Formulas/Rules/Proofs for SDSU Math 245 Discrete Math 1

EQUIVALENCES (can be used in either
direction, and it is legal to make substitu-
tions even in part of an expression)
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RULES FOR FORMAL PROOFS
RULE P: Any premise (a given hypothe-
sis) can be used as a line in your proof.
RULE T: The righthand side of an impli-
cation (I1-I1) can become a line in your
proof as long as each of the hypotheses on
the left have occurred earlier in your proof.
Either side of an equivalence (E;-F33) can
likewise be inferred from the other side;
furthermore, it’s legal to use an E-rule sub-
stitution on just part of an expression.
RULE CP: If your conclusion (or subgoal)
is of the form A — B, then you may as-
sume A as an additional hypothesis, and
your new goal is to merely prove B.

There are many ways to prove any the-
orem. Try Sample Proof #1 yourself (see
the next column) but instead put Hs on
line 4, and look for yet another opportu-
nity to use Rule I3 . Then try Sample
Proof #2 without using CP (use Eig).

IMPLICATIONS (if ALL the hypotheses
are known to be true, then the conclusion
follows; but you CANNOT make substitu-
tions for only a part of an earlier line)

Li: pANg=1p

Iy pANg=4q

I3 p=pVyg

Ii: g=pVyg

Is: ~p=p—yq

Is: g=p—yq

It ~(p—>q)=p

Is: ~(p—q) = ~q

Iy p,g=pNgq

:pVg, ~p=gq

P, p—=>4g=>4g

1N, P g = D
Lisy:p—>qg,qg—or= p—r
Lyp—>r,qgq—=>r,pVg=r

SAMPLE Formal Proof #1:

Derive the conclusion RV S from the fol-
lowing four premises:

Hiq: (C V D) — ~H

Hy: ~H — (AN ~B)

Hs: (AN ~B)—= (R V S)

Hy: CVD

Proof:

1. (CvD)— ~H P (premise, Rule P)
2.~H—- (AN ~B) P
3.(CvD)— (AN ~B) I131,2 (Rule T)
4. (Cv D) P

5. AAN~B I; 4,3

6. (AN~B)—>(RV S)P

7. RVS I; 5,6

SAMPLE Formal Proof #2 (Rule CP):
Derive the conclusion R — S from the
premises Hy: (~RV M) and Hy: M — S

1.R Assumed Premise
2. ~NR VM P

3. ~~R E1 onl

4. M Il() on 3,2
5 M — S P

6. S IH on 4,5
7. R—S CP on 1,6

The CP “trick” works because showing
(~RVM)ANM - S)=(R—S)

is logically equivalent to showing
((~RVMYAN(M — S)YAR)=S



We will mostly practice working with
symbols, but of course this is not very use-
ful unless it can be applied to solve real-
world problems (“word problems”). Here
is an example:

SAMPLE #3 (word problem): If A works
hard, then either B or C will have fun. If
B has fun, then A will not work hard. If
D has fun, then C will not.

From these three given facts, we can de-
duce that: If A works hard, then D will
not have fun.

To turn this word problem into symbols
(so we don’t have big long sentences in ev-
ery step), let us define:

a: A works hard

b: B has fun

c: C has fun

d: D has fun

Our hypotheses are then shortened to:
Hi: a— (bVe)

Hsy: b— ~a

Hs: d - ~c

Our conclusion (goal) is a — ~d.

Try to prove this formally; note that
since the conclusion is an “if-then”, this is
an opportunity to use rule CP. Rule CP
(when applicable) tends to make proofs
easier, since you get an extra hypothesis
to work with “for free”.

An indirect proof, or proof by contra-
diction, also gives you an extra hypothesis,
and is a method that can always be used
(so if you get stuck doing a proof the “reg-
ular” way, you can always shift gears and
finish it off as a proof by contradiction).
The idea is to argue that if all the hypothe-
ses are true, there is no way for the con-
clusion to fail to be true as well. That is,
our “trick” will be to assume the negation
of the conclusion as an additional hypoth-
esis, and then show that this leads to a
contradiction. Any contradiction you can
find will do; that is, anything of the form
m A ~ m completes the proof. For exam-
ple, (h = n)A ~ (h — n) would work.
SAMPLE #4 (proof by contradiction):

Show that the conclusion ~(p A q) fol-
lows from the hypothesis ~gA ~p. We
have one hypothesis to work with, but we
can gain another one by using an indirect
proof. Note that the premise on line 1 is
the negation of the conclusion.

1. ~~(pAq) P (Assumed Premise)
2. ~qA~p P

3. (p A Q) E1 onl

4. b Il on 3

3. ~p I on 2

6. pA~p Iyon 4 and 5

We have our contradiction, and this com-
pletes the proof. Note that as soon as we
wrote down the new assumed premise, our
goal changed; we are no longer trying to
get the conclusion on a line by itself, we
are instead seeking a (any!) contradiction.

You can cook up instances where the set
of hypotheses themselves lead to a con-
tradiction, irrespective of what the con-
clusion of the theorem is. Such a set of
premises are said to be inconsistent; in
every universe, no matter what truth val-
ues you assign to the variables, there is
no way for all the premises to be true at
the same time. Theorems with inconsis-
tent hypotheses are uninteresting, because
those theorems will never apply to any sit-
uation in any universe, ever.

SAMPLE #5 (inconsistent hypotheses).
Hy: If Jack misses many classes, he fails.
Hjy: If Jack fails, then he is uneducated.
Hj: If Jack reads a lot of books, then he
is not uneducated.

H,: Jack misses many classes, and reads
a lot of books.

We can use the following definitions to
shorten these statements:

m: Jack misses many classes

f: Jack fails.

r: Jack reads a lot of books.

u: Jack is uneducated.

The hypotheses then become:

H:m—f Hy: f—u
Hsz: r — ~u Hy: mAr
Try deriving a contradiction from these.
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EXERCISES jc-A

1. Formally prove that the conclusion (on
the right) follows from the list of [comma-
separated| hypotheses (to the left of “=7).
a) ~(aA ~b), ~bVd, ~d= ~aqa

b) ~j = (mVn), h— ~j, h=mVn
c)g— h,h—>~iji,gV(iAs)=(sAj)
d) p— q,(~gVr)A~r ~(~p A s) = ~s
e) (kAm) = n,~nVs,~s= ~kV~m
f) (a—=b)A(a—e),~0bAe),dVa=d
g)bAc, (b<>c)— (hVg)= (gVh)
h)y(p—q) =7 pAn, gAt =T

2. Derive the following, using Rule CP.
(a) ~aVb, ~bVd, d—e=a—e

(b)j, j—=(k—=>(mAn)=k—n
(c)g—>h=g—(gAh)
(
(

(
(
(
(
(
(
(
(

d) (uVv) > w=(uAv) 5> w

e) p = (¢—=7),q = (r—s) = p — (¢—s)
For (e), a subgoal will be (¢g—s), which
means you can use CP a second time, and
get yet another “extra” premise (q).

3. Show that the following sets of premises
are inconsistent.

(@)p—q,p—>r, qg—~rp
(bya—(b—c), d— (bA~c), aNd
Hence, prove that
p—q, p—>r, qg— ~r, p=m,and that
a— (b—c),d—> (bA~c),aNd=>hVg
4. Prove via the indirect method.

() r = ~q, TVS, S ~q, p—>q= ~p
(b)j,~(a—i) =~(jVe), (i—a)V~j = asri
() s > ~q, ~T 4> q, SV T, ~r=p

For (c), p not being mentioned in the hy-
potheses is a clue that the premises them-
selves are inconsistent.

Predicate Calculus Rules

RULE US (Universal Specification):
(Vy)P(y) = P(k)
That is, if you know every object in the
universe has property P, then it is OK to
say that some particular object has prop-
erty P. With US (unlike the ES rule be-
low), you can choose any letter you like,
even letters that “have been used before”.

RULE ES (Existential Specification):
Given a statement such as (3z)B(z), you
can give the object with this property a

name, such as B(d). That is, you can “re-
move” the “J” as long as you choose a new
name for the object (d in this example)
for which you have no other information.
[This is easy: just pick a “new” letter.]
RULE EG (Existential Generalization):
A(m) = (3z)A(z)
That is, if you know some particular con-
crete object m has property A, you can
always be “more vague” and say merely
that some object has property A.

RULE UG (Universal Generalization):

If you have proved D(j), you can some-
times conclude (Vw)D(w). To decide if
this is a “legal” use of UG, you must re-
view your proof, and determine if you can
repeat the proof for any object (rather
than just the object 7). If you can, then
this rule applies.
These 4 rules work like implications: you
are not allowed to use them on just a part
of an expression. You can only “remove” a
Y or 7 if it modifies the entire expression.
Ditto if you want to insert a V or 3.

SAMPLE #6 (Predicate Calculus).
Consider the theorem: “Socrates is a hu-
man, and all humans are mortal. There-
fore, Socrates is mortal.” With s rep-
resenting Socrates, M () representing the
predicate “is mortal”, and H() represent-
ing the predicate “is a human”, we can
show: H(s), (Vz)(H(z) - M(z)) = M(s)
1. (Vz)(H(z) » M(z)) P

2. H(s) P
3. H(s) = M(s) USon1l
4. M(s) Iy on 2 and 3

Note that we could prove other conclu-
sions from these inferences, such as:

5. (Fy)(M(y)) EG on 4
That is, we could infer that “someone in
this universe is mortal”’. Note that it
would not be legal to conclude that all
objects are mortal, e.g.,

X. (Vy)(M(y)) invalid! UG on 4
...because our inferences depended upon a
fact about s, which is a fact that might not
be true of other objects. (Trying to con-



clude that Zeus was mortal, for example,
would not follow from our hypotheses.)

In a formula such as (Vy)M(y), vy is a
dummy variable (placeholder), helping us
express the concept “All objects are mor-
tal.” (Vz)M (z) or (Vz) M (z) make equiva-
lent observations about our universe (just
as f(z) = 2z describes the same function
as f(y) = 2y in algebra).

more IMPLICATIONS

I5:(V2) A(z)V (Vy) B(y)=(V2) (A(2) VB(2))

Lg:(32) (A(z)AB(z))=(3v) A(v) A(Fy) B(y)

more EQUIVALENCES

would look like F(c) — ~S(c), and so on
for any letter we might have chosen. Thus,
we can derive line 11 for every object.

The operators V and 3, as with other
unary operators like ~, modify “as little
as possible”. Parentheses are needed if you
want them to apply to more than the very
next symbol. In the next exercises, a com-
mon mistake is to mentally insert paren-
theses that are not really there!

EXERCISES jc-B
1. Formally prove that the conclusion (on
the right) follows from the list of [comma-

E3:(3z)A(z)V(Iy) B(y)<(32) (A(2)VB(z)) separated] hypotheses (to the left of “=7).
Ep: (Vo) (A(z)AB(2)) & (Vo) A(0)A(VY) B(Y) a) P(z) A (V2)Q(z) = (32)(P(2) A Q(2))
Egsie~(Va) (A(2)) & (Jv)(~A(v)) b) (Vz)(~J(z) > K (2)), (Vy)~K (y)=J ()
Eye:~(32)(A(2)) & (Vo) (~A(v)) c)~((3h)P(h)AI(a))=(32)P(z) —~I(a)
Eor:(Vz)(CVB(z)) < CV(Vy)B(y) d) (Va)(L(@)VS(q)), (Vr)~L(r)=(3z)S()
Es:(32)(CAB(z)) < CN3y)B(y) e) (Yq)(L(q)VS(q)), (Vr)~L(r)=(Vz)S(z)
Ezg:(Ve)(A(z)) = D & (I)(A(v) = D) §)~(V2)(P(2)AQ(2)), (Vz) P(z)=~(Vz)Q(z)
Byo:(32) (A(2)) = D & (W)(A(v) > D) g)(¥a)(P(a)>Q(x)), (¥2) Q)+ R(x)) =
E31:B — (Vz)A(z) & (Vy)(B = A(y))  P(z)—R(z)

E32:B — (Jz)A(z) < (y)(B — A(y)) 2. Look for a place to use CP on these:
Note the duality: interchanging V with 3 3)(32) P(z)—(Vy)Q(y))=(V2)(P(2)=Q(z))
and A with V (and = wi.th <) turns b)(Vz)(P(z)—Q(z))=(Vz) P(z) = (V) Q(y)
the odd-numbered formulas into the even-  ¢)(vz)(P(z)—Q(z)), (V&) (R(z)—>~Q(z))=
numbered formulas. (Vm)(R(m)—~P(m))

SAMPLE PROOF #7 3. Why are these invalid uses of US?
Given premises (3z)( I(z) A ~J(z) ) and a) 1. (Vz)P(z) — Q(z)
Gz)(F(2)AS(z)) = (W)U (y)=JI(), . 2. Pz) — Qa)
prove that (Vv)(F(v) — ~S(v)). b) 1. (Vz)P(z) — Q(z)

1. (F2)(I(z) A ~J(2)) P . 2. Pb) — Qx)

2. I(g) A ~J(q) ES on 1 o) 1. (va)(P(z) v Q(x))

3. ~(I(q) — J(q)) Ei7 on 2 2. P(w) VvV Q(v)

4. (Fz)(~(I(z) — J(z))) EGon3 4. For each of the three scenarios in #3
5. ~(V2)(I(2) — J(z)) E5 on 4 above, build a universe where line 1 is true
6. (3z)(F(z)AS(z))—(Yy)(I(y)—J(y)) P but line 2 is false.

7. ~(3z)(F(z)AS(z)) Iz on 6 and 5 5. Why are these invalid uses of EG?

8. (V&J) ( ( )/\S( )) FEy on 7 a) 1. P(.’E) — Q(:L‘)

9. ~(F(b) A S(b)) US on 8 2. (Az)P(z) — Q=)

10. ~F(b)V ~S(b) E9on9 b) 1. P(b) = Q(a)

11 F(b) — ( ) Ey6 on 10 2. (Fz)(P(z) — Q(x))

Why does UG allow us to go from line 11
to line 127 Because we chose b as the name
of the object when using US, but if we had
instead chosen ¢ on line 9, then line 11

2. (Vo)(P(v) V Q(v))
6. For the scenarios (a) and (c) in #5
above, build a universe where line 1 is true
but line 2 is false.
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7.  Find the mistake in the following
derivation:

7-1. (32)B(2) Premise
7-2. (32)F(z) Premise
7-3. F(v) ES on 7-2
7-4. B(v) ES on 7-1

Hint: Let B(z) represent “z has a beard”,
and let F(z) represent “z is female”. In
a typical classroom, most likely (3z)B(x)
and (3z)F(z) are both valid premises. We
could apply rule ES to either or both hy-
potheses. For example, we might conclude
"Veronica is female” (as in 7-3). Some-
what like 7-4, we might also give a name
to the person with a beard, e.g., " Jack has
a beard”, which would also be a valid con-
clusion. What would the flaw in the logic
be if we were to instead conclude ” Veron-
ica has a beard” and claim that this was
a valid use of ES (as was done in 7-4)7

8. Find the mistake in the following
derivation:

8-1. (Vz)B(z) Premise
8-2. (32)F(z) Premise
8-3. B(a) US on 8-1
8-4. F(a) ES on 8-2

Hint: Let B(x) represent “z is breathing”,
and let F(z) represent “z is female”. In
a typical classroom, most likely (Vz)B(z)
and (3z)F(z) are both valid premises, and
we could apply rule ES and US. For exam-
ple, we might conclude ” Arnold is breath-
ing” (as in 8-3). However, we should NOT
subsequently conclude ” Arnold is female”
(as in 8-4); this is another invalid use of
ES (as in the previous problem, we must
choose an “unused” variable name each
time we invoke ES.

However, we can still conclude there is a
student who has both properties B and F',
if we structure the proof a bit differently:
8-3. F(Alison) ES on 8-2
8-4. B(Alison) US on 8-1
Since US applies to every student, there
is no problem “reusing” a variable name
with the US rule. In practice, just remem-
ber to apply ES before you apply US.

SAMPLE PROOF #8: “The difference of
any two odd numbers is even.” (formally!)
First, we will rewrite this more precisely,
so that we can better apply the tricks we
have learned in the previous chapters:
(Va)(Vb)((a odd A b odd) — a—b is even)
We will largely construct the proof “back-
wards”, now that we know what the last
line of the proof should look like. Since
the outermost operator is that (Va), it’s a
pretty sure bet that the line before it will
look pretty much the same, but without
the quantifier. That is, the next to last
line will probably be something like:
(Vb)((n is odd A b is odd) — n—b is even)
The dummy variable a was replaced by the
specific object n here; it is legal to just
use a instead of a different letter (n), but
since they stand for different things (one is
an actual number, and the other is just a
placeholder to help us say “all things have
this property”), it’s better to use different
symbols. Similarly, the line prior to that
one will be

(n is odd A m is odd) — n—m is even
...and we hope we can justify using UG
twice to get to the desired conclusion.

This “third line from the bottom” is
rather friendly; it is the sort of statement
for which we can use CP. Now (finally!)
we have a clue as to what the first line of
our proof should be:
nis odd A m isodd  Assumed Premise
(If we were writing this less formally and
more conversationally, we would start by
saying “Let n and m be arbitrary integers,
and assume both of them are odd.”)

Furthermore, since we are going to use
CP, we have a much-simplified goal of:
n—m is even CPon1and?
Here’s what we have constructed so far:

1. nis odd A m is odd Assumed P
2. ... 7?7
n—m is even 77

(n odd A m odd)—n—m is even CP 1,7
(Vb)((n odd A b odd) — n—b is even) UG
(Va)(Vb)((a odd A b odd)—a—b even) UG



Next, we have to “fill in the gaps,” but
we will have a better idea about where we
are supposed to be headed if we work back-
ward a little more. We look up what it
means to say “n—m is even” to discover:
(3k)(n—m = 2k)

This informs us that once we get for-

mulas for n and m, we need to do some
algebra to put all the terms together and
pull out a common factor of 2. Here’s the
full formal proof, using line 9 as a guide,
and then working forward from step 1:
1. nis odd A m is odd Assumed Premise
2. n is odd I;onl
3. mis odd Ir;onl
4. (3k)(n =2k +1) Def. of “odd” on 2
5. (3k)(m =2k +1) Def. of “odd” on 3
6. n=21+1 ES on 4
7. m=25+1 ES on 5
8. n—m = 2i+1—(25+1)=2(i—j) alg. 6,7
9. (3k)(n—m = 2k) EG on 8
10. n—m is even Def. of “even” on 9
11. (n is odd A m is odd) — n—m is even
. CP on 1,10
12. (Vb)((n odd A b odd) — n—b is even)
. UG on 11
13. (Va)(Vb)((a odd A bodd) — a—b even)
. UG on 12
I will allow you to go directly from line 11
to what I have on line 13 as long as you
state the reason as “UG twice on 11.”

In this proof, we restricted our universe
to just the set of integers (not fractions,
goats, colors, etc.), so when we said (3k),
it was understood that & must be an inte-
ger. We also relied on the underlying facts
that adding, subtracting, or multiplying
integers (e.g., i — j or 2k) always yields
another integer. Note that the same can-
not be said for division, so a proof that
divides two integers and depends on the
result being an integer would be flawed.

Sample Proof #9: (Vn > 0)(3|(22" — 1))
This requires a proof by induction, and
the very first step is always to be spe-
cific about what the proposition P(n) is.
In this case, we define P(n) : 3|(22" — 1).

Note that there is no “V” here; P(n) is
an assertion about one particular size [our
goal is to prove it for all sizes, that is, to show
(Vn)P(n),but P(n) is for a single size].
Our basis step is n = 0. Why? Because
our goal says n > 0, so we know we should
be starting at 0. Remember that P(n) is
always a statement, and never a num-
ber. (It often involves some assertion
about a number, which is either true or
false; our goal is to show it evaluates to
true every single time.) In this case, the
assertion is that 3 divides some compli-
cated expression. For P(0), we must show
3/(22%% — 1), which works out to be 30,
which is true (since 0 = 3 x 0). So, P(0)
is true, and we’ve proved the basis step.
For the inductive step, we let m be ar-
bitrary and assume that P(m) is true; our
new goal is to show that P(m + 1) is also
true. (We want m to be arbitrary, because
later we have to assert that our line of rea-
soning works for all choices of m. That is,

we want to use rule CP and then rule UG.)
Here is the full formal proof:

1.0=3x0 arithmetic
2.22X0 _1=3x0 arithmetic on 1
3. (Fk)(22X0 —1 =3 x k) EG on 2
4.3 (22%0 —1)  Def. of “divides” on 3
5. P(0) Def. of “P” on 4
6. P(m) Assumed Premise
7. 3](22m —1) Def. of “P” on 6
8. (3k)(22™ —1=3k)  Def. of “” on 7
9. 22" _1=23q ES on 8

10. 22mH1) 1 = 92m 921 = 22m x4 — 1
=22 (341)—1=22"x3 422" 1=
3x 2?2 4+ 3g=3(22"+q) algebraon 9
11. (Fk)(220m+D) — 1 = 3k) EG on 10
12. 3|(22m+1) — 1) Def. of “” on 11
13. P(m+1) Def. of “P” on 12

14. P(m) - P(m +1) CP on 6,13
15. (Vé)(P(i) —» P(i + 1)) UG on 14
16. (Vn > 0)(3](22" — 1))  P.o.M.L 5,15

(e.g., Principle of Math Induction on 5,15)
Note that we wrote steps 1-5 “backward”
from the way we reasoned it out; we must
always begin with facts we know [0 = 3x 0]
and proceed to our goal [P(0)].
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Here’s a typical sample exam problem,
covering many concepts. Define P(n) by:

lf[ .

1
n

n

<>

=1

.

+1

.

We wouldn’t try an inductive proof, since
it is hardly ever true. Try, for example,
calculating P(2) [and if your “final an-
swer” was a number, then reread the pre-
vious sentence, and remember that you are
evaluating something that is an assertion).
SAMPLE PROOF #9 (set theory):

(VA)(VB)(Ax (BUC) C (AxB)U(Ax())
When dealing with cross products, there is
a slight modification we need for the defi-
nition of subset: since a member of a cross
product is an ordered pair, and we need to
consider all combinations of first coordi-
nates and second coordinates, we will need
two V quantifiers (see step 8 below).

1. (u,w) € F x (GUH) Assumed Premise
2.ue FAw e (GUH) Def. of “x” on 1
B.u€e FA(w e GVweH) Def. of “U”
4. (ue FAweG)V(ue FAwe H) Eg
5. (u,w) € (FxQ))V ((u,w) € (F x H))
Def of “x” (twice) on 4

6. (u, w)e (F><G) (FxH) Def.of “U” on5
7.(u,w) € F x (GUH) = (u,w) €
(FxGQ)U(F x H) CP on 1,6
8. (V) (Vy)((2,y) € Fx(GUH) = (,y) €
(FxG)U(FxH)) UG twiceon 7
9. (Fx(GUH) C (FxG)U(F x H))

. Definition of “C” on 8
10. (VA)(VB)(Ax (BUC) C (Ax B)U
(A xC)) UG twice on 9

We use the symbol < to represent an
arbitrary partial ordering: < might repre-
sent <, or it could mean C, >, or |. Sim-
ilarly, we use > as a shorthand for <—!
when we want to refer to the inverse of <.

We can prove, for example, that any
greatest element in a partial ordering must
be a maximal element. That is,

(VM)(M is greatest — M is maximal)

SAMPLE PROOF #10 (partial order-
ing): Here is an abbreviated formal proof:

1. M is greatest Assumed Premise
2. M <n Assumed Premise
3. (Va)(a = M) Def. of “greatest” on 1
4. n<M US on 3
5. (n I M)A (M <n) Iy on 2,4
6. n=M =< is antisymmetric on 5
7. M<n—-n=M CP on 2,6
8. (Vn)(M =n—n=M) UGon 7
9. Mismaximal  Def. of “maximal” on 8

10 M is greatest—M is maximal CP 1,9

1. (VM)(M is greatest — M is maximal)
. UG on 10

A truly formal proof should begin with
the hypotheses that < is a partial order-
ing, use I1 and I3 to extract the fact that
=< is antisymmetric, use US twice to re-
move the quantifiers on the definition and
put M and n in their place, and then use
I;; to justify line 6. At this point in the
course, I'm likely to allow you to skip that
formalism and go directly from line 5 to
line 6, with “antisymmetry” as the justifi-
cation.

The partial ordering < is a bunch of or-
dered pairs over some underlying set A, so
the actual definition of “greatest” is tech-
nically (Va)((a € A) — (a < M)), but if
we limit our universe to consist of only the
elments in A, then we can get by with the
simpler definition listed on line 3.

Note that the contrapositive statement,
(VM)(M is maximal — M is greatest)
is not always true; you should be able to
generate a very simple Haase diagram that
illustrates the point (containing a maximal
element, but no greatest element).



