.

[clouderalRquickstart ~]$ hdfs dfs -1s /user/cloudera/output
Found 2 items

-rw-r—--r-- 1 cloudera cloudera 0 2016-01-31 00:13
/user/cloudera/output/ SUCCESS
-rw-r—--r-- 1 cloudera cloudera 32221 2016-01-31 00:13

/user/cloudera/output/part-r-00000
[cloudera@quickstart ~]$ hdfs dfs -cat /user/cloudera/output/part-r-00000

cloudera@quickstart:~/Desktop

File Edit View Search Terminal Help
492
493
494
495
496
497
498
499
5
50
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
52
520
521
522
523
524
525
526
527
528
529
53
530
531
532
533
534
535
536
537

WWWWNWWWEAWNEANWWWUWNWHENWNWWWNWNWW WWNN WS WWEWNN R WWWWww
oo N YRR R R o N R R R R YRR R R R o R o R R R R o o o - R RN -R-N-R-)

Figure 4.2. Displaying the Output File

7. Output can be copied from HDFS to local file path and opened in a file editor or
shared as needed.

23

[clouderalRquickstart ~]$ hdfs dfs -copyTolLocal /user/cloudera/output/ part-r-00000
/home/cloudera/Desktop

24

CHAPTER 5

DATA ANALYSIS USING APACHE PIG

Pig [18] is a data analysis platform for big data which runs on top of Hadoop. Pig uses a
procedural language called Pig Latin and Pig compiler converts it into a sequence of MapReduce
jobs. Pig allows the user to perform complex data analysis easily without the need to write the

equivalent MapReduce programs in Java.

5.1 EXECUTION MODES

Pig can be run either in interactive mode or batch mode. To run in interactive mode,
invoke Grunt shell using ‘pig’ command and then enter the Pig commands and statements
interactively in the Grunt shell. Pig can be run in batch mode using Pig scripts. Pig script is a
group of Pig commands and statements put into a single file. The pig script files usually use .pig
extension, though it is not mandatory.

Interactive mode or batch mode can be run either in local or MapReduce mode. In local
mode, there is no distributed execution; rather it uses the local host and file system where Pig is
running.

$ pig -x local

In MapReduce mode, which is the default mode, the execution is done in a distributed
fashion on the Hadoop cluster.

$ pig or $ pig -x mapreduce

5.2 USING PIG FOR DATA ANALYSIS
The dataset used is the MovieLens 1M Dataset [14] mentioned earlier in chapter 4. We
will write a pig script to compute the average movie rating using movies.dat and ratings.dat files.

1. PigStorage, the built-in default load function is used here to load the input files. Since
it takes only a single character as field delimiter, we are doing a simple preprocessing
of input files to change the delimiter form ::” to *:’. (Another option would be to
write a user-defined load function to load input in a specific format.)

$ sed -i 's/::/:/g' movies.dat ratings.dat
2. Copy the input files to HDFS.

25

cloudera@quickstart ~]$ hdfs dfs -mkdir /user/cloudera/data

cloudera@quickstart ~]$ hdfs dfs -copyFromLocal /home/cloudera/Desktop/movies.dat
/user/cloudera/data

cloudera@quickstart ~]$ hdfs dfs -copyFromLocal /home/cloudera/Desktop/ratings.dat
/user/cloudera/data

3. Create a pig script, named MovieRatings.pig, as below.

-- Load movies.dat
movies = LOAD '/user/cloudera/data/movies.dat' USING PigStorage(':') As
(MovieID:chararray, Title:chararray, Genres:chararray);

-- Load ratings.dat
ratings = LOAD '/user/cloudera/data/ratings.dat' USING PigStorage(':') AS
(UserID:chararray, MovielID:chararray, Rating:float, Timestamp:chararray);

-— Group by MovieID and compute average rating per movie
grp movies = GROUP ratings by (MovielD);

avg _rating = FOREACH grp movies GENERATE group as MovielD,
ROUND (AVG (ratings.Rating) *100.0) /100.0 as Avg Rating;

-- Join average ratings and movies based on MovieID to map the movie title to the
average rating
join movies avg rating = JOIN movies by MovieID, avg rating by MovieID;

-- Generate the final output and sort by average rating
movies avg rating = FOREACH join movies avg rating GENERATE $0 as MovieID, $1 as
Title, $4 as Avg Rating;

movies avg rating sorted = ORDER movies avg rating BY Avg Rating DESC;
STORE movies avg rating sorted INTO '/user/cloudera/pig/out'

First, data is loaded from input files using LOAD operator to form relations ‘movies’ and
‘ratings’. Ratings are grouped by MovielD using GROUP operator and the average rating is then
calculated for each Movie. Relations movies and avg_rating are joined based on the common
field MovielD using JOIN operator so that movie title from movies relation can be mapped to the
average rating from avg_rating relation. Final output is generated by picking the columns
MovielD, Title and Avg_Rating. Output is sorted in descending order of average rating. STORE
command is used to save the final output on HDFS.

4. Execute the pig script.

$ pig MovieRating.pig

=g

cloudera@quickstart:-

File Edit Yiew Search Terrninal Help

HadoopVersion PlgVersion Userld StartedAt FinishedAt Features
2.6.0-¢dh5.5.0 0.12.8-cdh5.5.8 cloudera 2016-01-01 23:37:38 2016-01-21 23:40:10
SUCCess!

Job Stats (time in seconds):

successfully read 1008209 records (21593884 bytes) from: =fuser/clowsdera/pigfratings.dat®
successfully read 3883 records from: "juser/clowderafpig/movies.dat”

Dutput{s):
successfully stored 3706 records (123578 bytes) im: *jfuser/cloudera/pigfout®

Counters:

Total records written : 3706

Total bytes written : 123578

Spillable Memory Manager spill count : @
Total bags proactively spilled: @

Total records proactively spilled: @

HASH JOIN,GROUP BY,0RDER BY

JobId Maps Feduces MaxMapTime MinHapTIme AwgMapT ime MedianMapTime MawReduceTime
eTime MedianReducetime Alias Feature OQutputs

Job 1458421134661 G864 1 1 13 13 13 13 7 7 7 7
tings GROUP BY,COMBINER

Job 1458421134661 @065 2 1 12 11 12 12 8 B8 B 8
ovies,movies awg rating HASH JOIM

Job 1458421134661 BB66 1 1 5 5 5 5 [[} [&
SAMPLER

job 1458421134661 6067 1 1 5 5 5 5 [6 [[
DRDER BY fuser/cloudera/pigfout,

Inputi{s):

MinReduceTime AvgReduc
avg rating,grp movies,ra
join movies awvg rating.m
movies avg rating sorted

movies avg rating sorted

Figure 5.1. Execution Logs on the Console

5. Verify output.

[cloudera@quickstart ~]$ hdfs dfs -1ls /user/cloudera/pig/out
Found 2 items

—rw-r—--r--— 1 cloudera cloudera 0 2016-01-31 23:40
/user/cloudera/pig/out/ SUCCESS
-YwW-r—--r—- 1 cloudera cloudera 32221 2016-01-31 23:40

/user/cloudera/pig/out/part-r-00000

[cloudera@quickstart ~]$ hdfs dfs -cat /user/cloudera/pig/out/part-r-00000

cloudera@quickstart:~

File Edit View Search Terminal Help

138 Neon Bible, The (1995) 2.5

1773 Tokyo Fist (1995) 2.5 =
1782 Little City (1998) 2.5

2242 Grandview, U.S.A. (1984) 2.5

2200 Under Capricorn (1949) 2.5

3592 Time Masters (Les Ma@itres du Temps) (1982) 2.5

505 North (1994) 2.49

132 Jade (1995) 2.49

3579 I Dreamed of Africa (2000) 2.49

1592 Alr Bud (1997) 2.49
2306 Holy Man (1998) 2.49

2373 Red Sonja (1985) 2.48

3453 Here on Earth (2000) 2.48

19 Ace Ventura 2.48

1887 Almost Heroes (1998) 2.48

2458 Armed and Dangerous (1986) 2.48
1359 Jingle ALl the Way (1996) 2.48
3162 Simpatico (1999) 2.48

415 Another Stakeout (1993) 2.48

2992 Rawhead Rex (1986) 2.48

3004 Bachelor, The (1999) 2.48

447 Favor, The (1994) 2.48

191 Scarlet Letter, The (1995) 2.47
489 Made in America (1993) 2.47

1520 Commandments (1997) 2.47

611 Hellraiser 2.47

3620 8 1/2 Women (1999) 2.47

Figure 5.2. Pig Script Output (Column 1: MovielD, Column 2: Title, Column 3: Average
Rating)

6. DUMP command is useful for debugging. DUMP, unlike STORE, will not store the
results persistently in the file system; rather it will display the results on the screen.
You can create a relation and then ‘DUMP” it to verify the correctness of the result.

For example, DUMP avg rating Will give the result below:

@quickstart:~

Eile Edit Yiew Search Terminal Help
{3431, 2.67)
{3432, 2.26)
(3433, 2.15)
(3434 2 .26)
13435 ,4.42)
(3436, 2.79)
13437,2.8)
{3438, 2.68)
{3439,2.13)
(3448,.1.92)
(3441 ,%.28)
(3442 ¥ 31)
(3443,3.8)
13444,3,23)
13445,3.19)
134496,.3.41)
(3447 .3.72)
{3448 ,3.73)
(3449 . 9T7)
{3458, % 42)
(3451,3.92)
13452,3.14)
(3453,2.48)
(3454, 2.7)
{3456,3.94)
{3457 ,.99)
{3458, %.8)

Figure 5.3. Output of DUMP avg_rating

28

7. DESCRIBE is another useful operator. It is useful to understand the schema of a
relation. For example, DESCRIBE join movie avg ratingWwill display the
schema as:

join movie avg rating: {movie::MovieID: chararray, movie::Title:
chararray, movie::Genres: chararray, avg rating::MovieID: chararray,
avg _rating::Avg Rating: double}

5.3 USING PIG EDITOR IN HUE
Hue [19] provides a user friendly web interface for data analysis using Hadoop. Open
Hue interface (http:/quickstart.cloudera:8888/). If prompted for user/password, enter

cloudera/cloudera.

1. Choose Query Editors -> Pig. ‘Editor’ screen is displayed. Previously created scripts
can be managed from ‘Scripts’ screen. Previously executed jobs can be viewed on
Dashboard screen.

Hue - Pig Editor - Mozilla Firefox

/ & Hue - Pig Editor NG
v @ || Q search *a ¥ & & =

€ quickstart.cloudera:8888/pig/

{“iCloudera #hHue []Hadoopv []HBase~ [Jimpala~ []Spark~ { iSolr [Oozie [iCloudera Manager [|Getting Started

aue 44 Query Editors ¥ Data Browsers ¥ Workflows ¥ Search Security ¥ B File Browser [= Job Browser &fcloudera~ @ B @

Pig Editor Editor Scripts Dashboard

EDITOR
Unsaved script
[Pig
= Properties .
1 ie. A = LOAD '/Juser/cloudera/data‘; .
@ Assist >
Save
on P Function name
ew SCript
RUN » Eval Functions
» Relational Operators
» Submit } Input/Output
» Debug
— » HCatalog
= Logs
! » Math
L7}

Figure 5.4. Pig Editor in Hue

2. Click on New Script on the left panel, create the script and save it by giving a name.

http://quickstart.cloudera:8888/

Hue - Pig Editor - Mozilla Firefox

/ @) Hue - Pig Editor x \

‘(-_.aquickstart.cloudem:8888:‘;:ig.-‘:edite'1l(:(:714 ~ @ || Q Search WA +$ &F 6 =

{ _iCloudera Manager !

[TIcloudera #lyHue [ElHadoopv [EIHBasev [Eilmpalav [Eisparkv [iSolr {iOozie [{"iGetting Started

aue # Query Editors ¥ Data Browsers ¥ Workflows ¥ Search Security ¥ I File Browser = Job Browser @S cloudera~ @ B ®
@ Pig Editor Editor Scripts Dashboard
EDITOR
MovieRating.pig
(& Pig
= Properties) s
p 1 -- Load movies.dat . . . e : >
2 movies = LOAD '/user/cloudera/pig/movies.dat’ USING PigStorage(':') As (M ® Assist L]
B save 4 - Load ratings.dat _) _
5 ratings = LOAD '/user/cloudera/pig/ratings.dat’ USING PigStorage{':') AS (
6 Function name...
& share 7| -- Group by MovielID and comgute average rating per per movie E
@ grp_movies = GROUP ratings by (MovielD);
9 avg_rating = FOREACH grp_movies GENERATE group as MovieID, ROUND(AVG(ratin + Eval Functions
New Script 18
e senp 11 -- Join average ratings and movies based on MovieID to map the movie title * Relational Operators
12 join_movies_avg_rating = JOIN movies by MovieID, avg_rating by MovielD;
RUN 13 --DUMP join_movie_avg rating; * InputiQutput
14 » Debug
15| -- Generate the final output and sort by average rating
» Submit 16 movies_avg_rating = FOREACH join_movies_avg_rating GENERATE $8 as MovielD, + HCatalog
17 ™ » Math
18 [£] m | [>]
= Logs

Figure 5.5. Creating a Pig Script in Hue

3. Execute the script by clicking Submit. The progress bar is displayed showing the
percentage of progress along with the execution logs.

Hue - Pig Editor - Mozilla Firefox

/& Hue - Pig Editor x | 4k
€ | @ quickstart.cloudera:8888/pig/#l0gs/1100715 v @ | Q search wBa 3+ 4 6 =
{“iCloudera #yHue []Hadoopv []HBasev [limpalav []Spark~ [[Solr [iOozie { i Cloudera Manager [| Getting Started
#HUE @& QueryEditors v DataBrowsers ¥ Workflows ¥ Search Security v i File Browser [= Job Browser #£f cloudera v @ F=
@ Pig Editor Editor Scripts Dashboard
) T VIuVIERAUTTY. Py
& Pig
= Properties
Progress: 100% Status: OK
ﬁ Shafe LLny_sur Leu URUER_BT JUSETJCLUUGET df pLYsuUL,
© New Script Tnput(s):
Successfully read 1800209 records (21593884 bytes) from: "/user/cloudera/pig/ratings.dat™
RUN Successfully read 3883 records from: "/user/cloudera/pig/movies.dat"
P Submit Output(s):
Successfully stored 3706 records (123578 bytes) in: "/user/cloudera/pig/out"
= Logs
€8 Copy
Il Dielate

Figure 5.6. Running a Pig Script in Hue

4. To view the output, either click on the output folder link in the log or navigate to the
output folder using File Browser application. File Browser lets you manage the

30

HDFS. By default, the output file is displayed as binary. Click on ‘View as text’
button under ACTIONS and the output is displayed as shown below.

Hue - File Browser - part-r-00000 - File Viewer - Mozilla Firefox

@) Hue - Pig Editor x | @) Hue - File Browser- ... x | <=

(-.r_a,-quickstart.cloudera.8888:“|Iel:|owser.-‘\.-'|ew=.-'L|ser."cl0udera."|:|g.-'out.-';:alt—l-(l(l(lEIE\?mode:VC' Q Search A ¥ F @

{iCloudera #yHue [Hadoop~ [HBasev [JImpalav~ [JSpark~ [iSolr [Oozie [iCloudera Manager [Getting Started

due # Query Editors ¥ Data Browsers ¥ Workflows ¥ Search Security v i File Browser [= Job Browser &f cloudera~ @ B &

B File Browser

ACTIONS) . o .
Home / user/ cloudera/ pig/ out/ part-r-00000 Page 1 of3l | M o« M
M view as binary
Edit file Warning: some binary data has been masked out with &
& Download |
989 Schlafes Bruder (Brother of Sleep) (1995) 5.0 q
B View file 3280 Baby,.The (1973) 5.0 I
lacation 3607 One Little Indian (1973) 5.0
3382 Song of Freedom (1936) 5.8
3656 Lured (1947 5.0
< Refresh ure _(_)
3233 Smashing Time (1967) 5.0
INEO 3881 Bittersweet Motel (2008) 5.8
1830 Follow the Bitch (1998) 5.8
Last modified ;i:z E?te of Hzi\fenly Pi:;i, ;h; (1995) 5.0
Jan. 2, 2016 ysses (Ulisse) (1854) 5. =
. 3245 I Am Cuba (Sov CubasYa Kuba) (1964) 4.8 4
12:46 a.m.

Figure 5.7. Displaying Pig Script Output in Hue

31

CHAPTER 6

DATA ANALYSIS USING APACHE HIVE

Apache Hive is another popular data processing platform built on top of Hadoop. Hive
uses a query language HiveQL, which is very similar to SQL. The queries are converted to a
series of MapReduce jobs.

Users interact with Hive through a command-line interface called Hive shell, which can

be invoked by ‘hive’ command.
% hive

hive>
The user can execute the commands in interactive mode by typing in the commands in the Hive
shell. Commands must be terminated by a semicolon. To run Hive queries in a batch/non-

interactive mode, invoke Hive shell using —e or —f option.
$ hive —-f <file path>

This will execute the queries mentioned in the specified file.
$ hive —-e ‘<query 1; .. query n;>’;

-e option is used to specify the queries inline.

6.1 USING HIVE FOR DATA ANALYSIS
Let us solve the same problem of finding the average movie rating that was discussed in
the earlier chapters.

1. The command below lists all the hive databases. Default database can be referred to
by ‘default’.

hive> SHOW DATABASES;

2. Create a database.

hive> CREATE DATABASE movie analytics;

hive> use movie analytics;

The specified database will be used for all subsequent commands.

32

3. Create ‘movies’ table with three columns MovielD (integer), Title (string) and Genres
(string). ROW FORMAT here says the files in arrow are delimited by the character
‘’. The data will be stored as plain text file. TEXTFILE is the default file storage
format.

hive> CREATE TABLE movies (MovieID INT, Title STRING, Genres STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY UgV¥

STORED AS TEXTFILE;

4. Similarly create a table for ratings.

hive> CREATE TABLE ratings (UserID INT, MovieID STRING, Rating FLOAT, Timestamp
STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY Ugl

STORED AS TEXTFILE;

5. Verify the table columns using DESCRIBE statement

hive> DESCRIBE movies;

hive> DESCRIBE ratings;

6. Now load the data stored earlier on HDFS into these tables. (The data files were
stored on HDFS in the directory /user/cloudera/data/ during the analysis using pig.)

hive> LOAD DATA INPATH '/user/cloudera/data/movies.dat' OVERWRITE INTO TABLE movies;

hive> LOAD DATA INPATH '/user/cloudera/data/ratings.dat' OVERWRITE INTO TABLE ratings;

6.1. Files can be loaded from local filesystem using LOCAL keyword as below:

hive> LOAD DATA LOCAL INPATH '/home/cloudera/Desktop/movies.dat' OVERWRITE INTO TABLE

movies;

6.2. LOAD command puts the specified files in Hive’s warehouse directory which is
set by the hive.metastore.warehouse.dir property which defaults to
/user/hive/warehouse.

To display the property value:

hive > SET hive.metastore.warehouse.dir

movies.dat and ratings.dat are copied to /user/hive/warehouse/movies_analytics.db
directory.

33

6.3. Hive follows ‘schema on read.” During load operation, data is not verified
against the table schema. Data files are simply copied to the Hive directory, which
makes loading data very fast. The schema is verified only during query operations.

6.4. The actual data is thus stored in HDFS. The table metadata is stored in a
relational database. Hive uses an embedded Derby database by default, which runs in
the same process as the main Hive service. It can be configured to use a standalone
database which is JDBC compliant like MySQL for metadata storage.

7. Verify the table content using SELECT statement.

hive> SELECT * from movies;

hive> SELECT * from ratings;

8. Find the average movie ratings from the ratings table and join it with movies table to
map the movie details with average rating. The output is displayed in the ascending
order of average rating.

hive> SELECT a.MovieID , a.Title, b.avg rating from movies a

JOIN (SELECT MovieID , avg(Rating) avg rating FROM ratings GROUP BY MovieID) b
ON (a.MovieID = b.MovielID)

SORT BY avg rating ASC;

cloudera@quicksta
File E View Search Terminal Help

[cloudera@quickstart Desktopl$ hive

Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4].properties
WARNING: Hive CLI is deprecated and migration to Beeline is recommended.
hive> use movie analytics
0K
Time taken: ©.481 seconds
hive> SELECT a.MovieID , a.Title, b.avg rating from movies a
> JOIN (SELECT MovieID , avg(Rating) avg_rating FROM ratings GROUP BY MovieID) b
> ON (a.MovieID = b.MovieID)
> SORT BY avg_rating ASC;
Query ID = cloudera_20166304171717 712f4d55-6906-494d-9bal-dcd9754d7c1e
ITotal jobs = 2
Launching Job 1 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1457132358481 0032, Tracking URL = http://quickstart.cloudera:8688/proxy/application_1457132358481 0032/
Kill Command = /usr/1lib/hadoop/bin/hadoop job -kill job 1457132358481 0032
Hadoop job infermation for Stage-1: number of mappers: 1; number of reducers: 1
2016-83-04 17:18:07,949 Stage-1 map = 0%, reduce = 0%
2016-03-04 17:18:21,269 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.93 sec
2016-83-04 17:18:31,443 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 5.85 sec
MapReduce Total cumulative CPU time: 5 seconds 850 msec
Ended Job = job 1457132358481 0032
Execution log at: /tmp/cloudera/cloudera 20160304171717 712f4d55-6966-494d-9bal-dcd9754d7¢c16.10g
2016-83-04 05:18:38 Starting to launch local task to process map join; maximum memory = 10813645312
2016-83-04 05:18:40 Dump the side-table for tag: ® with group count: 3883 into file: file:/tmp/cloudera/914bBcec-c692-4afb-abed-cdse6c15fec3/hive 2016-83-04 17-17-54 732
| 6730749883231663235-1/-1ocal-100805/HashTable-5tage-3/MapJoin-mapfilede- - .hashtable
2016-03-04 05:18:40 Uploaded 1 File to: file:/tmp/cloudera/9l4becec-c692-4afb-abed-cdse6cl5fec3/hive 2016-03-04 17-17-54 732 6730749883231663235-1/-1ocal-10005/HashTable
-Stage-3/Maploin-mapfile@@--.hashtable (206078 bytes
2016-03-04 05:18:40 End of local task; Time Taken: 2.147 sec
Execution completed successfully
MapredLocal task succeeded
Launching Job 2 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job 1457132358481 0033, Tracking URL = http://quickstart.cloudera:8688/proxy/application 1457132358481 0033/
Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1457132358481_0033
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 1
2016-03-04 17:18:50,933 Stage-3 map = 0%, reduce = 0%

[>]

Figure 6.1. Hive Query Execution

35

cloudera@quickstart:

File Edit View Search Terminal Help

2804 Christmas Story, A (1983) 4.238905325443787

950 Thin Man, The (1934) 4.239726027397261

3468 Hustler, The (1961) 4.24

954 Mr. smith Goes to Washington (1939) 4.240208877284595

1208 Apocalypse Now (1979) 4.243197278911564
678 Some Folks Call It a Sling Blade (1993) 4.245098039215686
1247 Graduate, The (1967) 4.245836637589215

919 Wizard of 0z, The (1939) 4.247962747380675
1299 Killing Fields, The (1984) 4.248633879781421
951 His Girl Friday (1940) 4.2493702770780886

3730 Conversation, The (1974) 4.249448123620309
214 Before the Rain (Pred dozhdet) (1994) 4.25

lee2 Ed's Next Move (1996) 4.25

1117 Eighth Day, The (Le Huiti®me jour) (1996) 4.25
598 Window to Paris (1994) 4.25

1278 Young Frankenstein (1974) 4.250628667225482
969 African Queen, The (1951) 4.251655629139073
1225 Amadeus (1984) 4.2518088972503618

1189 Thin Blue Line, The (1988) 4.25278810408922
1276 Cool Hand Luke (1967) 4.253763440860215

3634 Seven Days in May (1964) 4.254545454545455
608 Fargo (1996) 4.254675686430561

926 ALl About Eve (1950) 4.255583126550868

363 Wonderful, Horrible Life of Leni Riefenstahl, The (Die Macht der Bilder)

1132 Manon of the Spring (Manon des sources) (1986) 4.259090989030909
1272 Patton (1978) 4.266666666666667

1217 Ran (1985) 4.26890756302521

1945 on the waterfront (1954) 4.269749518304431

2203 Shadow of a Doubt (1943) 4.2703862660944205

903 Vertigo (1958) 4.27292817679558

541 Blade Runner (1982) 4.273333333333333

3679 Decline of Western Civilization, The (1981) 4.274193548387097
1213 GoodFellas (1998) 4.275196137598069

296 Pulp Fiction (1994) 4.278212805158913

3469 Inherit the wind (1966) 4.279850746268656

905 It Happened One Night (1934) 4.280748663101604

899 Singin' in the Rain (1952) 4.2836218375499335

3091 Kagemusha (1980) 4.283687943262412

2357 Central Station (Central do Brasil) (1998) 4,283720930232558

1224 Henry V (1989) 4.286384976525822
1172 Cinema Paradiso (1988) 4.287804878048781
2937 Palm Beach Story, The (1942) 4.288461538461538

1254 Treasure of the Sierra Madre, The (1948) 4,289183222958058
1196 Star Wars 4.2929765880628763

930 Notorious (1946) 4.29438202247191

1203 12 Angry Men (1957) 4.295454545454546

953 It's a Wonderful Life (1946) 4.299039780521262

2931 Time of the Gypsies (Dom za vesanje) (1989) 4.3

2839 West Beirut (West Beyrouth) (1998) 4.3

910 Some Like It Hot (1959) 4.300480769230769

898 Philadelphia Story, The (1940) 4.3006872852233675

1260 M (1931) 4.3019480519480515

1233 Boat, The (Das Boot) (1981) 4.302697302697303

1197 princess Bride, The (1987) 4.3037100949094045

2186 Strangers on a Train (1951) 4.304979253112033

2360 Celebration, The (Festen) (1998) 4.3076923076923075
1284 Big Sleep, The (1946) 4.312384473197782

2571 Matrix, The (1999) 4.315830115830116

(1993) 4.258064516129032

B

(]

Figure 6.2. Hive Query Output

36

CHAPTER 7

BIG DATA ANALYTICS ON AMAZON CLOUD

7.1 AMAZON WEB SERVICES

Amazon Web Services (AWS) [20] is a cloud computing platform from Amazon.
Amazon Elastic Compute Cloud (EC2) provides the computing resources. EC2 provides
different instance types with a range of resource combinations to meet different requirements.
You can reserve the resources according to your computing requirements and scale them easily.
The resource costs are per the actual usage, i.e. for the duration when the servers are up and
running. Amazon Elastic MapReduce (EMR) is basically the Hadoop framework running on
cloud. Amazon Simple Storage Service (S3) provides data storage service where bulk input and

output data can be stored.

7.2 CREATE AN EMR CLUSTER
Follow the steps below to create an EMR cluster using AWS console [21].

1. Create an AWS account (http://aws.amazon.com/). Some services are free under the Free

Tier registration and additional services can be used at applicable rates [22].

wee:

Create a Group [JEREPRCEN

Additional Resources

fres0eOm;

Figure 7.1. AWS Console with Available Services

http://aws.amazon.com/

37

(EC2 under Compute, S3 under Storage & Content Delivery, EMR under Analytics)

2. Goto S3 (Scalable Storage in the Cloud) console at https:/console.aws.amazon.com/s3/
and create an S3 Bucket and folders for data and log files.

3. Create an Amazon EC2 key pair which is required to connect to the nodes in the
cluster over Secure Shell (SSH) protocol later.

Go to Amazon EC2 console at https://console.aws.amazon.com/ec2/ and select NETWORK &
SECURITY -> Key Pairs. Create a key pair and download the private key file (.pem
format).

4. Go to Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/ and create
a cluster.

Elastic MapReduce v Create Cluster EMR Help

Go to advanced options

General Configuration

Figure 7.2. Create Cluster - Quick Options

5. Click on Go to advanced options for a detailed view.

6. Go with the default Software Configuration. By default, Hadoop, Pig, Hive and Hue
are selected.

6.1. Steps like Hive program, Pig program, Custom JAR (MapReduce program) etc.
can be specified so that these will be executed once the cluster is up.

6.2. Marking the check box ‘Auto-terminate cluster after the last step is completed’
will create a transient cluster. A transient cluster automatically terminates when all
the steps are executed (even if Termination Protection is turned on in the next screen).
If auto-termination is disabled, it will create a long-running cluster which persists
even after all the steps are executed.

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/elasticmapreduce/

Wl AWS ~ Services ~

Elastic MapReduce v Create Cluster

Create Cluster - Advanced Options e to quick options
| Step 1: Software and Steps. Software Configuration
MapR
o
4 Hve100 Mahout 0.11.0
Hue 371 Spark 160
Presto-Sandbox 0130 Oozie-Sandbox 4 2.0

Add steps (optional) @

Step type [Select a siep
=

EMR Help

Figure 7.3. Create Cluster - Software Configuration

7. By default, a cluster with one master and two slaves with m3.xlarge (vCPU: 4, Mem
(GiB):15) instance type [23] is configured under Hardware Configuration.

Elastic MapReduce v Create Cluster

- Advanced Oplions ot quick options
Step 1: Software and Steps Hardware Configuration ®
| step 2: Haraware It you need more than 20 EC2 instances, complete this form

Network |vpe-gdsbifot (172310

idefault) ¥| Creaeavrc @
EC2 Subnet | subnet 5674330d | Default in us-west Za

Type Mame EC2 Instance type Instance count Request spot Bid price

Master [Mster ratance gop 1] [mixge Ol e
. oy 2]

ask 3 g ')

Add task instance group

EMR Help

Figure 7.4. Create Cluster - Hardware Configuration

8. In General Option screen, select the S3 folder created in step 2 for logging. Bootstrap
Actions can be specified which are setup scripts to be executed before Hadoop starts

on each cluster node.

39

8.1. By default Termination protection is turned on to protect the cluster from
termination by accident. This must be disabled before a cluster has to be terminated.
When a user terminates a running cluster for which the termination protection was
turned on, user will be prompted to turn off the termination protection before the
cluster can be terminated.

v Create Cluster

| Step 3: General Cluster Settings

EMR Help

od
>d Go to quick options

General Options

Cluster name Chustert

Value (optional)

view O

Cancel

Figure 7.5. Create Cluster - General Options

9.

In Security Options screen, choose the EC2 key pair created in step 3.

| Step 4: Security

Elastic MapReduce v

Create Cluster EMR Help

Go to quick options

Security Options
EC2 key pair cpc_kp v o

Previous

Figure 7.6. Create Cluster - Security Options

40

10. Click on Create Cluster. Cluster will be in Starting state while the EC2 instances are
being provisioned.

W AWS - Services ~ Chinnu ~
Elastic MapReduce ~ Cluster List > Cluster Details EMR Help
Add step Clone | Terminate AWS CLIexport

Cluster: Cluster1 starting provisioning Amazon EC2 2y ¢

Connections:
Master public DNS:

Tags: View Al / Ed
Summary Configuration Details Network and Hardware Security and Access

ID: |- 35B7CETZ9PITY Release label Availability zone: Key name: cpc_kp

Creation date: z Hadoop distribution: Subnet ID: subn 300 EC2 Instance profile: EMR_EC:

Elapsed time: 30 seconds Applications: 374 Master: Frov 1 ma xiarge EMR role: EMR_De
Auto-terminate: No Log URI: s3ricpc bucketiiogs! BB Core: Provisioning 2 m3.darge Visible to all users: Al Cl
Termination On Change EMRF'§ consistent Disabled Task: - Sacurity groups for sg-ad
protection view: Master: maste

Security groups for sg-a ElasticMapRedute-siave)
c

Task:

Menitoring

Hardware

Steps

Configurations

Bootstrap Actions

Figure 7.7. Cluster in Starting State

11. If Steps were specified, those will be executed in order. Cluster goes into Running
state while processing the steps. If auto-termination was on, the cluster will be
terminated after the steps are completed, or the cluster will go into Waiting state.

Wl AWS v Services ~

Elastic MapReduce ~ Cluster List » Cluster Detalls EMR Help
Addstep || Resize | Clone | Terminate AWS CLiexpont
Cluster: Cluster1 waiting ciuster reacy atier last step compieted c

Connections:
Master public DNS:

Tags:
Summary Configuration Details Network and Hardware Security and Access
10: 35 Release label: emi-4.3.0 Avallability zone: us-wes Key name: cpc_|
Greation date: 201 -8) Hadoop distribution: Amazon 2.7.1 Subnet ID EG2 instance profile:
Elapsed time: 1 Applications: Hive 100, Pig 0140, Hue 371 Master: Running 1 ma xiarge EMR role:
Auto-teminate: No Log URI: 53 ficpe bucket1ilogs’ B8 Core: Running 2 ma xiarge Visible to 3l users:
Termination On Change EMRFS consistent Disabied Task: Security groups for 53
protection: view Master: ma:
Security groups for sg-ai2baact (ElastichapReduce-siave)
Core & Tazk:
» Monitoring
» Hardware
» Steps
» Configurations
» Bootstrap Actions

Figure 7.8. Cluster in Waiting State

7.3 CONNECT TO THE MASTER NODE

To connect to the master node of the cluster using PUTTY, an SSH client, on Windows:

1. PUTTY needs private key in .ppk format.

41

1.1. Use PuTTYgen to convert the private key .pem file stored earlier to .ppk format.

E PuTTY Key Generator ? >
File Eey Conversiocns Help

ey

Mo key.

Actions

Generate a public/private key pair Generate

Load an existing private key file E Load i

Save the generated key Save public key Save private key

Parameters

Type of key to generate:

() 55H-1 (RS&) (®) S5H-2 RSA () 55H-2 DS54

MNumber of bits in 2 generated key:

Figure 7.9. PuTTYgen

1.2. Select SSH-2 RSA for the type of key to generate. Click on Load and select All

Files (*.*) and select the .pem file. Click OK in the pop up.

B> PUTTY Key Generatc ?

File Key Conversions Help

Key
Public key for pasting into OpenS5H authorized_keys file:

sshsa

AAAABINzAC Tyc 2EALAAD AGABAAABAC DCTVMIEDT2GEKHycale 2 SV WA Bt CF
WmGHGRXSmCKGNGFESUYECpZZHi+ e 1T 9bm YLl 1Rtfe 520/

+0ABC T D DS ¥rr i G EMidu I hioMhnanned 7TRET 8 KL T70Mar3] Tlafl-2 192 59N

EwJbvMztIN PuTTYgen Notice = my71IN

Key fingerprin

Key comment Successfully imported foreign key
(Open55H 55H-2 private key).

]

L

1:8:07

Key passphra To use this key with PuTTY, you need to
Corfim passp use the "Save private key" command to

save it in PuTTY's own format. :I
Actions
Generate a pL ;mte

0] 4 L

Load an existi 1ad
Save the generated key I Save public key N Save private key
Parameters
Type of key to generate:
() 55H-1 (RSA) (@) 55H-2 RSA () 55H-2 DSA
Mumber of bits in @ generated key:

Figure 7.10. Converting Private Key to .ppk Format

1.3. Save the private key in .ppk format by clicking ‘Save private key’.

42

Open PUTTY. For Host Name, enter hadoop@<Public DNS name of Master node>.
Public DNS name of Master node can be obtained by going to the cluster in Amazon

EMR console.

Elastic MapReduce v Cluster List EMR Help

Create cluster

Filter: [Al clusters v 1 cluster (all loaded) c
Name D status Creation time (UTC-8) Elapsed time Normalized

Figure 7.11. Public DNS Name of Cluster Master Node Displayed in EMR Console

3. Select Category -> Connection -> SSH -> Auth and select the .ppk file from step 1 for
‘Private key file for authentication’.

4. To view the web interfaces Hosted on the Master Node (as explained in detail in the
following section), an SSH Tunnel needs to be set up to the Master Node Using
Dynamic Port Forwarding.

4.1. Select Category -> Connection -> SSH ->Tunnels. Enter 8157 (an unused local
port) for ‘Source port’.

4.2. Leave the Destination field blank. Select Dynamic and Auto options. Choose
Add.

ﬁ PuTTY Configuration

Categorny:

- Keyboard
- Bell

- Features
[=- Window

- Appearance
- Behaviour
- Tranglation
- Selection

- Colours

[=- Connection

- Data

Bugs v

=~ Teminal ~

>
Options cortrolling 55H port forwarding
Port forwarding
[] Local ports accept connections from cther hostz
] Remote ports do the same {SSH-2 only)
Forwarded ports: Remove
DB157
Add new forwarded port:
Destination | |
() Local (") Remote (®) Dynamic
(@ Auto () IPwd () IPvE
Qpen Cancel

Figure 7.12. Setting up an SSH Tunnel to the Master Node Using
Dynamic Port Forwarding

5. Click on ’Open’ to connect.

7.4 VIEW WEB INTERFACES HOSTED ON THE MASTER

Web connection needs to be enabled in order to view the web interfaces for Hue,

NODE

44

Resource Manager, etc. hosted on the master node. Enable Web Connection link is displayed on

the cluster creation page with instructions on how to set up the web connection.

@ Feedback Q English

45

Elastic MapReduce v Cluster List > Cluster Details

Addstep Resize Clone Terminate AWS CLI export

Cluster: Cluster1 Waiting custer reaay anter ias

Connections:
Master public DNS:

Tags:
Summary Configuration Details
Release label: enf
Creation dat (uTC-8) Hadoop distribution: An
Applications: Hi
Aut Log URI: 3
EMRFS consistent D
view.
» Monitoring
» Hardware
» Steps
» Configurations
» Bootstrap Actions

Enable Web Connection

Setup Web Connection

Step 1: Open an SSH Tunnel to the Amazon EMR Master Node - Leam

Step 2: Configure a proxy management tool - Learm m

Close

X
EMR Help

c

Figure 7.13. Instructions to Setup

Web Connection

1. Setup an SSH Tunnel to the Master Node Using Dynamic Port Forwarding by

performing step 1 - 4 above for connecting to the Master using PUTTY.

2. Configure Proxy Settings in the browser.
To configure FoxyProxy for Chrome:

e Download and install FoxyProxy Standard from http://getfoxyproxy.org/downloads.html

Chrome

e Restart Chrome

e Create foxyproxy-settings.xml file containing the following:

46

<?xml version="1.0" encoding="UTF-8"?>
<foxyproxy>
<proxies>
<proxy name="emr-socks-proxy" id="2322596116" notes=""
fromSubscription="false" enabled="true" mode="manual" selectedTabIndex="2"
lastresort="false" animatedIcons="true" includeInCycle="true"
color="#0055E5" proxyDNS="true" nolInternalIPs="false" autoconfMode="pac"
clearCacheBeforeUse="false" disableCache="false"
clearCookiesBeforeUse="false" rejectCookies="false">
<matches>
<match enabled="true" name="*ec2*.amazonaws.com*"
pattern="*ec2*.amazonaws.com*" isRegEx="false" isBlackList="false"
isMultiLine="false" caseSensitive="false" fromSubscription="false" />
<match enabled="true" name="*ec2*.compute*"
pattern="*ec2*.compute*" isRegEx="false" isBlackList="false"
isMultilLine="false" caseSensitive="false" fromSubscription="false" />
<match enabled="true" name="10.*" pattern="http://10.*"
isRegEx="false" isBlackList="false" isMultilLine="false"
caseSensitive="false" fromSubscription="false" />
<match enabled="true" name="*10*.amazonaws.com*"
pattern="*10*.amazonaws.com*" isRegEx="false" isBlackList="false"
isMultilLine="false" caseSensitive="false" fromSubscription="false" />
<match enabled="true" name="*10*.compute*"
pattern="*10*.compute*" isRegEx="false" isBlackList="false"
isMultiLine="false" caseSensitive="false" fromSubscription="false"/>
<match enabled="true" name="*.compute.internal*"
pattern="*.compute.internal*" isRegEx="false" isBlackList="false"
isMultiLine="false" caseSensitive="false" fromSubscription="false"/>
<match enabled="true" name="*.ec2.internal* "
pattern="*.ec2.internal*" isRegEx="false" isBlackList="false"
isMultilLine="false" caseSensitive="false" fromSubscription="false"/>
</matches>
<manualconf host="localhost" port="8157" socksversion="5"
isSocks="true" username="" password="" domain="" />
</proxy>
</proxies>
</foxyproxy>

e Open Chrome and click on Firefox icon on the toolbar and choose Options.

e Select Import/Export. Click Choose File, select foxyproxy-settings.xml, and click
Open. In the Import FoxyProxy Settings dialog, click Add.

e For Proxy mode, choose Use proxies based on their pre-defined patterns and
priorities.

¢ Now that the web connection set up is done, on the Cluster Details screen, active
links for the web interfaces hosted on the cluster will be displayed (Click on the
cluster name in the cluster list in EMR to go to the Cluster Details screen.)

W@ AWS v Services v E

Elastic MapReduce ~ Cluster List > Cluster Detalls EMR Help
Add step Resize Clone Terminat te AWS CLI export
Cluster: Cluster! waiting ter I smpleted e

[connections:
Master public DNS:

T (view an x

Tags:
Summary " {urity and Access
o Web Interfaces Hosted on this Cluster I «
: |35BTCE ey name.
Creation date: 2 k. fc2 instance profi Role
Elapsed time: EMR r

Auto-terminate: No Visible to ail users: All

Termination On Change Security groups for
protection: Master:
Security groups for slav
ore & Task:
Monitering
Hardware

Configurations

v
»
» Steps
»
v

Bootstrap Actions

Figure 7.14. Web Links for the Web Interfaces Hosted on the Cluster

7.5 SUBMIT A JOB TO THE CLUSTER
To submit a job to a running cluster:

1. Upload the jar file and input file to S3.

-

[T | AWS -~ Services -

(I.ILELM Create Folder ~ Actions v

All Buckets | cpc.bucket1 / jar
Name

D movierating.jar

Figure 7.15. Upload MapReduce Program Jar File to S3

—

| T AWS ~ Services v Edit v

({WLEL I | Create Folder | Actions v

All Buckets [cpc.bucket1 / in

Name

D ratings.dat

Figure 7.16. Upload Input File to S3

48

2. Go to the cluster in the Cluster List in Elastic MapReduce console and click on Add
Step.

Elastic MapReduce v Cluster List EMR Help

[createcusier RS

Filter: [Al clusters [Fitter clusters 1 cluster (all oaded) e

Name) Status. Creation time (UTC-8) o Elapsed time Normalized
instance hours

v @ Custert J-35B7CETZOPIT1 ‘C"f:i:‘g’:?‘ 2016-02-12 09.54 (UTC-8) 15 minutes 24

ady

o D e Lot o
Waster pubkc Name Status Start time (UTC8) Elapsed time Name

Termination Setup hadoop debugaing Completed 201602121004 (UTC-8) 3 seconds.

Tags: — View Ail/Edit No bootstrap actions available

Task: —

View cluster details View monitoring details

Figure 7.17. Add Step to a Running Cluster

3. Provide the jar location in S3 and input and output path as arguments. Make sure
output path given does not exist already. If the class of the application entry point was
not specified while exporting the jar (This can be verified by checking if Main-Class
was specified in the jar’s manifest file), specify the main class as the first argument.

Step type | Custom JAR
Name™ MovieRating

JAR location” 's3/lcpe bucket jarimovierating jar

Arguments |z3://cpc buckati/in
53://5p5.bucketd/out

Figure 7.18. Add Step to Execute a Custom Jar File

4. The step will be in Pending state initially. It will then move to Running state and
finally to Completed state when the execution is complete. If the step execution fails,
it will move to Failed state. Output folder is created and the output can be verified
from the S3 console. Logs are generated in the configured S3 logs location and it can
be used for debugging failed steps.

49

-

.' AWS ~ Services v Edit Chinnu v Global v Support ~
m Create Folder = Actions v Q None Properties Transfers <
All Buckets / cpc.bucket1 / out

Name Storage Class Size Last Modified

D _SUCCESS Standard 0 bytes FriFeb 12 11:45:20 GMT-800 2016

D part-r-00000 Standard 45KB Fri Feb 12 11:45:16 GMT-800 2016

[part-rooo01 Standard 44KB Fri Feb 12 11:45:14 GMT-200 2016

D part-r-00002 Standard 4.5KB FriFeb 12 11:45:18 GMT-800 2016

D part-r-00003 Standard 4.4 KB Fri Feb 12 11:45:15 GMT-800 2016

D part-r-00004 Standard 45KB Fri Feb 12 11:45:19 GMT-800 2016

D part-r-00005 Standard 4.4 KB Fri Feb 12 11:45:16 GMT-800 2016

D part--00008 Standard 4.4 KB FriFeb 12 11:45:20 GMT-800 2016

Figure 7.19. Output Folder in S3

7.6 USING HUE ON AMAZON EMR
Go to Hue at http://<public DNS Name of Master>:8888 or by clicking the link for Hue
on the Cluster Details screen (Figure 7.14). Give username as hadoop and create a password.
Note: Username other than hadoop can also be used. Since the SSH connections uses hadoop

user, it is safe to use the same user in hue to avoid file ownership issues.

“a

Create your Hue account

Figure 7.20. Hue Login Screen

Using Pig Editor in Hue was already explained in chapter 6. In this section, using Hive
Editor in Hue to run the Hive queries and using Hue’s Metastore Manager to manage Hive

metastore are discussed.

50

7.6.1 Using Hive Editor in Hue
1. Copy input files to the master node using WinSCP

1.1 Give public DNS name of the master node in Host name and Hadoop as user
name. Click on Advanced and under SSH -> Authentication.

B WinSCP Login

G Mew Site

Tools

bt Manage *

Session
File protocol:
SFTP b

Host name: Port number:

|Eu:2-52-36-2|2|1-126.us-'.r-.'est-2.|:|:|mpute.amazu:un| | 22 = |

User name: Password:
|ha|:||:u:||:- | | |

Save - Advanced... |"IIr

Figure 7.21. Using WinSCP to Copy Files to Master Node

1.2 Select .ppk generated earlier in the private key file and click Ok. Click on
Login.

Advanced Site Settings ? bt

Environment []Bypass authentication entirely (55H-2)

- Directaories o]

- Recyde bin Authentication options

- SFTP Attempt authentication using Pageant

+ Shel [] attempt TIS or CryptoCard authentication (S5H-1)
Connection

- Proxy Attempt 'keyboard-interactive’ authentication (S5H-2)

-~ Tunnel Respond with password to the first prompt
55H

- Key exchange Authentication parameters

- Authentication i

- Bugs [] Allow agent forwarding

Private key file:

|,"3: WWsersichinnupadman'Desktop\Thesis\cpc_kp. ppk

GS5API
[] attempt GSSAPI authentication (S5H-2)

Allow GSSAPI credential delegation

Color - Cancel Help

Figure 7.22. Provide Private Key File for Authentication

1.3 Copy movies.dat and ratings.dat to /home/Hadoop directory.
2. Connect to the master node via PuTTy (section 7.3) and copy these files to HDFS.

52

[hadoopRip-172-31-17-242 ~]$ pwd

/home /hadoop

[hadoop@ip-172-31-17-242 ~]$ 11

total 21248

-rw-rw-r-- 1 hadoop hadoop 163542 Feb 13 07:43 movies.dat
-rw-rw-r-- 1 hadoop hadoop 21593504 Feb 13 07:43 ratings.dat
[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -mkdir /user/hadoop/data

[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -copyFromLocal movies.dat
/user/hadoop/data

[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -copyFromLocal ratings.dat
/user/hadoop/data

[hadoop@ip-172-31-17-242 ~]$ hdfs dfs -1s ratings.dat /user/hadoop/data
ls: "ratings.dat': No such file or directory

Found 2 items

—rw-r--r--— 1 hadoop hadoop 163542 2016-02-13 07:50
/user/hadoop/data/movies.dat
—rw-r--r--— 1 hadoop hadoop 21593504 2016-02-13 07:50

/user/hadoop/data/ratings.dat

3. Hive metastore can be managed by MetaStore Manager in Hue. Go to MetaStore
Manager. Click on Databases link and select Create a new database named
movie_analytics. Give a database name and by default it gets stored in
/user/hive/warehouse/database_name or another location in HDFS can be specified.

aue # Query Editors v Metastore Manager ~ Workflows v [File Browser Job Browser o hadoop v (e

EH Metastore Manager

Databases

© Create a new database -

Database Name

default

Figure 7.23. Create Database Using Metastore Manager

4. Select the created database and create tables. A table can be created either from a file
or manually. Select the option to create a new table from a file.

aue # Query Editors v Metastore Manager ~ Workflows v [File Browser Job Browser ©f hadoop v e K

EH Metastore Manager

Databases movie analytics

= View != Browse Data & Drop

Table Name
% Create a new table from a file
No data available

Create a new table manually

Figure 7.24. Create Tables Using Metastore Manager

4.1. Give table name ‘movies’ and input file path on
HDFS(/user/hadoop/data/movies.dat) from where the table definition is to be used
and data is to be imported. Keep the checkbox for ‘Import data from file’ checked.
Note the warning that the selected file is going to be moved during the import.

#hUe @ QueryEditors v Metastore Manager Workflows v W File Browser B Job Browser ©fchinnuv @ B &

DATABASE

Databases movie analytics Create a new table from a file

Step 1: Choose File Step 2: Choose Delimiter Step 3: Define Columns

Create ew table fi file .
@1 Create anew fable from 2 fle Name Your Table and Choose A File
Create a new table manually

Table Name movies

Name of the new table. Table names must be globally unique. Table names tend to comespond to the directory where the data will
be stored

Description

Use a table comment to describe the table. For example, note the data’s provenance and any caveats users need to know

Input File fuser/hadoop/data/movies_dat

The HDFS path to the file on which to base this new table definition. It can be compressed (gzip) or not

Import data from file [«

Check this box to import the data in this file after creating the table definition. Leave it unchecked to define an empty table.

here

Figure 7.25. Create a New Table From a File - Choose File

4.2. Tables can be imported from HDFS to a database stored in HDFS. For example,
the database movie_analytics megastore exists in HDFS (in /user/hive/warehouse/
movie_analytics.db). The procedure is different to import a table from Amazon S3
[24].

4.3. Specify the delimiter as “:” and the table data can be previewed to verify the
correctness.

54

due # Query Editors v Metastore Manager ~ Workflows v B File Browser Job Browser ©fhadoopv @ KW ®
A Metastore Manager
DATABASE Databases > movie_analytics > Create a new table from a file
movie_analytics v i
Step 1: Choose File Step 2: Choose Delimiter Step 3: Define Columns
ACTIONS
Creats w table i il .
P Create 2 new e flom 2 e Choose a Delimiter
Create a new table manually
Delimiter Other. v
Enter the column delimiter which must be a single character. Use syntax like "\001" or "\t" for special characters
Table preview col_1 col_2 col_3
1 Toy Story (1995) Animation|Children’s|Come:
2 Jumaniji (1995) Adventure|Children's|Fant
3 Grumpier Old Men (1995) Comedy|Romance
4 Waiting to Exhale (1995) Comedy|Drama
5 Father of the Bride Part Comedy
6 Heat (1995) Action|CrimelThriller
7 Sabrina (1995) Comedy|Romance
8 Tom and Huck (1995) Adventure|Children’s
Figure 7.26. Create a New Table From a File - Choose Delimiter
4.4. Specify column names and column type.
adue # Query Editors v Metastore Manager ~ Workflows v B File Browser =Job Browser & hadoop v e KB @

fH Metastore Manager

DATABASE

Databases movie analytics Create a new table from a file
movie_analytics v
Step 1: Choose File Step 2: Choose Delimiter Step 3: Define Columns
ACTIONS

) Create a new table from a file

Define your columns
Create a new table manually

Use first row as column names Bulk edit column names @

Column name

MovielD

Title

Genres

Column Type Sample Row #1 Sample Row 12
tinyint 1 2
string vy Toy Story (1995) Jumaniji (1995)
string v Animation|Children’s|Come... Adventure|Children's|Fant...

Previous NecHCRELL]

Figure 7.27. Create a New Table From a File - Define Columns

4.5. Click create table. Table gets created and data is imported.
Select the table movies under the database movie_analytics. The schema can be verified
under the Columns tab. Verify if the data is imported successfully by checking Sample tab which

displays sample rows of the table.

55

4.6. Similarly, create table ‘ratings’ from the file on HDFS
/user/hadoop/data/ratings.dat.

due # Query Editors v Metastore Manager ~ Workflows v R File Browser = Job Browser

B8 Metastore Manager

ACTIONS Databases > movie_analytics > ratings
@ Import Data
Columns Sample Properties
i= Browse Data
Name Type Comment
D Table

1 Drop Table 0 userid bigint
7 View File Location 1 movieid smallint

2 rating tinyint

3 timestamp int

Figure 7.28. 'ratings' Table Created

5. To run the Hive queries, go to Hive Editor by selecting Query Editors -> Hive.
‘Editor’ screen is displayed.

6. Select the database from the DATABSE drop down. (Click the refresh button if the
newly created database is not listed.)

7. In the editor, enter single or multiple queries and click Execute.

For example, type in “select * from movies”. The result is displayed under Results tab.

ahue # Query Editors v Metastore Manager Workflows W File Browser = Job Browser ©f hadoop v e = @

¢ Hive Editor Query Editor My Queries Saved Queries History

Assist Settings

=]

DATABASE ce

Save as... Explain orcreatea New query
EE movies E
E= ratings

B B "
Recent queries Query Log Columns Results Chart

A movies.movieid movies.title movies.genres

0 1 Toy Story (1995) Animation|Children's|Comedy

1 2 Jumaniji (1995) Adventure|Children’s|Fantasy

2 3 Grumpier Old Men (1995) Comedy|Romance

3 4 Waiting to Exhale (1995) Comedy|Drama

4 5 Father of the Bride Part Il (1995) Comedy

5 6 Heat (1995) Action|Crimel[Thriller

6 7 Sabrina (1995) Comedy|Romance

Figure 7.29. Executing a Hive Query

56

8. Queries can be saved and later accessed from ‘Saved Queries’ tab. ‘My Queries’ tab
will show recent saved and run queries.

9. Execute below query to calculate the average movie rating:

SELECT a.MovieID , a.Title, b.avg rating from movies a
JOIN (SELECT MovieID , avg(Rating) avg rating FROM ratings GROUP BY MovieID)
ON (a.MovieID = b.MovielID)

10. The result can be exported to xls/csv or saved to HDFS or a new hive table. Logs can
be viewed from Logs tab. The results can be viewed in different chart formats (Bars,
Lines, Pie, and Map) in the Chart tab.

due # Query Editors v Metastore Manager Workflows + B File Browser = Job Browser # hadoop v e = @

o+ Hive Editor ~Query Editor Iy Queries ~ Saved Queries History
Assist Settings)
1 SELECT a.MovielD , a.Title, b.avg_rating from movies a
DATABASE ~e JOIN T v‘ﬂn:is.ll[iu;i:\:/g(;ating) avg_rating FROM ratings GROUP BY MovieID) b
movie_analytics
Save as... Explain orcreatea = New query
B movies =
ES ratings = -
Recent queries Query Log Columns Results Chart
A a.movieid atitle b.avg_rating
0 1 Toy Story (1995) 4.1468464130958109
1 2 Jumanji (1995) 3.2011412268188302
2 3 Grumpier Old Men (1995) 3.01673640167364
3 4 Waiting to Exhale (1995) 2.7294117647058824
4 5 Father of the Bride Part Il (1995) 3.0067567567567566
5 6 Heat (1995) 3.8787234042553194
6 7 Sabrina (1995) 3.410480349344978
7 8 Tom and Huck (1995) 3.0147058823529411

Figure 7.30. Hive Query and Result to Calculate Average Movie Rating

S7

CHAPTER 8

SUMMARY AND FUTURE WORK

We live in a data flooded age. More organizations are becoming aware of the need to
analyze their data to get insights, increase efficiency, derive competitive advantage and create
new business dimensions. As the need to create value from large volumes of data increases, so
do the technologies to store and process such data. There is an increased demand in the market
for efficient and cost effective big data technologies as more industries seek these for their data
analytical needs.

Apache Hadoop is a popular open source big data framework for distributed data storage
and processing. We saw how HDFS and MapReduce, the two core components of Hadoop,
enable data storage and data processing of big data. There are a number of supporting tools built
around Hadoop’s core components, which together form the ‘Hadoop Ecosystem’ and aid in data
analysis, data transfer, scheduling, monitoring, performance and visualization. We saw how Pig
and Hive, two data analytical platforms built around Hadoop, enable big data analysis. The main
advantage of Pig and Hive is that they abstract data processing from the underlying MapReduce.
Writing multi stage map and reduce functions to perform complex data processing tasks in
MapReduce can be difficult and time consuming. High-level frameworks like Pig and Hive
provide ease of programming with their powerful abstracted built-in capabilities. For example,
we saw the ease of using the join operation in Pig and Hive to join data from two data sets.
Writing MapReduce code to perform join operations would be more challenging and time
consuming. Pig and Hive also provide capabilities to integrate user defined functions for specific
processing needs.

Since both Pig and Hive aid in analysis of large volumes of data, these are often
compared against each other to see which is best in specific scenarios. Pig is suitable for data
preparation needs like ETL (Extract Transform Load) tasks, whereas Hive is widely used for
data warehousing/analysis needs [25]. Pig is comparatively more efficient than Hive for complex
queries with lots of joins and filters. Another difference is the type of data that these tools can
process efficiently. Hive is efficient for structured data, whereas Pig handles both structured and

unstructured data efficiently. Hive is easy to use for developers who are already familiar with

58

SQL queries since HiveQL, Hive’s query language, is very SQL-like. Users who are new to Pig
Latin, the data-flow language used by Pig, would need to be familiarized with the language
initially.

There are other Hadoop related projects such as Apache Spark, Apache HBase, Apache
Sqoop, Apache Flume, Apache Zookeeper and Apache Oozie. Spark is a distributed computing
engine for fast large-scale data processing. Instead of the MapReduce execution engine, it uses
its own runtime engine. Spark runs programs up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk [26], which makes it suitable for low-latency applications. In
MapReduce, data is always loaded from disk, whereas Spark uses in-memory caching to store
datasets in memory in between jobs. This makes Spark more efficient for iterative tasks where
the operations need to be repeated on a data set. HBase is a distributed, non-relational database
built on top of HDFS to provide random, real-time read/write access to big data [27]. It was
inspired from Google's BigTable [28]. Sqoop is a tool used for transferring data between Hadoop
and relational databases [29]. Flume is used as a log aggregator for collecting large log data from
multiple sources and moving to a centralized location [30]. Zookeeper provides centralized
coordination services for managing and monitoring large distributed systems [31]. Oozie is a
workflow scheduler system to manage Hadoop jobs [32]. It would be interesting to explore the
features and use cases of these supporting big data tools to see how these technologies fit

together to form the larger ecosystem for efficient storage, processing, and analysis of big data.

[1]
[2]
[3]

[4]

[5]
[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

59

REFERENCES

M. CAFARELLA AND D. CUTTING, Building nutch: Open source search, ACM Queue, 2
(2004), pp. 1-7.

S. GHEMAWAT, H. GOBIOFF, AND S.-T. LEUNG, The Google file system, Symposium on
Operating Systems Principles, New York, 2003, Association for Computing Machinery.

J. DEAN AND S. GHEMAWAT, MapReduce: Simplified data processing on large clusters, 6th
Symposium on Operating Systems Design & Implementation, San Francisco, California,
2004, USENIX.

HADOOP ILLUMINATED, Chapter 10. Hadoop Use Cases and Case Studies. Hadoop
[lluminated, http://hadoopilluminated.com/hadoop_illuminated/Hadoop_Use Cases.html,
accessed March 2016, n.d.

APACHE HADOOP, Powered By. Hadoop Wiki, http://wiki.apache.org/hadoop/PoweredBy,
accessed March 2016, n.d.

APACHE HADOOP, HDFS architecture. The Apache Software Foundation, http://hadoop.
apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, accessed
March 2016, n.d.

R. CHANSLER, H. KUANG, S. RADIA, K. SHVACHKO, AND S. SRINIVAS, The Hadoop
distributed file system. The Architecture of Open Source Applications,
http://www.aosabook.org/en/hdfs.html, accessed March 2016, n.d.

T. WHITE, Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol, California,
2015.

APACHE HADOOP, MapReduce tutorial. The Apache Software Foundation, http://hadoop.
apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html, accessed March 2016, n.d.

APACHE HADOOP, Apache Hadoop YARN. The Apache Software Foundation,
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Y ARN.html,
accessed March 2016, n.d.

S. BARDHAN AND D. A. MENASCE, The Anatomy of MapReduce Jobs, Scheduling, and
Performance Challenges, Conf. of the Computer Measurement Group, San Diego,
California, November 2013.

APACHE HADOOP, Products that include Apache Hadoop or derivative works and
commercial support. Hadoop Wiki, https://wiki.apache.org/hadoop/Distributions
%20and%20Commercial%20Support, accessed March 2016, n.d.

CLOUDERA’S HADOOP DISTRIBUTION, Apache Hadoop. Cloudera, https://www.cloudera.
com/products/apache-hadoop.html, accessed March 2016, n.d.

http://wiki.apache.org/hadoop/PoweredBy

[14]

[15]

[16]

[17]
[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

60

VMWARE, Download VMware player. My VMware, https://my.vmware.com/web
Ivmware/free#tdesktop_end_user_computing/vmware_player/6_O|PLAYER-607, accessed
March 2016, n.d.

CLOUDERA, QuickStart downloads for CDH 5.5. Cloudera, http://www.cloudera.com
/content/www/en-us/downloads/quickstart_vms/5-5.html, accessed March 2016, n.d.

Haboopr, HDFS shell commands. The Apache Software Foundation, http://hadoop.
apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html,
accessed March 2016, n.d.

GROUPLENS, MovieLens 1M dataset. Grouplens, http://grouplens.org/datasets
/movielens/1m/, accessed March 2016, n.d.

APACHE, Welcome to Apache Pig. Apache, http://pig.apache.org/, accessed March 2016,
n.d.

HUE, Let’s big data. Hue, http://gethue.com/, accessed March 2016, n.d.

AMAZON, AWS documentation. Amazon, http://aws.amazon.com/documentation/, accessed
March 2016, n.d.

AMAZON, What is Amazon EMR?. Amazon, http://docs.aws.amazon.com/
ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html, accessed March 2016,
n.d.

AMAZON, Amazon EC2 pricing. Amazon, https://aws.amazon.com/ec2/pricing/, accessed
March 2016, n.d.

AMAZON, Amazon EC2 instance types. Amazon, https://aws.amazon.com/ec2/instance-
types/, accessed March 2016, n.d.

AMAZON, Amazon EMR, Metastore manager restrictions. Amazon, http://docs.aws.
amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hue-s3-metastore.html,
accessed March 2016, n.d.

ALAN GATES, Pig and Hive at Yahoo!. Yahoo, https://developer.yahoo.com/blogs/
hadoop/pig-hive-yahoo-464.html, accessed March 2016, n.d.

APACHE SPARK, Apache Spark is a fast and general engine for large-scale data processing.
Apache, http://spark.apache.org/, accessed March 2016, n.d.

APACHE HBASE, Welcome to Apache HBase. Apache, http://hbase.apache.org/, accessed
March 2016, n.d.

F. CHANG, J. DEAN, S. GHEMAWAT, W. C. HsIEH, D. A. WALLACH, M. BURROWS, T.
CHANDRA, A. FIKES, AND R. E. GRUBER, Bigtable: A distributed storage system for
structured data, ACM Trans. on Com. Sys., 26 (2006), pp. 1-26.

APACHE, Apache Sqoop. The Apache Software Foundation, http://sqoop.apache.org/,
accessed March 2016, n.d.

APACHE FLUME, Welcome to Apache Flume. Apache Flume, http://flume.apache.org/,
accessed March 2016, n.d.

[31] APACHE ZOOKEPPER, Welcome to Apache ZooKeeper. Apache ZooKeeper,
http://zookeeper.apache.org/, accessed March 2016, n.d.

[32] ApAcHE Oozik, Apache Oozie workflow scheduler for Hadoop. Apache Oozie,
http://oozie.apache.org/, accessed March 2016, n.d.

61

