
COMPUTER ALGORITHAS 
OP PO ea ee ee 

Introduction to Design & Analysis 
a 
< 

o 
D; 

» 

eee 

Se 
Sara Baase — 

Allen Van Gelder 
Br IATA 

= zi ae 
Dea i trae i isle 

mA / 

OR A A 









a Computer 
Algorithms 



Digitized by the Internet Archive 

In 2021 with funding from 

Kahle/Austin Foundation 

https://archive.org/details/computeralgorithO0O0Obaas_c9n1 



Computer 
Algorithms 
Introduction to 
Design and Analysis 

WH UNSIB) el) (AICS 

Sara Baase 
San Diego State University 

Allen Van Gelder 
University of California at Santa Cruz 

A why ADDISON-WESLEY 

An imprint of Addison Wesley Longman, Inc. 

Reading, Massachusetts * Menlo Park, California * New York 

Harlow, England « Don Mills, Ontario * Sydney * Mexico City 

Madrid ¢ Amsterdam 



Acquisitions Editor: Maite Suarez-Rivas 

Assistant Editor: Jason Miranda 

Composition/Art: Paul C. Anagnostopoulos, Windfall Software 

Copy Editor: Joan Flaherty 

Proofreader: Brooke Albright 

Cover Illustration: Janetmarie Colby 

Cover Design: Lynne Reed 

Manufacturing Coordinator: Timothy McDonald 

Access the latest information about Addison-Wesley titles from our World Wide Web site: www.awlonline.com 

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 

trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, 

the designations have been printed in initial caps or all caps. 

The programs and applications presented in this book have been included for their instructional value. They have 

been tested with care but are not guaranteed for any purpose. The publisher does not offer any warranties or 

representations, nor does it accept any liabilities with respect to the programs or applications. 

This book was typeset in ZzTpX on a PC. The font families used were Times, Optima, Lucida Sans, and 

MathTime. It was printed on New Era Matte. 

Library of Congress Cataloging-in-Publication Data 

Baase, Sara. 

Computer algorithms / Sara Baase, Allen Van Gelder. — 3rd ed. 

Dp: cin: 

ISBN 0-201-61244-5 

1. Computer algorithms. I. Van Gelder, Allen. II. Title. 

QA76.9.A43B33 2000 

519.7—dc21 99-14185 

: ; ; ; CIP 
Reprinted with corrections, April 2000 

Copyright © 2000 by Addison Wesley Longman 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, 

in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior 

written permission of the publisher. Printed in the United States of America. 

234567 8 9 10—MA—03020100 



To Keith—always part of what I do SB: 

To Jane—for her patience A.V.G. 





Preface 

Purpose 

This book is intended for an upper-division or graduate course in algorithms. It has suffi- 

cient material to allow several choices of topics. 

The purpose of the book is threefold. It is intended to teach algorithms for solving 

real problems that arise frequently in computer applications, to teach basic principles and 

techniques of computational complexity (worst-case and average behavior, space usage, 

and lower bounds on the complexity of a problem), and to introduce the areas of N‘P- 

completeness and parallel algorithms. 

Another of the book’s aims, which is at least as important as teaching the subject 

matter, 1s to develop in the reader the habit of always responding to a new algorithm with 

the questions: How good is it? Is there a better way? Therefore, instead of presenting a 

series of complete, “pulled-out-of-a-hat” algorithms with analysis, the text often discusses 

a problem first, considers one or more approaches to solving it (as a reader who sees the 

problem for the first time might), and then begins to develop an algorithm, analyzes it, and 

modifies or rejects it until a satisfactory result is produced. (Alternative approaches that are 

ultimately rejected are also considered in the exercises; it is useful for the reader to know 

why they were rejected.) 

Questions such as: How can this be done more efficiently? What data structure would 

be useful here? Which operations should we focus on to analyze this algorithm? How 

must this variable (or data structure) be initialized? appear frequently throughout the text. 

Answers generally follow the questions, but we suggest readers pause before reading the 

ensuing text and think up their own answers. Learning 1s not a passive process. 

We hope readers will also learn to be aware of how an algorithm actually behaves 

on various inputs—that is, Which branches are followed? What is the pattern of growth 

and shrinkage of stacks? How does presenting the input in different ways (e.g., listing the 

vertices or edges of a graph in a different order) affect the behavior? Such questions are 

raised in some of the exercises, but are not emphasized in the text because they require 

carefully going through the details of many examples. 

Most of the algorithms presented are of practical use; we have chosen not to empha- 

size those with good asymptotic behavior that are poor for inputs of useful sizes (though 

some important ones are included). Specific algorithms were chosen for a variety of reasons 
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including the importance of the problem, illustrating analysis techniques, illustrating tech- 

niques (e.g., depth-first search) that give rise to numerous algorithms, and illustrating the 

development and improvement of techniques and algorithms (e.g., Union-Find programs). 

Prerequisites 
The book assumes familiarity with data structures such as linked lists, stacks, and trees, 

and prior exposure to recursion. However, we include a review, with specifications, for the 

standard data structures and some specialized ones. We have also added a student-friendly 

review of recursion. 

Analysis of algorithms uses simple properties of logarithms and some calculus (dif- 

ferentiation to determine the asymptotic order of a function and integration to approximate 

summations), though virtually no calculus is used beyond Chapter 4. We find many stu- 

dents intimidated when they see the first log or integral sign because a year or more has 

passed since they had a calculus course. Readers will need only a few properties of logs 

and a few integrals from first-semester calculus. Section 1.3 reviews some of the necessary 

mathematics, and Section 1.5.4 provides a practical guide. 

Algorithm Design Techniques 

Several important algorithm design techniques reappear in many algorithms. These in- 

clude divide-and-conquer, greedy methods, depth-first search (for graphs), and dynamic 

programming. This edition puts more emphasis on algorithm design techniques than did 

the second edition. Dynamic programming, as before, has its own chapter and depth-first 

search is presented with many applications in the chapter on graph traversals (Chapter 7). 

Most chapters are organized by application area, rather than by design technique, so we 

provide here a list of places where you will find algorithms using divide-and-conquer and 

greedy techniques. 

The divide-and-conquer technique is described in Section 4.3. It is used in Binary 

Search (Section 1.6), most sorting methods (Chapter +), median finding and the general 

selection problem (Section 5.4), binary search trees (Section 6.4), polynomial evaluation 

(Section 12.2), matrix multiplication (Section 12.3), the Fast Fourier Transform (Sec- 

tion 12.4), approximate graph coloring (Section 13.7), and, in a slightly different form, 

for parallel computation in Section 14.5. 

Greedy algorithms are used for finding minimum spanning trees and shortest paths in 

Chapter 8, and for various approximation algorithms for N‘P-hard optimization problems, 

such as bin packing, knapsack, graph coloring, and traveling salesperson (Sections 13.4 

through 13.8). 

Changes from the Second Edition 

This edition has three new chapters and many new topics. Throughout the book, numerous 

sections have been extensively rewritten. A few topics from the second edition have been 

moved to different chapters where we think they fit better. We added more than 100 new 

exercises, many bibliographic entries, and an appendix with Java examples. Chapters 2, 3, 
and 6 are virtually all new. 
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Chapter 2 reviews abstract data types (ADTs) and includes specifications for several 
standard ADTs. The role of abstract data types in algorithm design is emphasized through- 
out the book. 

Chapter 3 reviews recursion and induction, emphasizing the connection between the 

two and their usefulness in designing and proving correctness of programs. The chapter 
also develops recursion trees, which provide a visual and intuitive representation of recur- 

rence equations that arise in the analysis of recursive algorithms. Solutions for commonly 

occurring patterns are summarized so they are available for use in later chapters. 

Chapter 6 covers hashing, red-black trees for balanced binary trees, advanced priority 

queues, and dynamic equivalence relations (Union-Find). The latter topic was moved from 

a different chapter in the second edition. 

We rewrote all algorithms in a Java-based pseudocode. Familiarity with Java is not 

required: the algorithms can be read easily by anyone familiar with C or C++. Chapter | 

has an introduction to the Java-based pseudocode. 

We significantly expanded the section on mathematical tools for algorithm analysis in 

Chapter | to provide a better review and reference for some of the mathematics used in the 

book. The discussion of the asymptotic order of functions in Section 1.5 was designed 

to help students gain a better mastery of the concepts and techniques for dealing with 

asymptotic order. We added rules, in informal language, that summarize the most common 

cases (Section 1.5.4). 

Chapter 4 contains an accelerated version of Heapsort in which the number of key 

comparisons ts cut nearly in half. For Quicksort, we use the Hoare partition algorithm in 

the main text. Lomuto’s method is introduced in an exercise. (This is reversed from the 

second edition. ) 

We split the old graph chapter into two chapters, and changed the order of some 

topics. Chapter 7 concentrates on (linear time) traversal algorithms. The presentation of 

depth-first search has been thoroughly revised to emphasize the general structure of the 

technique and show more applications. We added topological sorting and critical path 

analysis as applications and because of their intrinsic value and their connection to dynamic 

programming. Sharir’s algorithm, rather than Tarjan’s, is presented for strongly connected 

components. 

Chapter 8 covers greedy algorithms for graph problems. The presentations of the Prim 

algorithm for minimum spanning trees and the Dijkstra algorithm for shortest paths were 

rewritten to emphasize the roles of priority queues and to illustrate how the use of abstract 

data types can lead the designer to efficient implementations. The asymptotically optimal 

O(m +n logn) implementation is mentioned, but is not covered in depth. We moved 

Kruskal’s algorithm for minimum spanning trees to this chapter, 

The presentation of dynamic programming (Chapter 10) was substantially revised to 

emphasize a general approach to finding dynamic programming solutions. We added a 

new application, a text-formatting problem, to reinforce the point that not all applications 

call for a two-dimensional array. We moved the approximate string matching application 

(which was in this chapter in the second edition) to the string matching chapter (Sec- 

tion 11.5). The exercises include some other new applications. 

ix 
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Our teaching experience has pinpointed particular areas where students had difficulties 

with concepts related to P and N‘P (Chapter 13), particularly nondeterministic algorithms 

and polynomial transformations. We rewrote some definitions and examples to make the 

concepts clearer. We added a short section on approximation algorithms for the traveling 

salesperson problem and a section on DNA computing. 

Instructors who used the second edition may particularly want to note that we changed 

some conventions and terminology (usually to conform to common usage). Array indexes 

now often begin at 0 instead of 1. (In some cases, where numbering from | was clearer, 

we left it that way.) We now use the term depth rather than /evel for the depth of a node 

in a tree. We use height instead of depth for the maximum depth of any node in a tree. In 

the second edition, a path in a graph was defined to be what is commonly called a simple 

path, we use the more general definition for path in this edition and define simple path 

separately. A directed graph may now contain a self-edge. 

Exercises and Programs 

Some exercises are somewhat open-ended. For example, one might ask for a good lower 

bound for the complexity of a problem, rather than asking students to show that a given 

function is a lower bound. We did this for two reasons. One is to make the form of the 

question more realistic; a solution must be discovered as well as verified. The other is that 

it may be hard for some students to prove the best known lower bound (or find the most 

efficient algorithm for a problem), but there is still a range of solutions they can offer to 

show their mastery of the techniques studied. 

Some topics and interesting problems are introduced only in exercises. For example, 

the maximum independent set problem for a tree is an exercise in Chapter 3, the maximum 

subsequence sum problem is an exercise in Chapter 4, and the sink finding problem for 

a graph is an exercise in Chapter 7. Several N’P-complete problems are introduced in 

exercises in Chapter 13. 

The abilities, background, and mathematical sophistication of students at different uni- 

versities vary considerably, making it difficult to decide exactly which exercises should be 

marked (“starred”) as “hard.” We starred exercises that use more than minimal mathemat- 

ics, require substantial creativity, or require a long chain of reasoning. A few exercises have 

two stars. Some starred exercises have hints. 

The algorithms presented in this book are not programs; that is, many details not 

important to the method or the analysis are omitted. Of course, students should know how 

to implement efficient algorithms in efficient, debugged programs. Many instructors may 

teach this course as a pure “theory” course without programming. For those who want to 

assign programming projects, most chapters include a list of programming assignments. 

These are brief suggestions that may need amplification by instructors who choose to use 

them. 

Selecting Topics for Your Course 
Clearly the amount of material and the particular selection of topics to cover depend on the 
particular course and student population. We present sample outlines for two undergraduate 
courses and one graduate course. 
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This outline corresponds approximately to the senior-level course Sara Baase teaches 
at San Diego State University in a 15-week semester with 3 hours per week of lecture. 

Chapter 1: The whole chapter is assigned as reading but I concentrate on Sections 1.4 

and 1.5 in class. 

Chapter 2: Sections 2.1 through 2.4 assigned as reading. 

Chapter 3: Sections 3.1 through 3.4, 3.6, and 3.7 assigned as reading with light cover- 

age in Class. 

Chapter 4: Sections 4.1 through 4.9. 

Chapter 5: Sections 5.1 through 5.2, 5.6, and some of 5.4. 

Chapter 7: Sections 7.1 through 7.4 and either 7.5 or 7.6 and 7.7. 

Chapter 8: Sections 8.1 through 8.3 and brief mention of 8.4. 

Chapter 11: Sections 11.1 through 11.4. 

Chapter 13: Sections 13.1 through 13.5, 13.8, and 13.9. 

The next outline is the junior-level course Allen Van Gelder teaches at the University 

of California, Santa Cruz, in a 10-week quarter with 3.5 hours per week of lecture. 

Chapter I: Sections 1.3 and 1.5, and remaining sections as reading. 

Chapter 2: Sections 2.1 through 2.3, and remaining sections as reading. 

: All sections are touched on; a lot is left for reading. GO Chapter 

Chapter 4: Sections 4.1 through 4.9. 

Chapter 5: Possibly Section 5.4, the average linear time algorithm only. 

Chapter 6: Sections 6.4 through 6.6. 

Chapter 7: Sections 7.1 through 7.6. 

Chapter 8: The entire chapter. 

Chapter 9: Sections 9.1 through 9.4. 

Chapter 10: Possibly Sections 10.1 through 10.3, but usually no time. 

\O 

For the first-year graduate course at the University of California, Santa Cruz (also 10 

weeks, 3.5 hours of lecture), the above material is compressed and the following additional 

topics are covered. 

Chapter 5: The entire chapter. 

Chapter 6: The remainder of the chapter, with emphasis on amortized analysis. 

Chapter 10: The entire chapter. 

Chapter 13: Sections 13.1 through 13.3, and possibly Section 13.9. 

The primary dependencies among chapters are shown in the following diagram with 

solid lines; some secondary dependencies are indicated with dashed lines. A secondary 

dependency means that only a few topics in the earlier chapter are needed in the later 

chapter, or that only the more advanced sections of the later chapter require the earlier 

one. 

xi 
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While material in Chapters 2 and 6 is important to have seen, a lot of it might have 

been covered in an earlier course. Some sections in Chapter 6 are important for the more 

advanced parts of Chapter 8. 

We like to remind readers of common themes or techniques, so we often refer back 

to earlier sections; many of these references can be ignored if the earlier sections were not 

covered. Several chapters have a section on lower bounds, which benefits from the ideas 

and examples in Chapter 5, but the diagram does not show that dependency because many 

instructors do not cover lower bounds. 

We marked (“starred”) sections that contain more complicated mathematics or more 

complex or sophisticated arguments than most others, but only where the material is not 

central to the book. We also starred one or two sections that contain optional digressions. 

We have not starred a few sections that we consider essential to a course for which the book 

is used, even though they contain a lot of mathematics. For example, at least some of the 

material in Section 1.5 on the asymptotic growth rate of functions and in Section 3.7 on 

solutions of recurrence equations should be covered. 
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Chapter 1 Analyzing Algorithms and Problems: Principles and Examples 

Introduction 

To say that a problem is solvable algorithmically means, informally, that_a computer 

ill produce the correct answer for any input if we let it run 

storage space as it needs. In the 1930s, before the advent 

program can_be written 

long enough and allow itas 

of computers, mathematicians worked very actively to formalize and study the notion of 

an algorithm, which was then interpreted informally to mean a_clearly specified set of 

simple instructions to be followed to solve a problem or compute a function. Various formal 

models of computation were devised and investigated. Much of the emphasis in the early 

work in this field, called computability theory, was on describing or characterizing those 

problems that could be solved algorithmically and on exhibiting some problems that could 

not be. One of the important negative results, established by Alan Turing, was the proof 

of the unsolvability of the “halting problem.” The halting problem is to determine whether 

an arbitrary given algorithm (or computer program) will eventually halt (rather than, say, 

get into an infinite loop) while working on a given input. There cannot exist a computer 

program that solves this problem. 

Although computability theory has obvious and fundamental implications for com- 

puter science, the knowledge that a problem can theoretically be solved on a com 

not sufficient to tell us whether itis practica or example, a perfect chess-playing 

program could be written. This would not be a very difficult task; there are only a finite 

number of ways to arrange the chess pieces on the board, and under certain rules a game 

must terminate after a finite number of moves. The program could consider each of the 

computer's possible moves, each of its opponent’s possible responses, each of its possi- 

ble responses to those moves, and so on until each sequence of possible moves reaches an 

end. Then since it knows the ultimate result of each move, the computer can choose the 

best one. The number of distinct arrangements of pieces on the board that it is reasonable 

to consider (much less the number of sequences of moves) is roughly 10°° by some esti- 

mates. A program that examined them all would take several thousand years to run. Thus 

such a program has not been run. 

n 

Numerous problems with practical applications can be solved—that is, programs can 

be written for them—but the time and storage requirements are much too great for these 

programs to be of practical use. Clearly the time and space requirements of a program are 

of practical importance. They have become, therefore, the subject of theoretical study in 

the area of computer science called computational complexity. One branch of this study, 

which is not covered in this book, is concerned with setting up a formal and somewhat 

abstract theory of the complexity of computable functions. (Solving a problem is equivalent 

to computing a function from the set of inputs to the set of outputs.) Axioms for measures 

of complexity have been formulated: they are basic and general enough so that either the 

number of instructions executed or the number of storage bits used by a program can 

be taken as a complexity measure. Using these axioms, we can prove the existence of 

arbitrarily complex problems and of problems for which there is no best program. 

The branch of computational complexity studied in this book is concerned with an- 
alyzing specific pro sand specific algorithms. This book is intended to help readers 
build a repertoire of classic algorithms to solve common problems, some general design 
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1.2 Java as an Algorithm Language 

techniques, tools and principles for analyzing algorithms and problems, and methods of 

proving correctness. We will present, study, and analyze algorithms to solve a variety of 

problems for which computer programs are frequently used. We will analyze the amount 

of time the algorithms take to execute, and we will also often analyze the amount of space 

used by the algorithms. In the course of describing algorithms for a variety of problems, 

we will see that several algorithm design techniques often prove useful. Thus we will pause 

now and then to talk about some general techniques, such as divide-and-conquer, greedy 

algorithms, depth-first search, and dynamic programming. We will also study the com- 

putational complexity of the problems themselves, that is, the time and space inherently 

required to solve the problem no matter what algorithm is used. We will study the class 

of NP-complete problems—problems for which no efficient algorithms are known—and 

consider some heuristics for getting useful results. We will also describe an approach for 

solving these problems using DNA instead of electronic computers. Finally, we will intro- 

duce the subject of algorithms for parallel computers. 

In the following sections we outline the algorithm language, review some background 

and tools that will be used throughout the book, and illustrate the main concepts involved 

in analyzing an algorithm. 

Java as an Algorithm Language 

We chose Java as the algorithm language for this book by balancing several criteria. The 

algorithms should be easy to read. We want to focus on the strategy and techniques of an al- 

gorithm, not declarations and syntax details of concern to a compiler. The language should 

support data abstraction and problem decomposition, to make it easy to express algorithmic 

ideas clearly. The language should provide a practical pathway to implementation. It should 

be widely available and provide support for program development. Actually implementing 

and running algorithms can enhance the student’s understanding greatly, and should not 

turn into a frustrating battle with the compiler and debugger. Finally, because this book is 

teaching algorithms, not a programming language, it should be reasonably easy to trans- 

late an algorithm to a variety of languages that readers might wish to use, and specialized 

language features should be minimized. 

Java showed up well by several of our criteria, although we would not claim it is 

ideal. It supports data abstraction naturally. It is type-safe, meaning that objects of one type 

cannot be used in operations intended for a different type; arbitrary type conversions (called 

“casts”) are not permitted, either. There is an explicit boolean type, so if one types “=" 

(the assignment operator) when “==" (the equality operator) was intended, the compiler 

catches It. 

Java does not permit pointer manipulations, which are a frequent source of obscure 

errors; in fact, pointers are hidden from the programmer and handled automatically behind 

the scenes. At run time, Java checks for out-of-range array subscripts, and other incon- 

sistencies that might be other sources of obscure errors. It performs “garbage collection,” 

which means that it recycles the storage space of objects that are no longer referenced; this 

takes a big burden of space management off the programmer. 
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On the downside, Java has many of the same terse, cryptic syntax features of C. The 

object structure may force inefficiencies in time and space. Many Java constructs require 

greater verbosity than other languages, such as C, for instance. 

Although Java has many specialized features, the algorithms presented in this book 

avoid most of them, in the interest of being language-independent. In fact, some steps 

within an algorithm may be stated in pseudocode for easier readability. This section de- 

scribes a small subset of Java that we use for the book, and the pseudocode conventions that 

we use to improve readability of the algorithms. The Java-specific Appendix A gives some 

additional implementation details for readers who want to get a Java program running, but 

these details are not pertinent to understanding the main text. 

1.2.1 A Usable Subset of Java 

A thorough acquaintance with Java is not important to understand the algorithms in this 

text. This section gives a brief overview of the Java features that do appear, for those readers 

who wish to follow the implementation issues closely. In some cases we point out object- 

oriented features of Java that might be used, but which we avoid so that the text can be fairly 

language-independent; this is mainly for the benefit of readers who are familiar with some 

other object-oriented language, such as C++, but who are not completely familiar with 

Java. A sample Java “main program” appears in Appendix A. Many books are available 

for in-depth coverage of the Java language. 

Readers who are well acquainted with Java will undoubtedly notice many instances 

in which some nice Java feature could have been used. However, the concepts behind the 

algorithms do not require any special features, and we want these concepts to be easy to 

grasp and apply in a variety of languages, so we leave it to the readers, once they have 

grasped the concepts, to tailor the implementations to their favorite language. 

Readers familiar with C syntax will recognize many similarities in Java syntax: Blocks 

are delimited by curly braces, “{” and “}"; square brackets, “[” and “J, enclose array 

indexes. As in C and C++, a two-dimensional array is really a one-dimensional array 

whose elements are themselves one-dimensional arrays, so two pairs of square brackets 

are needed to access an element, as in “matrix[iJ[j]”. Operators “==", “!=", <=", and “>=” 

are the keyboard versions of the mathematical relational operators “=”, “4”, “<", and 
“>=”, respectively. In pseudocode the text usually prefers the mathematical versions. Text 
examples use the “++” and “-—" operators to increment and decrement, but never use them 
embedded in other expressions. There are also the operators “+=", “-=", x=", and “/=” 
adopted from C. For example, 

p+=q; /x Add q to p. «/ 

y -= x; // Subtract x from y. 

As just illustrated, comments extend from “//” to end-of-line, or from “/+”° to Oe aS 
a 

Function headers normally look the same in Java as in C. The function header specifies 
the parameter type signature in parentheses after the function name: it specifies the return 
‘ype before the function name. The combination of return type and parameter type signature 
is called the function’s full type signature, or prototype. Thus 
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int getMin(PriorityQ pq) 

tells us that getMin takes one parameter of type (or class) PriorityQ and returns type int. 
Java has a few primitive types and all remaining types are called classes. The primitive 

types are logical (boolean) and numerical (byte, char, short, int. long, float, and double) 
types. All classes (nonprimitive types) in Java are reference classes. Behind the scenes, 
variables declared in classes are “pointers”; their values are addresses. Instances of classes 
are called objects. Declaring a variable does not create an object. Generally, objects are 
created with a “new” operator, which returns a reference to the new object. 

The data fields of an object are called instance fields in object-oriented terminology. 

The binary dot operator is used to access instance fields of an object. 

Example 1.1) Creating and accessing Java objects 

For this example, let’s assume that date information has the following nested logical 

structure: 

= year 

* number 

« isLeap 

=» month 

» day 

That is, using informal terminology, year is a compound attribute that consists of the 

boolean attribute isLeap and the integer attribute number, while month and day are simple 

integer attributes. To reflect this nested structure, we have to define two classes in Java, 

one for the whole date and another for the year field. Assume we choose the names Date 

and Year, respectively, for these classes. Then we would declare number and isLeap as 

instance fields in the Year class and declare year. month, and day as instance fields in the 

Date class. Moreover, we would most likely define Year as an inner class of Date. The 

syntax 1s shown in Figure 1.1. 

class Date 

{ 
public Year year; 

public int month; 

public int day; 

public static class Year 

{ 
public int number; 

public boolean isLeap; 

} 

Figure 1.1 Java syntax for the Date class with an inner Year class 
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Without the public keyword, the instance fields would not be accessible outside of 

the Date and Year classes; for simplicity, we make them public here. The reason for 

declaring the inner class, Year, to be static is so we can create an instance of Year that 

is not associated with any particular Date object. All inner classes will be static in this 

book. 

Suppose we have created a Date object that is referenced by variable dueDate. To 

access the instance field year in this object, the dot operator is used, as in “dueDate.year.” 

If the instance field is in a class (as opposed to being in a primitive type), then further dot 

operators access its instance fields, as in “dueDate.year.isLeap.” 

The assignment statement copies only the reference, or address, of an object in a 

class; it does not make a copy of the instance fields. For example, “noticeDate = dueDate”™ 

causes variable noticeDate to refer to the same object as variable dueDate. Therefore the 

following code fragment would probably be a logical error: 

noticeDate = dueDate: 

noticeDate.day = dueDate.day — 7; 

See Section |.2.2 for additional discussion. 

Control statements if, else, while, for, and break have the same meanings in Java as 

in C (and C++) and are used 1n this book. Several other control statements exist, but are not 

used. The syntax for while and for are 

while (continuation condition ) body 

for ( initializer ; continuation condition ; incrementer ) body 

where “initializer” and “incrementer” are simple statements (without “{, }), “body” is 

an arbitrary statement, and “continuation condition” is a boolean expression. The break 

statement causes an immediate exit from the closest enclosing for or while loop. | 

All classes form a tree (also called a hierarchy), with the Object class being the root. 

When declaring a new class, it is possible to say it extends a previously defined class, and 

the new class becomes a child of the previously defined class in the class tree. We will not 

create such structures in this text, to keep the code as language-independent as possible; 

however, a few examples are given in Appendix A. When the new class is not declared 

to extend any class, then it extends Object by default. Complex class structures are not 

needed for the algorithms studied in this text. 

Operations on objects are called methods in object-oriented terminology; however, 

we will restrict ourselves to the use of static methods, which are simply procedures and 

functions. In our terminology a procedure is a named sequence of computation steps that 
may be called (with parameters); a function is a procedure that also returns a value to 
the caller. In Java a procedure that returns no value is declared as having return type 
void: C and C++ are similar in this respect. The term static is technical Java terminology, 
which means that the method can be applied to any object or objects of the appropriate 
types (an object's type is its class) according to the method’s type signature (often called 

' Tt also exits from switch, but switch is not used in this book. 
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its prototype). A static method is not “attached” to any particular object. Static methods 
behave like the usual functions and procedures of programming languages like C, Pascal. 
and so on. However, their names must be prefixed by the class in which they are defined, 
as in “List.first(x)” to apply method first defined in class List to parameter x. 

In Java, instance fields of an object are private by default, which means that they can 
be accessed only by methods (functions and procedures) that are defined within the class. 

This is consistent with the theme of abstract data type (ADT) design that objects should 

be accessed only through the operations defined for the ADT. The code that implements 

these ADT operations (or static methods, or functions and procedures) exists within the 

class and is aware of the private instance fields and their types. Methods are also private by 

default, but usually are specified as “public,” so that methods defined in other classes may 

call them. However, “low-level” methods that should be called only by other methods in 

the same class may also be private. 

The clients of the ADT (procedures and functions that call the ADT) are implemented 

outside the class in which the ADT “lives,” so they have access only to the public parts 

of the ADT class. The maintenance of private data is called encapsulation, or information 

hiding. 

Instance fields of an object retain the values that are assigned to them for the lifetime of 

the object, or until overwritten by a subsequent assignment. Here we can see the advantage 

of having them private to the class in which they are defined. A public instance field could 

be assigned an arbitrary value by any part of the overall program. A private instance field 

can be assigned a value only by going through a method for the ADT class that is designed 

for the purpose. This method can perform other computations and tests to be sure that 

the value assigned to an instance field is consistent with the ADT specifications, and is 

consistent with values stored in other instance fields of the same object. 

A new object is created by the phrase “new className().” for example: 

Date dueDate = new Date(); 

This statement causes Java to invoke a default constructor for the Date class. A constructor 

reserves storage for a new object (or instance) of the class and returns a reference (probably 

an address) for accessing this object. The instance fields of this new object might not be 

initialized. 

Java sidelight: The programmer may write additional constructor functions for a class, 

the bodies of which may initialize various instance fields and perform other computations. 

In the interest of language-independence, this text does not use such constructors, so details 

are omitted. 
Arrays are declared somewhat differently in Java than in C and C++, and their prop- 

erties are also slightly different. The Java syntax to declare an array of integers (more 

precisely, to declare a variable whose type is “array of integers”) is “int[] x.” whereas @ 

might use “int x[].” This statement does not initialize x; that is accomplished with 

xX = new int[howMany]; 
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where howMany is either a constant or a variable whose value denotes the desired length of 

the array. Declarations of arrays for classes are similar. The declaration and initialization 

may be, and usually should be, combined into one statement: 

int{] x = new int[howMany]; 

Date[] dates = new Date[howMany]; 

While these statements initialize x and dates in the sense of reserving storage for the arrays, 

they only initialize the elements to default values, which are unlikely to be useful. Therefore 

individual elements dates[O], dates[1],.... must be assigned values (possibly using the 

new operator) before they are used. The syntax, outside the Date class, is 

dates[O] = new Date(): 

dates[0O].month = 1; 

dates[0].day = 1; 

dates[0].year = new Date.Year(); 

dates[0].year.number = 2000; 

dates[O].year.isLeap = true; 

Notice that field names come after the index that selects a specific array element. Also 

notice that the inner class name, Year, is qualified by the outer class name, Date, in the 

second new statement, because the statement is outside the Date class. As mentioned, Java 

programmers can write constructors that take parameters to accomplish such initialization 

of newly constructed objects, but this text does not use such constructors in the interest of 

language independence. 

Once array x is initialized with a new statement, as shown a few paragraphs above, the 

length of the array it references cannot change. Java provides a way to query this length, 

which is x.length. That is, the instance field length is automatically “attached” to the array 

object as part of the new operation, and can be accessed through x, as shown, as long as x 

refers to this object. 

The valid indexes (or subscripts) for elements of this array are 0 through (x.length — 

1). Java will stop the program (technically, throw an exception) if the program attempts to 

access an element with an index outside this range. We will often wish to use indexes in the 

range | through n, and therefore will initialize arrays with “new int[n+1]” in these cases. 

Java permits overloading and overriding of methods. A method is said to be over- 

loaded if ithas multiple definitions with varying parameter types, but the same return type. 

Many arithmetic operators are overloaded. Overriding means there are multiple definitions 

of a single method in the class hierarchy with the same parameter types, and Java applies 

the “closest” definition. (Again, for compatibility with other languages and because this 

capability is not central for understanding the algorithms, we avoid these features and refer 

interested readers to books on the Java language.) The same names for methods may be 

used in different classes, but this is not really overloading because the class name (or ob- 

ject name) appears as a qualifier when the names are used outside the class in which they 

are defined. Later examples will make this clear. 

For readers acquainted with C++, it is worth pointing out that Java does not permit 

the programmer to define new meanings for operators. This text uses such operators for 
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readability in pseudocode (e.g., 1 < y, where x and y are in some nonnumeric class, such 

as String). However, if you define a class and you develop an actual Java program with 

it, you must write named functions (e.g., less()) and call them to compare objects in your 

class. 

1.2.2 Organizer Classes 

We coin the term organizer class, which is not a standard Java term, to describe a very sim- 

ple class that merely groups several instance fields. This construct fulfills a role somewhat 

analogous to the C srruct and the Pascal or Modula record; analogous constructs exist in 

Lisp. ML, and most other programming languages. Organizer classes are diametrically op- 

posite from abstract data types in their purpose; they merely organize some storage, but do 

not limit access to it and do not provide any customized operations on it. It is often conve- 

nient to define an organizer class within some other class; in this case, the organizer class 

is called an inner class in Java terminology. 

An organizer class has just one method, called copy. Since variables are references to 

objects in Java, the assignment statement copies only the reference, not the fields of the 

object, as was illustrated in Example 1.1 with dueDate and noticeDate. If these variables 

are declared in an organizer class named Date, then we could use the statements 

noticeDate = Date.copy(dueDate); 

noticeDate.day = dueDate.day — 7; 

to copy the fields of dueDate into a new object referenced by noticeDate, then modify the 

day field of noticeDate only. 

Definition 1.1. The copy function for organizer classes 

The general rule for how the copy function (or method) in an organizer class should assign 

values to the instance fields of the new object (illustrated by assuming object d is being 

copied into a new object d2) is as follows: 

|. If the instance field (say year) is in another organizer class, then the copy method for 

that class is invoked, as in d2.year = Year.copy(d.year). 

2. If the instance field (say day) is not in an organizer class, a simple assignment is used, 

as in d2.day = d.day. 

The complete example is given in Figure 1.2. & 

The programmer must ensure that cycles do not occur in the definitions of organizer 

classes, or else copy might not terminate. Of course, a new object in an organizer class can 

also be created in the usual way: 

Date someDate = new Date(): 

Java sidelight: Java provides a facility for making a one-level copy of an object without 

having to write out each assignment statement, based on the clone method, but this will not 

handle nested structures such as Date automatically; you will still need to write some code 

for these cases. Appendix A gives the code for a “generic” copy] level function. 
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class Date 

{ 
public Year year; 

public int month; 

public int day; 

public static class Year 

{ 
public int number; 

public boolean isLeap; 

public static Year copy(Year y) 

{ Year y2 = new Year(); 

y2.number = y.number; 

y2.isLeap = y.isLeap; 

return y2; 

} 

public static Date copy(Date d) 

{ Date d2 = new Date(); 

d2.year = Year.copy(d.year); // organizer class 

d2.month = d.month; 

d2.day = d.day; 

return d2: 

} 

public static int defaultCentury; 

} 

Figure 1.2. An organizer class Date with an inner organizer class Year 

An organizer class contains only public instance fields. If the static keyword also 

appears in the field declaration, the field is not associated with any particular object, but is 

essentially a global variable. 

Example 1.2 Typical organizer classes 

In Figure 1.2 the classes of Example 1.1 are embellished with copy functions, so they 

will qualify as organizer classes. As we see, the definition of copy is mechanical, though 

tedious. Its details will be omitted from future examples. For completeness, we included 

defaultCentury as an example of a “global variable,” although most organizer classes will 

not contain globai variables. 
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1.3 Mathematical Background 

To summarize, we invented the term organizer class to denote a class that simply 

groups together some instance fields and defines a function to make copies of them. 

1.2.3. Java-Based Pseudocode Conventions 

Most algorithms in this book use Java-based pseudocode, rather than strict Java, for easier 

readability. The following conventions are used (except in the Java-specific Appendix A). 

|. Block delimiters (“{" and “}’) are omitted. Block boundaries are indicated by indenta- 

tion. 

2. The keyword static is omitted from method (function and procedure) declarations. 

All methods declared in the text are static. (Nonstatic built-in Java methods appear 

occasionally; in particular, s.length( is used to obtain the length of strings.) The 

keyword static does appear where needed for instance fields and inner classes. 

1s) Class name qualifiers are omitted from method (function and procedure) calls. For 

example, x = cons(z, x) might be written when the Java syntax requires x = IntList. 

cons(z, x). (The IntList class is described in Section 2.3.2.) Class name qualifiers are 

required in Java whenever static methods are called from outside the class in which 

they are defined. 

4. Keywords to control visibility, public, private, and protected, are omitted. Placing 

all files related to one Java program in the same directory eliminates the need to deal 

with visibility issues. 

5. Mathematical relational operators “4." “<,.’ and “>” are usually written, instead of 

their keyboard versions. Relational operators are used on types where the meaning 1s 

clear, such as String, even though this would be invalid syntax in Java. 

6. Keywords, which are either reserved words or standard parts of Java, are set in this 

font: int, String. Comments are set in this font. Code statements and program 

variable names are set in this font. However, pseudocode statements are set in the 

regular font of the text, like this sentence. 

Occasional departures from this scheme occur when we are making a specific point about 

the Java language. 

Mathematical Background 

We use a variety of mathematical concepts, tools, and techniques in this book. Most should 

already be familiar to you, although a few might be new. This section collects them to 

provide a ready reference, as well as a brief review. Proof concepts are covered in greater 

depth in Chapter 3. 

1.3.1 Sets, Tuples, and Relations 

This section provides informal definitions and a few elementary properties of sets and 

related concepts. A set is a collection of distinct elements that we wish to treat as a single 

object. Usually the elements are of the same “type” and have some additional common 

11 
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properties that make it useful to think of them as one object. The notation e € S is read 

“element e is a member of set S” or, briefly, “e is in S.” Notice that e and S are different 

types in this case. For example, if e is an integer, S is a set of integers, which is different 

from being an integer. 

A particular set is defined by listing or describing its elements between a pair of curly 

braces. Examples of this notation are 

Sil (GaGa Spe {x | x is an integer power of 2} : Ae ee me 

The expression for S> is read “the set of a// elements x such that x is an integer power of 

2.” The “|” symbol is read “such that” in this context. Sometimes a colon (“:”) is used in 

this place. The ellipsis *.. °° may be used when the implicit elements are clear. 

If all elements of one set, S;, are also in another set, S$», then S| is said to be a subset 

of S and S> is said to be a superset of S;. The notations are S$; C So and Sz > S;. To denote 

that S; is a subset of So and is not equal to Sx, we write S; C Sz or Sy D S;. It is important 

not to confuse “e€” with “Cc.” The former means “is an element in” and the latter means “Is 

a set of elements contained within.” The empty set, denoted by 4, has no elements, so it is 

a subset of every set. 

A set has no inherent order. Thus, in the above examples, S$; could have been defined 

as {b, c, a} and $3 could have been defined as {7 | | <7 <7} when it is understood that 7 1s 

an integer. 

A group of elements in a specified order is called a sequence. Besides order, another 

important difference between sets and sequences is that sequences can have repeated 

elements. Sequences are denoted by listing their elements in order, enclosed in parentheses. 

Thus (a, b,c), (b,c, a), and (a, b, c, a) are distinct sequences. The ellipsis can also be used 

for sequences, as in (1,..., 7). 

A set S is finite if there is an integer n such that the elements of S can be placed in a 

one-to-one correspondence with {1,..., n}; in this case we write |S| =n. In general, |S| 

denotes the number of elements in set S, also called the cardinality of S. A sequence is 

finite if there is an integer n such that the elements of the sequence can be placed in a one- 

to-one correspondence with (1,..., n). A set or sequence that is not finite is infinite. If all 

the elements of a finite sequence are distinct, that sequence ts said to be a permutation of the 

finite se? consisting of the same elements. This again underscores the difference between a 

set and a sequence. One set of n elements has n! distinct permutations (see Section 1.3.2). 

How many distinct subsets does a finite set of n elements have? Keep in mind that the 

emply set and the entire set are subsets. To construct any subset we have n binary choices: 

to include or exclude each element of the given set. There are 2” distinct ways to make 

these choices, so there are 2” subsets. 

How many distinct subsets of cardinality k does a finite set of n elements have? There 

is a special notation for this quantity: (), read “7 choose k” or, more verbosely, “number 

of combinations of 7 items taken k ata time.” The notation C(7, k) is also used, and these 

quantities are called binomial coefficients. 

To find an expression for (/), or C(1, k), we focus on choices in the subset of k instead 

of choices in the original set, say $. We can make a sequence of k distinct elements of § as 
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follows: The first element of the sequence can be chosen from any element of S, so there 
are n choices. Then the second element of the sequence can be chosen from any remaining 
element of S, so there are (n — 1) choices for this, and so on until & elements are chosen. 
(If k > n it is impossible to make & distinct choices, so the result is 0.) Therefore there 
are n(n — 1)---(n —k + 1) distinct sequences of k distinct elements. But we saw that a 
specific set of k elements can be represented as k! sequences. So the number of distinct 
subsets of A, drawn from a set of n, is 

i n(n—1)---(M—k+1) n! L)= Zi sat torn ke). (he Cink) = ( 

Since every subset must have some size from 0 through n, we arrive at the identity 

n 

ee (1.2) 
k aan 3 

Tuples and the Cross Product 

A tuple is a finite sequence whose elements often do not have the same type. For example, 

in a two-dimensional plane, a point can be represented by the ordered pair (x, y). If itis a 

geometric plane, x and y are both “length.” But if it is a plot of running time vs. problem 

size, then y might be seconds and x might be an integer. Short tuples have special names: 

pair, triple, quadruple, quintuple, and so on. In the context of “tuple” these are understood 

to be ordered; in other contexts “pair” might mean “set of two” instead of “sequence of 

two,” and so on. A k-tuple is a tuple of k elements. 

The cross product of two sets, say S and T, is the set of pairs that can be formed by 

choosing an element of S as the first element of the tuple and an element of 7 as the second. 

In mathematical notation we have 

Se Gray ilemersenvice ie ES) 

Therefore |S x T| =|5S| |7|. It often happens that S and 7 are the same set, but this is not 

necessary. We can define the iterated cross product to produce longer tuples. For example, 

S x T « U is the set of all triples formed by taking an element of S, followed by an element 

of T, followed by an element of U. 

Relations and Functions 

A relation is simply some subset of a (possibly iterated) cross product. This subset might 

be finite or infinite, and can be empty or the entire cross product. The most important 

case is a binary relation, which is simply some subset of a simple cross product. We 

are all familiar with many examples of binary relations, such as “less than” on the reals. 

Letting R denote the set of all reals, the “less than” relation can be defined formally as 

{(x, y) |x €R, y ER, x < y}. As we see, this is a subset of R x R. As another example, if 

P is the set of all people, then P x P is the set of all pairs of people. We can define “parent 

of” as (x, y) such that x is a parent of y, “ancestor of” as (x, y) such that x 1s an ancestor 

of y, and these are subsets of P x P. 

1133 
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Although many relations are pairs in which both elements are the same type, this 1s 

not required by the definition. A set of pairs {(x, y) |x € S, y € T} is a binary relation. 

Going back to our earlier example of a tuple in a plot, such a relation might represent 

the relationship between problem size and running time for some program. For another 

example, we might let F be the set of all female people, and then “x is mother of y” would 

bea subset of F x P. 

Although relations may be arbitrary subsets, there are certain common properties 

of interest that a relation R might have when both elements are drawn from the same 

underlying set, say S. Also, in these cases, because many standard relations have an infix 

notation (such as x < y), the notation x Ry is often used to mean (x, y) € R. 

Definition 1.2 Important properties of relations 

Let RC S x S. Note the meanings of the following terms: 

reflexive FOr allie eS NX ek. 

symmetric whenever (x, y) € R, (y, x) is also in R. 

antisymmetric whenever (x, y) € R, (y, x) is notin R. 

transitive whenever (x, y) € R and (y, z) € R, then (x, z) € R. 

A relation that is reflexive, symmetric, and transitive is called an equivalence relation, 

often denoted with “="._ & 

Note that “less than” is transitive and antisymmetric, while “less than or equal” is 

transitive and reflexive, but not antisymmetric (because x < x). 

Equivalence relations are important in many problems because such a relation parti- 

tions the underlying set S; that is, it divides S into a collection of disjoint subsets (called 

equivalence classes) S,, S2,..., such that all elements in S; are “equivalent” to each other, 

all elements in Sz are equivalent to each other, and so on. For example, if S is some set of 

nonnegative integers and K is defined as Hes y) |x Ee S,y € S, (x — y) 1s divisible by BY 

then R is an equivalence relation on S. Clearly, (x — x) is divisible by 3. If (x — y) is di- 

visible by 3, so is (y — x). Finally, if (x — y) and (y — z) are divisible by 3, so is (x — z). 

So R satisfies the properties that define an equivalence relation. How does R partition S$? 

There are three groups, each with a different nonnegative remainder when divided by 3. 

All elements with the same remainder are equivalent to each other. 

Since a binary relation is a set whose elements are ordered pairs, it is often convenient 

to think of the relation as a two-column table in which each row contains one tuple. A 

function is simply a relation in which no element of the first column is repeated within the 

relation. 

Many problems that involve binary relations can be cast as problems on graphs. Graph 

problems constitute a rich class of challenging algorithmic problems. For example, in a big 

project involving many interdependent tasks, we might have many facts of the form “task x 

depends on task y having been completed.” With a fixed set of people to perform the tasks, 

how should they be scheduled to minimize the elapsed time? We will study many problems 

like this in later chapters. 
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1.3.2 Algebra and Calculus Tools 

This section provides some definitions and elementary properties about logarithms, proba- 

bility, permutations, summation formulas, and common mathematical sequences and se- 

ries. (A series is the sum of a sequence in this context.) We will introduce additional 

mathematical tools for recurrence equations in Chapter 3. You can find formulas not de- 

rived here by consulting the sources in Notes and References at the end of the chapter. 

Floor and Ceiling Functions 

For any real number x, |x| (read “floor of x’’) is the largest integer less than or equal to 

v. [x] (read “ceiling of x”) is the smallest integer greater than or equal to x. For example, 

[2 oi Dean Osh) 07; 

Logarithms 

The logarithm function, usually to the base 2, is the mathematical tool used most exten- 

sively in this book. Although logarithms do not occur very frequently in natural sciences, 

they are prevalent in computer science. 

Definition 1.3 Logarithm function and logarithmic base 

For b > 1 and x > 0, log, x (read “log to the base b of x’) is that real number L such that 

b” = x; that is, log, x is the power to which b must be raised to get x. 

The following properties of logarithms follow easily from the definition. 

Lemma 1.1 Let x and y be arbitrary positive real numbers, let a be any real number, and 

letb > 1 and c > | be real numbers. 

1. log, is a strictly increasing function, that is, if x > y, then log, x > log, y. 

2. log), is a one-to-one function, that is, if log, x = log, y, then x = y. 

3. tog) 10: 

4. log, b* =a 

a. log, (ay) = log, x 4 log, y- 

6, 103,(x*) =a log, x. 
7 x 8p ye \lOkp EG 

8. To convert from one base to another: log. x = (log, x)/(log, ¢). 0 

Since the log to the base 2 is used most often in computational complexity, there is a 

special notation for it: “Ig”; that is, lg x = log, x. The natural logarithm (log to the base e) 

is denoted by “In”; that is, In.x = log, x. When log(x) is used without any base being 

mentioned, it means the statement is true for any base. 

Sometimes the logarithm function is applied to itself. The notation lg lg(x) means 

Ig(Ig(x)). The notation Ig‘”’(x) means p applications, so Ig'?)(x) is the same as lg Ig(x). 

Note that lg) (65536) = 2, which is quite different from (1g(655 36))> = 4096. 

iid 
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Throughout the text we almost always take logs of integers, not arbitrary positive 

numbers, and we often need an integer value close to the log rather than its exact value. 

Let n be a positive integer. If n is a power of 2, say n = 2*. for some integer k, then 

lgn =k. If n is not a power of 2, then there is an integer k such that Den oe in 

this case, [lg] =k and [lgn] =k + 1. The expressions |lg | and [Ign] are used often. 

You should verify these inequalities: 

n< glen] < 2n. 

< qllsn] Zit 
bol 

Finally, here are a few more useful facts: lg e © 1.443 and lg 10 © 3.32. The derivative 

of In(x) is 1/x. Using part 8 of Lemma 1.1, the derivative of Ig(x) is Ig(e)/x. 

Permutations 

A permutation of n distinct objects is a sequence that contains each object once. Let 

Ves Cian eee Sn}. Note that the elements of S are ordered by their indexes; that 1s, s| 

is the first element, sz the second, and so on. A permutation of S is a one-to-one function 

a from the set {1, 2,...,} onto itself. We think of 7 as rearranging S by moving the /th 

element, s;, to the 7(/)th position. We may describe z simply by listing its values, that is, 

(Ges se ONG 5 65 m(n)). For example, for n = 5, 2 = (4, 3, 1, 5, 2) rearranges the elements 

of S as follows: 53, 55, 52, 5], 54. 

The number of permutations of n distinct objects is m!. To see this, observe that the 

first element can be moved to any of the n positions; then that position is filled and the 

second element can be moved to any of the n — | remaining positions; the third element 

can be moved to any of the remaining n — 2 positions, and so on. So the total number of 

possible rearransements isn x(n — 1) x(n —2) x. ox 2 =e Dean 

Probability 

Suppose that in a given situation an event, or experiment, may have any one, and only 

Oneol kK Outcomes: sin Sos ao sy. These outcomes are called elementary events. The set 

of all elementary events is called the universe and is denoted U. With each outcome s; we 

associate a real number Pr(s;), called the probability of s;, such that 

OESER(s <a nove || Syh eye 

Pr(s}) + Pr(s2) ++--+Pr(s,) = I. 

It is natural to interpret Pr(s;) as the ratio of the number of times 5; is expected to occur 

to the total number of times the experiment is repeated. (Note, however, that the definition 

does not require that the probabilities correspond to anything in the real world.) The events 

S|,..., 8, are said to be mutually exclusive because at most one of them can occur. 

The examples most frequently used to illustrate the meaning of probability are flip- 

ping coins, throwing dice, and various events with playing cards. In fact the origin of 
probability theory is thought to be in the study of gambling games by Blaise Pascal, a 

French mathematician. If the “experiment” is the flip of a coin, then the coin may land 
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with “heads” facing up or with “tails” facing up. We let s; = ‘heads’ and s> = ‘tails’ and 
assign Pr(s;) = 1/2 and Pr(s2) = 1/2. (If someone objects because the coin could land on 
its edge, we may let s3 = ‘edge’ and define Pr(s3) = 0. However, with a finite number of 
events, an event of probability zero can be ignored, so such elementary events are not usu- 
ally defined.) If a six-sided die is thrown, there are six possible outcomes: for | <i <6, 
sj = “the die lands with side number i facing up,” and Pr(s;) = 1/6. In general, if there 

are k possible outcomes and each is considered equally likely, then we let Pr(s;) = 1/k 

for each 1. Often, there is no reason to assume all outcomes are equally likely; primarily, 

this is an assumption used in examples or used because there is no data to support a better 

assumption. 

If the experiment involves several objects, then an elementary event must take into 

account what is observed about all of them. For example, if two dice, A and B, are thrown, 

then the event “A lands with side | facing up” is not an elementary event because there are 

several outcomes associated with B. In this case, the elementary events would be s;; = “die 

A lands with side 7 facing up and die B lands with side 7 facing up,” for | <i, 7 < 6. We 

will abbreviate this description to “A shows 7 and B shows /” from here on. There are 36 

elementary events, and it is customary to assign a probability of 1/36 to each. 

We often need to consider the probability of any one of several specified outcomes 

occurring or the probability that the outcome has a particular property. Let S be a subset of 

the elementary events {5;,...,: sx}. Then S is called an event, and Pr(S) = aes BRS Ye 

For example, suppose one die is thrown, and define the event S to be “the number appearing 

is divisible by 3.” Then; the probability of S$ is Pr(S) = Pr({s3, s6}) = Pr@3) + Pre) = 

1/3. Elementary events are also events. 

Two special events are the sure event, U = {sj,..., sx}, which has probability |, and 

the impossible event, 4, which has probability 0. (Recall that 4 denotes the empty set.) Also, 

for any event S, there is the complement event “not S,” consisting of all the elementary 

events that are not in S, that is, U — S. Clearly, Pr(not S) = 1 — Pr(S). 

Events can be defined in terms of other events by using the logical connectives “‘and” 

and ‘or.’ The event “S; and $3” is (S$; 9 Sz), the intersection of S$; and S. The event “S, 

or $3” is (S$; U Sz), the union of S$; and Sp. 

We often need to analyze probabilities based on some degree of partial knowledge 

about the experiment. These are called conditional probabilities. 

Definition 1.4 Conditional probability 

The conditional probability of an event S given an event T is defined as 

So Er s;) 

Pr(S|T Pr(S and 7) __ sj€SOT Ans 

tg PT yy Pr ; 
Sel 

where s; and s; range over elementary events. 

Example 1.3 Conditional probability with two dice 

Suppose two dice, A and B, are thrown in the experiment. Let us define three events: 

U7 
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S,: “A shows 1,” 

So: “B shows 6,” 

$3: “The sum of the numbers showing is 4 or less.” 

To get a feel for what the conditional probability means, let’s consider the simple 

case in which all the elementary events have the same probability. For our example, the 

36 elementary events are of the form “A shows i and B shows j,” for | <i, j < 6. Then 

the conditional probability Pr(S, | $3) can be interpreted as the answer to the question, 

“Out of all the elementary events in $3, what fraction of those elementary events are also 

isan 
Let us list all the elementary events in 53: 

“A shows | and B shows 1,’ “A shows 2 and B shows 1,” 

‘A shows | and B shows 2,” “A shows 2 and B shows 2,” 

‘“A shows | and B shows 3,’ “A shows 3 and B shows 1.” 

The event S; consists of 6 elementary events in which A shows I, and B shows each 

of its six possible values. Three of the elementary events in $3 are also in S|, so the answer 

to the question is 3/6 = 1/2. By an exact calculation from the formula in Equation (1.4), the 

probability of 5; given S3 is 

3/36 

6/36 

Notice that the conditional probability of $2 given $3 is 0; that is, Pr(S2| $3) =0. 

PFS) | Sa) = 1/2, 

In general, the procedure for calculating conditional probabilities given some spec- 

ified event S is to eliminate all the elementary events that are not in S, then rescale the 

probabilities of all the remaining elementary events by the same factor so that the rescaled 

probabilities sum to |. The required factor is 1/Pr(S). 

The conditional probability of an event may be either larger or smaller than the uncon- 

ditional probability of that event. In Example 1.3 the unconditional probability of S| is 1/6 

and the conditional probability of S; given $3 1s 1/2. On the other hand, the unconditional 

probability that “the number shown by A 1s divisible by 3” 1s 1/3. But in Example |.3 we 

see that the conditional probability that “the number shown by A is divisible by 3” given 

53 is 1/6. 

Definition 1.5 Stochastic independence 

Given two events S and 7, if 

Pros and 1) = Pr SiPrer ) 

then S and T are stochastically independent, or simply independent. @ 

If S is stochastically independent of 7, then Pr(S | 7) = Pr(S) (see Exercise 1.8). That 

is, knowing that event 7 has occurred does not influence the probability that event S occurs, 
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one way or the other. The property of independence is extremely useful when it exists, 
because it permits probabilities of different events to be analyzed separately. However, 

many errors in analysis are made by unjustified assumptions of independence. 

Example 1.4 Stochastic independence 

Continuing with the events defined in Example 1.3, events S$, and $j are independent 

because the probability of each is 1/6, and (S; and $2) consists of one elementary event, 

whose probability is 1/36. Notice also that Pr(S, | Sx) = (1/36)/(6/36) = 1/6 = Pr(S}). 

From the discussion in Example 1.3, we see that S$; and $3 are not independent, and 

that S> and $3 are notindependent. sm 

Random variables and their expected values are important for many situations that 

involve probabilities. A random variable is a real valued variable that depends on which 

elementary event has occurred; in other words, it is a function defined for elementary 

events. For example, if the number of operations done by an algorithm depends on the 

input, and each possible input is an elementary event, then the number of operations is a 

random variable. 

Definition 1.6 Expectation and conditional expectation 

Let f(e) be arandom variable defined on a set of elementary events e € U. The expectation 

of f, denoted as E(f), is defined as 

E(f)=)_ f(©)Pre). 
ecU 

This is often called the average value of f, also. The conditional expectation of f given 

an event S, denoted as E(f | S), is defined as 

E(f |S)=)_ f(ePr(e| S) => fle)Pr(e| S) 
ecU ecS 

since the conditional probability of any event notin Sis 0. ™ 

Expectations are often easier to manipulate than the random variables themselves, 

particularly when several interrelated random variables are involved, due to the following 

important laws, which are easily proven from the definitions. 

Lemma 1.2 (Laws of expectations) For random variables f(e) and g(e) defined on a set 

of elementary events e € U, and any event S: 

E(f + g)=E(f) + Eg), 

E(f) =Pr(S)E(f |S) + Pr(not S) E(f |not S). a 

Example 1.5 Conditional probability and order 

In Chapter 4 we will consider probabilities in connection with order information gained 

by doing comparisons. Let’s look at an example of that type involving four elements A, 

19 
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B,C, D, which have distinct numerical values, but initially we know nothing about their 

values or relative values. We will write the letters in order to denote the elementary event 

that this is their relative order; that is, CB DA is the event that C < B < D < A. There are 

24 possible permutations: 

ABOD “ACBD CABD ACDE “CADE  CDAS 

ABDE ADBC DABC. ADEB  DACE: DCAS 

BACD BCAD CBAD BCDA CBDA ‘CDBA 

BADC BDAC DBAC BDCA DBECA DCBA 

We begin by assuming all input permutations are equally likely, so the probability of each 

one is 1/24. What is the probability that A < B? In other words, defining A < B as an event, 

what is its probability? Intuitively we expect it to be 1/2, and we can verify that by counting 

the number of permutations in which A apears before B in the sequence. Similarly, for any 

pair of elements, the probability that one is less than another 1s 1/2. For example, the event 

B < D has probability 1/2. 

Now suppose the program compares A and B and discovers that A < B. How does this 

“affect” the probabilities? To make this question more rigorous, we phrase it as, “What are 

the probabilities conditioned on the event A < B?” We see by inspection that the event 

A < B consists of all the elementary events in the first two rows of the table. Therefore the 

conditional probabilities of these elementary events given A < B are twice their original 

probabilities, 2/24 = 1/12, while the conditional probabilities of the elementary events 

given A < B in the last two rows are 0. 

Recall that before any comparisons, the probability of the event B < D was 1/2. We 

have not compared B and D. Is the conditional probability of B < D given A < B still 

1/2? To answer the question, we check how many sequences in the first two rows have B 

preceding D. In fact, there are only four cases in which B precedes D in the first two rows. 

SOPr(B =< DA = B)= 1/3: 

Now consider the event C < D. Is its conditional probability different from 1/2? 

Again checking the first two rows of the table, we see that C precedes D in six cases, 

so Pr(C < D| A < B) = 1/2. Therefore the events A < B and C < D are stochastically 

independent. This is what we would expect: The relative order of A and B should not “have 

any influence” on the order of C and D. 

Finally, suppose the program does another comparison and discovers D < C (it already 

discovered A < B). Let’s look at the conditional probabilities given both of these events 

(which is also the single event “A < B and D < C’). We see by inspection that the event 

“A < B and D < C” consists of all the elementary events in the second row of the table. 

To make the conditional probabilities sum to 1, all of these elementary events must have a 
conditional probability of 1/6. The program has not compared A or B to either of C or D. 
Does this mean that the conditional probabilities of the events A < C, A < D, B < C, and 
B < D are unchanged from their original probabilities, which were all 1/2? The answer is 
worked out in Exercise 1.10. 
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Example 1.6 Expected number of inversions 

Consider the same probability space as Example 1.5. Let us define the random variable 

I(e) to be the number of pairs of elements whose relative key order is opposite their 

alphabetical order. This is called the number of inversions in the permutation. For example, 

(ABCD) =0, I(ABDC) = 1 because D < C but C precedes D in alphabetical order, 

!(DCBA) =6, and so on. By inspection we see that E(/) = 3. Now consider E(/ | A < B) 

and E(/ | B < A). Again, by direct count we find they are 2.5 and 3.5, respectively. Since 

Pr(A < B)=Pr(B < A)=$, Lemma 1.2 tells us that E(/) = 4(2.5 + 3.5), which is true. 

] 

To summarize, conditional probabilities reflect the uncertainties of a situation when 

we have some partial knowledge. They can be calculated by discarding all the elementary 

events that are known not to be possible in the current situation, then scaling up the 

remaining probabilities of elementary events so that they again sum to |. Any event whose 

probability does not change as a result of this calculation 1s (stochastically) independent of 

the known event. Independent events often involve objects that do not influence each other 

(like multiple coins or multiple dice). 

Summations and Series 

There are several summations that occur frequently when analyzing algorithms. Formulas 

for some of them are listed here and in the next section, with brief hints that may help you 

to remember them. A note on terminology: A series 1s the sum of a sequence. 

Arithmetic Series: The sum of consecutive integers: 

n(n +1) 
i= (1.5) 

4 

How to remember it: Write out the integers from | to n. Pair up the first and last, that is, 

1 and n; pair up the second and next to last, 2 and n — 1, and so on. Each pair adds up to 

(n + 1) and there are n/2 pairs, giving the result. (If n is odd the central element counts as 

“half a pair.”) The same trick works for limits other than I and n. 

Polynomial Series: First, we consider the sum of squares. 

11 

a Ini +an* +n 
i= A (1.6) 

6 
tI 

This can be proved by induction on n. The main thing to remember is that the sum of the 

first n squares is roughly n> /3. Equation (1.6) is not used in the text, but you may need it 

for some of the exercises. 

The general case 1s 

eu ~ we Glee) 
k+1 

21 
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which is justified by approximation by an integral, as described in the next section. (For 

any specific k an exact formula can be proved by induction.) Compare this kind of series 

carefully with “geometric series,” which follow. 

Powers of 2: This is a frequently occurring case of a geometric series. 

k 

ae ase Sik (1.8) 

How to remember it: Think of each term 2! as a |-bit in a binary number; then: 

k 

2 aes 
i=0 

There are k + | 1-bits. If 1 is added to this number the result is 

100.20 2°** 

(This result can also be obtained by using the following formula for the geometric series.) 

Geometric Series: 

ieee k 

eee pees ; (1.9) 
r—1 

i=0 

To verify this, divide out the right-hand side. As a special case, with r = 3, we have 

aang 

A geometric series is distinguished by having a constant in the base and a variable in the 

exponent. A polynomial series has a variable in the base and a constant exponent. The 

behaviors are quite different. 

Harmonic Series: 

n | 
Y>— In(n) +, where y © .577. (1.11) 

l 
t=] 

The sum is called the nth Harmonic number. The constant y is called Euler’s constant. See 

also Example 1.7. 

Arithmetic-Geometric Series: In the next sum, the i term would give us an arithmetic 

series and the 2' term would give us a geometric series, hence the name. 

k 
yi E A+] ) 2 =(h= 12 2. Cloak?) 

ti 
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The derivation is an example of “summation by parts,” which is analogous to “integration 
by parts.” The sum is rearranged into a difference of two sums that cancel except for their 
first and last terms, minus a third sum of a simpler form: 

k k 

Sie 1 
i=l i= 

k k—| 

=k ped es Soi eyo 

t=] i=0 

k k—| k-] 

= ee = a % yo 

(ese i=0 i=0 

me a a =) a0"! a) II S&S | R 
> + 

fe i) 

Fibonacci Numbers: The Fibonacci sequence is defined recursively as: 

Fy = Pyap tt Py ROL) 2, 

Fo=0: Fp. 
GD) 

Although this is not a summation, the series occurs frequently in analysis of algorithms. 

Monotonic and Convex Functions 

Sometimes very general properties are enough for us to draw some useful conclusions 

about the behavior of functions. Two such properties are monotonicity and convexity. 

Throughout the discussion of monotonicity and convexity in this section, we assume some 

interval a < x < 00 1s understood, where a is usually 0, but might be | 1f logs are involved. 

All points mentioned are in this interval, and f is defined in this interval. The domain may 

be either reals or integers. 

Definition 1.7 Monotonic and antimonotonic functions 

A function f(x) is said to be monotonic, or nondecreasing, if x < y always implies that 

f(x) < f(y). A function f(x) is antimonotonic, or nonincreasing, if — f (x) is Monotonic. 

@ 

“4° . > . 9 7 

Examples of familiar monotonic functions are x, x~ for x > 0, log(x) for x > 0, and 

e*. Less familiar monotonic functions are |x| and [x], showing that monotonic functions 

need not be continuous. An antimonotonic example is 1/x for x > 0. 

Definition 1.8 Linear interpolation function 

The linear interpolation of a given function f(x) between two points uw and v, u < v, is the 

function defined by 

23 
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(a) Linear interpolation (b) Extension of f(m) to f*(x) 

Figure 1.3 Illustrations for convexity discussion: The function f is different in parts (a) and 

(b). In part (b), f*() 1s convex. 

(v —x)f(u) + (x —u)f(v) 

(v — u) 

fw) = Fo) f(v) — flu) 
= f(u) + (x —4u)- = f(v) —-(v—- x) a (1a) 

v—Uu iu 

L fouv(X) 

that is, the straight-line segment joining f(w) and f(v) (see Figure 1.3a).  @ 

Definition 1.9 Convex functions 

A function f(x) is said to be convex if for all u < v, f(x) < L¢yy(%) in the interval (u,v). 

Informally, f(x) is convex if it never curves downward. 

Thus functions like x, x7, 1/x, and e* are convex. The function in Figure 1.3(b) is 

convex (but not monotonic), whether interpreted on the reals or just on the integers; the 

function in Figure |.3(a) is monotonic, but not convex. Also, log(x) and \/x are not convex. 

What about x log(x)? The following lemmas develop some practical tests for convexity. 

It is easy to see (and possible to prove) that a discontinuous function cannot be convex. 

Lemma 1.3 states that it is sufficient to consider equally spaced points to test for convexity, 

which simplifies things considerably. The proof is Exercise 1.16. 

Lemma 1.3 

1. Let f(x) be a continuous function defined on the reals. Then f(x) is convex if and 

only if, for any points x, y, 

FG +y)) < Ff) + fQ)). 

In words, f evaluated at the midpoint between x and y lies on or below the midpoint 

of the linear interpolation of f between x and y. Note that the midpoint of the linear 

interpolation is just the average of f(x) and f(y). 



1.3 Mathematical Background 

2. A function f(n) defined on integers is convex if and only if, for any n,n + 1,n +2, 

fin+1) <5(f(n) + f(n + 2)). 

In words, f(n + 1) is at most the average of f(n) and f(n +2). oO 

Lemma 1.4 summarizes several useful properties of monotonicity and convexity. It 

states that functions defined only on the integers can be extended to the reals by linear 

interpolation, preserving properties of monotonicity and convexity. Also, some properties 

involving derivatives are stated. The proofs are in Exercises 1.17 through 1.19. 

Lemma 1.4 

1. Let f(r) be defined only on integers. Let f*(x) be the extension of f to the reals by 

linear interpolation between consecutive ee (see Figure |.3b). 

a. f (mn) 1s monotonic if and only if f*(+) is monotonic. 

b. f(m) is convex if and only if f*(x) is convex. 

2. If the first derivative of f(x) exists and is nonnegative, then f(x) is monotonic. 

3. If the first derivative of f(x) exists and is monotonic, then f(x) 1s convex. 

4. If the second derivative of f(x) exists and is nonnegative, then f(x) is convex. (This 

follows from parts 2 and 3.) 0 

Summations Using Integration 

Several summations that arise often in the analysis of algorithms can be approximated 

(or bounded from above or below) using integration. First, let us review some useful 

integration formulas: 

n | . no 

if xk (gl ei yee. / go! dee (e" = 1) 

0 ka Ve 5 

: | | Jk k+1 k+l | ims In(m) — =n" ’” 
ie si us ; ye i ) (k + Ie 

If f(x) is monotonic (or nondecreasing), then 

b b+ 

[3 “(x)dx < 3 fi ys f Ft (xia. (1.16) 

4 (=a 

Similarly, if f(x) is antimonotonic (or nonincreasing), then 

b+ b b 

f@)dx = {ies i f@dx. ela) 
| oe a—l 

ce (=a 

INS: 
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a atl b b+] 

(a) Overapproximation 

rb b 

/ toads ye 
=a 

(b) Underapproximation 

Figure 1.4 Approximating a sum of values of a monotonic (or nondecreasing) function 

This situation for monotonic f(x) is illustrated in Figure 1.4. Here are two examples that 
are used later in the text. 

iM 

Example 1.7 An estimate for Ds = 
; i 
t=! 

n 

| US Cs , 
pst+f — =14+Inx|) =1+4Inn —Inl =In@) +1. 
l | x 
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by using Equation (1.17). Notice that we split off the first term of the sum and applied the 
integral approximation to the rest, to avoid a divide-by-zero at the lower limit of integration. 
Similarly, 

ui 

| 
ae — > In(n + 1). 

i 
t= 

See Equation (1.11) fora closer approximation. ™ 

n 

Example 1.8 — A lower bound for 5 lg i 

t=) 

nN nN n 

Yilei=0+ Digi | lg x dx 
] iN 2) 

by Equation (1.16) (see Figure 1.4b). Now 

" n 

i incase = / (Ig e) Inx dx = (lg e) i In x dx 

= (lg e)(x In x — aM = (ige)(n Inn —n+1) 

=nign—nige+lge>nlgn—nlge. 

Since lg e < 1.443, 

MN 

Yo lgi = nign — 1.443n. (1.18) 
ll 

Using the ideas of the previous example, but with more precise mathemathics, it is 

possible to derive Stirling's formula giving bounds for n!: 

n 
/ | 

(=) Jinn <n! < (=) aan (1+ —) torr 1 (1.19) n e e 

Manipulating Inequalities 

These rules for combining inequalities are frequently useful. 

Transitivity Addition Positive Scaling 

If A=<8 If A<B If A<B : 

and B<C and C=) and a> 0 (1.20) 

then A<C then A+C<B+D then aA<aB 

27 



28 Chapter 1 Analyzing Algorithms and Problems: Principles and Examples 

1.3.3 Elements of Logic 
Logic is a system for formalizing natural language statements so that we can reason more 

accurately. The simplest statements are called atomic formulas. More complex statements 

can be built up through the use of logical connectives. Examples of atomic formulas are 

“4 > 37° “4.2 is an integer,’ and “x + 1 > x.” Notice that a logical statement need not be 

true. The objective of a proof is to show that a logical statement is true. 

The most familiar logical connectives are “A” (and), “Vv” (or), and “=” (not), which 

are also called Boolean operators. The truth value of a complex statement is derived from 

the truth values of its atomic formulas, according to rules for the connectives. Let A and B 

be logical statements. Then, 

1. AA Bis true if and only if A is true and B is true; 

2. AV B is true if and only if A is true or B is true, or both; 

9) —A is true if and only if A is false. 

Another important connective for reasoning is called “implies,” which we denote with 

the symbol “=”. (The symbol “—>” is also seen.) The statement A => B is read as “A 

implies B,” or “if A then B.” (Notice that this statement has no “else” clause.) The 

“implies” operator can be represented with a combination of other operators, according 

to the following identity: 

A = B 1s logically equivalent to —A v B. (i201) 

This can be verified by checking all combinations of truth assignments to A and B. 

Another useful set of identities are called DeMorgan’s laws: 

(A A B) is logically equivalent to =A Vv -=B, (e227) 

—(A V B) is logically equivalentto —-=AA—B. (23) 

Quantifiers 

Another important kind of logical connective is the quantifier. The symbol Vx is called the 
universal quantifier and is read “for all x,’ while the symbol 3x is called the existential 
quantifier and is read “there exists x.” These connectives can be applied to statements that 
contain the variable x. The statement Vx P(x) is true if and only if P(x) is true for all x. The 
statement 4x P(x) is true if and only if P(x) is true for some value of x. Most frequently, 
a universally quantified statement is conditional: Vx(A(x) => B(x)). This can be read “For 
all x such that A(x) holds, B(x) holds.” 

Quantified statements obey a variation on DeMorgan’s laws: 

VxA(x) is logically equivalent to —4x(-A(x)), (1.24) 

dx A(x) is logically equivalent to —Vx(—A(x)). (125) 

Sometimes the translation from natural language into a quantified statement is trouble- 
some. People don't speak in the stilted language of logic, usually. We need to realize that 
“for any x” usually means “for all xv,” although “any” and “some” are often interchangeable 
in normal speech. The best guideline is to try rephrasing a sentence in natural language to 
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be more like the logical form, and then ask yourself if it means the same thing in natural 
language. For example, “Any person must breathe to live” might be the sentence you Start 
with. Possible rephrasings are “For all people x, x must breathe to live” and ‘For some 
person x, x must breathe to live.” Which means the same as the original sentence? 

Negating a Quantified Statement, Counterexamples 

What is necessary to prove that a general statement, say Vx(A(x) > B(x)), is false? 
We can use the foregoing identities to clarify the goal. The first thing to realize is that 

it is not necessary to prove Vx(A(x) = —B(x)). This is too strong a statement. The 

negation of Vx(A(x) => B(x)) is a(Vx(A(x) => B(x))), which can be put through a series 
of transformations: 

a(Wx(A(x) => B(x))) 1s logically equivalent to A3x-7(A(x) > B(x)) 

is logically equivalent to Ax-7(—A(x) V B(x)) (1.26) 

is logically equivalent to Jx(A(x) A =B(x)). 

In words, if we can exhibit some object x for which A(x) is true and B(x) is false, then we 

have proven that Vx(A(x) = B(x)) is false. Such an object (+) is called a counterexample. 

Contrapositives 

When trying to prove a statement, it is often convenient to manipulate it into a logically 

equivalent form. One such form is the contrapositive. The contrapositive of A => B is 

(—B) => (~A). Equation (1.21) allows us to verify that the contrapositive of an implication 

is true exactly when the implication itself is true: 

A= B sis logically equivalent to (—B) => (—A). G@e2) 

Sometimes, proving the contrapositive of a statement is called “proof by contradiction,” 

but “proof by contraposition” is a more accurate description. The genuine “proot by con- 

tradiction” is described next. 

Proof by Contradiction 

Suppose the goal is to prove a statement of the form A = B. A genuine proof by contradic- 

tion adds an additional hypothesis of —B, and then proves B itself. That is, (A A 7B) > B 

is the full statement that is proved. The following identity justifies this method: 

A= B is logically equivalentto (A A—B)=> B. (1.28) 

A genuine proof by contradiction is rare in algorithm analysis. However, Exercise 1.21 

calls for one. Most so-called proofs by contradiction are actually proofs by contraposition. 

Rules of Inference 

So far we have seen numerous pairs of logically equivalent statements, or logical identities: 

One statement is true if and only if the second statement is true. Identities are “reversible.” 
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Most proofs are directed at “irreversible” combinations of statements, however. The com- 

plete statement to be proved is of the form “if hypotheses, then conclusion.” The reversal, 

“if conclusion, then hypotheses” is often not true. Logical identities are not flexible enough 

to prove such “‘if-then” statements. In these situations, we need rules of inference. 

A rule of inference is a general pattern that allows us to draw some new conclusion 

from a set of given statements. It can be stated, “If we know B), ..., By, then we can 

conclude C,” where B), ..., By, and C are logical statements in their own right. Here are 

a few well-known rules: 

If we know then we can conclude 

B and BSC G Ce) 

AB Vand 93 = 6 N= 6 G30) 

BSC and =pSeCc G (esis) 

Some of the these rules are known by their Greek or Latin names. Equation (1.29) 1s modus 

ponens, Equation (1.30) is syllogism, and Equation (1.31) is the rule of cases. These rules 

are not independent; in Exercise 1.21 you will prove the rule of cases using other rules of 

inference and logical identities. 

Analyzing Algorithms and Problems 

We analyze algorithms with the intention of improving them, if possible, and for choosing 

among several available for a problem. We will use the following criteria: 

Correctness 

2. Amount of work done 

3. Amount of space used 

4. Simplicity, clarity 

5. Optimality 

We will discuss each of these criteria at length and give several examples of their appli- 

cation. When considering the optimality of algorithms, we will introduce techniques for 

establishing lower bounds on the complexity of problems. 

1.4.1 Correctness 

There are three major steps involved in establishing the correctness of an algorithm. First, 

before we can even attempt to determine whether an algorithm is correct, we must have 

a clear understanding of what “correct” means. We need a precise statement about the 

characteristics it is expected to work on (called the preconditions), and what 

result it is to produce for each input (called the postconditions). Then we can try to prove 
statements about the relationships between the input and the output, that is, that if the 
preconditions are satisfied, the postconditions will be true when the algorithm terminates. 

There are two aspects to an algorithm: the solution method and the sequence of 
instructions for carrying it out, that is, its implementation. Establishing the correctness of 
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the method and/or formulas used may be easy or may require a long sequence of lemmas 
and theorems about the objects on which the algorithm works (e.g., graphs, permutations, 
matrices). For example, the validity of the Gauss elimination method for solving systems 

of linear equations depends on a number of theorems in linear algebra. Some of the 

methods used in algorithms in this book are not obviously correct; they must be justified 

by theorems. 

Once the method is established, we implement it in a program. If an algorithm is fairly 

short and straightforward, we generally use some informal means of convincing ourselves 

that the various parts do what we expect them to do. We may check some details carefully 

(e.g., initial and final values of loop counters), and hand-simulate the algorithm on a few 

small examples. None of this proves that it is correct, but informal techniques may suffice 

for small programs. More formal techniques, such as loop invariants, may be used to verify 

correctness of parts of programs. Section 3.3 expands upon this topic. 

Most programs written outside of classes are very large and very complex. To prove 

the correctness of a large program, we can try to break the program down into smaller 

modules; show that, if all of the smaller modules do their jobs properly, then the whole 

program is correct; and then prove that each of the modules is correct. This task is made 

easier if (it may be more accurate to say, “This task is possible only if”) algorithms and 

programs are written in modules that are largely independent and can be verified separately. 

This is one of the many strong arguments for structured, modular programming. Most of 

the algorithms presented in this segments from which large programs 

are built, so we will not deal with the difficulties of proving the correctness of very long 

algorithms or programs. 

We will not always do formal proofs of correctness in this book, though we will give 

arguments or explanations to justify complex or tricky parts of algorithms. Correctness 

can be proved, though indeed for long and complex programs it is a formidable task. In 

Chapter 3 we will introduce some techniques to help make proofs more manageable. 

1.4.2 Amount of Work Done 

How shall we measure the amount of work done by an algorithm? The measure we choose 

should aid in comparing two algorithms for the same problem so that we can determine 

whether one is more efficient than the other. It would be handy if our measure of work 

gave some indication of how the actual execution times of the two algorithms compare, 

but we will not use execution time as a measure of work for a number of reasons. First, 

of course, it varies with the computer used, and we don’t want to develop a theory for 

one particular computer. We may instead count all the instructions or statements executed 

by a program, but this measure still has several of the other faults of execution ime. It 

is highly dependent on the programming language used and on the programmer’s style. 

It would also require that we spend time and effort writing and debugging programs for 

each algorithm to be studied. We want a measure of work that tells us something about 

the efficiency of the method used by an algorithm independent of not only the computer, 

programming language, and programmer, but also of the many implementation details, 

overhead (or “bookkeeping” operations) such as incrementing loop indexes, computing 
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array indexes, and setting pointers in data structures. Our measure of work should be 

both precise enough and general enough to develop a rich theory that is useful for many 

algorithms and applications. 

A simple algorithm may consist of some initialization instructions and a loop. The 

number of passes made through the body of the loop is a fairly good indication of the work 

done by such an algorithm. Of course, the amount of work done in one pass through a loop 

may be much more than the amount done in another pass, and one algorithm may have 

longer loop bodies than another algorithm, but we are narrowing in on a good measure of 

work. Though some loops may have, say, five steps and some nine, for large inputs the 

number of passes through the loops will generally be large compared to the loop sizes. 

Thus counting the passes through all the loops in the algorithm is a good idea. 

In many cases, to analyze an algorithm we can isolate a particular operation funda- 

mental to the problem under study (or to the types of algorithms being considered), ignore 

initialization, loop control, and other bookkeeping, and just count the chosen, or basic, 

operations performed by the algorithm. For many algorithms, exactly one of these opera- 

tions is performed on each pass through the main loops of the algorithm, so this measure 

is similar to the one described in the previous paragraph. 

Here are some examples of reasonable choices of basic operations for several prob- 

lems: 

Problem Operation 

Find x in an array of names. Comparison of x with an entry in the 

array 

Multiply two matrices with real entries. | Multiplication of two real numbers 

(or multiplication and addition of real 

numbers) 

Sort an array of numbers. Comparison of two array entries 

Traverse a binary tree (see Traversing an edge 

SeCuOniesss)) 

Any noniterative procedure, including — Procedure invocation 

recursive 

So long as the basic operation(s) are chosen well and the total number of operations 
performed is roughly proportional to the number of basic operations, we have a good 
measure of the work done by an algorithm and a good criterion for comparing several 
algorithms. This is the measure we use in this chapter and in several other chapters in this 
book. You may not yet be entirely convinced that this is a good choice; we will add more 
Justification for it in the next section. For now, we simply make a few points. 

First, in some situations, we may be intrinsically interested in the basic operation: 
It might be a very expensive operation compared to the others, or it might be of some 
theoretical interest. 

Second, we are often interested in the rate_of growth of the time required for the 
algorithm as the inputs get larger. So long as the total number of operations is roughly 
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proportional to the number of basic operations, just counting the latter can give us a pretty 
clear idea of how feasible it is to use the algorithm on large inputs. 

Finally, this choice of the measure of work allows a great deal of flexibility. Though we 
will often try to choose one, or at most two, specific operations to count, we could include 
some overhead operations, and, in the extreme, we could choose as the basic operations 
the set of machine instructions for a particular computer. At the other extreme, we could 
consider “one pass through a loop” as the basic operation. Thus by varying the choice of 

basic operations, we can vary the degree of precision and abstraction in our analysis to fit 

our needs. 

What if we choose a basic operation for a problem and then find that the total number 

of operations performed by an algorithm is not proportional to the number of basic oper- 

ations? What if it is substantially higher? In the extreme case, we might choose a basic 

Operation for a certain problem and then discover that some algorithms for the problem use 

such different methods that they do not do any of the operations we are counting. In such 

a situation, we have two choices. We could abandon our focus on the particular operation 

and revert to counting passes through loops. Or, if we are especially interested in the par- 

ticular operation chosen, we could restrict our study to a particular class of algorithms, one 

for which the chosen operation is appropriate. Algorithms that use other techniques for 

which a different choice of basic operation is appropriate could be studied separately. A 

class of algorithms for a problem 1s usually defined by specifying the operations that may 

be performed on the data. (The degree of formality of the specifications will vary; usually 

informal descriptions will suffice in this book.) 

Throughout this section, we have often used the phrase “the amount of work done 

by an algorithm.” It could be replaced by the term “the complexity of an algorithm.” 

Complexity means the amount of work done, measured by some specified complexity 

measure, Which in many of our examples is the number of specified basic operations 

performed. Note that, in this sense, complexity has nothing to do with how complicated 

or tricky an algorithm is; a very complicated algorithm may have low complexity. We will 

use the terms “complexity,” “amount of work done,” and “number of basic operations done” 

almost interchangeably in this book. Almost InterCuaneeabry Mts DOOk.—__ 

1.4.3 Average and Worst-Case Analysis 

Now that we have a general approach to analyzing the amount of work done by an algo- 

rithm, we need a way to present the results of the analysis concisely. The amount of work 

done cannot be described by a single number because the number of steps performed is not 

the same for all inputs. We observe first that the amount of work done usually depends on 

the size of the input. For example, alphabetizing an array of 1000 names usually requires 

more operations than alphabetizing an array of 100 names, using the same algorithm. Solv- 

ing a system of 12 linear equations in 12 unknowns generally takes more work than solving 

a system of 2 linear equations in 2 unknowns. We observe, secondly, that even if we con- 

sider inputs of only one size, the number of operations performed by an algorithm may 

depend on the particular input. An algorithm for alphabetizing an array of names may do 

very little work if only a few of the names are out of order, but it may have to do much 
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more work on an array that is very scrambled. Solving a system of 12 linear equations may 

not require much work if most of the coefficients are zero. 

The first observation indicates that we need a measure of the size of the input for a 

problem. It is usually easy to choose a reasonable measure of size. Here are some examples: 

Problem Size of input 

Find x in an array of names. The number of names in the array 

Multiply two matrices. The dimensions of the matrices 

Sort an array of numbers. The number of entries in the array 

Traverse a binary tree. The number of nodes in the tree 

Solve a system of linear equations. The number of equations, or the number 

of unknowns, or both 

Solve a problem concerning a graph. The number of nodes in the graph, or the 

number of edges, or both 

Even if the input size is fixed at, say, n, the number of operations performed may depend 

on the particular input. How, then, are the results of the analysis of an algorithm to be 

expressed? Most often we describe the behavior of an algorithm by stating its worst-case 

complexity. 

Definition 1.10 | Worst-case complexity 

Let D,, be the set of inputs of size n for the problem under consideration, and let / be an 

element of D,,. Let t(/) be the number of basic operations performed by the algorithm on 

input /. We define the function W by 

Win maxsi@ | eer. 

The function W(n) is called the worst-case complexity of the algorithm. W(n) is the 

maximum number of basic operations performed by the algorithm on any input of size n. : as 

It is often not very difficult to compute W(n). Section 1.5 introduces techniques for 

cases where an exact computation would be difficult. The worst-case complexity is valuable 

because It gives an upper bound on the work done by the algorithm. The worst-case analysis 

could be used to help form an estimate for a time limit for a particular implementation of an 

algorithm. We will do worst-case analysis for most of the algorithms presented in this book. 

Unless otherwise stated, whenever we refer to the amount of work done by an algorithm, 

we mean the amount of work done in the worst case. 

It may seem that a more useful and natural way to describe the behavior of an algorithm 
is to tell how much work it does on the average; that is, to compute the number of operations 
performed for each input of size n and then take the average. In practice some inputs might 
occur much more frequently than others so a weighted average is more meaningful. 
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Definition 1.11 Average complexity 

Let Pr(/) be the probability that input / occurs. Then the average behavior of the algorithm 
is defined as 

A(n) = Ss Pr(/)t(). @ 

TED, 

We determine f(/) by analyzing the algorithm, but Pr(/) cannot be computed analyt- 

ically. The function Pr(/) is determined from experience and/or special information about 

the application for which the algorithm is to be used, or by making some simplifying as- 

sumption (e.g., that all inputs of size n are equally likely to occur). If Pr(/) is complicated, 

the computation of average behavior is difficult. Also, of course, if Pr(/) depends on a 

particular application of the algorithm, the function A describes the average behavior of 

the algorithm for only that application. 

The following examples illustrate worst-case and average analysis. 

Example 1.9 Search in an unordered array 

Problem: Let E be an array containing n entries (called keys), E[O], ..., E[n—1], in no 

particular order. Find an index of a specified key K, if K is in the array; return —1 as the 

answer if K is not in the array. (The problem in which the array entries are in order 1s 

studied in Section 1.6.) 

Strategy: Compare K to each entry in turn until a match is found or the array is ex- 

hausted. If K is not in the array, the algorithm returns —1 as its answer. 

There is a large class of procedures similar to this one, and we call these procedures 

generalized searching routines. Often they occur as subroutines of more complex proce- 

dures. 

Definition 1.12 Generalized searching routine 

A generalized searching routine is a procedure that processes an indefinite amount of data 

until it either exhausts the data or achieves its goal. It follows this high-level outline: 

If there is no more data to examine: 

Fail. 

else 

Examine one datum. 

If this datum is what we want: 

Succeed. 

else 

Keep searching in remaining data. 

The scheme is called generalized searching because the routine often performs some other 

simple operations as it searches, such as moving data elements, adding to or deleting from 

a data structure, and soon. # 
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Algorithm 1.1 Sequential Search, Unordered 

Input: E,n, K, where E is an array with n entries (indexed 0,..., n — 1), and K is the 

item sought. For simplicity, we assume that K and the entries of E are integers, as is n. 

Output: Returns ans, the location of K in E (—1 if K is not found). 

int seqSearch(int[] E, int n, int K) 

1. int ans, index; 

2. ans=-1; // Assume failure. 

3. for (index = 0; index <n; index ++) 

4, if (K == E[index]) 

De ans = index; // Success! 

6. break; // Take the rest of the afternoon off. 

// Continue loop. 

7. return ans; 

Basic Operation: Comparison of x with an array entry. 

Worst-Case Analysis: Clearly W(n) =n. The worst cases occur when K appears only in 

the last position in the array and when K is not in the array at all. In both of these cases K 

is compared to all n entries. 

Average-Behavior Analysis: We will make several simplifying assumptions first to do 

an easy example, then do a slightly more complicated analysis with different assumptions. 

We assume that the elements in the array are distinct, and that if K is in the array, then it 1s 

equally likely to be in any particular position. 

For our first case, we assume that K is in the array, and we denote this event by 

“succ,” in accordance with the terminology of probabilities (Section 1.3.2). The inputs can 

be categorized according to where in the array K appears, so there are n inputs to consider. 

For 0 <i <n, let /; represent the event that K appears in the ‘th position in the array. Then, 

let ¢(7) be the number of comparisons done (the number of times the condition in line 4 is 

tested) by the algorithm on input /. Clearly, for 0 <i <n, t(J;) =i + 1. Thus 

n—| 

Asucc(n) = (AAGE | succ)t (1;) 

i=0 

(2) Gen _ fee 
= =e l — = ——————————-({ = i 

é n n 2} 3} 

The subscript “succ” denotes that we are assuming a successful search in this computation. 

The result should satisfy our intuition that on the average, about half the array will be 

searched. 

Now, let us consider the event that K is not in the array at all, which we call jal 

There is only one input for this case, which we call /i;. The number of comparisons in 

this case is t(/ faiy) =n, So A fait =N. 
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Finally, we combine the cases in which K is in the array and is not in the array. Let g be 
the probability that K is in the array. By the law of conditional expectations (Lemma 1.2): 

A(n) = Pr(succ)Asucc(n) + Pr(fail)A rail(n) 

= il = , 
= 7 (Sin+ 1)) + (l —@)n = ntl = 5q) + sq. 

If q = 1, that is, if K is always in the array, then A(n) = (n + 1)/2, as before. If g = 1/2, 
that is, if there is a SO-50 chance that K is not in the array, then A(n) = 3n/4 4+ 1/4; 
roughly three-fourths of the entries are examined. This concludes Example 1.9. a 

Example 1.9 illustrates how we should interpret D,,, the set of inputs of size n. Rather 

than consider all possible arrays of names, numbers, or whatever, that could occur as inputs, 

we identify the properties of the inputs that affect the behavior of the algorithm; in this case, 

whether K is in the array at all and, if so, where it appears. An element / in D, may be 

thought of as a set (or equivalence class) of all arrays and values for K such that K occurs 

in the specified place in the array (or not at all). Then ¢(/) is the number of operations done 

for any one of the inputs in /. 

Observe also that the input for which an algorithm behaves worst depends on the 

particular algorithm, not on the problem. For Algorithm 1.1 a worst case occurs when the 

only position in the array containing K is the last. For an algorithm that searched the array 

backwards (1.e., beginning with index =n — |), a worst case would occur if K appeared 

only in position 0. (Another worst case would again be when K is not in the array at all.) 

Finally, Example 1.9 illustrates an assumption we often make when doing average 

analysis of sorting and searching algorithms: that the elements are distinct. The average 

analysis for the case of distinct elements gives a fair approximation for the average behavior 

in cases with few duplicates. If there might be many duplicates, it is harder to make 

reasonable assumptions about the probability that K’’s first appearance in the array occurs 

at any particular position. 

Example 1.10 Matrix multiplication 

Problem: Let A = (aj;) be anm x n matrix and B = (bij) be ann x p matrix, both with 

real entries. Compute the product matrix C = AB. (This problem is discussed much more 

thoroughly in Chapter 12. In many cases we assume the matrices are square, that is, m =n 

andpi— 71s) 

Strategy: Use the algorithm implied by the definition of the matrix product: 

n—| 

cij = SS Aik DE; Lom Osi <r Oe 

k=0 

Algorithm 1.2 Matrix Multiplication 

Input: Matrices A and B, and integers m,n, p, designating that A is an m x n matrix and 

Bisann x p matrix. 

Output: Matrix C, an m x p matrix. C is passed in; the algorithm fills it. 
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matMult(A, B, C, m,n, p) 

for (i = 0; 1 <m;1 ++) 

fort; =0. 7 =p 7+) 

cij = 0; 
for (k = 0; k <n: k ++) 

Cij += Aik DK} 

Basic operation: Multiplication of matrix entries. 

Analysis: To compute each entry of C, n multiplications are done. C has mp entries so 

AGh,n; p) = Wn, Nn, p) =rinp. 

For the common case that m =n = p, A(n) = W(n) = n>. This concludes Example 1.10. 

® 

Example 1.10 illustrates that for some algorithms the instructions performed, hence the 

amount of work done, are independent of the details of the input; they depend only on the 

size of the input. In such cases the average and worst cases are equal. In other algorithms 

for the same problem, this may not be true. 

The concepts of worst-case and average-behavior analysis would be useful even if we 

had chosen a different measure of work (say, execution time) The observation that the 

amount of work done often depends on the size and properties of the input would lead 

to the study of average behavior and worst-case behavior, no matter what measures were 

used. 

1.4.4 Space Usage 

The number of memory cells used by a program, like the number of seconds required to 

execute a program, depends on the particular implementation. However, some conclusions 

about space usage can be made just by examining an algorithm. A program will require 

storage space for the instructions, the constants and variables used by the program, and 

the input data. It may also use some workspace for manipulating the data and storing 

information needed to carry out its computations. The input data itself may be representable 

in several forms, some of which require more space than others. 

If the input data have one natural form (say, an array of numbers or a matrix), then we 

analyze the amount of extra space used, aside from the program and the input. If the amount 

of extra space is constant with respect to the input size, the algorithm is said to work in 

place. This term is used especially in reference to sorting algorithms. efinition 

of in place is often used when the extra space is not constant, but is only a logarithmic 

function of the input size, because the log function grows so slowly, we will clarify any 

cases in which we use the relaxed definition.) 

If the input can be represented in various forms, then we will spicier the space 

required for the input itself as well as any extra space used. In general, we will refer to 

the number of “cells” used without precisely defining cells. You may think of a cell as 
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being large enough to hold one number or one object. If the amount of space used depends 
on the particular input, worst-case and average-case analysis can be done. 

1.4.5 Simplicity 

It is often, though not always, the case that the simplest and most straightforward way 

to solve a problem is not the most efficient. Yet simplicity in an algorithm is a desirable 
feature. It may make verifying the correctness of the algorithm easier, and it makes writing, 
debugging, and modifying a program easier. The time needed to produce a debugged 

program should be considered when choosing an algorithm, but if the program is to be 

used very often, its efficiency will probably be the determining factor in the choice. 

1.4.6 Optimality 

No matter how clever we are, we can’t improve an algorithm for a problem beyond a certain 

point. Each problem has inherent complexity; that is, there is some minimum amount of 

work required to Solve it. lo-analyze the complexity of a problem, as opposed to that of 
a specific algorithm, we choose a class of algorithms (often by specifying the types of 

operations the algorithms will be permitted to perform) and a measure of complexity, for 

example, the basic operation(s) to be counted. Then we may ask how many operations are 

actually needed to solve the problem. We say that an algorithm is optimal (in the worst 

case) if there is no algorithm in the class under study that performs fewer basic operations 

(in the worst case). Note that when we speak of algorithms in the class under study, 

we don’t mean only those algorithms that people have thought of. We mean all possible 

algorithms, including those not yet discovered. “Optimal” doesn’t mean “the best known”; 

it means “the best possible.” 

1.4.7. Lower Bounds and the Complexity of Problems 

Then how can we show that an algorithm is optimal? Do we have to analyze individually 

every other possible algorithm (including the ones we have not even thought of)? Fortu- 

nately, no; we can prove theorems that establish a lower bound on the number of operations 

needed to solve a problem. Then any algorithm that performs that number of operations 

would be optimal. Thus there are two tasks to be carried out in order to find a good algo- 

rithm, or, from another point of view, to answer the question: How much work is necessary 

and sufficient to solve the problem? 

1. Devise what seems to be an efficient algorithm; call it A. Analyze A and find a function 

Wa such that, for inputs of size n, A does at most Wa (7) steps in the worst case. 

i) For some function F,, prove a theorem stating that, for any algorithm in the class under 

consideration, there is some input of size n for which the algorithm must perform at 

least F'\(n) steps. 

If the functions Wa and F are equal, then the algorithm A is optimal (for the worst case). If 

not, it may be that there is a better algorithm or that there is a better lower bound. Observe 

that analysis of a specific algorithm gives an upper bound on the number of steps necessary 

to solve a problem, and a theorem of the type described in item 2 above gives a lower bound 
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on the number of steps necessary (in the worst case). In this book, we will see problems 

for which optimal algorithms are known and other problems for which there is still a gap 

between the best known lower bound and the best known algorithm. Simple examples of 

each case follow. 

The concept of a lower bound for the worst-case behavior of algorithms is very impor- 

tant in computational complexity. Example 1.11 and the problems studied in Section 1.6 

and Chapters 4 and 5 will help to clarify the meaning of lower bounds and illustrate tech- 

niques for establishing them. You should keep in mind that the definition “F is a lower 

bound for a class of algorithms” means that for any algorithm in the class, and any input 

size n, there is some input of size n for which the algorithm must perform at least F (n) 

basic operations. 

Example 1.11 Finding the largest entry in an array 

Problem: Find the largest entry in an array of n numbers. (Say the type is float to be 

specific; any numeric type will do.) 

Class of Algorithms: Algorithms that can compare and copy numbers of type float, but 

do no other operations on them. 

Basic Operation: Comparison of an array entry with any object of type float. It could be 

another array entry or a stored variable. 

Upper Bound: Suppose the numbers are in an array E. The following algorithm finds the 

maximum. 

Algorithm 1.3) FindMax 

Input: E, an array of numbers, defined for indexes 0... ., n=l; n= |, the number of 

entries. 

Output: Returns max, the largest entry in E. 

int findMax(E, n) 

[einnaxe— EO): 

2. for (index = 1; index <n; index ++) 

3 if (max < E[index]) 

4. max = E[index]: 

5. return max; 

Comparisons of array entries are done in line 3, which is executed exactly n — | 
times. Thus 7 — | is an upper bound on the number of comparisons necessary to find the 
maximum in the worst case. Is there an algorithm that does fewer? 

Lower Bound: To establish a lower bound we can assume that the entries in the array are 
all distinct. This assumption is permissible because, if we can establish a lower bound on 
worst-case behavior for some subset of inputs (arrays with distinct entries), it is a lower 
bound on worst-case behavior when all valid inputs are considered. 
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In an array with n distinct entries, n — | entries are not the maximum. We can conclude 
that a particular entry is not the maximum only if it is smaller than at least one other entry 
in the array. Hence, n — | entries must be “losers” in comparisons done by the algorithm. 

Each comparison has only one loser, so at least n — | comparisons must be done. That is, 

if there are two or more nonlosers left when the algorithm terminates, it cannot be sure 

it has identified the maximum. Thus F(n) =n — | is a lower bound on the number of 

comparisons needed. 

Conclusion: Algorithm 1.3 is optimal. This concludes Example 1.11]. a 

We could take a slightly different point of view to establish the lower bound in Exam- 

ple 1.11. If we are given an algorithm and an array of n numbers such that the algorithm 

halts and produces an answer after doing fewer than n — | comparisons, then we can prove 

that the algorithm gives the wrong answer for some set of input data. If no more than n — 2 

comparisons are done, two entries are never losers; that is, they are not known to be smaller 

than any other entries. The algorithm can specify at most one of them as the maximum. We 

can simply replace the other with a larger number (if necessary). Since the results of all 

comparisons done will be the same as before, the algorithm will give the same answer as 

before and it will be wrong. 

This argument is a proof by contraposition (see Section 1.3.3). We proved “if A does 

fewer than n — | comparisons in any case, then A is not correct.” By contraposition, we can 

conclude “if A is correct, then A does at least n — 1 comparisons in all cases.” It illustrates 

a useful technique for establishing lower bounds, namely, to show that, if an algorithm 

does not do enough work, one can arrange the input so that the algorithm gives the wrong 

answer. 

Example 1.12) Matrix multiplication 

Problem: Let A = (a;;) and B = (b;;) be twon x n matrices with real entries. Compute 

the product matrix C = AB. 

Class of Algorithms: Algorithms that can perform multiplications, divisions, additions, 

and subtractions on the matrix entries and on the intermediate results obtained by perform- 

ing these operations on the entries. 

Basic Operation: Multiplication. 

Upper Bound: The usual algorithm (see Example 1.10) does n> multiplications; hence at 

most n> multiplications are necessary. 

Lower Bound: It has been proven in the literature that at least n> multiplications are 

necessary. 

Conclusions: There is no way to tell from the information available whether or not the 

usual algorithm is optimal. Some researchers have been trying to improve the lower bound, 

that is, to prove that more than n° multiplications are necessary, while others have looked 

for better algorithms. To date it has been shown that the usual algorithm is nor optimal; 
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there is a method that does approximately n*7/° multiplications. Is this method optimal? 

The lower bound has not yet been improved, so we don’t know if there are algorithms that 

do substantially fewer multiplications. 

Up until now we have been discussing lower bounds and optimality of worst-case 

behavior. What about average behavior? We can use the same approach that we use with 

worst-case behavior. Choose what seems to be a good algorithm and figure out the function 

A(n) such that the algorithm does A(7) operations, on the average, for inputs of size n. 

Then prove a theorem stating that any algorithm in the class being studied must perform 

at least G(n) operations on the average for inputs of size n. If A = G, we can say that the 

average behavior of the algorithm is optimal. If not, look for a better algorithm or a better 

lower bound (or both). 

For many problems analyzing the number of operations exactly is too difficult. It is 

customary to regard an algorithm as optimal if the number of operations it does is within 

a constant factor of the exact optimum (which itself is often known only within a constant 

factor). In Section 1.5 we will develop a methodology for analyzing many problems within 

a constant factor, although we are unable to perform an exact analysis. 

We can use the same approach to investigate space usage as we used for time analysis. 

Analyze a particular algorithm to get an upper bound on the amount of space needed, and 

prove a theorem to establish a lower bound. Can we find one algorithm for a given problem 

that is optimal with respect to both the amount of work done and the amount of space used? 

The answer to this question is: sometimes. For some problems, there 1s a trade-off between 

time and space. 

1.4.8 Implementation and Programming 

Implementation is the task of turning an algorithm into a computer program. Algorithms 

may be described by detailed computer-language—like instructions for manipulating vari- 

ables and data structures, or by very abstract, high-level explanations in English of solution 

methods for abstract problems, making no mention of computer representations of the ob- 

jects involved. Thus the implementation of an algorithm may be a fairly straightforward 

translating job or it may be a very lengthy and difficult job requiring a number of important 

decisions on the part of the programmer, particularly concerning the choice of data struc- 

tures. Where appropriate, we will discuss implementation in the general sense of choosing 

data structures and describing ways to carry out instructions given in an English descrip- 

tion of an algorithm. Such discussion is included for two reasons. One, it is a natural and 

important part of the process of producing a (good) working program. Two, consideration 

of implementation details is often necessary for analyzing an algorithm: the amount of time 

required to perform various operations on abstract objects such as sets and graphs depends 

on how these objects are represented. For example, forming the union of two sets may re- 
quire only one or two operations if the sets are represented as linked lists, but would require 
a large number of operations, proportional to the number of elements in one of the sets, if 

they are represented as arrays and one must be copied into the other. . 
In the narrow sense, implementation, or simply programming, means converting a 

fairly detailed description of an algorithm and the data structures it uses into a program 
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for a particular computer. Our analysis will be implementation-independent in this sense; 
in other words, it will be independent of the computer and programming language used and 
of many minor details of the algorithm or program. 

A programmer can refine the analysis of algorithms under consideration using infor- 

mation about the particular computer to be used. For example, if more than one operation 

is counted, the operations can be weighted according to their execution times; or estimates 

of the actual number of seconds a program will use (in the worst or average case) can be 

made. Sometimes knowledge of the computer used will lead to a new analysis. For exam- 

ple, if the computer has any unusual, powerful instructions that can be used effectively in 

the problem at hand, then one can study the class of algorithms that make use of those 

instructions and count them as the basic operations. If the computer has a very limited in- 

struction set that makes implementation of the basic operation awkward, a different class 

of algorithms may be considered. Generally, however, if the implementation-independent 

analysis has been done well, then the program-dependent analysis should serve mainly to 

add detail. 

A detailed analysis of the amount of space used by the algorithms being studied is, of 

course, also appropriate when particular implementations are being considered. 

Any special knowledge about the inputs to the problem for which an algorithm is 

sought can be used to refine the analysis. If, for example, the inputs will be restricted to 

a certain subset of all possible inputs, a worst-case analysis can be done for that subset. As 

we have noted, a good average-behavior analysis depends on knowing the probability of 

the various inputs occurring. 

Classifying Functions by Their Asymptotic 
Growth Rates 

Just how good is our measure of work done by an algorithm? How precise a comparison 

can we make between two algorithms? Because we are not counting every step executed 

by an algorithm, our analysis necessarily has some imprecision. We have said that we 

will be content if the total number of steps is roughly proportional to the number of 

basic operations counted. This is good enough for separating algorithms that do drastically 

different amounts of work for large inputs. 

Suppose one algorithm for a problem does 2 basic operations, hence roughly 2cn 

operations in total, for some constant c, and another algorithm does 4.5n basic operations, 

or 4.5c’n in total. Which one runs faster? We really don’t know. The first algorithm may 

do many more overhead operations; that is, its constant of proportionality may be a lot 

higher. Thus if the functions describing the behavior of two algorithms differ by a constant 

factor, it may be pointless to try to distinguish between them (unless we do a more refined 

analysis). We consider such algorithms to be in the same complexity class. 

Suppose one algorithm for a problem does 5/2 multiplications and another algorithm 

does 5n2. Which algorithm will run faster? For small values of n the first does fewer 

multiplications, but for large values of n, the second is better—even if it does more 
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overhead operations. The rate of growth of a cubic function is so much greater than that of 

a quadratic function that the constant of proportionality doesn’t matter when n gets large. 

As these examples suggest, we want a way to compare or classify functions that 

ignores constant factors and small inputs. We get just such a classification by studying what 

is called the asymptotic growth rate, asymptotic order or, simply, the order of functions. 

Is it reasonable to ignore constants and small input values? Here is a completely non- 

technical, nonmathematical analogy that may help you understand our use of asymptotic 

order. Suppose you are choosing a city to live in and your main criterion is that it have a 

very hot climate. The choices are El Paso, Texas, and Yuma, Arizona. There’s not much 

difference in temperature between them, is there? But suppose you are choosing between 

three cities: El Paso, Yuma, and Anchorage, Alaska. You’d rule out Anchorage immedi- 

ately. This is analogous to saying two functions are of the same order, and a third one is 

of a different order. Knowing the order lets us make broad distinctions; we can eliminate 

those that are poor by our criterion. 

Now, how will you choose between El Paso and Yuma (or two algorithms whose 

running time is of the same order)? We could look up temperature records to find out 

that temperatures in one city average a few degrees higher than the other. This might be 

analogous to looking at the constant on two functions of the same order; for algorithms it 

might mean counting all operations, including overhead to get a more precise estimate of 

running time. Another approach would be to consider other criteria, perhaps availability of 

jobs and cultural amenities when choosing a city, or the amount of extra space used when 

choosing an algorithm. 

Is there ever a day when it is warmer in Anchorage than in El Paso? Sure; there might 

be a beautiful, unusually warm spring day in Anchorage when a cold front is passing 

through El Paso. This doesn’t make it wrong to say, in general, that Anchorage is much 

colder than El Paso. In the definitions we will give for big oh, big theta, and the other 

“order sets,” the behavior of the functions being compared is ignored for small values of n. 

Ignoring some small arguments (input sizes, for algorithms) is analogous to ignoring the 

few days when Anchorage might be warmer than El Paso or Yuma. 

1.5.1 Definitions and Asymptotic Notation 

We will use the usual notation for natural numbers and real numbers. 

Definition 1.13 Notation for natural numbers and reals 

1. The set of natural numbers is denoted as N = {0, 1, 2, 3,.. .}. 

2. The set of positive integers is denoted as Nt = {1, 2,3,...}. 

3. The set of real numbers is denoted as R. 

4. The set of positive reals is denoted as R*. 

5. The set of nonnegative reals is denoted as R*. 

Let f and g be functions from N to R*. Figure 1.5 informally describes the sets we 
use to show the relationships between the orders of functions. Keeping the picture and 
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Q(¢): functions that grow at least as fast as g 

——— 0(g): functions that grow at the same rate as g 

O(g): functions that grow no faster than g 

Figure 1.5 Big omega (), big theta (©), and big oh (O) 

the informal definitions in mind will help clarify the following formal definitions and 

properties. 

Definition 1.14 The set O(g) 

Let g be a function from the nonnegative integers into the positive real numbers. Then 

O(g) is the set of functions f, also from the nonnegative integers into the positive real 

numbers, such that for some real constant c > 0 and some nonnegative integer constant no, 

f(n) <cg(n) foralln>nop. 

It is often useful to think of g as some given function, and f as the function we are 

analyzing. Notice that a function f may be in O(g) even if f(n) > g(n) for all n. The 

important point is that f is bounded above by some constant multiple of g. Also, the 

relation between f and g for small values of n is not considered. Figure 1.6 shows the 

order relations for a few functions. (Note that the functions in Figure 1.6 are drawn as 

continuous functions defined on R* or R*. The functions that describe the behavior of 

most of the algorithms we will study have such natural extensions.) 

The set O(g) is usually called “big oh of g” or just “oh of g” although the “oh” 

is actually the Greek letter omicron, And, although we have defined O(g) as a set, it is 

common practice to say *f is oh of g,” rather than “fis a member of oh of g.” 

There is an alternative technique for showing that f is in O(g): 

ear erate Te ; 
Lemma 1.5 A function f € O(g) if lim =c < , including the case in which 

noo g(n) 

the limit is 0. 

That is, if the limit of the ratio of f to g exists and is not oo, then f grows no faster 

than g. If the limit is 00, then f does grow faster than g. 
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Figure 1.6 The orders of functions: /3; € O( f4), even though /3(x) > f4(x) for x > 4, since 

both are linear. f; and f> are of the same order. They grow faster than the other three functions. 

fs is of the lowest order among the functions shown. 

Example 1.13 Functions of different asymptotic orders 

Letef @)\= n>/2 and g(n) = 37n~ + 120n + 17. We will show that g¢€O(f), but f ¢ 

O(g). 
Since forn > 78, g(n) < 1 f(n), it follows that g € O( f). We could have come to the 

same conclusion from: 

_ g(n) BIA 100n BAF F 
lim : = lim = lim (74/n + 240/n? + 34/n) =0. 
n>oo f(n) n— oo n> /2 noo 

We can show that f ¢ O(g) by observing that the limit of f/g = oo. Here is an alternative 

method. We assume f € O(g) and derive a contradiction. If f € O(g), then there exist 

constants c and ng such that for all n > no, 

oe 
Us =) 

— < 37en~ + 120cen + 17c. 
2 

So 
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120c 1c 
Se ee Ean 

7 n ae 

~ py 

Since c is a constant and n may be arbitrarily large, it is impossible to have n/2 < 174c for 
aln>no. 

The following theorem is useful for computing limits when f and g extend to contin- 
uous, differentiable functions on the reals. 

Theorem 1.6 (L’H6pital’s Rule) Let f and g be differentiable functions, with derivatives 
f’ and g’, respectively, such that 

lim f(n)= lim g(n) =oo. 
nO nc 

Then 

f(n) ; f'(n) 
1m é 

noo g(n) n>0oo g/(n) 

Example 1.14 Use of L’H6pital’s Rule 

Let f(n) =n? and g(n) =n lgn. We will show that f ¢ O(g), but g € O(f). First, we 
simplify. 

7 x. 

; f(n) : i ; n 
lim == lim = lim —. 
n>co g(n) n>onlgn n-olgn 

Now we note (see Lemma 1.1) that lg m = In(7)/ In(2) in preparation for using L’ Hopital’s 

Rule: 

lim —— = lim == lit wl) = co! 
noo Inn n—0o I/n n—>0o 

Therefore f ¢ O(g). However, g € O(f) since the inverse ratio goes to0. 

The definition of &2(g), the set of functions that grow at least as fast as g, is the dual 

of the definition of O(g).? 

Definition 1.15 The set £2(g) 

Let g be a function from the nonnegative integers into the positive real numbers. Then 

Q2(g) is the set of functions f, also from the nonnegative integers into the positive real 

numbers, such that for some real constant c > 0 and some nonnegative integer constant 9, 

f(n)>cg(n)foralln>no. @ 

The alternative technique for showing that f is in §2(g) is as follows: 

> Readers who plan to consult other books and papers should be aware that the definition of 2 may vary slightly: 

The phrase “for all” may be weakened to “for infinitely many.” The definition of © shifts accordingly. 
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EN. . : : ae! 
Lemma 1.7 Function f € 02(g) if lim jy > 0, including the case in which the limit 

n>oo g(n) 

[s:co, IE 

Definition 1.16 The set ©(g), asymptotic order of g 

Let g be a function from the nonnegative integers into the positive real numbers. Then 

O(g) = O(g)N Q(z), that is, the set of functions that are in both O(g) and &2(g). The most 

common way of reading “ f € O(g)” is“ f is order g.” We often use the phrase “asymptotic 

order” for definiteness, and the term “asymptotic complexity” is also seen. 

We also have: 

es eet rt) : 
Lemma 1.8 Function f € ©(g) if lim - =c for some constant c such that 

n>oo g(n) 

=e =2ieo, (a 

Example 1.15 |= Asymptotic order of some algorithms 

The worst-case complexities of Algorithm |.1 (sequential search, unordered) and Algo- 

rithm 1.3 (finding the maximum element) are both in ©(n). The complexity (worst case or 

average) of Algorithm |.2 for matrix multiplication in the casem=n=pisinO(n). # 

The terminology commonly used in talking about the order sets is imprecise. For 

example: “This is an order n7 algorithm” really means that the function describing the 

behavior of the algorithm is in ©(n7). The exercises establish several facts about commonly 

encountered order sets, and relationships among them, such as the fact that n(7 — 1)/2 € 

Q(n?). 

Sometimes we wish to indicate that one function has strictly smaller, or strictly greater, 

asymptotic order than another. We can use the following definitions. 

Definition 1.17 The sets 0(g) and w(g) 

Let g be a function from the nonnegative integers into the positive real numbers. 

1. o(g) is the set of functions f, also from the nonnegative integers into the positive real 
. f(n) 

numbers, such that lim =i) 
noo g(n) 

2. w(g) is the set of functions f, also from the nonnegative integers into the positive real 
; f(n) 

numbers, such that lim 
noo g(n) 

=o. 

Usually, “o(g)” and “@(g)” are read “little oh of g” and “little omega of g.” It is easy 

to remember that functions 1n ae are the “smaller” functions in O(g). However, w(g) is 

not seen very often, probably because it is hard to remember that functions in @(g) are the 

larger functions of &2(g)! For more properties of o(g), see Exercises 1.33 and 1.34. 
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Algorithm | 2 3 4 

Time function (microsec.) 33n 46n len 13n- 3.4n> 2F 

Input size (1) Solution time 

10 .00033 sec. OOTS sec. .OO13 sec. 0034 sec. OO] sec. 

100 O03 sec. O3iseG! ALBISEC: 3.4 sec. 4. 10!® yr. 

1,000 O33 sec. 45 sec. lSisec: 94 hr. 

10,000 33° Sec, Gubisec: 22 min. 39 days 

100,000 Sra SEC 1.3 min. 1.5 days 108 yr. 

Time allowed Maximum solvable input size (approx.) 

1 second 30,000 2,000 280 67 20 

| minute 1,800,000 $2,000 2,200 260 26 

Table 1.1 How functions grow 

1.5.2 How Important Is Asymptotic Order? 

Table 1.1° shows the running times for several actual algorithms for the same problem. 

(The last column does not correspond to an algorithm for the problem; it is included to 

demonstrate how fast exponential functions grow, and hence how bad exponential algo- 

rithms are.) Look over the entries in the table to see how fast the running time increases 

with input size for the algorithms of higher complexities. One of the important lessons in 

the table is that the high constant factors on the @(7) and ©(n log n) algorithms do not 

make them slower than the other algorithms except for very small inputs. 

The second part of the table looks at the effect of asymptotic growth rate on the 

increase in the size of the input that can be handled with more computer time (or by using 

a faster computer). It is nor true in general that if we multiply the time (or speed) by 60 we 

can handle an input 60 times as large; that is true only for algorithms whose complexity is 

in O(n). The ©(n7) algorithm, for example, can handle an input only 60 times as large. 

To further drive home the point that the asymptotic order of the running time of an 

algorithm is more important than a constant factor (for large inputs), look at Table 1.2. A 

program for the cubic algorithm from Table 1.1 was written for the Cray-1 supercomputer; 

it ran in 3n° nanoseconds for input of size n. The linear algorithm was programmed on a 

TRS-80 (an inexpensive 1980s personal computer): it ran in 19.5 n milliseconds (which 

is 19, 500, 000 n nanoseconds). Even though the constant on the linear algorithm is 6.5 

million times as big as the constant on the cubic algorithm, the linear algorithm is faster 

3 This table (except the last column) and Table 1.2 are adapted from Programming Pearls by Jon Bentley 

(Addison-Wesley, Reading, Mass., 1986) and are reproduced here with permission, 
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Cray-1 Fortran“ TRS-80 Basic? 

nN 3n° nanoseconds 19, 500, 000n nanoseconds 

10 3 microseconds .2 seconds 

100 3 milliseconds 2.0 seconds 

1,000 3 seconds 20.0 seconds 

2,500 50 seconds 50.0 seconds 

10,000 49 minutes 3.2 minutes 

1,000,000 95 years 5.4 hours 

“ Cray-1 is a trademark of Cray Research, Inc. 

’ TRS-80 is a trademark of Tandy Corporation. 

Table 1.2 Asymptotic order wins out. 

Number of steps performed Maximum feasible input size 

on input of size n Maximum feasible input size in f times as much time 

f(n) s Snew 

t lgn S| Sy 

n S2 ESO) 

& 

n- $3 /t 83 

oe S4 sat gt 

Table 1.3. The effect of increased computer speed on maximum input size 

for input sizes n > 2500. (Whether one considers this a large or small input size would 

depend on the context of the problem.) 

If we focus on the asymptotic order of functions (thus including, say, n and 1,000,000 n 

in the same class), then when we can show that two functions are not of the same order, we 

are making a strong statement about the difference between the algorithms described by 

those functions. If two functions are of the same order, they may differ by a large constant 

factor. However, the value of the constant is irrelevant in determining the effect of a faster 

computer on the maximum input size an algorithm can handle in a given amount of time. 

That is, the value of the constant is irrelevant to the increase between the last two rows of 

Table 1.1. Let’s look a little more closely at the meaning of those numbers. 

Suppose we fix on a certain amount of time (one second, one minute—the specific 

choice is unimportant). Let s be the maximum input size a particular algorithm can handle 

within that amount of time. Now suppose we allow f times as much time (or our computer 

speed increases by a factor of r, either because technology has improved, or simply because 

we went out and bought a more expensive machine). Table 1.3 shows the effect of the 

speedup for several complexities. 
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The values in the third column are computed by observing that 

f (Snew) = number of steps after speedup 

= 1 - (number of steps before the speedup) = rf (s) 

and solving 

TASnew) = tf(s) 

OEM aye 

Now, if we multiply the functions in the first column by some constant c, the entries 
in the third column will not change! This is what we meant by saying that the constant is 
irrelevant to the effect of increased computer time (or speed) on the maximum input size 

an algorithm can handle. 

1.5.3. Properties of O, 2, and © 

The order sets have a number of useful properties. Most of the proofs are left as exercises; 

they follow easily from the definitions. For all the properties, assume that f, g,h:N— R*. 

That is, the functions map nonnegative integers into nonnegative reals. 

Lemma 1.9 If f € O(g) and g € O(h), then f € O(h); that is, O is transitive. Also, Q, 

©, o, and w are transitive. 

Proof Let c; and n, be such that f(n) < cyg(n) for all n > nj, and let cr and n> be 

such that g(7) < c2h(n) for all n > nz. Then for all n > max(n}, 12), f(n) < cyc2h(n). So 

f € Oth). The proofs for 2, ©, 0, and @ are similar. 

Lemma 1.10 

1. f € O(g) if and only if g € Q(f). 

2. If f € O(g), then g € O(f). 

3. © defines an equivalence relation on the functions. (See Section 1.3.1 for what needs 

to be shown.) Each set ©( f) is an equivalence class, which we call a complexity class. 

4. O(f +g) = O(max(f, g)). Similar equations hold for 92 and ©. (They are useful 

when analyzing complex algorithms, where f and g may describe the work done by 

different parts of the algorithm.) © 

Since © defines an equivalence relation, we can indicate the complexity class of 

an algorithm by specifying any function in the class. We usually choose the simplest 

representative. Thus if the number of steps carried out by an algorithm is described by 

the function f(n) =n?/6 +n? +21gn + 12, we say simply that the complexity of the 

algorithm is in @(n3). If f € O(n), we say that f is linear; if f € O(n), we say f is 
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quadratic; and if f € @(n?), f is cubic.4 O(1) denotes the set of functions bounded by a 

constant (for large 7). 

Here are two useful theorems. The proofs use the techniques presented in Sec- 

tion 1.5.1, especially L’ H6épital’s rule; they are left for exercises. 

Theorem 1.11 1g¢7 is in o(7”) for any w > 0. That is, the log function grows more slowly 

than any positive power of 7 (including fractional powers). 0 

Theorem 1.12 1‘ is in 0(2”) for any k > 0. That is, powers of n grow more slowly than 

the exponential function 2”. (In fact, powers of n grow more slowly than any exponential 

function c” where c > 1.) 

1.5.4 The Asymptotic Order of Commonly Occurring Sums 

Order notation makes it easy to derive and remember the asymptotic order of many sums 

that come up over and over in the analysis of algorithms. Some of these summations were 

defined in Section 1.3.2. 

Theorem 1.13 Let d be a nonnegative constant and let r be a positive constant not equal 

to |. 

1. The sum of a polynomial series increases the exponent by 1. 
nM 

Recall that a polynomial series of degree d is a sum of the form aS i”, The rule is that 

i=l 
this kind of sum is in © (n“*!). 

tN The sum of a geometric series is in © of its largest term. 
b 

Recall that a geometric series is a Sum of the form ) an 

; =a 

The rule applies whether 0 <r < | orr > 1, but clearly not when r = 1. The limits 

a and b are not both constants; typically, the upper limit b is some function of n and 

the lower limit @ is a constant. 

3. The sum of a logarithmic series is in ©(the number of terms times the log of the largest 

term). 
1 

A logarithmic series is a sum of the form 2 log(i). The rule states that this kind of 

t=| 

sum is in © (n log(7)). Recall that, for statements about asymptotic order, the base of 

the logarithm does not matter. 

Note that the terms /inear, quadratic, and cubic are used somewhat more loosely here than they usually are used 
by mathematicians. 
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logn 

logn—log2 

fn 

2 

Figure 1.7 Rectangles provide upper and lower bounds for many kinds of sums. When the 

areas of both rectangles have the same asymptotic order, that must be the order of the sum. 

n 

4. The sum of a polynomial-logarithmic series, which is a sum of the form Ss i“ log(i), 

| 

is in © (n“*! log(n)). 

1 

Proof Look at Figure 1.7. Since all the series in the theorem are of the form me fi), 

(fel | 

where f(7) is monotonic, it is clear that the larger rectangle, of height f (2) and width n, is 

an upper bound on the sum. Also, as seen in Figure |.4(b), the area under the graph of f(/) 

between / = 0 and i =n 1s a lower bound on the sum. For the cases of polynomial series 

and logarithmic series, that area can easily be bounded below by the area of the smaller, 

darkly shaded, rectangle. In the left picture, the area of the larger rectangle is n/+!, while 

the area of the smaller rectangle is n4+!/2¢*!, Since the areas of both rectangles have the 

same asymptotic order, the sum must have that order also. In the right picture, the two 

areas are n log n and (n/2)(log n — log 2). Polynomial-logarithmic series are similar, but 

this technique does not work for geometric series. The rule for the geometric series follows 

directly from Equation (1.9) in Section 1.3.2. O 

Searching an Ordered Array 

To illustrate the ideas presented in the previous sections, we will study a familiar problem. 

Problem 1.1 Ordered array search 

Given an array E containing n entries sorted in nondecreasing order, and given a value K, 

find an index for which K = E[index] or, if K is not in the array, return —I as the answer. 

a 

In practice, K is usually the key for an entry and the entries are in some class with other 

instance fields beside the key, so a more precise requirement might be K = Elindex].key. 

To simplify the discussion, we assume the entire array entry is the key and it is some 

numeric type. 
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Let’s pretend for the moment that we don’t know the Binary Search algorithm; we 

approach the problem as if for the first time. We will consider various algorithms, analyze 

worst-case and average behavior, and finally consider Binary Search and show that it is 

optimal by establishing a lower bound on the number of key comparisons needed. 

1.6.1 Some Solutions 

Observe that the sequential search algorithm (Algorithm 1.1) solves the problem, but it 

makes no use of the fact that we now have an array in which the entries are in order. Can 

we modify that algorithm so that it uses the added information and does less work? 

The first improvement is prompted by the observation that, since the array is in non- 

decreasing order, as soon as an entry larger than K is encountered, the algorithm can 

terminate with the answer —1!. (How should the test on line 4 of that algorithm be changed 

to avoid doing two comparisons on each pass through the loop?) How does this change af- 

fect the analysis? Clearly, the modified algorithm is better in some cases; it will terminate 

sooner for some inputs. The worst-case complexity, however, remains unchanged. If K is 

the last entry in the array or if K is larger than all the entries, then the algorithm will do n 

comparisons. 

For the average analysis of the modified algorithm, we must know how likely it is that 

K is between any two array entries. Suppose we define a gap, g;, to be the set of values 

Visuchthabeliqll <= yw Elion: = n — |. Also, let gg be all values less than E[0] 

and g, be all values greater than E[n—1]. We will assume, as we did in Example 1.9, that 

there is a probability g that K is in the array. If K is in E we assume that all positions in the 

array are equally likely (.e., have a conditional probability 1/n). If K is not in the array, 

we assume that all gaps are equally likely (i.e., have a conditional probability 1/(m + 1)). 

For 0 <7 <n, it takes 7 + 1 comparisons to determine that K = E[i] or that K is in g;, and 

it takes 2 Comparisons to determine that K is in g,. So we compute the average number of 

comparisons, conditioned on success (Ay,,--) and conditioned on failure (A fail). as follows: 

n—| 
| : n+l 

Asucc(n) = Ss (-) Gh ae 1) = aed 

| : | 
Ajant) = (— -)G++(—s)n. 

008 

The first equation corresponds to cases in which K is in the array, and is the same as in 
Example 1.9. The second equation corresponds to cases in which K is not in the array. 
Evaluating the sum is easy and left as an exercise. As in Example 1.9, the results are 
combined by the equation A(n) = GAsuee(n) + (1 — q)A fai(n). The result is that A(n) 
is roughly n/2, regardless of g. Algorithm 1.1 did 3n/4 comparisons on the average when 
q = 3, So the modified algorithm is an improvement, although its average behavior is still 
linear. 

Let's try again. Can we find an algorithm that does substantially fewer than n compar- 
isons in the worst case? Suppose we compare K to, say, every fourth entry in the array. If 
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there is a match, we are done. If K is larger than the entry to which it is compared, say E[i]. 
then the three entries preceding E[i] need not be explicitly examined. If K < Efi], then K 
is between the last two entries to which it was compared. A few more comparisons (how 
many?) will suffice to determine the position of K if it is in the array or to determine that 
it is not there. The details of the algorithm and the analysis are left for readers to work out, 
but it is easy to see that only about one-fourth of the entries in the array are examined. Thus 

in the worst case approximately 1/4 comparisons are done. 

We could pursue the same scheme, choosing a large value for j and designing an 

algorithm that compares K to every jth entry, hence allowing us to eliminate from con- 

sideration 7 — | keys at each comparison as we proceed through the array. Thus we do 

roughly n/j comparisons to locate a small section of E that may contain K. Then we fol- 

low up with about 7 comparisons to explore the small section. For any fixed / the algorithm 

will still be linear, but if we choose j to minimize (n/j + /), we find by calculus that / 

should be chosen as \/n. Then the total search cost is only 2,/n. We have broken the linear- 

time barrier! 

But can we do still better? Notice that we switched strategy after locating the small sec- 

tion. That section has about j elements, and we paid / to explore it, which is a linear cost. 

But now we know that a linear cost is too high. This suggests that we should recursively 

use Our “master strategy” on the small section, instead of switching strategies. 

The idea of the well-known Binary Search algorithm takes the “every /th entry” to its 

logical extreme, by jumping across half of the entries in one step. Instead of choosing a 

particular integer 7 and comparing K to every jth entry, we compare K first to the entry in 

the middle of the array. This eliminates half the keys with one comparison. 

Once we have determined which half might contain K, we apply the same strategy 

recursively. Until the section that might contain K has shrunk to zero size, or K has been 

found in the array, we continue to compare K to the middle entry in the section of the 

array under consideration. After each comparison, the size of the section of the array that 

may contain K is cut in half. Notice that this is another example of a generalized searching 

routine (Definition 1.12). The procedure fai/s when the section that might contain Khas 

shrunk to zero size; it succeeds if it locates K; and it keeps searching if neither of those 

events OCCUIS. 

This procedure is a prime example of the divide-and-conquer paradigm, which we 

will discuss at greater length in Chapters 3 and 4. The problem of finding K among n 

sorted elements is divided into two subproblems by comparing K with the middle element 

(assuming the middle element is not K ). We will see through analysis that solving the two 

subproblems separately is easier (in the worst case and in the average case) than solving 

the original problem without dividing it up. Actually, one of the subproblems is solved with 

zero work because we know that K can’t be in that part of the array. 

Algorithm 1.4 Binary Search 

Input: E, first, last, and K, where E£ is an ordered array in the range first, . . ., last. and 

K is the key sought. For simplicity, we assume that k and the entries of E are integers, as 

are first and last. 
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Output: index such that E[index] = K if K is in E within the range hist ee ldastanG 

index = —1 if K is not in this range of E. 

int binarySearch(int[] E, int first, int last, int K) 

(Ee if (last < first) 

2 index = -1; 

Br else 

4, int mid = (first + last) / 2; 

Dy if (K == E[mid]) 

6. index = mid: 

I else if (K < E[mid]) 

8. index = binarySearch(E, first, mid-1, K); 

9. else 

10. index = binarySearch(E, mid+1, last, K); 

Ie, return index; 

Correctness of Algorithm 1.4 is proved in detail in Section 3.5.7 as an illustration of a 

formal proof of correctness, after some needed material has been introduced. The kind of 

informal reasoning that is more often done was discussed just before the algorithm. 

1.6.2. Worst-Case Analysis of Binary Search 

Let us define the problem size for binarySearch as n = last — first + 1, the number of 

entries in the range of E to be searched. A reasonable choice of basic operation for the 

Binary Search algorithm is a comparison of K to an array entry. (A “comparison” for this 

discussion always means a comparison with an entry of E, not an index comparison as in 

line 1.) Let W(n) be the number of such comparisons performed by the algorithm in the 

worst case on arrays with 7 entries in the range to be searched. 

It is usual to assume that one comparison with a three-way branch 1s done for the tests 

on K in lines 5 and 7. (Even without three-way comparisons, about the same bound can 

be achieved with binary comparisons; see Exercise 1.42.) Thus W (77) is also the number of 

invocations of the binarySearch function, other than the one that reaches line 2 and exits 

without a comparison. 

Java sidelight: Many Java classes, including String, support three-way comparisons 

with the Comparable interface; user-defined classes can implement this feature also; see 

Appendix A. 

Suppose 7 > 0. The task of the algorithm is to find K ina range of n entries indexed 

from first through last. It proceeds to line 5 and compares K to E[mid], where mid = 

[(first + last)/2|. In the worst case these keys are not equal and either line 8 or line 10 is 

reached, depending on whether the left or right section of the range (relative to mid) might 

contain K. How many entries are there in these sections? If 7 1s even, there are n/2 entries 

in the right section of the array and (7/2) — | entries in the left section. If n is odd, there 

are (1 — 1)/2 entries in both sections. Hence, there are at most [7/2] entries in the section 

of the array that is specified to the recursive call. Therefore it is a conservative estimate that 

the size of the range is divided by 2 with each recursive call. 
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How many times can we divide n by 2 without getting a result less than 1? In other 
words, what is the largest d for which n/2¢ > 1? We solve for d: 24 <n and d < Ig(n). 
Therefore we can do [lg(7)J| comparisons following recursive calls, and one comparison 
before any recursive calls, for at most W(n) = [lg(1)| + | comparisons in all. Exercise 1.5 
gives us a slightly more convenient form for this expression, which is well defined for 
n =Q; it is [lg(m + 1)]. Thus we have shown that: 

Theorem 1.14 The Binary Search algorithm does W(1) = [lg(m + 1)] comparisons of 

K with array entries in the worst case (where n > 0 is the number of array entries). Since 

one comparison is done on each function invocation, the running time is in @(logn). 

Binary Search does fewer comparisons in the worst case than a sequential search does 

on the average. 

1.6.3 Average-Behavior Analysis 

To simplify the analysis a little, we will assume that K appears in at most one place in 

the array. As we observed at the beginning of this section, there are 2” + | positions that 

K might occupy: the 1 positions in E, which we call success positions, and the n + | 

gaps, or failure positions. For 0 <i <n, let /; represent all inputs for which K = E[i]. For 

1 <i <n, let /,4; represent inputs for which E[i-1] < x < Ei]. /, and />, represent inputs 

where K < E[O] and K > E[n—-1], respectively. Let ¢(/;) be the number of comparisons of 

K with array entries done by Algorithm 1.4 on input /;. Table 1.4 shows the values of f 

i OE) l t(1j) 

0 4 13 4 

| 3) 14 5 

2 3 15 3 

3 4 16 4 

4 5 17 5 

5 2 18 2, 

6 4 19 4 

i 5 20 5 

§ 3 21 3 

9 5) 22 5) 

10 4 a} 4 

1] 5 24 5 

12 | gaps 25, 28, 31, 38,41,44 4 

a all other gaps 

Table 1.4 The number of comparisons done by Binary Search, depending on the location of K, 

for n = 25 

Dy, 
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for n = 25. Observe that most successes and all gaps are within one of the worst case; that 

is, it takes 4 to 5 comparisons to find K most of the time. (For n = 31 we would find that 

most successes and all gaps are exactly the worst case.) So if we assume that all success 

positions are equally likely, it is not unreasonable to expect the number of comparisons 

done on the average to be close to lg n. Computation of the average assuming each position 

has probability 1/51 yields 223/51, or approximately 4.37, and lg 25 ~ 4.65. 

Since the average number of comparisons may depend on the probability that the 

search is successful, let us denote that probability by g, and define A, (7) to be the average 

number of comparisons when the probability of success is g. We have, by the law of 

conditional expectations (Lemma 1.2), that 

An) =¢ Ayn) + (1 —@) Agim). 

Therefore we can solve the special cases A,(m) (success is certain) and Ao(n) (failure 1s 

certain) separately, and combine them to get a solution for any g. Notice that A, is the same 

as Ayyee and Ag is the same as A ;;, in the nomenclature used for the sequential search. 

We will derive approximate formulas for Ao(7) and Aj(7), given these assumptions: 

1. All success positions are equally likely: Pr(/; | succ) = 1/n for 1 <i <n. 

2. n=2* — 1, for some integer k > 0. 

The last assumption is made to simplify the analysis. The result for all values of 1 1s very 

close to the result that we will obtain. 

For n = 2‘ — | itis easily seen that every failing search will use exactly k comparisons, 

no matter which gap K falls in. Therefore Ap(n) =Ig(n + 1). 

The key to analyzing the average behavior for successful searches is to switch from 

thinking about how many comparisons are done on a particular input /;, to thinking about: 

How many inputs do a specific number of comparisons, say tf comparisons? For | < ¢ < k, 

let s, be the number of inputs for which the algorithm does ¢ comparisons. 

For example, for n = 25, s3 = 4 because three comparisons would be done for each of 

the four inputs />, /g, /)5, and />}. 

It is easy to see that s; = 1 = 2°, 55 =2=2!, 53 =4 = 27, and in general, 5; = 2'~ 

Since each input has probability 1/n, the probability that the algorithm does f comparisons 

is Just s,/n, and the average is 

k 
5 k= 10" 

ANG?) = ) ‘{=)=- ) a 
al 

i il 

| 

by using Equation (1.12). (If we did not assume n = 2‘ — |, the value of s; would not 
follow the pattern, and some failures would use only k — | comparisons as in Table 1.4 for 
m= 25.) Now, smcen = 1 =o" 

(k—1)(n+1)+1 logn 
Ayn) = =lan +1) -1 +0 ( = : 

nl n 

As mentioned, Ag(7) = Ig(m + 1) holds for the assumption that K is not in the array. Thus 
we have proved the following theorem. 
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Theorem 1.15 Binary Search (Algorithm 1.4) does approximately lg(n + 1) — g com- 
parisons on the average for arrays with n entries, where q is the probability that the search 
is successful, and all success positions are equally likely. Oo 

1.6.4 Optimality 

In the previous section we began with a ©(n) algorithm, improved it to @(./n), and then 
to O(log n). Are more improvements possible? Even if we can’t improve the asymptotic 
order, can we improve the constant factor? The role of lower bounds analysis is to tell us 
when one or both of these questions can be answered negatively. A “tight” lower bound, 
one that matches the upper bound for our algorithm, assures us that further improvements 
cannot be found. 

We will show that the binary search algorithm is optimal in the class of algorithms that 
can do no other operations on the array entries except comparisons. We will establish a 
lower bound on the number of comparisons needed by examining decision trees for search 
algorithms in this class.? Let A be such an algorithm. A decision tree for A and a given 
input size n is a binary tree whose nodes are labeled with numbers between 0 and n — | 
and are arranged according to the following rules: 

1. The root of the tree is labeled with the index of the first entry in the array to which the 
algorithm A compares K’. 

tO Suppose the label on a particular node is 7. Then the label on the left child of that node 
is the index of the entry to which the algorithm will compare K next if K < E[i]. The 
label on the right child is the index of the entry to which the algorithm will compare 

K nextif K > E[i]. The node does not have a left (or right) child if the algorithm halts 

after comparing K to E[i] and discovering that K < Efi] (or K > E[i]). There is no 

branch for the case K = E[i]. A reasonable algorithm would do no more comparisons 

in that case. 

The class of algorithms that can be modeled by such decision trees is very broad; it 

includes sequential search and the variations considered at the beginning of this section. 

(Notice that the algorithm is permitted to compare two keys in the array, but this does not 

provide any information, because the array is already sorted, so we don’t make a node in the 

decision tree for this.) Figure 1.8 shows the decision tree for the Binary Search algorithm 

with n = 10. 

Given a particular input, algorithm A will perform the comparisons indicated along 

one path beginning at the root of its decision tree. The number of key comparisons per- 

formed is the number of nodes on the path. The number of comparisons performed in the 

worst case is the number of nodes on a longest path from the root to a leaf; call this num- 

ber p. Suppose the decision tree has N nodes. Each node has at most two children, so the 

number of nodes at a particular distance (counting each edge as one) from the root 1s at 

> We assume readers are acquainted with the terminology of binary trees, including terms such as root, leaf, and 

path; if not, please look ahead to Section 2.3.3 before proceeding. 

oY) 
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Figure 1.8 Decision tree for the Binary Search algorithm with n = 10 

most twice the number at the previous distance. Since the maximum distance of any node 

from the root is p — 1, we have 

Ie oe ey ay dat 

By Equation (1.8) the right-hand side is 2? — 1, so we have 2? > (N + 1). 

We have a relationship between p and N, but we want to relate p to n, the number of 

elements in the array to be searched. The key claim is that NV > n if the algorithm A works 

correctly in all cases. In particular, we claim that there is some node in the decision tree 

labeled 7 for each from 0 through n — 1. 

Suppose, to the contrary, that there is no node labeled 7, for some 7 in the range 

O through n — 1. We can make up two input arrays El and E2 such that El[i] = A but 

E2(i] = K’ > K. For all indexes j less than i we make E1{j] = E2[j] using some key values 

less than K, in sorted order; for all indexes j greater than ¢ we make E1[j] = E2[j] using 

some key values greater than K’, in sorted order. Since no node in the decision tree is 

labeled 7, the algorithm A never compares K to E1[i] or E2[i]. It behaves the same way on 

both inputs since their other entries are identical, and it must give the same output for both. 

Thus A gives the wrong output for at least one of the arrays and it is not a correct algorithm. 

We conclude that the decision tree has at least n nodes. 

So 2? > (N + 1) = (n+ 1), where p is the number of comparisons on the longest path 

in the decision tree. Now we take logs, and get p > Ig(n + 1). Since A was an arbitrary 

algorithm from the class of algorithms considered, we have proved the following theorem. 

Theorem 1.16 Any algorithm to find K in an array of 7 entries (by comparing K to array 

entries) must do at least [lg(7 + 1)] comparisons for some input. © 

Corollary 1.17 Since Algorithm 1.4 does [lg(7 + 1)] comparisons in the worst case, it 

isopumal. © 



Exercises 

Exercises 

Section 1.2 Java as an Algorithm Language 

1.1 Define an organizer class for personal information consisting of name, address, tele- 
phone number, and e-mail address, making reasonable assumptions about how these items 
would need to be broken down. 

Section 1.3 Mathematical Background 

1.2 For alln > 0Oandk > 0, show that 

(=O J+) 2 
where the notation of Equation (1.1) is being used. Using the alternative notation of that 

equation, Equation (1.32) becomes C(n,k) =C(n — 1,k) + C(n — 1, k — 1). You will need 

the fact that 0! = | for some boundary cases. 

1.3 Prove part 7 of Lemma 1.1, about logarithms. Hint: Take logs on both sides of the 

equation and use part 2 of that lemma. 

1.4 Prove part 8 of Lemma 1!.1, about logarithms. 

1.5 Show that [lg(n + 1)] = [Ign] + 1 for integers n > 1. Hint: Group values of n into 

ranges of the form 2* <n < 2**! — 1, 

1.6 Write a function (pseudocode is fine) to find [lg(7 + 1)], where 7 is a nonnegative 

integer, by repeatedly dividing n by 2. Assume your programming language truncates the 

result of integer division, dropping any remainder, as most languages do. Hand calculate a 

table of the first ten values to check your function. 

| lew 

a. How many different arrangements are there for an ordinary deck of 52 cards? (This 

should be easy.) 

b. Scientists estimate that approximately 10'> seconds have passed since the “Big Bang,” 

the beginning of the universe. Give an (easy) lower bound for your answer to part (a) 

in the form of a power of 10. How does it compare to the number of seconds since the 

Big Bang? 

1.8 Show that if § and 7 are stochastically independent, then 

GS) lera(oS3) and IAAP |S) = TACO) 

1.9 Show from the definitions that Pr(S) = Pr(S | T7)Pr(T) + Pr(S | not T)Pr(not 7). 
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1.10 What are the conditional probabilities of these four events given that A < B and 

D <= C, im the sitvationof Example 1.5: A<C,A=<D)B=C,B 2D? 

1.11 With the situation described in Example 1.6, what are E(/ | A < D) and E(/ | 

D <A)? 

1.12 Suppose three coins are lying on a table. One coin is chosen at random and flipped. 

We want to find the probability that after the flip the majority of the coins (that is, two 

or three of them) will have “heads” up, starting from various initial configurations. For 

each initial configuration given below, give the coins names, define the elementary events, 

and give their probabilities. State any assumptions you are making in assigning the prob- 

abilities. Which set of events is defined by the property that a majority of the coins have 

“heads” up after the flip, and what is the probability of this event? Suppose the sides facing 

up initially are 

a. heads, tails, tails. 

b. _ tails, tails, tails. 

c. heads, heads, tails. 

1.13 Consider four dice containing the numbers indicated below. For each pair of dice, 

say D; and Dj; with | <7, j <4 andi ¥ j, compute the probability that on a fair toss of 

the two dice, the top face of D; will show a higher number than the top face of D;. (Show 

the results in a4 x 4 matrix.) 

Di ie ee ee Ona 

DS COn ods =e Tee. 8h 9 

Dias Sec eaig eri 

De “3, 4 ASS 1. 

(If you do the computation correctly and study the results carefully, you will discover that 

these dice have a surprising property. If you and another player were gambling on who 

throws the higher number, and you chose your die first, the other player could always 

choose a die with a high probability of beating yours. These dice are discussed in Gardner 

(1983) where their discovery is attributed to B. Efron.) 

11 

1.14 Give a formula for ) i where a is an integer between | and n. 

1.15 Prove Equation (1.6). 

1.16 Prove Lemma 1.3. Hint: Suppose f(x) is above the linear interpolation line at some 
point between u and v, for some choice, u < v. Then, let w be the point between wu and 
uv such that f(w) is farthest above the line, in that interval. (Such a w must exist for 
continuous functions.) 



Exercises 

* 1.17 Prove part 1 of Lemma 1.4. 

1.18 Prove part 2 of Lemma 1.4. 

* 1.19 Prove part 3 of Lemma 1.4. Hint: You may find Lemma 1.3 helpful. 

1.20 Prove Equation (1.26); that is, cite the precise identities needed to justify each line 
in the derivation. 

* 1.21 This exercise is an opportunity to make a genuine proof by contradiction. Prove the 

rule of cases, Equation (1.31), which can be stated as follows: 

Proposition 1.18 (Rule of cases) If (B => C) and (—B > C), then C. 

Begin by assuming —C, and eventually derive C, using the hypotheses of the proposition, 

Equation (1.27), and modus ponens, Equation (1.29). 

Section 1.4 Analyzing Algorithms and Problems 

1.22. Give a formula for the total number of operations done by the Sequential Search 

algorithm (Algorithm 1.1) in the worst case for an array with n entries. Count comparisons 

of K with array entries, comparisons with the variable index, additions, and assignments 

to index. 

1.23. The median of an ordered set is an element such that the number of elements less 

than the median is within one of the number that are greater, assuming no ties. 

a. Write an algorithm to find the median of three distinct integers a, b, and c. 

b. Describe D, the set of inputs for your algorithm, in light of the discussion in Sec- 

tion 1.4.3 following Example 1.9. 

c. How many comparisons does your algorithm do in the worst case? On the average? 

How many comparisons are necessary in the worst case to find the median of three 

numbers? Justify your answer. 

1.24 Write an algorithm to find the second largest element in a set containing n entries. 

How many comparisons of elements does your algorithm do in the worst case? (It is 

possible to do better than 2n — 3; we will consider this problem again.) 

1.25. Write an algorithm to find both the smallest and largest elements in a set of n entries. 

Try to find a method that does at most roughly 1.52 comparisons of elements. 

1.26 Given the polynomial p(x) = dyx" + dy— eens re Von aetaaro re suppose the fol- 

lowing algorithm is used to evaluate it. 
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Pp = do, 

xpower = |; 

for (i = 1; i < nj i ++) 

xpower = X * xpower; 

p=p+d; * xpower; 

a. How many multiplications are done in the worst case? How many additions? 

b. How many multiplications are done on the average? 

Can you improve on this algorithm? (We will consider this problem again.) 

Section 1.5 Classifying Functions by Their Asymptotic Growth Rates 

1.27 Suppose Algorithm 1 does f(n) =n* +4n steps in the worst case, and Algorithm 

2 does g(n) = 29n + 3 steps in the worst case, for inputs of size n. For what input sizes is 

Algorithm | faster than Algorithm 2 (in the worst case)? 

1.28 Let p(n) = agn* + ay_in*—! + --- + ayn +. ap be a polynomial in n of degree k 

with a, > 0. Prove that p(7) is in O(n*), 

1.29 Add a row to Table 1.1 showing the approximate maximum input size that can be 

solved in one day, for each column. 

1.30 Let a and B be real numbers such that 0 < a < B. Show that n® is in O(n?) but n? 

is not in O(n"). 

1.31 List the functions below from lowest asymptotic order to highest asymptotic order. 

If any two (or more) are of the same asymptotic order, indicate which. 

a. Start with these basic functions: 

ese nign ne 
5 _ 
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b. Combine the following functions into your answer for part (a). Assume 0 < € < 1. 

e” Jn 2"-! Iglgn 
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1.32 Prove or give a counterexample: For every positive constant c and every function f 

from nonnegative integers into nonnegative reals, f(cn) € @( f(n)). Hint: Consider some 

of the fast-growing functions listed in the preceding problem. 

1.33 Prove or give a counterexample: For every function f from nonnegative integers 
into nonnegative reals, o( f) = O( f) — ©(f). (Here, ““—” denotes set difference: A — B 
consists of elements in A that are not in B.) 

1.34 Prove or give a counterexample: For every function f from nonnegative integers 
into nonnegative reals, no function g is in both O( f) and o( f), that is, O(f) No( f) = 9%. 



Exercises 

* 1.35 Prove Lemma 1.10. 

1.36 Prove Theorem 1.11. 

1.37. Prove Theorem 1.12. 

1.38 Show that the values in the third column of the speedup table (Table 1.3) are 
unchanged when we replace any function f (7) in the first column by cf (7), for any positive 
constant c. 

1.39 Give an example of two functions f, g: N—> R*, such that f ¢ O(g) and g Z O(f). 

1.40 Prove or disprove: 

ae teas @Q(n"). 

ell 

Section 1.6 Searching an Ordered Array 

1.41) Write out the algorithm to find K in an ordered array by the method suggested in 

the text that compares K to every fourth entry until K itself or an entry larger than K is 

found, and then, in the latter case, searches for K among the preceding three. How many 

comparisons does your algorithm do in the worst case? 

1.42 Design a variation of Binary Search (Algorithm 1.4) that performs only one binary 

comparison (that is, the comparison returns a Boolean result) of K with an array entry, per 

function invocation. You may add additional comparisons on range variables. Analyze the 

correctness of your procedure. Hint: When should your one comparison be equality (==)? 

1.43. Draw a decision tree for the Binary Search algorithm (Algorithm 1.4) with n = 17. 

1.44 Describe the decision tree for the Sequential Search algorithm (Algorithm 1.1) in 

Section |.4 for an arbitrary n. 

1.45 How can you modify Binary Search (Algorithm 1.4) to eliminate unnecessary work 

if you are certain that K is in the array? Draw a decision tree for the modified algorithm for 

n = 7. Do worst-case and average-behavior analyses. (For the average, you may assume 

n = 2* — | for some k.) 

1.46 Let S be a set of m integers. Let E be an array of n distinct integers (mn < mm), 

randomly chosen from the set S. Assume that the entries in E are sorted in ascending order. 

Let K be anelement randomly chosen from S. On the average, how many comparisons will 

be done by Binary Search (Algorithm 1.4) given E,0,n — 1, and K as input? Express your 

answer as a function of n and m. 
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1.47 The first n cells of the array E contain integers sorted in increasing order. The 

remaining cells all contain some very large integer that we may think of as infinity (call 

it maxint). The array may be arbitrarily large (you may think of it as infinite), and you 

don’t know n. Give an algorithm to find the position of a given integer x (x < maxint) in 

the array in O(log n) time. (The technique used here is useful for certain arguments about 

NP-complete problems that we will see in Chapter 13.) 

Additional Problems 

1.48 The expression x In(x) often needs to be evaluated at x = 0, but In(0) = —oe, so it 

is not clear what the value should be. Note that —x In(x) is positive for 0 < x < 1. Show 

that —x In(v) approaches 0 as x approaches 0 through positive values. 

1.49 We are given a probability space with elementary events U = {s),....: s,} and some 

conditional event E. The event E defines conditional probabilities pj(E) = Pr(s; | E). Uf 

B=, then pC) =Pris;).) 

Define the entropy of E as the function 

k 

H(E)=— )~ pi(E) lg(pi(E)). (1.33) 
i=1 

Exercise 1.48 justifies considering only events of nonzero probability when computing 

entropy. 

Intuitively, the entropy measures the amount of ignorance about the events: The larger 

the value, the less we know. If one event is certain and the rest are impossible, the entropy 

is 0. Entropy can also be viewed as a measure of randomness. 

a. Suppose Pr(s;) = 1/k for 1 <i <k. Whatis H(U)? 

b. Consider the situation of Example 1.5 for this and remaining parts of the exercise. For 

simplicity, use 1.6 as the value of Ig(3). 

What is the entropy before any comparisons are made? (See part a.) 

c. What is the entropy after A < B is discovered? That is, what is H(E), where E is the 

event A < B? Would it be different if B < A were discovered? 

d. What is the entropy after A < B and D < C are discovered? That is, what is H(E), 

where F is the event “A < B and D < C”? Would it be different if any of these 

inequalities were reversed? 

e. Suppose the program first compares A and B and finds out that A < B, then compares 

B and C. What are the entropies after each possible outcome of this comparison? 

f. Suppose two programs, P and Q, are trying to find out the order among the elements. 

Both start by comparing A and B. Suppose P next compares the maximum of A and B 

with C, as in part (e), and suppose Q next compares C and D, as in part (d). Assume 

that both programs make optimal choices of comparisons after the first two; you do 

not need to work out what the optimal choices are. 

Based on this much information, which program would you expect to use the 

smaller number of comparisons to find the complete order, in the worst case? What 



Notes and References 

about the best case? Only an informed guess and reasonable explanation are needed, 
not a proof. 

1.50 You have 70 coins that are all supposed to be gold coins of the same weight, but you 

know that one coin is fake and weighs less than the others. You have a balance scale; you 

can put any number of coins on each side of the scale at one time, and it will tell you if the 

two sides weigh the same, or which side is lighter if they don’t weigh the same. Outline an 

algorithm for finding the fake coin. How many weighings will you do? 

Notes and References 

Several other texts on design and analysis of algorithms are listed in the Bibliography. 

James Gosling is the main designer of Java. Gosling, Joy, and Steele (1996) and later 

editions give the specification of the Java language. 

Many of the references that follow are more advanced than this chapter; they would 

be useful and interesting to consult throughout the reading of this book. 

The ACM’s Alan M. Turing Award has been given to several people who have done 

important work in computational complexity. The Turing Award Lectures by Richard 

M. Karp (1986), Stephen A. Cook (1983), and Michael O. Rabin (1977) give very nice 

overviews of questions, techniques, and points of view of computational complexity. 

Graham, Knuth, and Patashnik (1994) cover many useful advanced mathematical 

techniques. Equations (1.11) and (1.19) are given there. Grassmann and Tremblay (1996) 

provide a good introduction to logic and proofs. 

Knuth (1976) discusses the meaning and history of the notations O( f) and O(f). 

Brassard (1985) presents arguments for the variation of the definitions used in this book. 

Bentley (1982 and 1986) and his past columns “Programming Pearls” in the Com- 

munications of the ACM contain beautifully written discussions of algorithm design and 

techniques for making programs more efficient in practice. 

Readers who wish to browse through research articles will find a lot of material in 

the Journal of the ACM, SIGACT News, the SIAM Journal on Computing, Transactions 

on Mathematical Software, and IEEE Transactions on Computers, to name a few sources. 

Many annual conferences present research on algorithms. 

Knuth (1984), a paper about the space complexity of songs, is very highly recom- 

mended for when the going gets rough. 
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Chapter 2. Data Abstraction and Basic Data Structures 

Introduction 

Data abstraction is a technique that allows us to focus on the important properties of a data 

structure, while leaving less important aspects unspecified. An abstract data type (ADT) 

consists of a data structure declaration, plus a set of operations involving the data structure. 

The client, or user, of an ADT calls these operations to create, destroy, manipulate, and 

interrogate objects (or instances) of the abstract data type. In this context, a client is just 

some procedure or function that is defined outside the ADT. 

This chapter describes a technique for specifying the required behavior of abstract data 

types, shows how to apply this technique to several widely used data structures, and also 

reviews some of the important properties of standard data structures that will play a part in 

later algorithm development. 

The specification technique is based on the pioneering work of David Parnas (see 

Notes and References at the end of the chapter). The key idea is called information hid- 

ing, or data encapsulation. ADT modules maintain private data that is accessible outside 

the module only through well-defined operations. Parnas’s goal was to provide a software 

design technique that would permit many parts of a large project to be worked on indepen- 

dently, yet still fit together and function correctly. 

In algorithm design and analysis, ADTs have another important role. The main design 

can be carried out using the ADT operations, without deciding how to implement these 

operations. After the algorithm is designed at this level, we can undertake an analysis to 

count how many of each ADT operation the algorithm uses. Armed with this information, 

we may be able to steer the implementation of the ADT operations in a direction that makes 

the more frequently used operations the least expensive. 

In other words, we may reason about the correctness of the algorithm considering only 

the logical properties of the ADTs used, which are independent of the implementation. 

However, the performance analysis depends upon the implementation. Designing with 

ADTs permits us to separate these two concerns. 

A programming language supports data abstraction to the extent that it permits the 

programmer to restrict clients’ access to an abstract data type; access is restricted to the 

defined operations and other public parts of the ADT class. The maintenance of private data 

is called encapsulation, or information hiding. This provides a tool for the programmer to 

ensure that certain invariants of the ADT object are preserved. That is, if the only access by 

clients to an instance of the ADT is through a small set of operations defined as the interface 

for that ADT, then the programmer who implements the operations can (at least in theory) 

make sure that the relationships among different parts of the data structure always satisfy 

the specifications of the ADT. The scenario is suggested in Figure 2.1. These considerations 

explain why ADTs are important in software engineering. 

We chose Java as the language in which to present algorithms mainly because of its 

simple and natural support for data abstraction. In Java an ADT is identified as a class. 

may create objects in this class; these objects are simply elements of the abstract data 

type. 
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2.2 ADT Specification and Design Techniques 

Program ADT 1 ADT 2 

specs specs 

N 7 
N we: 

Program implementor ADT | implementor ADT 2 implementor 

ADT | client ADT 2 client 

n A>) 7) Q wn 

Figure 2.1. ADT specifications provide the interface between client and implementor. In this 

example ADT | is implemented by using some services of ADT 2. 

ADT Specification and Design Techniques 

The specifications of an ADT describe how the operations behave, in terms that are mean- 

ingful to the clients of the ADT. That is, specifications should avoid reference to private 

instance fields, because the clients are unaware of the private instance fields. The speci- 

fications describe the logical relationships among the public parts of the ADT, which are 

usually operations and constants. (Examples of specifications in later sections of this chap- 

ter will clarify these generalities.) ADT operations (functions and procedures) are called 

“methods” in Java terminology. 

A significant advantage of designing with ADTs is that the client can develop a 

logically correct algorithm knowing only the ADT specifications, without committing to 

a specific implementation (or even a specific language) for the ADT. This is the chief 

motivation for presenting ADT methodology in this book. 

2.2.1 ADT Specifications 

Specifications can usually be broken down into preconditions and postconditions. The 

preconditions of a particular operation are statements that are assumed to be true when the 

operation is called. If the operation has parameters it is important that the preconditions be 

stated in terms of these parameter names, for clarity. It is the client’s responsibility to meet 

the preconditions before calling any operation (or static method, or function, or procedure ) 

of the ADT class. The postconditions of a particular operation are statements that the client 

may assume to be true when the operation returns. Again, if the operation has parameters 

it is important that the postconditions be stated in terms of these parameter names. The 

postconditions are also called the objectives of the operation. 

Java provides a special comment format for the documentation of a class, including the 

javadoc comment. We use the javadoc commenting convention in the text to signal that 

a comment relates to the specifications for a procedure or block of code, as opposed to a 

remark about the implementation. 

7A. 
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What Goes into an ADT 

For our purposes an ADT is a coherent set of procedures and functions whose specifications 

interact to provide a certain capability. We adopt a minimalist view, by including only the 

necessary operations in the ADT itself; these are the operations that “need to know” how 

the objects are implemented. Thus an ADT is not a library of procedures that might be 

convenient; such a library might be supplied as an additional class, if desired. 

The necessary operations fall into three categories, constructors, access functions, and 

manipulation procedures. Destructors, which deallocate an object and make its storage 

space available for a new use, are not crucial because Java performs “garbage collection” 

automatically. Garbage collection locates unreferenced objects and recycles their space. 

Definition 2.1. Types of ADT operation 

Three categories of operation for ADTs follow: 

Constructors create a new object and return a reference to it. 

Access functions return information about an object, but do not modify it. 

Manipulation procedures modify an object, but do not return information. 

Thus, after an object is created, an operation may either modify the state of the object or 

return information about its state, but not both. 

Let us note here that an ADT constructor is not a constructor in the Java sense, and, 

like the other categories of ADT operations, is independent of the programming language. 

In Java it should not be preceded by the new keyword; it is used with the same syntax as 

any other function (or static method). 

Because of our rule that access functions do not modify the state of any objects, 

ADT specifications can usually be organized in a special way. It is normally unnecessary 

to give postconditions for access functions. Moreover, when stating the specifications of 

manipulation procedures and ADT constructors, their effects should be described in terms 

of the access functions of the ADT, as far as possible. Sometimes the specification needs 

to state the combined effect of several operations. It may seem illogical at first to look at 

the postcondition of an ADT constructor or manipulation procedure to find out what an 

access function “does.” However, if we view the access functions collectively as a sort 

of generalized “value” of an object, then it makes good sense: Whenever an operation 

initializes or changes the state of an object, the postcondition of that operation should tell 

us (whatever is relevant) about the new generalized “value” of the object. 

In choosing a set of operations for an ADT, it is important to be sure the set of access 

functions is sufficient to check the preconditions for all operations. This gives the client the 

capability to be sure no operation is ever called erroneously. 

For practical software development, it is convenient to have a library of frequently 

needed operations on the ADT. The distinction between the library and the ADT is that 

the operations in the library can be implemented by using the ADT operations; they do not 

need to “look under the hood” to see how the objects are implemented. (However, in some 

cases, “looking under the hood” would permit a faster version of a library function.) 
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2.3 Elementary ADTs—Lists and Trees 

2.2.2 ADT Design Techniques 
Definitions of several important ADTs that we use in the development of algorithms are 
given in later sections of this chapter. Readers can see by example how Java is used to 

define and implement some of these ADTs. It should also be easy to see how to implement 

them in other programming languages with which readers may be familiar. 

For simple and very standard ADTs, like linked lists, trees, stacks, and FIFO queues, 

the ADT used during design can be carried right through to the final implementation. In 

some cases other ADTs may be clients of these standard ADTs, and use them as building 

blocks. 

For more complex or nonstandard ADTs, such as the Dictionary, Priority Queue, 

and Union-Find, the ADT can be used during design for its logical advantages (such as 

simplifying the analysis of correctness), but then for the final implementation it may be 

more convenient to “unwrap” the ADT and implement a special case for the algorithm that 

uses it. 

Remaining sections of this chapter present several standard data structures and their 

associated abstract data types, proceeding generally from the simple to the complex. Var- 

ious issues concerning specification techniques are addressed as they arise along the way. 

In this chapter, except for linked lists, implementations are discussed only in some of the 

exercises. We include a few examples for linked lists to provide some sample Java code to 

serve as a guide in other situations. In general, implementations are discussed in the algo- 

rithms that use the ADTs, so the implementation can be tailored to the usage pattern of that 

algorithm. 

Elementary ADTs—Lists and Trees 

The abstract data types for lists and trees are simple, but very versatile, and their operations 

can all be implemented easily in constant time. We will specify these ADTs to have 

constructors and some access functions, but no manipulation procedures. The absence of 

manipulation procedures makes the specifications particularly simple. Other reasons for 

omitting manipulation procedures are explained in Section 2.3.2. Lists and trees are most 

naturally defined recursively. 

2.3.1. Recursive ADTs 

An ADT is recursive if any of its access functions returns the same class as the ADT. In 

other words, some part of the object (as returned by the access function) is of the same 

type as the object itself. In such cases the ADT usually also has a constructor that has 

a parameter of the same class as the ADT. Such an ADT necessarily has a nonrecursive 

constructor as well. However, the “nonrecursive constructor” is often simply a constant 

(which can be thought of as a function that takes no parameters). Linked lists and trees 

are common data structures that are most naturally defined recursively. As we shall see in 

Sections 2.3.2 through 2.3.5, their specifications are extremely simple and concise. 

The best way to think of an object in a recursive data type is as a structure that includes 

not only the fields that are immediately accessible, but also the fields that are indirectly 
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Figure 2.2 Objects in a recursive ADT should be viewed as all elements that are transitively 

part of the structure, not just the immediately accessible element. 

accessible through access functions in the ADT, some of which return objects of the same 

type as the ADT. For example, in Figure 2.2, the best way to view binary tree rooted at A 

is as the entire shaded structure, even though the root A is the only immediately accessible 

element. 

23.2) (heist ADT 

Lists are a fundamental data structure in computer science, with theoretical, as well as 

practical, significance. Many of the algorithms developed in this text, although presented 

using arrays, have efficient versions in which lists are the principal, or only, data structure. 

The programming language Lisp was originally built upon lists as the only data structure 

in the language; Lisp is an acronym for “list processing.” Several other programming 

languages, among them ML and Prolog, incorporate lists as built-in features. The list ADT 

presented here corresponds to list facilities offered by these languages, and the operation 

names are adopted from Common Lisp. 

In this text the term /ist always refers to what 1s often called a linked list in data- 

structure contexts. (For general ordered sets with no particular data structure in mind, we 

use the term sequence.) The shorter term /ist is a more suitable name for the ADT because 

no term “link” appears in the ADT specifications; if “links” are used in the implementation, 

that fact is concealed from the List clients. 

The kind of list needed most often in algorithms, particularly algorithms on graphs, 

is a list of integers. Therefore, this variety of list is used for illustrative purposes in this 

section. 

Java sidelight: Experienced Java users will be tempted to define IntList, and lists of 

other specific element types, as subclasses of the very general List. We did not choose this 

route because it introduces complications when the elements are of a primitive type, and 

it requires a close understanding of how inheritance decisions are made behind the scenes. 

These topics are not relevant to the study of algorithms. There are numerous texts on the 

Java language that delve into these possibilities. 

The specifications for the IntList ADT are shown in Figure 2.3. As indicated in the 

caption, transformations for lists of some other type are straightforward. This remark 

applies to code, as well as to specification statements. No name confusion results from 

having cons, first, rest, and nil in several classes because the language requires the 

expression IntList.cons to access the version in the IntList class, etc. 
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IntList cons(int newElement, IntList oldList) 

Precondition: none. 

Postconditions: If x = cons(newElement, oldList), then: 

x refers to a newly created object: 

HE Se =a 

3. first(x) = newElement: 

4. rest(x) = oldList: 

int first(IntList aList) 

Precondition: aList 4 nil. 

IntList rest(IntList aList) 

Precondition: aList < nil. 

IntList nil 

Constant denoting the empty list. 

Figure 2.3. Specifications of the IntList ADT. The function cons is the constructor; first and 

rest are access functions. The List ADT is the same except that all occurrences of int become 

Object, and all occurrences of IntList become List. Transformations for other element types are 

similar. 

The procedure header, enclosed in a box, shows the type signature of the function or 

procedure in Java and C syntax. Each parameter name is preceded by its type. Thus the 

first parameter of cons is an int and the second is an IntList. The type (or class) appearing 

before the procedure name is its return type. 

The rest of the specifications state preconditions and postconditions. It is unnecessary 

to state that parameters are of the appropriate types in the preconditions, because this is 

given in the prototype. In keeping with the methodology of Section 2.2.1, the behaviors of 

the access functions, first and rest, are described under the postcondition of cons. 

It is worth taking a moment to reflect about the simplicity of the List ADT. It is rather 

amazing, when you stop to think about it, that every computable function can be computed 

using lists as the only data structure. There is one constant for the empty list, and one 

function (whose standard name is cons, so we adopt that name) for building up a list by 

putting one new element at the front of a previous list (which might be the empty list). 

The other functions simply return information about a (nonempty) list. What is its first 

element? What list represents the rest of the elements? It is clear that all List operations 

can be implemented in constant time. (We are assuming that memory can be allocated for 

a new object in constant time, which is a common assumption. } 

The specifications for IntList can be implemented in several ways without changing the 

code in the clients of the ADT. Figure 2.4 shows a typical (and minimal) implementation. 

Notice that this implementation does not test for satisfaction of the preconditions of first 
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import java.lang.«; 

public class IntList 

{ 
int element: 

IntList next; 

/** The constant nil denotes the empty list. «/ 

public static final 

IntList nil = null: 

/ «x Precondition: L is not nil. 

« Returns: first element of L. «/ 

public static 

int first(IntList L) 

{ return L.element; } 

/ «x Precondition: L is not nil. 

« Returns: list of all elements of L, except Ist. «/ 

public static 

IntList rest(IntList L) 

{ return L.next: } 

/«« Precondition: None. 

+ Postcondition: Let newL be the return value of cons. 

+ Then: newL refers to a new object, newL is not nil, 

x first(newL) = newElement, rest(newL) = oldList. «/ 

public static 

IntList cons(int newElement, IntList oldList) 

{ 
List newL = new IntList(); 

newL.element = newElement: 

newL.next = oldList; 

return newL: 

j 

Figure 2.4 A typical implementation of the IntList ADT as a Java class. Each object has private 

instance fields element and next; the public field nil is a constant due to the keyword final: 

remaining parts of the class are methods. The javadoc utility associates a comment of the form 

“Jw... */” with the program element following the comment, and formats the documentation 

for Web browsers. 
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and rest. It is the caller's responsibility to see that preconditions of any called function 
are satisfied. We show the IntList implementation completely (Figure 2.4) as a guide for 
readers who want to get started on Java, and as a model that other ADTs can follow. In 
general, this book does not give complete code. Readers will have to fill in some details. 

For software engineering purposes we may want to create a class named IntListLib. 
(This class would have no constructor specified.) Methods in this library might well include 
length, copy, equals, reverse, sum, max, and min. 

Java sidelight: From a debugging point of view, it might be helpful to include the Java 
error or exception feature, but this complicates writing a complete set of specifications for 
both the ADT and the clients of the ADT. Throughout the text we adopt the approach that 
algorithmic code will concentrate on solving the problem. We remind readers that software 
engineering considerations will often suggest embellishments. 

Partial Rebuilding and Nondestructive Operations 

Attentive readers may be wondering how we ever modify a list under the IntList ADT 

regimen. The answer is simple: We don’t! There are no manipulation procedures. This 

ADT is called nondestructive for the reason that once an object is created it cannot be 

updated. (The term immutable is also seen.) There are three choices for tasks that require 

“updating” a list: 

1. In an object-oriented language, such as Java, define a subclass of IntList with the added 

update capability (making the subclass a destructive, or mutable, class), or 

to Modify the class IntList itself with the added update capability (making it a destructive, 

or mutable, class), or 

3. Leave the definition of IntList intact. To accomplish an “update,” partially rebuild the 

original list, yielding a new list, and reassign the list variable to refer to the new list 

instead of the original list. 

The idea of partial rebuilding is illustrated conceptually in Figure 2.5. The goal is to insert a 

new element, 22, between existing elements, 13 and 44, in the list represented by the object 

w in the top portion of the diagram. (Per the earlier discussion of recursive ADTs, we think 

of w as the whole list, not just the first element.) The parts of the list containing elements 

10 and 13, prior to the point of insertion, are “rebuilt,” as shown in the lower portion of the 

diagram. Of course, a new object is created for the new element 22. But new objects x’, to 

+—|48 

Figure 2.5. Partial rebuilding technique for insertion of 22 into a sorted list of 10, 13, 44, 48 

TT. 
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contain a new copy of 13, and w’, to contain a new copy of 10, are also created. Objects x 

and w thus remain intact. 

In general, partial rebuilding means that, for any object x that has a field we need 

to modify, we create a new object x’ with identical values for other fields and the new 

value for the field to be modified. Objects referenced by both x and x’ do not need to be 

modified, which is why the rebuilding is partial. But now, if an object w that also cannot 

be updated referred to x and we want the “update” to affect w, we need to recursively 

rebuild by creating w’ from w, except that w’ refers to x’ instead of x. As we see in the 

next example, it is normally no trouble to locate w because we already used w to locate x, 

and the function invocation using w is still active. Thus, after the function invocation that 

creates x’ returns, we will be back in a context where w is known. 

Example 2.1 Insertion into a sorted list with partial rebuilding 

Figure 2.6 shows the Java code to insert an integer into an existing sorted list of integers 

by the method of partial rebuilding. As with almost all recursive procedures, we begin with 

a test for a base case: Is oldList empty? Remember, the empty list is sorted! Then we test 

another base case: Can newElement simply be inserted in front of oldList? In either case, 

oldList need not be modified, and we insert the new element “in front” of it with cons. 

If neither base case applies, a recursive call 1s made, which returns a rebuilt list (stored 

in newRest) with the new element in place somewhere within it. Our task now is to include 

oldFirst “in front of’ newRest. Since we can’t modify the object oldList, we “rebuild” by 

calling cons to create a new object (stored in newList). Note that newList and oldList have 

the same first element in this recursive case, but rest(newList) differs from rest(oldList) by 

containing newElement somewhere within it. 

This procedure is an example of a generalized searching routine (see Definition 1.12). 

We are “searching” for the element in front of which to put the new element, that is, an 

element with a larger key. The “fail” event is the empty list, because there clearly is no 

larger element. The “succeed” event is finding the larger element as the first element of the 

list being examined. If neither event occurs we “keep searching” in the rest of the list. One 

rebuilding operation occurs for each unsuccessful search step. 

The frequent use of local variables assists both in debugging and in proving correct- 

ness. Note that local variables may be defined in “inner blocks” and need not be at the 

beginning of the function. Also note that, throughout these code examples, local variables 

are assigned a value only once per function invocation; the practice of assigning one value, 

then overwriting it with another value makes correctness arguments more complicated. 

This subject is discussed at greater length in Section 3.3. 

Consider the example in Figure 2.5 where 22 is inserted into a list containing 10, 13, 
44,48. The initial list is w, with 10 as its first element and x as the rest of its elements. Since 
22 > 10, 22 has to be inserted into x, creating a new list x’. A recursive call to IntList.insert 
is made. Since 22 > 13, a second recursive call is made, and this call creates and returns a 
reference to the new object with 22 as its first element. Objects whose first elements are 44 
and 48 did not need rebuilding. 

Back in the first recursive call, a new object x’ is created whose rest is the list just 
returned, beginning with the new element 22, and whose first is copied from x. This new 
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/** Precondition: oldList is in ascending order. 
* Returns. a list that is in ascending order 
* consisting of newElement and all elements of oldList. 
*/ 
public static 

IntList insert] (int newElement, IntList oldList) 

{ 
IntList newList: 

if (oldList == IntList.nil) 

// newElement belongs in front of oldList. 

newList = IntList.cons(newElement, oldList) 

else 

{ 
int oldFirst = IntList.first(oldList); 

) 

if (newElement <= oldFirst) 

// newElement belongs in front of oldList. 

newList = IntList.cons(newElement, oldList); 

else 

{ 
IntList oldRest = IntList.rest(oldList); 

IntList newRest = insert] (newElement, oldRest): 

// Partially rebuild oldList into newList. 

newList = IntList.cons(oldFirst, newRest); 

} 

} 
return new List: 

i 

Figure 2.6 Function (or Java method) for insertion into a sorted list of integers, using partial 

rebuilding technique. Note the use of class-name qualifiers on members (methods and fields) of 

the IntList class. They are needed because insert] is not in that class. 

object x’ is returned (that is, a reference to it is returned) to the initial call, which knows 

w as the initial list. The initial call creates w’, whose rest is x’ and whose first is copied 

from w, and returns a reference to w’ to conclude the sorted insert operation. Thus objects 

x’ and w’ are rebuilt from x and w as we “back out of” the recursion. 

Now that the insertion is completed, does the overall program still need w? Clearly, 

this is a question that the List ADT cannot answer. If the answer is “no,” the overall 

program will (most likely) not contain any reference to w, because any fields or variables 

that referred to w earlier now refer to w’. If the answer is “yes,” there 1s still an important 

reference to w somewhere in the program. Programmer decisions about when to deallocate 

HS, 
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and recycle storage are known to be frequent sources of obscure bugs in practice, but an 

automatic garbage collector relieves programmers of these decisions. ™ 

Java sidelight: Readers familiar with C++ are again reminded that Java does not permit 

the programmer to define a new meaning for <=", so this operator must be replaced with 

a method call before the code can be transformed to operate on nonnumerical classes. Java 

(beginning with release 1.2) provides an interface facility with the name Comparable for 

working with ordered classes in a general way, as sketched in Appendix A. 

Several other ADTs can be implemented using a List ADT as a building block. Some 

examples are general trees (Section 2.3.4) and stacks (Section 2.4.1). Others would require 

a List ADT with updatable lists, such as in-trees (Section 2.3.5) and queues (Section 2.4.2). 

2.3.3. Binary Tree ADT 

We can think of binary trees as the simplest nonlinear generalization of lists; instead of 

having one way to continue to another element, there are two alternatives that lead to two 

different elements. Binary trees have many applications in algorithms. 

Definitions and Basic Properties of Binary Trees 

Mathematically, a binary tree T 1s a set of elements, called nodes, that is empty or else 

satisfies the following: 

|. There 1s a distinguished node r called the root. 

2. The remaining nodes are divided into two disjoint subsets, L and R, each of which is 

a binary tree. L is called the left subtree of T and R is called the right subtree of T. 

Binary trees are represented on paper by diagrams such as the one in Figure 2.7. Ifa 

node v is the root of binary tree 7 and a node w is the root of the left (right) subtree of 

T, then w is called the left (right) child of v and v is called the parent of w; there is a 

directed edge from v to w in the diagram. (The direction is downward in the absence of an 

arrowhead. ) 

The degree of a tree node is the number of nonempty subtrees it has. A node with 

degree zero 1s a leaf. Nodes with a positive degree are internal nodes. 

(a) With node labels (b) Complete 

Figure 2.7 Binary trees 
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BinTree buildTree(Object newRoot, BinTree oldLT, BinTree oldRT) 

Precondition: none. 

Postconditions: If x = buildTree(newRoot, oldLT, oldRT), then: 

x refers to a newly created object; 

De sea=siaill 

3. root(x*) = newRoot; 

4. leftSubtree(x) = oldLT; 

5. rightSubtree(x) = oldRT; 

Object root(BinTree t) 

Precondition: t £ nil. 

BinTree leftSubtree(BinTree t) 

Precondition: t 4 nil. 

BinTree rightSubtree(BinTree t) 

Precondition: t # nil. 

BinTree nil 

Constant denoting the empty tree. 

Figure 2.8 Specifications of the BinTree ADT. The function buildTree is the constructor; root, 

leftSubtree, and rightSubtree are access functions. Specializations in which the nodes are ina 

class more specific than Object are defined analogously. 

The depth of the root is 0 and the depth of any other node is one plus the depth of its 

parent.! A complete binary tree is a binary tree in which all internal nodes have degree 2 

and all leaves are at the same depth. The binary tree on the right in Figure 2.7 is complete. 

The height of a binary tree (sometimes called its depth) 1s the maximum of the depths 

of its leaves. The height of any node in a binary tree is the height of the subtree of which 

it is the root. In Figure 2.7 (a) the depth of / is 1 and the height of / is 3; the depth of D is 

zero and its height is 4. 

The following facts are used often in the text. The proofs are easy and are omitted. 

Lemma 2.1 There are at most 2“ nodes at depth d of a binary tree. 

Lemma 2.2 A binary tree with height / has at most 2’! — | nodes. 

Lemma 2.3 A binary tree with n nodes has height at least [Ig(7 + 1)]—1. O 

Figure 2.8 gives the specifications for the BinTree ADT. Analogies with the List 

ADT of Section 2.3.2 are obvious. The root access function is analogous to List.first: 

' Beware: Some authors define depth so that the depth of the root is 1. 
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Figure 2.9 Binary tree traversal as a journey around the tree 

it accesses the immediately available data. However, in place of List.rest there are two 

access functions, leftSubtree and rightSubtree, enabling the client to access only part of 

the remainder of the tree.” 

Binary Tree Traversal 

We can visualize a standard traversal of a binary tree as a boat journey around the tree, 

starting at the root, as suggested in Figure 2.9. We imagine each node as an island and 

each edge as a bridge that is too low for the boat to pass under. (For the image to work 

correctly we also imagine a pier jutting out wherever an empty tree occurs.) The boat starts 

at the root node and sails along edges, visiting nodes along the way. The first ime a node 

is visited (white dot) is called its preorder time, the second time it is visited (gray dot, 

returning from the left child) 1s called its inorder time, and the last time it is visited (black 

dot, after returning from the right child) is called its postorder time. Tree traversal can be 

expressed elegantly as a recursive procedure, with the following skeleton: 

void traverse(BinTree 7) 

if (7 1s not empty) 

Preorder-process root(7); 

traverse(leftSubtree(7)): 

Inorder-process root(7); 

traverse(rightSubtree(7 )): 

Postorder-process root(7); 

return; 

The return type for traverse will vary according to the application, and it may also take 

additional parameters. The above procedure shows the common skeleton. 

>) . . or) . ; . ” 

~ These names are not standard, and some other literature uses the names “leftChild” and “rightChild.” However, 

inthe ADT context, it is best to think of the object as the whole subtree, not just its root node. In our terminology 

the left and right children are the roots of the left and right subtrees, respectively. 
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For the binary tree in Figure 2.9, the traversal node orderings are the following: 

Preorder (white dots): ID) ey NC je = (Gp Ee EI 

Inorder (gray dots): Pt ee eo = SE al 

Postorder (black dots): A C B F H G E J D 

2.34 The TreeADT 

A general tree (more precisely, general out-tree) is a nonempty structure with nodes and 

directed edges such that one node, called the root, has no incoming edges and all other 

nodes have exactly one incoming edge. Furthermore, there is a path from the root to all 

other nodes. There is no restriction on the number of outgoing edges from any node. A 

forest is a collection of separate trees. 

Every node in a tree is the root of its own subtree, consisting of all the nodes it can 

reach, including itself. Each edge is said to go from the parent to the child. If node v is 

parent of node w in a tree, then the tree rooted at w is called a principal subtree of the tree 

rooted at v. Each principal subtree of a tree has fewer nodes than the whole tree. It is not 

feasible to name each principal subtree individually, so the Tree ADT is somewhat more 

complex than the BinTree ADT. 

For a general tree, the subtrees do not necessarily have an inherent order, whereas 

they are ordered “left” and “right” for a binary tree. (If the subtrees of a general tree are 

considered to be ordered, the structure is called an “ordered tree.”) Another difference from 

binary trees 1s that there is no representation for an empty general tree. 

If all the edges are oriented toward the root instead of away from the root, then the 

structure is an in-tree, and edges go from child to parent (see Figure 2.10). Different 

data structures and operations are appropriate for this variety of trees, as discussed in 

Section.2.3:5: 

The Tree ADT (again, a minimal collection of operations) is described by the spec- 

ifications in Figure 2.11. Similarities to the BinTree ADT are evident. However, instead 

of two named subtrees, we have an indefinite number of principal subtrees, so List is the 

natural structure for these objects. Unless the tree is considered to be an ordered tree, the 

order imparted by the list is incidental, and the subtrees are considered as a set, rather than 

as a sequence. 

Ao TA Be oA 
(a) out-tree (b)iin-tree 

Figure 2.10 A general out-tree and the corresponding in-tree 
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Tree buildTree(Object newRoot, TreeList oldTrees) 

Precondition: none. 

Postconditions: Hf x = buildTree(newRoot, oldTrees), then: 

|. x refers to a newly created object; 

2. root(x) = newRoot; 

3. subtrees(x) = oldTrees;: 

Object root(Tree t) 

Precondition: none. 

TreeList subtrees(Tree t) 

Precondition: none. 

The TreeList ADT is the analog of IntList with class Tree in place of class int for the 

element type. The prototypes follow. 

TreeList cons(Tree t, TreeList rSiblings) 

Tree first(TreeList siblings) 

TreeList rest(TreeList siblings) 

TreeList nil 

Figure 2.11 Specifications of the (general) Tree ADT. Specializations in which the nodes are 

in aclass more specific than Object are defined analogously. 

(a) logical structure (b) list-based structure 

Figure 2.12 (a) The logical, or conceptual, structure of a general out-tree and (b) the corre- 

sponding representation in which principal subtrees are in a list: Downward, solid arrows go to 

leftmost subtrees and sideways, dotted arrows go to right sibling subtrees. 

The first principal subtree, say fo, is called the leftmost subtree, the root of ty is called 

the /eftmost child. For any principal subtree, t;, the next principal subtree in sequence, ft; +1. 
is called the right sibling subtree of t;, if it exists. The root of #4; is called the right sibling 

of the root of t;. See Figure 2.12 for an example. In spite of this nomenclature for the 
data structure, we reiterate that the relative order of subtrees in the list is considered to be 
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void traverse(Tree 7) 

TreeList remainSubs: 

Preorder-process Tree.root(7); 

remainSubtrees = Tree.subtrees(7)): 

while (remainSubtrees + TreeList.nil): 

Tree subtree = TreeList.first(remainSubtrees): 

traverse(subtree): 

Inorder-process Tree.root(7) and subtree; 

remainSubtrees = TreeList.rest(remainSubtrees): 

Postorder-process Tree.root(7); 

return, 

Figure 2.13 The general tree traversal skeleton 

incidental for the abstract tree. The ADT constructor buildTree combines a root node and 

a list of trees, creating a larger tree. 

Java sidelight: To define these interrelated ADTs in Java with the ideal control of 

visibility, Java's package feature should be used. Two files in the same directory are 

required, and they must be named Tree.java and TreeList.java. The details are not difficult, 

but they are beyond the scope of this book. Putting clients and ADTs in the same directory 

avoids the need to deal with packages. 

Tree traversal can be expressed by a logical extension of binary-tree traversal (Sec- 

tion 2.3.3), with the skeleton shown in Figure 2.13. The subtrees are traversed within a 

while loop because their number is indefinite, and there are an indeterminate number of 

inorder times. (Class name qualifiers are included here, because two classes are involved.) 

The return type for traverse will vary according to the application, and it may take addi- 

tional parameters, also. Figure 2.13 shows the common skeleton. 

2.3.5 In-Tree ADT 

It is a wise father that knows his own child. 

—Shakespeare, The Merchant of Venice 

Usually, the access pattern in a tree proceeds from the root toward the leaves, commonly 

depicted in a downward direction. However, there are cases when it is desirable (or suffi- 

cient) for the access to be oriented from the leaves toward the root (upward, see Figure 2.10 

b), and downward access is unnecessary. An in-tree is a tree with only this kind of access: 

A node does not “know” its children. 

An important concept for in-trees is that of ancestor. This can be defined recursively, 

as follows. 

Definition 2.2 

Node v is itself an ancestor of v. If p is the parent of v, then every ancestor of p is also an 

ancestor of v. The inverse of ancestor is descendant. ™@ 
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In an in-tree, a node can access its ancestors, but not its descendants. Unlike the usual 

Tree ADT, where the object is an entire tree, an object of an in-tree is a node and its 

ancestors, so the class is named InTreeNode, and the ADT constructor is makeNode. 

Let v be an object in the class InTreeNode. What access functions do we need to 

navigate? The first access function needed is isRoot(v), a Boolean function that returns true 

if v has no parent. The second access function is parent(v), which has as its precondition 

that isRoot(v) is false. In other words, whenever isRoot(v) is true, it is an error to call 

parent(v). 

Figure 2.14 contains the specifications for the InTreeNode ADT. When a node is 

constructed with makeNode, it is the only node of its tree, so isRoot is true. Clearly we 

need to have some way to construct bigger trees. Unlike earlier ADTs, this one uses a 

manipulation procedure to achieve functionality. Recall that manipulation procedures are 

always type void; they return no value. The manipulation procedure 1s setParent(v, p), 

which sets the parent of v to be p. It has the precondition that v must not be an ancestor of 

p (otherwise a cycle would be created). The postconditions are that isRoot(v) is false, and 

parent(v) returns p. 

Depending on the application, it is often necessary to maintain some kind of data at the 

nodes. Since this has no bearing on the structure of the tree, we can define a simple pair of 

operations, setNodeData and nodeData, to allow the client to store and retrieve such data. 

Although node data might be a variety of types, depending on the application, we define it 

as int, because that is the type most frequently encountered. For example, even though a 

node does not know its descendants, it is possible to keep track of how many descendants 

each node has (Exercise 2.12). 

In-trees usually occur embedded in some other data structure, rather than as an ADT in 

their own right. This 1s almost necessary since there is no node from which the whole tree is 

accessible. We will encounter in-trees in algorithms for minimum spanning trees, shortest 

paths in graphs, and in the implementation of the Union-Find ADT. The Union-Find ADT 

is used in turn in various algorithms, including one for minimum spanning forests. 

Stacks and Queues 

Stacks and Queues illustrate the next level of complexity in abstract data type specifica- 

tions. Their ADTs include manipulation procedures, so objects in these classes can change 

their “state.” The specifications now need to describe what state changes can occur. How- 

ever, all operations on these versatile ADTs can be implemented in constant time without 

too much difficulty. Stacks and Queues are good for keeping track of tasks that need to be 
done in situations where one task might generate an unpredictable number of other tasks. 

2.4.1. Stack ADT 

A stack is a linear structure in which insertions and deletions are always made at one end, 
called the rop. This updating policy is called last in, first out (LIFO). The top item in a 
stack is the one most recently inserted, and only this element can be inspected. To push an 
item on a stack means to insert the item in the stack. To pop the stack means to delete the 
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InTreeNode makeNode(int d) 

Precondition: none. 

Postconditions: If x = makeNode(d), then: 

I. x refers to a newly created object; 

bo nodeData(x) = d: 

3. isRoot(x) = true: 

boolean isRoot(InTreeNode v) 

Precondition: none. 

InTreeNode parent(InTreeNode v) 

Precondition: isRoot(v) = false. 

int nodeData(InTreeNode v) 

Precondition: none. 

void setParent(InTreeNode v, InTreeNode p) 

Precondition: Node v is not an ancestor of p. 

Postconditions: 

1. nodeData(v) remains unchanged; 

2. parent(v) = p; 

3. isRoot(v) = false; 

void setNodeData(InTreeNode v, int d) 

Precondition: none. 

Postconditions: 

1. nodeData(v) =d; 

2. parent(v) = remains unchanged; 

isRoot(v) = remains unchanged; LO 

Figure 2.14 Specifications of the InTreeNode ADT. The function makeNode is the con- 

structor; isRoot, parent, and nodeData are access functions; setParent and setNodeData are 

manipulation procedures. Specializations in which node data is in a class different from int are 

defined analogously. 

top entry. The top element of a nonempty stack can be accessed with top. Modern practice 

is not to combine the functions of top and pop into one operation. Figure 2.15 gives the 

Stack ADT specifications. 

Unlike the previous ADT specifications, it is not possible to state explicitly what 

values will be returned by the access functions isEmpty and top after a pop. Therefore, a 

section called Explanation is needed to provide information about sequences of pushes and 
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Stack create() 

Precondition: none. 

Postconditions: Wf s = create(), then: 

|. » refers to a newly created object; 

2. isEmpty(s) = true; 

boolean isEmpty(Stack 5) 

Precondition: none. 

Object top(Stack s) 

Precondition: isEmpty(s) = false. 

void push(Stack s, Object e) 

Precondition: none. 

Postconditions: 

IE MtopGsi =e: 

2. isEmpty(s) = false; 

void pop(Stack s) 

Precondition: isEmpty(s) = false. 

Postconditions: See Explanation below. 

Explanation: Following create, any legal sequence of push and pop operations (i.e., there 

are never more pops than pushes, cumulatively) yields the same stack state as a certain 

sequence consisting only of push operations. To obtain this sequence, repeatedly find any 

pop that is immediately preceded by a push and delete this pair of operations from the 

sequence. This uses the Stack Axiom: A push followed by a pop has no net effect on the 

stack. 

Figure 2.15 Specifications of the Stack ADT. The constructor is create; isEmpty and top 

are access functions; push and pop are manipulation procedures. Specializations in which the 

element is in a class more specific than Object are defined analogously. 

pops. See Exercise 2.13 for an example. The Explanation section indirectly describes the 

postconditions of pop. The technique of specifying properties, or invariants, of sequences 

of operations permits the ADT to be specified logically, still without referring to aspects of 

the implementation that are not accessible to the client. This technique 1s often needed for 

more complex ADTs. 

Most needs for the stack as an explicit structure are obviated by recursive procedures, 

because the “run-time” system implements a stack of local variables for -each function 

call. A stack can be implemented in an array or built upon the List ADT. Either way, all 
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2.5 ADTs for Dynamic Sets 

operations can be implemented in ©(1) time. If the maximum size to which the stack might 
grow is not known in advance, an array-doubling technique can be used to expand its size 

(see Section 6.2). This implementation detail can be hidden from the clients of the Stack 
ADT. 

2.4.2 Queue ADT 

A queue is a linear structure in which all insertions are done at one end, called the rear or 

back, and all deletions are done at the other end, called the front. Only the front element 

can be inspected. This updating policy is called first in, first out (FIFO). The manipulation 

procedures are enqueue to insert and dequeue to delete. We have access functions isEmpty 

and front to test if the queue is empty, and if not, to access its front element. Figure 2.16 

gives the Queue ADT specifications. 

As with the Stack ADT, it is not possible to state explicitly what values will be returned 

by the access functions after a dequeue. Therefore, a section called Explanation is needed 

to provide information about sequences of enqueues and dequeues. See Exercise 2.13 for 

an example. 

A queue may be implemented efficiently (all operations in ©(1)) using an array. If the 

maximum size to which the queue might grow 1s not known in advance, an array-doubling 

technique can be used to expand its size (see Section 6.2). This implementation detail can 

be hidden from the clients of the Queue ADT. Also, you can define an updatable variant 

of the List ADT, in which the value of rest can be updated to append some list to the back 

end of an existing list (see Appendix A). Then enqueue appends a list consisting only of 

the new element to the end of the current queue. For this to be in ©(1) it is necessary to 

keep a reference to the last element in the queue, as well as a reference to the whole queue. 

ADTs for Dynamic Sets 

A dynamic set is a set whose elements change during the course of the algorithm using the 

set. Often, the objective of the algorithm is to build up this set itself. But to do so, it needs 

to access the set as it is being constructed to determine how to continue the construction. 

The appropriate set of operations for a dynamic set ADT varies widely, depending on the 

needs of the algorithm or application that is using it. Some standard examples are priority 

queues, collections of disjoint sets requiring union and find operations, and dictionaries. 

These are described in this section. 

Dynamic sets impose the most rigorous requirements on their data structures. For each 

of the ADTs in this section it is not possible to implement all the needed operations in 

constant time. Trade-offs must be made, and different implementations will prove most 

efficient for different applications. The search for efficiency has led to some very advanced 

and complex implementations, some of which are touched upon in Chapter 6. 
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Queue create() 

Precondition, none. 

Postconditions: If q = create(), then: 

1. g refers to a newly created object; 

2. isEmpty(q) = true; 

boolean isEmpty(Queue q) 

Precondition: none. 

Object front(Queue q) 

Precondition: isEmpty(q) = false. 

void enqueue(Queue g, Object e) 

Precondition: none. 

Postconditions: Let /g/ denote the state of g before the operation. 

1. IfisEmpty(/q/) = true, front(g) =e, 

If isEmpty(/q/) = false, front(g) = front(/q/). 

isEmpty(q) = false; 

ir) 

OO 

void dequeue(Queue q) 

Precondition: isEmpty(q) = false. 

Postconditions: See Explanation below. 

Explanation: Following create, any legal sequence of enqueue and dequeue operations 

(i.e., there are never more dequeues than enqueues, cumulatively) yields the same queue 

state as a certain sequence consisting only of enqueue operations. To obtain this sequence 

repeatedly find the first (earliest) dequeue and the first enqueue and delete this pair of 

operations from the sequence. The access functions front(g) and isEmpty(q) take on the 

same values as they would after this equivalent sequence, consisting entirely of enqueue 

operations. 

Figure 2.16 Specifications of the Queue ADT. The constructor is create; isEmpty and front 

are access functions; enqueue and dequeue are manipulation procedures. Specializations in 

which the element is in a class more specific than Object are defined analogously. 
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2.5.1 Priority Queue ADT 
A priority queue is a structure with some aspects of a FIFO queue (Section 2.4.2), but 
in which element order is related to each element’s priority, rather than its chronological 
arrival time. Element priority (also called “key”) is a parameter supplied to the insert 
operation, not some innate property known to the ADT. We will assume it is type float 
for definiteness. We will also assume that elements are of type int because this is the type 
seen in most optimization applications. In practice, elements have an identifier that is an 
int and have other associated data fields; this identifier should not be confused with the 
“key,” which is the traditional name for the priority field. 

As each element is inserted into a priority queue, conceptually it is inserted in order 

of its priority. The one element that can be inspected and removed is the most impor- 

fant element currently in the priority queue. Actually, what occurs behind the scenes is 

up to the implementation, as long as all outward appearances are consistent with this 

view. 

The notion of priority can be either that the most important element has the smallest 

priority (a cost viewpoint) or that it has the largest priority (a profit viewpoint). In op- 

timization problems, the cost viewpoint prevails, and so the historical names of certain 

priority-queue operations reflect this viewpoint: getMin, deleteMin, and decreaseKey. 

One important application of the priority queue is the sorting method known as Heap- 

sort (Section 4.8), named after the heap implementation of the priority queue. In the case 

of Heapsort, the largest key is considered the most important, so the proper names are 

getMax and deleteMax in this context. 

Unlike FIFO queues, priority queues cannot be implemented in such a way that all 

operations are in ©(1). Trade-offs among competing implementation methods must be 

considered in conjunction with the needs of a particular algorithm or application to arrive at 

a choice that provides the best overall efficiency. These issues will be studied in conjunction 

with the various algorithms that use priority queues. Besides Heapsort (Section 4.8), there 

is a family of algorithms called greedy algorithms, which typically use a priority queue, 

including Prim’s and Kruskal’s minimum-spanning-tree algorithms (Sections 8.2 and 8.4), 

Dijkstra’s single-source-shortest-path algorithm (Section 8.3), and certain approximation 

algorithms for NP-hard problems (Chapter 13). The greedy method is a major paradigm of 

algorithm design. 

Now let us turn to the specifications of the priority queue ADT, which are shown 

in Figures 2.17 and 2.18. Similarities to the (FIFO) queue ADT are evident. One major 

departure is that the deletion operation is deleteMin, which, as its name implies, deletes 

the element with the minimum priority field (minimum “key”), rather than the oldest 

element. 

Another major change is that priority order can be rearranged by means of the de- 

creaseKey operation. But this operation and the getPriority function can be omitted from 

implementations intended for Heapsort and other applications that do not need these capa- 

bilities; they add considerable complications to both specification and implementation (as 

we will see in Section 6.7.1). We call the ADT without decreaseKey and getPriority an 

elementary priority queue. 

Dil 
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PriorityQ create() 

Precondition: none. 

Postconditions: If pq = create(), then, pq refers to a newly created object and isEm pty(pq) 

= true. 

boolean isEmpty(PriorityQ pq) 

Precondition: none. 

int getMin(PriorityQ pq) 

Precondition: isEmpty(pq) = false. 

void insert(PriorityQ pq, int id, float w) 

Precondition: If decreaseKey is implemented (see Figure 2.18), then id must not already 

be in pq. 

Postconditions: The identifier of the element to be inserted is id and the priority is w. 

1. isEmpty(pq) = false; 

2. If getPriority is implemented (see Figure 2.18), then getPriority(pq, id) = w. 

3. See Explanation below for value of getMin(pq). 

void deleteMin(PriorityQ pq) 

Precondition, isEmpty(pq) = false. 

Postconditions: 

1. If the number of deleteMins is less than the number of inserts since create(pq), then 

isEmpty(pq) = false, else it is true. 

2. See Explanation below for value of getMin(pq). 

Explanation: Think of /pq/ (the state of pq before the operation in question) abstractly as a 

sequence of pairs ((id;, wy), (ido, wr)... ., (idx, wz)), in nondecreasing order of the values 

of w;, which represent the priorities of the elements id;. Then insert(pq, id, w) effectively 

inserts (id, w) into this sequence in order, extending pq to k + | elements in all. Also, 

deleteMin(pq) effectively deletes the first element of the sequence /pq/, leaving pq with 

k — | elements. Finally, getMin(pq) returns id). 

Figure 2.17 Specifications of the elementary Priority Queue (PriorityQ) ADT. The constructor 

is create; isEmpty and getMin are access functions: insert and deleteMin are manipulation 

procedures. Additional operations for a fu// Priority Queue ADT are specified in Figure 2.18. 

Specializations in which the element is in a class different from int are defined analogously. 
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float getPriority(PriorityQ pq, int id) 

Precondition: id is “in” pq. 

void decreaseKey(PriorityQ pq, int id, float w) 

Precondition: id is “in” pq and w < getPriority(pq, id). That is, the new priority w 1s 
required to be less than the existing priority of the same element. 

Postconditions: isEmpty(pq) remains false. getPriority(pq, id) = w. See Explanation be- 
low for value of getMin(pq). 

Explanation: As in the explanation in Figure 2.17, think of /pq/ abstractly as a sequence 
of pairs ((id}, wy), (ido, wo)... .. (idg, we)), ordered by the values of w;. Also, all ids are 

unique. Then, decreaseKey(pq, id, w) requires that id = id; for some | <i <k, and effec- 

tively removes (id;, w;) from the sequence /pq/, then inserts (id;, w) into the sequence in 

order by w. The final sequence still has k elements. As before, getMin(pq) returns id). 

Figure 2.18 Specifications for additional operations that are defined only for a fil Priority 

Queue (PriorityQ) ADT. See Figure 2.17 for the other operations. Here, getPriority is an access 

function, and decreaseKey is a manipulation procedure. 

2.5.2 Union-Find ADT for Disjoint Sets 

The Union-Find ADT is named after its two main operations, but is sometimes called the 

Disjoint Sets ADT. Initially, all elements of interest are placed in separate singleton sets 

with the constructor operation create or they are added individually with the manipulation 

procedure makeSet. The find access function returns the current set id of an element. 

Through a union operation, two sets can be combined, after which they no longer exist as 

separate entities. Therefore, no element can ever be in more than one set. Often, in practice, 

elements are integers, and the set id is some particular element in the set, called the leader. 

However, in theory, elements can be any type and set ids need not be the same type as 

elements. 

There is no way to “traverse” through all the elements of one set. Notice the similarity 

to in-trees (Section 2.3.5), in which there is no way to traverse an entire in-tree. In fact, in- 

trees can be used effectively to implement the Union-Find ADT. Implementations of the 

Union-Find ADT are described in detail in Section 6.6. The specifications of UnionFind 

are stated in Figure 2.19. 

2.5.3. Dictionary ADT 

A dictionary is a general associative storage structure. That is, items have an identifier 

of some kind and have certain information that needs to be stored and retrieved. The 

information is associated with the identifier. The name “Dictionary” for this ADT comes 

from the analogy with an ordinary dictionary, in which words are their own identifiers, 

and definitions, pronunciations, and so forth, are the associated information. However, the 

analogy should not be stretched too far, because there is no order implied for identifiers in 
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UnionFind create(int 7) 

Precondition: none. 

Postconditions: If sets = create(n), then sets refers to a newly created object: find(sets, e) 

= e for | < e <n, and is undefined for other values of e. 

int find(UnionFind sets, e) 

Precondition: Set {e} has been created in the past, either by makeSet(sets, e) or create. 

void makeSet(UnionFind sets, int e) 

Precondition: find(sets, e) is undefined. 

Postconditions: find(sets, e) = e; that is, e is the set id of a singleton set containing e. 

void union(UnionFind sets, int s, int 7) 

Preconditions: find(sets, s) = s and find(sets, t) = f, that is, both s and ¢ are set ids, or 

‘Neaders, (Als@ys sesh, 

Postconditions: Let /sets/ refer to the state of sets before the operation. Then for all x such 

that find(/sets/, x) = s, or find(/sets/, x) = tf, we now have find(sets, x) = u. The value 

of u will be either s or ¢. All other find calls return the same value as before the union 

operation. 

Figure 2.19 Specifications of the UnionFind ADT. The constructor is create; find is an access 

function; makeSet and union are manipulation procedures. 

a Dictionary ADT. The important aspect of a dictionary is that any stored information can 

be retrieved at any time. 

The Dictionary specifications are given in Figure 2.20. These specifications are “pre- 

liminary” until the type (or class) Dictld is specified. This is the type or class of the 

identifier for dictionary entries. Usually it will be either the built-in class String, or the 

primitive type int, or an organizer class grouping several of these types. One of the advan- 

tages of designing with the Dictionary ADT is that this decision can be postponed until 

the algorithm that uses this Dictionary has been designed. We can create an empty dic- 

tionary, then store pairs (id, info) in it. We can query whether any id is a member of the 

Dictionary, and if it is, we can retrieve the associated information. For applications in this 

book, no deletion is needed, but for other applications, a delete operation might be appro- 

priate. 

The Dictionary ADT is very useful in the design of dynamic programming algorithms 

(Chapter 10). Dictionaries are also handy for recording external names (usually strings read 

from input) so that a program can determine when it has seen a name before and when it 

is Seeing a name for the first time. For example, compilers need to keep track of what data 

names and procedure names have occurred. 
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Dict create() 

Precondition: none. 

Postconditions: If d = create(), then: 

1. d refers to a newly created object; 

2. member(d, id) = false for all id. 

boolean member(Dict d, Dictid id) 

Precondition: none. 

Object retrieve(Dict d, Dictld id) 

Precondition: member(d) = true. 

void store(Dict d, Dictld id, Object info) 

Precondition: none. 

Postconditions: 

1. retrieve(d, id) = info; 

2. member(d, id) = true; 

Figure 2.20 Specifications of the Dict ADT, which are preliminary until Dictld is changed into 

an existing type or class. The constructor is create; member and retrieve are access functions; 

store is a manipulation procedure. Specializations in which informational data is in a class more 

specific than Object are defined analogously. 

Exercises 

Section 2.2. ADT Specification and Design Techniques 

2.1 Consider some ADT operations with the type signatures shown below. The name of 

the ADT class is Gorp. Based on Definition 2.1, what are the possible categories for each 

operation? Explain your answers briefly. 

void warp(Gorp g). 

Gorp harp(). 

int pork(Gorp g). 

void work(Gorp g, int ji). 

int perk(Gorp gl, Gorp g2). 

Gorp park(Gorp g1, Gorp g2, Gorp g3, int |). mea f os pf 

2.2 You need to write some code that uses an abstract data type Gorp that has been 

in use for a while by other people, but which you have not seen before. In addition to 

the documentation available, you can look at Gorp.java, the source file for the ADT and 
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GorpTester.java, a program that uses the ADT. Which file is preferable as a source of 

additional information on how best to use the operations of the Gorp ADT, and why? 

Section 2.3. Elementary ADTs—Lists and Trees 

2.3. Use the IntList ADT operations (see the specifications in Figure 2.3) to implement 

the following list utilities, as a client of the ADT. That is, your procedures are outside the 

IntList class, so they do not know how the lists are implemented. This exercise is a good 

warm-up for the kinds of list manipulation that are needed by algorithms in later chapters. 

For tasks that involve traversing a list, try to develop a common skeleton with vari- 

ations for the different tasks, rather than having a different approach to each task. Clear 

pseudocode is acceptable, and even preferred, rather than strict syntax; however, it should 

be clear how the ADT operations are used, and what value, 1f any, your procedure returns. 

If your procedure doesn’t work on all lists of integers, be sure to state the appropriate 

preconditions that it requires to work correctly. (Don’t worry about overflowing the size of 

the int type.) Don’t forget about empty lists. 

a. Count the number of elements in a list (list length). 

b. Sum the elements in a list. 

c. Multiply the elements in a list. 

d. Return the maximum element in a list. 

e. Return the minimum element in a list. 

f. Return a new list consisting of the elements of the original list in reverse order. 

g. Build (and return) a list of integers read from “input.” So that you do not need to worry 

about what “input” means, exactly, assume there are methods named moreData and 

readint available, and that the input has nothing except integers in it. The function 

moreData is boolean and returns true if and only if there is another integer to read. 

The function readInt returns an integer that it has read from “input,” and has the 

precondition that moreData returns true. After readInt returns an integer, that integer 

is no longer in the “input.” 

h. Distribute the integers in a list according to their sizes, creating an array of lists, named 

bucket. The array bucket has 10 entries. List elements in the range 0 through 99 

should go into the list bucket[0], elements in the range 100 through 199 should go 
into the list bucket[1], and so on, and all elements that are 900 or over should go into 

the list bucket[9]. Assume your procedure takes two parameters, the list of elements 
to distribute and the array bucket (so your procedure does not need to create the array, 
but needs to initialize it and fill it). 

2.4 Prove Lemma 2.1. 

i) 2.5 Prove Lemma 2. 

~~) 2.6 Prove Lemma 2.3. 
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2.7 Give a sequence of BinTree ADT operations to build each of the binary trees shown. 
Declare a separate variable for each node, to be the subtree rooted at that node, and let 
the value of the root (as returned by the access function root) be the node’s name, as a 
String. For example, the variable named q stores the subtree rooted at q in the diagram, 
and root(q) == "q" after q is constructed. 

(a) (b) (C) 

2.8 Implement the List ADT (with elements of type Object) by using the operations of 

the BinTree ADT (see Figures 2.3 and 2.8). That is, treat the List class as a client of the 

BinTree class. (Pseudocode is okay; exact Java would require Appendix A.6.) 

2.9 Implement the BinTree ADT by using the operations of the List ADT (with elements 

of type Object) (see Figures 2.3 and 2.8). That is, treat the BinTree class as a client of the 

List class. (Pseudocode is okay; exact Java would require Appendix A.6.) 

2.10 Give a sequence of Tree and/or TreeList ADT operations to build the general (out-) 

tree shown below. Declare a separate variable for each node, to be the subtree rooted at 

that node, and let the value of the root be the node’s name, as a String. For example, the 

variable named s stores the subtree rooted at s in the diagram, and that subtree has "s" as 

the value of its root. 

2.11. Give a sequence of InTreeNode ADT operations to build the in-tree shown below. 

Assume the nodes are in an array named inNode and that each node’s nodeData is its own 

index in that array. A node’s index is the number that appears in the diagram. For example, 

inNode[3] stores the root node. 

2.12 Write library procedures makeSizedNode and setSizedParent to keep track of how 

many nodes are in each subtree of an in-tree as well as performing the operations of 

Mp 
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makeNode and setParent. By interfacing with the InTreeNode ADT operations of Fig- 

ure 2.14, they should cause nodeData(v) to return the number of nodes in the subtree 

rooted at v. The function makeSizedNode should take no parameters and should return 

an InTreeNode. (What value should nodeData return for the node returned by make- 

SizedNode?) The procedure setSizedParent has the same type signature as setParent. 

Hint: Think carefully about which tree sizes change and by how much as a result of a 

setParent operation. There are several cases to consider. 

Section 2.4 Stacks and Queues 

2.13 Consider the sequence of operations: add(1), add(2), del, add(3), add(4), add(5), 

add(6), del, del, add(7), del, del. 

a. Interpreting add and del as Stack operations, push and pop, give an equivalent se- 

quence with no del operations. What would be returned by top after the sequence? 

b. Do the same, interpreting add and del as Queue operations, enqueue and dequeue. 

What would be returned by front after the sequence? 

2.14 Outline an implementation of the Stack ADT, as specified in Figure 2.15, using the 

List ADT, as specified in Figure 2.3. That is, treat the Stack class as a client of the List 

class. Assuming each List operation runs in O(1) (constant time), how long does each 

Stack operation take, for your implementation? 

2.15 Consider a variant of the Stack ADT in which the constructor has an integer param- 

eter n with the intended meaning that the stack will never contain more than n elements. 

That is, the signature is Stack create(int n). However, due to combinations of push and 

pop, there might be many more than n push operations over the life of the stack. 

a. How should the specifications be modified to take into account this new parameter? 

Avoid major changes. Hint: Consider preconditions. 

b. Outline an implementation based on storing the stack elements in an array, which 1s 

constructed by create. (Each operation can be performed in constant time with a good 

implementation. ) 

c. Now consider the even stronger restriction that a total of at most push operations will 

be done over the life of the stack. Can you simplify your implementation? Explain. 

2.16 Consider a variant of the Queue ADT in which the constructor has an integer 

parameter 2 with the intended meaning that the queue will never contain more than n 

elements. That is, the signature is Queue create(int n). However, due to combinations of 

enqueue and dequeue, there might be many more than n enqueue operations over the life 

of the queue. 

a. How should the specifications be modified to take into account this new parameter? 

Avoid major changes. Hint: Consider preconditions. 

b. Outline an implementation based on storing the queue elements in an array, which 

is constructed by create. Be sure to consider where enqueue places new elements, 



Exercises 

especially when there are more than n enqueue operations. How do front and de- 

queue work? How do you detect an empty queue? Can you distinguish an empty queue 

from a queue containing n elements? (Each operation can be performed in constant 

time with a good implementation. ) 

c. Now consider the even stronger restriction that a total of at most n enqueue operations 

will be done over the life of the queue. (Later we will encounter algorithms for which 

this is a practical restriction.) Can you simplify your implementation? Explain. 

Section 2.5 ADTs for Dynamic Sets 

2.17 For each part of this exercise, outline a straightforward implementation of the ele- 

mentary Priority Queue ADT, as specified in Figure 2.17, using the List ADT, as specified 

in Figure 2.3. That is, treat the PriorityQ class as a client of the List class. Your class may 

include some other instance fields, but the List should be the main data structure for stor- 

ing elements of the priority queue. Describe the main ideas; it is not necessary to write the 

code. 

a. Arrange for the insert operation to run in O(1) (constant time). How long do the other 

operations run, in the worst case, when the priority queue contains n elements? 

b. Arrange for the deleteMin operation to run in O(1). How long do the other operations 

run, in the worst case, when the priority queue contains n elements? 

c. Suppose you are able to use an array instead of a linked list to store the elements. 

(Don’t worry about it overflowing—assume it can be made long enough, somehow. ) 

Using the same general ideas as you used in parts (a) and (b), will any of the operations 

have a better asymptotic order for their running times? Explain. (In later chapters we 

will see some sophisticated implementations of priority queues, and they will need 

arrays.) 

Additional Problems 

2.18 You are given a set of in-tree nodes, stored in an array named inNode in positions 

1, ..., 2. The value of nodeData for each node is the node’s index in the inNode array. 

In other words, for | < v <n, nodeData(inNode[v]) = v. You may assume that the nodes 

actually form one in-tree; that is, isRoot is true for exactly one node, every other node's 

parent is in the same array, and there are no cycles involving sequences of parents. 

Design an algorithm to build the corresponding out-tree, using the InTreeNode and 

Tree ADTs as a client; your algorithm does not know how these ADTs are implemented. 

Ideally, your algorithm will run in linear time, @(n). You may want to use a few work 

arrays, and a Stack object can also be useful. 

Hint: Because the Tree ADT has no manipulation procedures, the out-tree must be 

built from the leaves to the root. The following outline uses a general technique called 

source pruning and similar names. 

Initialize an array of counters, called remaining to record how many children each 

node has that still need to have their Tree objects created. Initialize another array of type 

TreeList, called subtrees, to empty lists. If a node’s remaining counter is 0, it becomes a 
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source, and its Tree object can be created. A stack is a good way to keep track of sources. 

When a Tree object is created for node v (v being the index in the inNode, an integer), it 

can be inserted into the subtrees list of the parent of v, and that parent’s remaining counter 

can be reduced by |. 

Notes and References 

The foundations for the style of abstract data type specification and design presented in this 

chapter were laid by Parnas (1972). Parnas was one of the earlier researchers to stress the 

need for data encapsulation, which strongly influenced the development of Object-Oriented 

Programming (OOP). 

There are numerous texts on data structures that may be used for review and reference, 

for example, Roberts (1995), Kruse, Tondo, and Leung (1997), and Weiss (1998). 
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Chapter 3 Recursion and Induction 

Introduction 

Professor John McCarthy of Massachusetts Institute of Technology, and later Stanford 

University, is credited with being the first to realize the importance of recursion in program- 

ming languages. He strongly advocated its inclusion in the design of A/go/60 (a precursor 

of Pascal, PL/I, and C) and he developed the language Lisp, which introduced recursive 

data structures, along with recursive procedures and functions. Lists in this text are mod- 

eled after Lisp. The value of recursion became appreciated during the period of intense 

algorithm development in the 1970s, and today nearly all popular programming languages 

support recursion. 
Recursion and induction are very closely related. The presentation of induction in this 

chapter is formulated to make the relationship clear. In a quite literal sense, a proof by 

induction can be considered a recursive proof. Proving properties of recursive procedures 

by induction is greatly simplified by their similarity of structure. (In this chapter, as in 

the previous, we include “function” in the general meaning of “procedure”; the Java 

terminology is “method.”) 

Recursion trees are introduced in Section 3.7 to provide a general framework for 

analyzing the time requirements of recursive procedures. Several commonly occurring 

patterns of recursion are solved, and the results are summarized in theorems. 

Recursive Procedures 

A clear understanding of how recursion actually works in the computer is very helpful for 

thinking recursively, for executing recursive code by hand, and for analyzing the running 

time of recursive procedures. We begin with a brief review of how procedure calls are 

implemented with activation frames, and how this supports recursion. However, for most 

activities involving design and analysis of recursive procedures we want to think at a higher 

level than activation frames. To help readers in this respect, we introduce Method 99, which 

is really a mental trick, for designing recursive solutions. 

3.2.1. Activation Frames and Recursive Procedure Calls 

This section gives a brief and somewhat abstract description of how procedure calls are 

implemented in such a way that recursion works. For a more thorough description, refer to 

the sources in Notes and References at the end of the chapter. 

The basic unit of storage for an individual procedure invocation at run time is called 

an activation frame. This frame provides storage space for the procedure’s local variables, 

actual parameters, and compiler “temporary variables,” including the return value, if the 

procedure returns a value. It also provides storage space for other bookkeeping needs, such 

as the return address, which tells what instruction the program should execute after this 

procedure exits. Thus it provides a “frame of reference” in which the procedure executes 

for this invocation only. 

The compiler generates code to allocate space in a region of storage called the frame 

stack (often abbreviated to “stack”) as part of the code that implements a procedure call. 



3.2 Recursive Procedures 

This space is referenced by a special register called the frame pointer, so that as this 
procedure invocation executes, it knows where its local variables, input parameters, and 
return value are stored. Each procedure invocation that is active has a unique activation 
frame. A procedure invocation is active from the time it is entered until it exits. If recursion 
occurs, all invocations of the recursive procedure that are active simultaneously have 
distinct frames. As a procedure invocation (recursive or not) exits, its activation frame is 
automatically deallocated so that the space can be used by some future function invocation. 
A hand execution of code that depicts the states of activation frames is called an activation 
trace. 

Example 3.1 Activation frames for Fibonacci function 

Figure 3.1 shows several points during an activation trace for the Fibonacci function, where 
main executes x = fib(3). The pseudocode for fib is 

int fib(int n) 

(We Wy ey 1 

Leh (eZ) 

ph fen 

3. else 

4. fl = fib(n - 1); 

Sy" 2 = hib(n— 2): 

6. f= Hieeti2s 

7. return f; 

This code declares several local variables that would usually be compiler-generated tem- 

poraries, SO we can see the activation frame in more detail. In fact, the fib function, like 

many recursively defined functions, can be written 1n one “monster” statement, as follows: 

return n <2 ?n: fib(n—1) + fib(n—-2): 

but this form is hardly amenable to activation tracing. 

The top row, left column, in Figure 3.1 shows the frame stack just before fib(3) is 

called, and the next row shows it immediately after fib has been entered. The line indicated 

under each frame shows the line about to be executed, or in the middle of execution if that 

frame is not on top of the frame stack. Program execution is always “in” the top activation 

frame, so the lines shown in other frames indicate where execution was when a procedure 

call shifted execution to a new stack frame. The value of each local variable is shown 

following the colon. Variables with no values have not been initialized yet. 

Subsequent rows show execution proceeding to line 4, when another function invoca- 

tion occurs. (That it is a recursive call does not matter.) To save space, the next row omits 

the progression from lines | to 4 and just shows line 4 after the next function invocation. 

This invocation proceeds to lines 2, then 7, because a base case has occurred; f has received 

its value and this invocation is about to return. The last line in the column shows the situa- 

tion after the previous invocation has returned the value 1; the return value has been stored 

as f1, and line 5 is about to be executed. 
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An activation trace for the fib function: The top of the stack is at the right. The 

sequence of snapshots runs down the left column, then down the right column. 
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The top of the right column shows the situation after the invocation of fib(O) has 
reached line 7; it is about to return. The space for the activation frame released upon the 
completion of the invocation of fib(1) is now reused. The subsequent three rows show the 
completion of the call fib(2). Its return value is stored in the copy of f1 in the activation 
frame for fib(3). This activation frame progresses to line 5. The next function call expands 
the stack again. Then the stack contracts as earlier invocations complete their processing 
and return. 

Let us say that a simple statement in a procedure is any statement that does not 

make a procedure call. As the fib code above illustrated, it is possible to write out the 

procedure as a sequence of lines with at most one procedure call or simple statement per 

line. It is reasonable to assume that each simple statement takes constant time and that the 

bookkeeping surrounding a procedure call (setting up the next activation frame, etc.) is also 

constant. Therefore it follows that: 

Lemma 3.1 In a computation without while or for loops, but possibly with recursive 

procedure calls, the time that any particular activation frame is on the top of the frame 

stack is O(L), where L is the number of lines in the procedure that contain either a simple 

statement or a procedure call. oO 

But the size L of any procedure is itself constant; that is, it does not change with 

different inputs. In any fixed algorithm there is some maximum L over all procedures in 

that algorithm. The total time taken by any particular run of the algorithm is certainly the 

sum of the times that various activation frames are on the top of the frame stack. It is also 

reasonable to assume that any activation frame that is put on the stack 1s there for at least 

some minimum time, due to bookkeeping, even if it returns “instantly.” This gives us a 

powerful tool for analyzing the running time of a recursive computation. 

Theorem 3.2 In a computation without while or for loops, but possibly with recursive 

procedure calls, the total computation time is @(C), where C is the total number of proce- 

dure calls (including function calls as procedure calls) that occur during the computation. 
= 
ey 

To take this idea one step further, we can define an activation tree to make a permanent 

record of all procedure invocations that occurred during one run of an algorithm. Each node 

corresponds to a different procedure invocation, just at the point when it is about to return. 

The root is the top-level call to that algorithm. The parent of each other node is just the 

node whose activation frame was on top of the frame stack at the time this one was created. 

The children of each node appear left to right in the order in which their activation frames 

were created. See Figure 3.2 for an example. 

A preorder traversal of the activation tree visits each activation frame in order of its 

creation, and the number of nodes in the tree is proportional to the total execution time. 

Any snapshot of the frame stack during execution corresponds to some path in this tree, 

starting at the root. (We return to this correspondence in connection with depth-first search 
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Figure 3.2 Activation tree for fib(3) 

in Section 7.4.1.) In Section 3.7.3 we examine a relationship between activation trees and 

analysis of recurrence equations. It is very helpful for analyzing recursive algorithms. 

3.2.2. Hints for Recursion—Method 99 

For advanced algorithm development, recursion is an essential design technique. An in- 

depth discussion of recursive design is beyond the scope of this book, but here are a few 

hints. See Notes and References at the end of the chapter for further reading. 

Identify to yourself some “unit of measure” for the size of the problem your function or 

procedure will work on. Then pretend that your task is to write a procedure, say p, that will 

work on problems of all sizes 0 through 100. This means that, while designing the solution, 

you may assume the problem has a size at most 100—that is your “fantasy precondition.” 

Also, pretend that you are allowed to call a given subroutine, named p99, that does 

exactly what your procedure is supposed to do, and has the same type signature, except that 

its “fantasy precondition” 1s that its problem has a size of 0 through 99. You are allowed to 

use this subroutine (provided you call it with parameters that meet its preconditions) and 

you don’t have to write its code. 

A second hint is to identify clearly the nonrecursive case of your problem. Make it as 

small as possible. Your procedure will nearly always begin by testing for this nonrecursive 

case, also called the base case. 

A final stipulation is that it is “too expensive” to determine whether the input problem 

for p has a size of exactly 100. (We could have made the fantasy size limit 1,000,000,000, 

but “method 999,999,999” is too hard to say.) However, it is feasible to determine if its size 

is O, or any small constant. 

Now Method 99 is to figure out a way to write p by calling p99 when needed. (You 

don’t need to write p99, so don’t even think about it.) Of course, if p detects an easy case, 

then it does not need to call p99. The key idea is that, when p detects a case that is not 

solvable immediately, then it needs to create a subproblem for p99 to solve, which satisfies 

three conditions: 
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1. The subproblem size is less than p’s problem size. 

The subproblem size is not below the minimum (0, for this discussion). 

(we) The subproblem satisfies all other preconditions of p99 (which are the same as the 
preconditions of p). 

The subproblem is guaranteed (in our fantasy) to satisfy the size restrictions of p99 

(Why?). 

If you can break the solution up in this way, you are almost finished. Just write the 

code for p, calling p99 when necessary. 

Let us practice with the task of writing delete(L, x), which is supposed to delete 

element x from an IntList L, returning a new IntList that contains all elements of L except 

the first occurrence of x. Possibly x does not occur in L. The size of the problem is the 

number of elements in list L. (Section 2.3.2 described the IntList ADT, in which cons is 

the constructor, first and rest are the access functions, and the constant nil denotes the 

empty list.) 

To apply Method 99, we pretend we only need to worry about lists up to (and includ- 

ing) 100 elements, and that we are given delete99 to use. Clearly, if we can eliminate one 

element (say, the first) from L, then we can let delete99 take over with rest(L). We don’t 

know how many elements rest(L) has, but we take a hard-nosed attitude: If there are at most 

100 elements in L, then the call to delete99 is okay, and if there are more, it doesn’t matter 

what happens because (in our fantasy) we were only supposed to make delete work for 

lists of 100 elements or less. 

Following the second hint, we need to test for the base case. What is the base case? 

Since it is permitted that x is not in the list, an empty list is possible. Besides the empty 

list, there is another case we can recognize and solve instantly, without needing delete99: 

if x is the first element of L. In this case, we accomplish the objective of delete by simply 

returning rest(L). 

So now we have arrived at the following Method 99 procedure to implement delete. 

IntList delete(IntList L, int x) 

IntList newL, fixedL; 

ifn) 

newL = L; 

else if (x == first(L)) 

newL = rest(L); 

else 

fixedL = delete99(rest(L), x); 

newL = cons(first(L), fixedL): 

return newL; 

Oh, yes. To finish the job, just remove the “99” from the name of the called subroutine, 

turning it into a recursive call of your own procedure. 

The delete procedure again fits the pattern of generalized searching routines (see 

Definition 1.12): If there is no more data, fail; if this datum is what we are searching for, 

succeed (by deleting it, in this case); otherwise continue the search in the remaining data. 
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3.2.3. Wrappers for Recursive Procedures 
Frequently a task has parts that should be done only once at the beginning or the end. 

In such cases, you need a nonrecursive procedure that sets things up and then calls the 

recursive procedure, and possibly finishes up after that procedure returns. “Procedure” 

includes functions.) We call such a nonrecursive procedure a wrapper for the recursive 

procedure. Sometimes it is as simple as initializing an extra argument for the recursive 

procedure. For example, Binary Search (Algorithm 1.4) needs a wrapper to make the first 

call with the entire array as the range. The wrapper can simply be 

int orderedSearch(int[] E, int n, int K) 

return binarySearch(E, 0, n—1, K); 

What Is a Proof? 

Before launching into induction proofs, let’s take a moment to review what a proof is. As 

mentioned in Section 1.3.3, logic is a system for formalizing natural language statements 

so that we can reason more accurately. Proofs are the resu/t of reasoning with logical 

statements. This section describes detailed proofs. In practice, people often omit many 

details, leaving them for the reader to fill in; such writings are more accurately called proof 

sketches. 

Theorems, lemmas, and corollaries are all statements that can be proved, and the 

differences are not sharply defined. In general, a lemma is a statement that is not very 

interesting by itself, but is important because it helps to prove something that /s interesting, 

which is usually called a theorem. A corollary is usually an easy consequence of a theorem, 

but not necessarily less important. It does not matter whether the statement to be proved 1s 

called a “proposition,” “theorem,” “lemma,” “corollary,” or other term, the proof process is 

the same. We will use “proposition” as the generic term. 

A proof is a sequence of statements that form a logical argument. Each statement 

is a complete sentence in the normal grammatical sense: It has a subject, a verb, and 

so on. Although mathematical notation provides a shorthand, the statement should still 

correspond to a complete sentence. For example, “x = y + 1” corresponds to “x equals 

y + 1.’ which is a full sentence, whereas “y + 1” by itself is not a sentence. 

While the precise inference rules for combining logical statements into a proof can be 

listed exhaustively, we will take a more informal approach. The most important rules are 

given in Section 1.3.3, Equations 1.29 through 1.31. Each statement should draw a new 

conclusion from facts that are 

» well known, and not what you are trying to prove (e.g., mathematical identities), or 

# assumptions (premises) of the theorem you are proving, or 

# statements established earlier in the proof (intermediate conclusions), or 

» instances of the inductive hypothesis, discussed in Section 3.4.1. 

The last statement of a proof must be the conclusion of the proposition being proven. When 

a proof branches into cases, each case should follow the above structure. 
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Each sentence should state not only the new conclusion, but how it is supported—what 
facts it depends on. The statements that immediately support the new conclusion are called 
its justifications. Vague justifications are the cause of most logical errors. 

Format of the Theorem or Proposition 

The proposition you need to prove has two parts, the assumptions (also called premises 

or hypotheses) and the conclusion. Let us call the conclusion the goal statement. Usually 

the proposition has a phrase of the form “for all x in set W.” and the goal statement is 

something about x. (There may be several variables like x in the statements.) In practice, 

the set W (for “world”) is some familiar set, such as the natural numbers, the reals, or 

a family of data structures, such as lists, trees, or graphs. Let us abstractly represent the 

proposition to be proven as 

Vx EW [A(x) > C(x)]. 3.1) 

Here A(x) represents the assumptions and C(x) represents the conclusion, or goal state- 

ment. The symbol “=>” is read as “implies.” The square brackets are just for readability; 

they group like parentheses. In natural language the proposition statement is often in the 

form “for all x in W, if A(x), then C(x).” Many variations of wording are possible. Fre- 

quently, we need to “massage” the most natural statement into a sort of standard form 

like the above examples before we are sure what we are trying to prove, and which parts 

correspond to x, W, A(x), and C(x). 

Example 3.2 

A proposition might be stated as: 

Proposition 3.3. For constants w < 6, 2%” €0(2P/"). oO 

Reworded into the general format of Equation (3.1), it becomes 

Proposition 3.4 For all a © R, for all 6 € R, if @ and f are constants and w < f, then 

Gantt =a) Oh aaa) 

Let’s check the correspondences. We see that the pair (@, 6) plays the role of x and R x R 

is in the role of W. The hypotheses of the theorem, A(q, f), are the three statements: “a Is 

constant,” “8 is constant,’ and “a < 8.” The conclusion, C(a, B), 1s “2" € oar”)? 

Two-Column Proof Format 

We now describe a two-column format for proof presentation. The purpose of this format is 

to clarify the role of justifications in the proof; the right column contains all justifications, 

Each proof statement occupies a numbered proof line. Each new conclusion in the left 

column is paired with its justifications in the right column. Reference to earlier statements 

in the proof is accomplished by giving their line numbers. 
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Example 3.3 

The statement from Example 3.2 is proved in the two-column format. Both the theorem 

and the proof are written very verbosely, as an illustration of how justifications fit into the 

proof. We include all the parts that authors usually expect readers to fill in for themselves. 

Additional remarks follow the proof. 

Theorem 3.5 For all a © R, for all 6 © R, if a and f are constants, with a < f, then 
Jan ¢ o(2P). 

Proof 

Statement Justification 

Bn 

|. First we want to show that lim —— =o. 
noo 2an 

pfu 

2: Sa cp Math identity. 
Jan 

3. 6—a>Oand is constant. Theorem hypotheses + math 

identity. 

4. lim 2'?-%" — go, (3) + known math property. 
n> CO 

9pn 

> lila =O) (2) + (4) and substitution. 
noo 2an 

Ce eo) (5) + definition of o sets 

(Definition 1.17). oO 

Some additional remarks: 

|. Besides the statements that comprise the substance of the proof, it is common to 

include some “road map” or “plan” statements saying what a section of the proof is 

intended to show, or what general methodology will be employed, or what remains to 

be proven to complete a section of the proof, and so on. 

Line | is clearly phrased as a p/an statement, not as a conclusion. Hence it cannot 

be referenced later, and it requires no justification. It tells the reader the intermediate 

goal of the succeeding proof lines. That goal is completed on line 5. 

i) The new conclusion on the last line is exactly the goal statement of the theorem. 

3. All other lines are referenced as justifications; there is nothing wasted. ™ 

To become familiar with and fluent in proofs, it is a good idea to write some out in 
detail, following the two-column format. It is often instructive to complete the details of 
proof sketches, to be sure you understand how each new statement is concluded, 
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Induction Proofs 

Induction proots are a mechanism, often the only mechanism, for proving a statement 

about an infinite set of objects. The method of induction that we describe here is often 

called strong induction. Strong induction is the easiest form to use for most proofs about 

algorithms and data structures. Even when its full power is not needed, it is no harder to 

use than its weaker variants. Therefore we adopt a “one-size-fits-all” approach, and use this 

method exclusively. 

We will see later that recursion and induction (the strong variety) fit hand-in-glove. 

By and large, proofs are difficult, and we need all the help we can get to make them 

comprehensible and reliably accurate. The similarity of structure between induction proofs 

and recursive procedures is a significant aid for reasoning about sophisticated algorithms. 

In many cases induction is done over the set of natural numbers (nonnegative integers, 

Section 1.5.1) or the set of positive integers. However, the induction method is valid over 

more general sets, provided that they have two properties: 

|. The set is partially ordered; that is, an order relationship is defined between some pairs 

of elements, but perhaps not between all pairs. 

2. There is no infinite chain of decreasing elements in the set. 

For example, induction cannot be used on the set of a// integers (with the usual order). 

Trees provide an example of a partially ordered set that is often used for induction. 

The usual partial order is defined as: t) < f if 4 is a proper subtree of ty (see Figure 3.3). 

Later we will see that graphs can be similarly partially ordered. Induction over such sets is 

often called structural induction. 

Figure 3.3. The subtree partial order among the set of trees shown 
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Typical theorems that need induction proofs are theorems about a mathematical for- 

mula, theorems about a property of a procedure, theorems about a property of data struc- 

tures, and theorems about recurrence equations, which arise frequently in the analysis of 

the running time of a recursive procedure. Section 3.5 covers the kinds of lemmas that are 

needed to prove that a procedure accomplishes its objectives and terminates. Section 3.6 

covers typical recurrence equations. 

3.4.1. Induction Proof Schema 

The first thing to realize about an induction proof is 

There is no such thing as “n + 1 in an induction proof. 

Unfortunately, many readers learned otherwise. Why are we adopting this dogmatic posi- 

tion? 

The answer lies in the motivation we gave earlier—to connect induction proofs to 

recursive procedures. We know that a recursive procedure works by creating and solving 

smaller subproblems, then combining the smaller solutions to solve the main problem. We 

want our induction proof to follow this plan. For the proof, the “main problem” is the stated 

theorem, and the “subproblems” are smaller instances of the stated theorem that can be 

combined to prove the main instance. In practice, these are likely to correspond directly to 

the exact subproblems the recursive procedure created. 

All induction proofs follow a common pattern, which we call the induction schema. 

The most critical part of the schema is the correct introduction of the inductive hypothesis. 

First, we give an example proof, then we describe the general schema, and follow with 

more examples. 

Example 3.4 

The proof of the following proposition illustrates the induction schema to be described 

in general form after this example. The phrases in boldface are elements that appear 

practically verbatim in any detailed induction proof. Detailed remarks follow the proof, 

which uses the two-column format for clarity. 

Hl 

ae (i + | 1) 2 
Proposition 3.6 For all n > 0, Ss aC = = Nas “ a ) 

L ) 
I 

Proof 

Statement Justification 

1. The proof is by induction on 7, the upper limit of 

the sum. 

i) The base case is n = 0. 

ws) In this case both sides of the equation are 0. Math. 



1) 

Nw 
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For n greater than 0, assume that 

k ee 
yee ae 

5 
LZ Q) 

1=(0) ¢ 

holds for all k > 0 such that k < n. 

n—l ... 
SS Gey (n — 1)(n)(n + 1) 

= = Ind. Hyp. withk =n — 1. 

1=0 a 6 

n aie n—| 
i(@i + 1) ii +1) n(n + 1) 
aa ee =e 5 + = : Math. 

P= r=1 i a 

i Wel) Ge = 1) Ge) a 1) n(n + 1) 
: 5 = 6 + 5 ; (5) + (6). 

<= 

(n — 1)(n)(n + 1) n(n + 1) n(n + 1)(n + 2) 
a — a Math. 

6 2 6 

i(i + 1) n(n + 1)(n + 2) 
oe —= 7 (7)+(8). Oo 

i=l 

Line-by-line remarks follow. 

Announce that 7 is the main induction variable. Note that the proposition is in the 

form Yn € N [A(n) > C(n)]. Here A(1) 1s simply the Boolean true, and C(7) is the 

equation. 

An induction proof always has two main cases, called the base case and the inductive 

case. Identify the base case(s). 

Prove the base case(s). 

Introduce the auxiliary variable & and state the inductive hypothesis. Notice that the 

inductive hypothesis takes the form A(k) = C(k), recalling that for this proposition 

A(k) is just the Boolean true. 

Notice that the range of & includes the base cases. 

Notice that & is restricted to be strictly less than nm; otherwise we would be 

assuming what we are trying to prove. 

The statement of the inductive hypothesis signals that the proof of the inductive 

case 1s beginning. 

Use the inductive hypothesis. (Notice that we are “pulling up to” 1.) The auxiliary 

variable k is locally instantiated to n — 1. Since we are proving the case n > 0, this 

value of k satisfies 0 < k <n, as required on line 4. 

The auxiliary variable k may be instantiated to other values in its range on other 

lines, if needed for the proof. This is one strength of “strong” induction. In this simple 

proof it happens that other instantiations of & are not needed. 
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6. The justification is a standard mathematical identity, presumably known to the reader. 

7. The justification indicates which two earlier lines support this new conclusion, but 

does not state what rule of inference was used, assuming the reader can figure this 

out. Here the rule of inference is known as “substitution of equals for equals,” or just 

“substitution.” Line 9 is similar. 

8. Another mathematical identity is applied. In practice, lines 6 through 9 would be 

condensed to one line, assuming the reader can figure out the steps. However, such 

condensations contribute to or cause many erroneous “proofs.” The proof writer should 

be careful that a precise set of steps could be written. 

9. This conclusion 1s exactly the goal statement, C(7). 

The preceding proof follows a pattern that can be generalized into the following 

schema. Note that the generic term proposition may be theorem, lemma, corollary, or some 

other term without changing the proof process. 

Definition 3.1 Induction proof schema 

First we explain the notation used in the schema below. The boldface text appears es- 

sentially verbatim. Terms between angle brackets, “(, )”, are replaced by substitution, 

according to the proposition to be proved. Similarly, the variables x and y take on names ac- 

cording to the proposition. They range over the set W (for “world”). The logical statement 

C(x) is called the goal statement. The logical statement A(x) is called the hypothesis of the 

proposition (hypotheses if it is a conjunction). The variable x is called the main induction 

variable (or simply induction variable). The variable y is called the auxiliary variable. 

An induction proof for a proposition in the form 

Vice WwW [AliGa—~ Eibs)il 

consists of the following parts, 1n the order given. 

1. The proof is by induction on x, (description of x). 

2. The base case is (cases are) (base-case). 

3. (Proof of goal statement with base-case substituted into it, that is, C(base-case).). 

4. For (x) greater than (base-case), assume that [| A(y) > C(y)] holds for all y ¢ W 

such that y < x. 

5. (Proof of the goal statement, C(v), exactly as it appears in the proposition). 

An induction proof has two main cases: the base case and the inductive case. Part 

(2) of the schema defines the base case; part (3) proves the theorem for the base case, 

which may actually be several cases. Part (4) defines the inductive case, and states the 

inductive hypothesis. Part (5) proves the theorem for the inductive case, and is usually the 

main substance of the proof. This proof of C(x) may be supported by: 

|. the fact that v is greater than (base-case) in this case of the proof; 

2. the hypotheses of the proposition, A(x) (but not A(y)); 
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3. any number of instances of the inductive hypothesis, which is [A(y) > C(y)], with 
elements of W that are strictly smaller than x substituted for the auxiliary variable y. 

As usual, preceding conclusions in the proof, external identities, theorems, and the like. 
may be used. 

Three “boilerplate” statements are permitted without giving a justification because 
they draw no conclusion; they simply explain the scheme of the proof and define some 
notation. They are 

” 
» “The proof is by induction on.x,.. . 

m “The base case is-..7. 7 

» “For x > (base case), assume that [A(y) > C(y)] holds for all y < x.” 

The latter two statements divide the proof into two cases: x is a base case, and x is greater 

than any base case. These two cases must cover the entire set W over which x ranges. 

Variations on the Induction Schema 

1. If the assumptions A(x) do not actually depend on x, then the inductive hypothesis 

simplifies to: Assume C(y) holds for all y € W less than x. You should be able to 

explain why this simplification is justified by referring back to the justifications for 

proof statements. 

bo There may be two or more base cases if the inductive case requires more than one 

smaller case, as in Fibonacci numbers, Equation (1.13). However, it is best to put as 

many elements as possible into the inductive case, because each base case requires its 

own proof. 

3. There may be many base-case elements when the induction is over data structures, 

such as lists, trees, or graphs, or other sets W that have only a partial order. In 

Figure 3.3 the six singleton trees are base cases. 

3.4.2 Induction Proof on a Recursive Procedure 

The next example shows how induction and recursion work together. The lemma we will 

prove, about a procedure to compute external path length of 2-trees, is useful in lower 

bounds analysis (see Section 4.7.3). External path lengths arise naturally in several other 

problems. First we need some definitions. 

Definition 3.2 External nodes and 2-trees 

In certain types of binary trees the base case, instead of being an empty tree, is a tree with 

a single node of a different type from the rest of the tree. This type of node ts called an 

external node. A tree that consists of an external node is called a leaf, and it does not 

have any subtrees. The other type of node is called an internal node, and it must have two 

children. Such binary trees are called 2-trees because each node has two children or no 

children. 
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Notice that, if we replace all external nodes in a 2-tree by empty trees, what remains 

is a normal, unrestricted, binary tree. In a 2-tree it is usually possible to recognize a leat 

without checking to see if it has children because its node is a different type from that of 

internal nodes. Exercise 3.1 shows that a 2-tree must have one more external node than 

internal node. 

Definition 3.3. External path length 

In a 2-tree 7, the external path length of t is the sum of the lengths of all the paths from the 

root of ¢ to any external node in ¢. The length of a path is the number of its edges. 

Alternatively, the external path length of a 2-tree can be defined inductively as follows: 

1. The external path length of a leaf is 0. 

Let ¢ be a nonleaf, with left subtree L and right subtree R (either may be a leaf). The 

external path length of ¢ is the external path length of L plus the number of external 

nodes in L plus the external path length of R plus the number of external nodes in R. 

(The number of external nodes inf is the sum of the numbers of external nodes in L 

and R.) 

tO 

The equivalence of the two definitions is clear because every path from the root of ¢ to an 

external node in LZ is one longer than a corresponding path from the root of L to the same 

external node, and similarly for RR. @ 

The binary-tree traversal skeleton of Section 2.3.3 can easily be annotated to calculate 

external path lengths. The class of the parameter is TwoTree, which is defined analogously 

to BinTree, except that the smallest tree is a leaf, rather than an empty tree. The base 

case 1s changed accordingly. The function needs to return two values, so we assume an 

organizer class (see Section 1.2.2) has been defined, named Ep!Return, with two integer 

fields, epl and extNum, to represent external path length and the number of external nodes, 

respectively. The result 1s shown in Figure 3.4. We see that the function simply implements 

the inductive version of the definition. We can now prove the following lemma about 

calcEpl. 

Lemma 3.7 Let / be any 2-tree. Let ep/ and m be the values of the fields ep! and extNum, 

y, as returned by calcEpl(¢). Then: respective 

1. epl is the external path length of tf. 

2. mis the number of external nodes in f. 

3. epl>ml|g(m). 

Proof Before proving the lemma, let’s correlate the statement of the lemma with our 
pattern for propositions to be proved, Equation (3.1). Note that it is split into several 

sentences, for easier reading, but the parts are all there. Thus ¢ is the main induction variable 
and W is the set of all 2-trees. The second sentence states the hypotheses, so corresponds 
to A(t). Finally the three conclusions comprise C(t). As in previous examples, boldface 
text appears essentially verbatim in any induction proof. 
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EplReturn calcEpl(TwoTree 1) 

EplReturn ansL, ansR; // returned from subtrees 

EplReturn ans = new EplReturn(); // to return 

l. if (¢ is a leaf) 

2. ans.epl = 0; ans.extNum = 1: 

3. else 

A. ansL = calcEpl(leftSubtree(r)): 

Dis ansR = calcEpl(rightSubtree(r)); 

6. ans.epl = ansL.epl+ansR.epl + ansL.extNum+ansR.extNum; 

ie ans.extNum = ansL.extNum + ansR.extNum; 

8. return ans: 

Figure 3.4 Function to calculate external path length of a 2-tree. The return type Ep!Return is 

used so that the function can return two quantities, ep| and extNum., 

The proof is by induction on ¢, the parameter of calcEpl, with the “subtree” partial 

order. The base case is that f is a leaf. Line 2 of calcEpl is reached, so ep/ = 0 and m = I, 

which are correct for parts (1) and (2), and 0 => O holds for part (3). 

For 7 not a leaf, assume that the lemma holds for all s, where s is a proper subtree 

of ¢. That is, if ep/, and m, are returned by calcEpl(s), then m, is the number of external 

nodes in s, ep/, is the external path length of s, and ep/, = my, Ig(m,). Let L and R denote 

the left and right subtrees of r, respectively. These are proper subtrees of f, so the inductive 

hypothesis applies. Because ¢ is not a leaf, lines 4 through 7 are executed, from which it 

follows that 

epl = epl, + eplp +my, + mrp, 

i ah. 

By the inductive hypothesis and the inductive definition of external path length, ep/ is the 

external path length of t. Every external node of ¢ occurs in either L or R so m is the 

number of external nodes inf. 

It remains to show that ep/ > m lg(m). We note (see Exercise 3.2) that the function 

x le(x) is convex for x > 0, so we can use Lemma 1.3. By the inductive hypothesis we 

have 

epl > my, lg(nz.) + mp Ig(nr) +m 

TD. at Le my + MR 
my lg(m_) + me Ig(mp) = 2 = ee lg cen he 

Therefore, by transitivity of “>”, 

epl > m (lg(m) —1) +m=mlg(m). 0D 



118 

Bea 

Chapter 3. Recursion and Induction 

Corollary 3.8 The external path length ep/ of a 2-tree with 1 internal nodes has the lower 

bound: ep! > (n + 1) Ig(n + 1). 

Proof Every 2-tree with n internal nodes has (n + 1) external nodes (see Exercise 3.1). 

Apply Lemma 3.7. 0 

It often happens that a recursive procedure benefits from returning multiple quantities 

in an organizer class, even though only one quantity is eventually needed. In this example, 

extNum was not asked for, but returning it from recursive calls greatly simplified the rest 

of the computation. For another example, see Exercise 3.13, which asks you to design a 

function to compute the maximum weight of an independent set of tree vertices. 

Proving Correctness of Procedures 

Things should be made as simple as possible—but not simpler: 

—A\lbert Einstein 

It is generally acknowledged that proving correctness of programs is a hopelessly difficult 

task, in general. Nevertheless, proving correctness can be a valuable activity for solving 

problems and producing correctly working programs. The trick is to program in a style for 

which proving correctness is practical. We call this a proof-friendly style. We want proofs 

to help us, not to be an additional burden. The way to let proofs help is to write algorithms in 

a proot-friendly style, or at least be able to convert back and forth between a proof-friendly 

style and an efficient style. 

In this section we build up a collection of proof methods, starting with simple con- 

structs, and eventually getting more complex, but remaining manageable. The style we 

develop is used for the algorithms in this book. The foundations are the single-assignment 

paradigm and recursion. The single-assignment paradigm is introduced in Section 3.5.3. 

3.5.1 Definitions and Terminology 

A block is a section of code with one entry point and one exit point. Blocks are the main 

subdivisions of program code and procedure code. A procedure is a block with a name, 

so it can be called. It usually has parameters, which, for our purposes, are designated 

either as input or output. For simplicity, we assume no parameter is both input and output; 

one can designate two parameters to achieve the same effects. Also, we will assume 

input parameters are not modified during execution of the procedure. They may be copied 

into local data (see below) if modification is desired. This convention permits us to state 

postconditions in terms of input parameters without having to specify that we are referring 

to the values at the time of entry. 

A function is a procedure with some output parameters; if there are multiple output 

parameters, we may assume they are collected in an object of an organizer class (Sec- 

tion 1.2.2), and thereby they can all be returned with a return statement. There is only 

one exit point, so the return statement must be at that point. This formalism permits us to 

handle functions as a special case of procedures. 
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A procedure often refers to nonlocal data, which is any data defined outside the header 
and body of the procedure. Indeed, if a procedure has no output parameters, the only effects 
of calling it are its effects on nonlocal data. Also, a procedure can define local data. The 
parameters of the procedure may also be considered to be local data during the execution 
of the procedure. 

A block within a procedure also can refer to nonlocal data, which is any data defined 
outside the block. This is often called global data. This could be data in a higher level, 
enclosing block, or it could be outside the procedure, in which case visibility rules for the 
particular language being used apply. 

The treatment of arrays is worth clarifying. If an array 1S passed as a parameter, the 
reference to the array is considered to be local data, while the contents of the array are 
considered to be nonlocal data. Similarly, in Java, the reference to an object is local, while 
the instance fields of the object are nonlocal. Updating nonlocal data is very Important for 
the efficiency of some algorithms, but introduces great difficulties in proofs of correctness. 

3.5.2 Elementary Control Structures 
Control structures are mechanisms for causing various blocks to be executed. To begin 
with, we will consider just three control structures (see Figure 3.5): sequence (block 1, then 
block 2), alternation (if condition then true-block, else false-block), and procedure call. 
The omission of for and while loops from our basic proof methodology is intentional. We 
discuss adaptations for these constructs after the basic methodology has been developed 
(in Section 3.5.4). 

Can we write anything worthwhile without loops? The surprising answer is “yes.” With 

recursion, it is possible, and often simpler, to write any computation that was originally 

written using a loop. 

“Proving correctness” means proving certain logical statements about a procedure. 

Like a “limited warranty,” the statements are phrased carefully, so that they are not so 

sweeping that a proof would be hopelessly difficult. Now we describe the form these 

statements take. 

if (condition) 

block | THEN | ELSE 

true- | false- 

block 2 block | block 

sequence alternation procedure call 

Figure 3.5 Elementary procedural control structures 
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Definition 3.4 Precondition, postcondition, and specification 

A precondition is a logical statement about the input parameters and nonlocal data of 

a block (including a procedure or function) that is intended to be true at the time the 

block is entered. A postcondition is a logical statement about the input parameters, output 

parameters, and nonlocal data of a block that is intended to be true at the time the block 

exits. The specifications of a block are the preconditions and postconditions that describe 

the correct behavior of the block. 

Every block (including procedures and functions) should have specifications if we are 

attempting to prove correctness. 

To prove correct behavior, it is sufficient to prove a lemma of the following form. 

Proposition 3.9 (General correctness lemma form) If all preconditions hold when the 

block is entered, then all postconditions hold when the block exits. 0 

Suppose a block is subdivided by the sequence construct: block |, then block 2. To 

prove correctness of the block, it suffices to prove a lemma of this form: 

Proposition 3.10 (Sequence correctness lemma form) 

1. The preconditions of the block imply the preconditions of block 1. 

2. The postconditions of block | imply the preconditions of block 2. 

3. The postconditions of block 2 imply the postconditions of the block. 

Suppose a block is subdivided by the a/ternation construct: if (condition) then true- 

block, else false-block. To prove correctness of the block, it suffices to prove a lemma of 

this form: 

Proposition 3.11 (Alternation correctness lemma form) 

|. The preconditions of the block and the truth of condition imply the preconditions of 

true-block,. 

2. The postconditions of true-block and the truth of condition (at the time true-block is 
entered) imply the postconditions of the block. 

ae The preconditions of the block and the falsity of condition imply the preconditions of 
false-block. 

4. The postconditions of false-block and the falsity of condition (at the time false-block 
is entered) imply the postconditions of the block. 

Figure 3.6 shows how the parts of each lemma in Propositions 3.10 and 3.11 combine 
to make a proof of the form of Proposition 3.9 

Suppose a block consists of a procedure call. To prove correctness of the block, it 
suffices to prove a lemma of this form: 
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block precondition ===> 
implies e aeeamer 

block | precondition 

implies 

block | postcondition 
implies 

block 2 precondition 

implies 

block 2 postcondition ot ce 
implies 

block postcondition § ——> 

block block 
PLECONGItLON teen 7 ie: Precondition 

and and 
(condition) if (condition) not (condition) 

Aue Eton THEN ELSE aes 
implies implies 

true-block false-block 
precondition precondition 

implies implies 

true-block false-block 
postcondition postcondition 

implies | implies 

loc t= a block 
postcondition postcondition 

Figure 3.6 The chains of inferences to prove that the block’s preconditions imply its postcon- 

ditions, for sequence and alternation. 

Proposition 3.12 (Procedure-Call Correctness Lemma Form) 

1. The preconditions of the block imply the preconditions of the called procedure with 

its actual parameters. 

bo The postconditions of the called procedure with its actual parameters imply the post- 

conditions of the block. 0 

It is important to notice that we are not required to prove the correctness of the called 

procedure in order to prove correctness of the block containing the call; correctness of the 

called procedure is a separate issue. 

We have described the structure of proofs that enable us to prove correct behavior of 

a block, but have not gone into the details of how to prove specific facts about specific 

program statements. This is a highly technical and complex subject. 

il 
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For example, suppose we see a statement in Java, “x=y+1.” What logical statement 

do we know is true after that statement (i.e., what is the statement’s postcondition)? It 1s 

tempting to say the postcondition is the equation x = y + |. But now suppose the statement 

is “y=y+1:"? Or suppose we have the sequence of statements “x=y+1; y=z;""? 

In practice, people rely on “common sense” arguments, rather than formal proof 

methods. Rather than try to figure out what logical statements are implied by the procedure 

code, we concentrate on whether the desired postconditions are achieved, and try to come 

up with ad hoc arguments for that conclusion. The next topic describes a better approach. 

3.5.3 The Single-Assignment Paradigm 
Early in the investigation of proof-friendly programming styles, researchers identified two 

constructs that caused major difficulties in proving correctness: the go to statement.and the 

assignment statement. It was considered impractical to eliminate assignment statements, 

so they worked on eliminating the need for the go fo statement, and the field of structured 

programming developed. Untortunately, even with no go to statements, proofs are usually 

too involved to be practical. 

More recently, the question of eliminating assignment statements has been re-exam- 

ined. The emerging methodology is to eliminate overwriting assignments. That is, after 

a variable is created, it may receive only one assignment; the value assigned cannot 

subsequently be overwritten. Since its value can never change for its lifetime, reasoning 

about this variable is much simplified. This is the single-assignment paradigm. 

Several programming languages have been developed that incorporate the single- 

assignment restriction, such as Prolog, ML, Haskell, Sisal (for Streams and iteration in 

a single assignment /anguage) and SAC (for Single Assignment C). 

It has also been shown that programs in other languages, including C, Fortran, and 

Java, can be transformed into a single-assignment form without changing the computation 

they perform. Such transformations are used for compiler optimization and for detection of 

parallelizable code. It has been found that program analysis can be carried out to a much 

greater depth after the program is in single-assignment form. (See Notes and References 

at the end of the chapter.) Can we take advantage of the single-assignment paradigm in 

everyday programming? 

The single-assignment paradigm cannot be applied universally, but can be applied to 

local variables of loop-free code very easily. Loop-free code includes code with recursive 

procedure calls, so this limitation is not so severe that the paradigm is useless. In fact, the 

compiler for Sisal transforms for and while loops into recursive procedure calls behind the 

scenes, so that it can employ the single-assignment paradigm in the transformed program. 

Then, with the single-assignment paradigm in force, the Sisal compiler is able to reason 

automatically about which sections of code can be executed in parallel. However, a limited 

form of single assignments can also be used with while and for loops. 

Recall the assignment statements that made reasoning difficult, earlier in this section. 

Within the single-assignment paradigm “x=y+1;" does imply the equation x = y + 1 for 
the entire time x has a value. The troublesome statements “y=y+1;" and “x=y+1; y=z;” 

both violate the paradigm by assigning a value to y a second time. 
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In a loop-free procedure with x and y being local variables, we can always do the 
computation we want by defining a few additional local variables. 

Example 3.5 

To fix the statement “y=y+1;" we write “yl=y+1;” instead and we get the valid equation 

yl =y + |. To fix the statement “x=y+1; y=z;” we write “x=y+1; yl=z;” and we get two 

valid equations, x = y + | and yl = <. In both cases, all later references to y in this branch 

of the procedure get changed to y1 so they reference the updated value. 

Let’s look at one more common difficulty: A variable is updated in only one branch of 

an alternation, but is used after the branches of the alternation have merged back together. 

Example 3.6 

Consider the code fragment: 

if (y < 0) | 

Dy vi: 

3 eS 2 EV 

According to what we said earlier, we should define a new local variable y1 and replace 

line 2 with “yl = 0.” But what about line 3? We apparently do not know whether to use 

y or yl. The solution is to follow the rule that if a local variable is assigned its value in 

one branch of an alternation, then assign it an appropriate value in all branches. In this case 

multiple assignment statements appear in the code but only one can be executed in any pass 

through the procedure. The revised code that fits the single-assignment paradigm is 

Liay; <10) 

De yl =0; 

3. else 

4 Vilna 

De ETS Wl: 

Now we have the very clean logical relationships among the variables involved (recalling 

that “=>” is “implies” and “A” is conjunction): 

v0 Vii nye 0 Syl =) AO ey). 

Efficiency buffs may wince at the idea of creating extra variables, but actually an optimiz- 

ing compiler can easily determine if the original y will not be referenced again and use its 

space foryl. @ 

However, let’s remember that the single-assignment paradigm, while very useful for 

local variables, is not so practical for programming with arrays. It is very common that 

array elements need to be updated, and we obviously can’t afford to define a whole new 

array each time we update one element. Even if we did, we would encounter difficulties in 

trying to derive any logical statement describing the array state. The same problems arise 

with objects that have instance fields that need to be updated. 
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Conversion into a Loop-Free Procedure 

If we want to apply the reasoning tools of this section to a procedure with a while or for 

loop, and the procedure is reasonably compact, the easiest method is probably to convert 

the loop into a recursive procedure. 

Example 3.7 

An iterative procedure for Sequential Search was given in Algorithm I.1. The code be- 

low gives the recursive version and uses the single-assignment paradigm. Propositions 3.9 

through 3.12 are applied to prove its correctness. (We did not prove correctness of Algo- 

rithm 1.1 because of the complications arising from variables having multiple values.) 

Recall the pattern of generalized searching routines (see Definition 1.12): If there is 

no more data, fail; else look at one datum; if it is what we are looking for, succeed; else 

search the remaining data. This pattern is clearly followed in the procedure below. 

Algorithm 3.1 © Sequential Search, Recursive 

Input; E,m,num, K, where E is an array with num entries (indexed 0, ..., num—-1), K 

is the item sought, and m > 0 is the least index in the array segment to be searched. For 

simplicity, we assume that K and the entries of E are integers, as is num. 

Output: ans, a location of K in E, in the range m < ans < num, or —1 if K is not found 

in that range. 

Remark: The top-level call should be ans = seqSearchRec(E, 0, num, K). 

int seqSearchRec(int[{] E, int m, int num, int K) 

int ans; 

|. if (m > num) 

Dp ans ==: 

3. else if (E[m] == K) 

4, ans =m: 

5. else 

6. ans = seqSearchRec(E, m+], num, K); 

7. return ans: 

Notice that ans appears in three assignment statements, but they are all in different 

branches of the code, so this fits the single-assignment paradigm. Let’s see what is involved 

in applying the propositions to verify correctness of the procedure. 

First, we need to formulate the preconditions for seqSearchRec: 

i == > 

2. Form <i < num, Ei] is initialized. 

Now we state the objective, or postcondition, which should be true at line 7. 

Ll. 1 ans. = —=1) then form 7 nui, Ell) = ce. 

2. Ifans 4 —1, then m < ans < num and E[ans] = K. 
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Now, following Proposition 3.9, we show that if the preconditions hold when seqSearch— 
Rec is entered, then the postconditions hold when it is done. We see that the procedure splits 

into three alternative cases, lines 2, 4, and 6, which converge at line 7, the return statement. 

Proposition 3.11 is used on each alternative. For each alternative, the conditions that led to 

that alternative are additional facts that can be used to prove that the postcondition holds 

for that alternative. 

If line 2 is reached, the condition of line | is true (m > num). After line 2, ans = —1, 

and the flow drops to line 7. At this point, the truth of the condition in line | implies that 

there are no indexes in the range m <7 < num, so postcondition | holds. Postcondition 2 

is true due to its hypothesis being false (recall Section 1.3.3). 

Similarly, if line 4 is reached, the condition of line | is false (So m < num), and 

the condition of line 3 is true (E[m] = K’). Line 4 itself establishes the equation (ans = 

m). Combining these yields that postcondition 2 is true. The equation (ans = m) and 

precondition | imply that the hypothesis of postcondition I 1s false; therefore postcondition 

4s true. 

Finally, if line 6 is reached, the conditions of lines | and 3 are false (so m < num 

and E[m] # K’). First, we need to show that we “have the right to call” seqSearchRec with 

the actual parameters used on line 6. That is, we need to verify that the preconditions of 

seqSearchRec hold when instantiated with these actual parameters: 

le Tin: =O} then m= 1 = 0: 

2. The rangem+1,...,num-1 is contained within m,..., num—1, so E[i] is initialized 

there. 

Now, by Proposition 3.12, we may conclude that the procedure call on line 6 meets its 

postconditions. Since the value of ans assigned on line 6 is just the value returned by 

the call on line 6, it satisfies the postconditions for that call (with the actual parameter 

of m + 1). These postconditions and the statement E[m] #4 K imply the postconditions of 

the current call (with actual parameter m). For example, if —1 is returned, that implies that 

none of E[m+1],.... E[aum-1] contains K, and so none of E[m], .. ., E[num—1] contains 

K. Otherwise, ans > m+ 1. so ans > m also. 

Thus we have shown that whenever line 7 is reached, the required postconditions hold. 

The only remaining question is whether it is possible that line 7 1s never reached, due to an 

endless recursion. Section 3.5.6 addresses this question. 

Exercise 3.6 asks you to prove the correctness of Euclid’s algorithm for finding the 

oreatest common divisor of two integers, using the techniques of this section. 

3.5.4 Procedures with Loops 

Propositions 3.9 through 3.12 give us a framework for proving correctness in the absence of 

for and while loops. Within loops, single assignment is normally impossible, so 1t becomes 

necessary to define indexed variable names, indexed both by line number in the procedure 

and by number of passes through the loop to keep track of all the values taken on by the 

same program variable. Then it is necessary to trace the history caretully for each change in 
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value. Rather than try to formalize and carry out this procedure, we believe that it is easier 

in practice to transform the loop into a recursive procedure, for which the proof tools are 

much simpler. This section describes how to go about this in a fairly mechanical fashion. 

In fact, once we understand the relationship between the loop and the recursive ver- 

sion, it is usually unnecessary to actually carry out the transformation. As a preprocessing 

step, we should do the following. 

1. Declare local variables within the loop body to the extent possible, and follow the 

single-assignment paradigm on these. That is, give the variable only one value in any 

one pass. 

to For variables that must be updated (and are necessarily declared outside the loop), do 

all the updates at the end of the loop body. 

These rules minimize the number of different cases that must be considered. 

The general rules for re-expressing a while loop with recursion are 

1. Variables updated in the loop become procedure input parameters. Their initial values 

at loop entry correspond to the actual parameters in the top-level call of the recursive 

procedure. We call these active parameters. 

tO Variables referenced in the loop but defined earlier and not updated in the loop are also 

likely to become parameters, because otherwise they would be inaccessible in the new 

recursive procedure. But they are just “passed through,” from call to call, so we call 

these passive parameters. For analysis purposes (if we are not actually converting the 

code), we can treat passive parameters as global variables. 

3. The recursive procedure begins by mimicking the while condition and returns (..e., 

drops to the return statement of the new recursive procedure) if the while condition 

is false. 

4. A break also corresponds to a procedure return. 

5. Ifthe end of the while body is reached, a recursive call occurs. The actual parameters 

of the recursive call are the updated values of variables used in the loop body. These 

are concentrated at the end of the loop body if we did the suggested preprocessing. 

The rules for for loops are similar. 

This transformation is illustrated with the factorial function in Figure 3.7. Note that n 

iS a passive parameter. 

Except for line 7, the loop body in factLoop follows the single-assignment paradigm. 

Thus we can reason about the loop body using Propositions 3.9 through 3.12 and using 

equations among the variables, without getting involved in the complicated indexing or 

tagging that is usually needed when one variable takes on many different values during the 

procedure execution. At least, we can do this up to line 7, where variable values “roll over” 

in preparation for the next pass. Furthermore, if we can visualize this “rolling over” as a 

new procedure invocation with new actual parameters, and a smaller problem size, we can 

try to prove something about it using induction. In this limited sense, the single-assignment 

paradigm can be used in procedures with loops. 



3.5 Proving Correctness of Procedures 127 

int factLoop(int n) int fact(int n) 
int k, f: 9. return factRec(n, 1, 1); 

I, Te i 

tale int factRec(int n, int k, int f) 

3. while (k < n) int ans; 

4. { 3a. if (k > n) 

5: int fnew =f « k: 3b. ANS =f 

6. int knew=k+1- 4. else 

te k = knew; f = fnew; 5 int fnew =f x k; 

10 
} 6. int knew=k+1-; 

return f; I ans = factRec(n, knew, fnew); 

return ans; 

Figure 3.7 Transformation of while loop into recursive function. Curly braces unrelated to the 

transformation are omitted. 

3.5.5 Correctness Proofs as a Debugging Tool 

One of the great practical values of proofs of correctness—even very informal “mental” 

proofs—is that they often pinpoint bugs in a procedure before coding and testing even 

begin. Partly it is just the discipline of thinking through the procedure’s preconditions and 

postconditions, and writing them down as comments in the code. (Even if your proof will 

be “mental” you should not shirk from this documentation step.) 

Many program bugs are simple and obvious mismatches between a procedure’s pre- 

conditions and the actual conditions that exist when it is called. A great many others are due 

to the corresponding postcondition mismatch. These mismatches usually become evident 

as soon as Proposition 3.12 is considered. 

When the problem is subtler, and everything “looks okay,” you should try to construct 

the proof using the Propositions to get from block to block in reasonably sized chunks. 

This involves asking, for each chunk that you are treating as one block, “What is this chunk 

supposed to accomplish?”, then “What does it need to be true to accomplish that?” Now 

do the prior chunks make those things true? 

If there is a bug in the code, and you are careful about your reasoning, the point where 

the proof breaks down tells you where the bug is. That is, the bug is likely to be in one 

of the two blocks on either side of the boundary across which you found a mismatch of 

postconditions and preconditions. 

For example, in the recursive sequential search (Algorithm 3.1), if the condition on 

line | were mistakenly written as (m > num-—1), then postcondition | would not be implied 

after line 2, and the bug would be localized. 

For another example, suppose Algorithm 3.1 is revised to interchange lines I—2 with 

lines 3-4, that is, line 1 becomes “if (E[m] == K).” All the statements mentioned in the 

proof we gave can be repeated with a change in line number, but the procedure has a bug. 

To catch that bug during a verification check, we have to realize that a precondition for any 
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statement that evaluates an expression is that all data elements in the expression have been 

given values, that we are not accessing any uninitialized variables or instance fields. If m 

might be greater than num-1, we can’t be sure of this. Again, the proof attempt exposes 

the bug, but only if we are checking very carefully. It is always a good idea to ask, as we 

are reviewing our code, “Has this data element been initialized?” 

3.5.6 Termination of Recursive Procedures 

In the presence of recursive procedures, Propositions 3.9 through 3.12, the lemmas de- 

scribed in Section 3.5.2, demonstrate what is called partial correctness, because they do 

not address the question of whether the procedure terminates. To complete the proof of to- 

tal correctness, it is necessary to demonstrate that each recursive procedure call is working 

on a problem that is smaller than the problem being solved by the calling procedure. 

At the point where one needs to prove that the preconditions for the recursive call are 

satisfied, one also argues that the structure or “problem size” being passed to the recursive 

call is smaller than that of the caller. As with other correctness issues, in practice people 

use reasonableness arguments that appeal to common sense, rather than formal proofs with 

axioms and rules of inference. 

In many cases the size of the problem is a nonnegative integer, such as the number of 

elements in a subrange, the number of elements in a linked list, and so on. For example, in 

Algorithm 3.1 in Section 3.5.2 “problem size” is conveniently defined as n = (num — m), 

the number of unexamined elements. This difference decreases by one from the current call 

to the recursive call, and the recursion ends if it becomes zero. 

In some cases, one can use directly a partial order defined on the structure being passed 

as an input parameter, such as the subtree partial order (see Figure 3.3). For example, in a 

binary-tree-traversal procedure, such as Figure 3.4 if the input parameter to the procedure 

is tree J, and T is not a base case, then each subtree of T is “less than” T in this partial 

order. Therefore the recursive procedure terminates on any correctly formed binary tree 

structure. 

To be technically accurate, a procedure that does recursion on a binary tree should have 

a precondition that its input parameter 7 is a correctly formed binary tree structure—in 

particular, that it has no cycles. One motivation for specifying the Binary Tree abstract data 

type nondestructively (as we did in Section 2.3.3) is that this condition holds automatically. 

3.5.7 Correctness of Binary Search 

We now prove the correctness of the recursive procedure binarySearch in some detail (see 

Algorithm 1.4, Binary Search). This serves as an illustration of the use of induction to prove 

correctness of a recursive procedure. An induction proof establishes total correctness of a 
loop-free recursive procedure; that is, it establishes that the procedure terminates, as well as 
establishing that its preconditions imply its postconditions. (If the recursive procedure calls 
subroutines, then correctness of the subroutines is added as a hypothesis to the theorem of 
correctness for the recursive procedure being proven.) 
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int binarySearch(int[] E, int first, int last, int K) 

ihe if (last < first) 

2 index = -1; 

3h else 

4. int mid = (first + last) / 2: 

ae if (K == E[mid]) 

6. index = mid; 

a. else if (K < E[mid]) 

8. index = binarySearch(E, first, mid—1, K); 

9, else 

10. index = binarySearch(E, mid+1, last, K); 

Lite return index: 

Figure 3.8 Procedure for binarySearch, repeated from Algorithm 1.4. 

We define the problem size for binarySearch as n = last — first + 1, the number of 

entries in the range of E to be searched. The procedure is repeated in Figure 3.8 for 

convenience. 

Lemma 3.13 For all n => 0, if binarySearch(E, first, last, K) is called, and the problem 

size is (last — first + 1) =n, and Effirst], ..., E[last] are in nondecreasing order, then it 

returns —1 if K does not occur in E within the range first, ..., last, and it returns index 

such that K = E[index] otherwise. 

Proof The proof is by induction on n, the problem size. The base case is n = 0. In this 

case, line | Is true, line 2 1s reached, and —1 is returned. 

For n > 0, assume that binarySearch(E, f, ¢, K) satisfies the lemma on problems 

of size k such that 0<k <n, and f and @ are any indexes such thatk=£— f +1. 

Because n > 0, line | is false, first < last, and control reaches line 4, then line 5. From the 

preceding inequality and the equation mid = [(first + last)/2], we see that first < mid < 

last. Therefore mid is within the search range. If line 5 is true, the procedure accomplishes 

its objective on line 6. 

For the remainder of the proof, assume line 5 is false. From the previous pair of 

inequalities and the definition of n, we have (by transitivity of <) 

(mid — 1) — first + 1 < (n — 1), 

last —(mid+ 1) + 1 <(n—1), 

so the inductive hypothesis applies for both recursive calls, on lines 8 and 10. 

Now, if line 7 is true, then line 8 is executed. It is straightforward to check that the 

preconditions of binarySearch are satisfied with the actual parameters of line 8 (only 

the third parameter changed, and it decreased). Therefore we can assume that the call 

accomplishes the objective of binarySearch. If the call on line 8 returns a positive index, 

this solves the current problem. If the call on line 8 returns —1, this implies that K is not 

in E in the range first, ..., mid — I. But the truth of line 7 implies that K is not in E in 
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the range mid, . . ., last, so returning —1 from the current procedure invocation is correct. 

If line 7 is false, then line 10 is executed, and the argument is similar. 

A point worth emphasizing about the proof is that, before we could (justifiably ) assume 

that the calls on lines 8 and 10 accomplish their objectives, we needed to verify that 

the preconditions for the calls were met. Since many logical errors are caused by calling 

procedures without meeting their preconditions, this kind of check can uncover many bugs. 

Recurrence Equations 

A recurrence equation defines a function over the natural numbers, say 7(7), in terms 

of its own value at one or more integers smaller than n. In other words, 7(1) is defined 

inductively. As with all inductions, there are base cases to be defined separately, and the 
recurrence equation only applies for n larger than the base cases. Although we will be 

interested mainly in recurrence equations for functions that describe the resources used by 

algorithms (usually the running time, number of key comparisons, or the count of some 

other important operation), this is not a requirement to have a recurrence equation. Many 

interesting mathematical functions can be defined by recurrence equations, such as the 

well-known Fibonacci numbers, Equation (1.13). 

Recurrence equations arise very naturally to express the resources used by recursive 

procedures. The purposes of this section are to show how to derive such recurrence equa- 

tions from the procedure code, and to describe some commonly occurring patterns from 

algorithms. Section 3.7 explores how to solve some of the typical recurrence equations that 

arise this way. Because a number of different resources might be measured (time, space, 

number of key comparisons, etc.), we will use the general term cosr for the quantity being 

described by, or bounded by the recurrence equation. 

We first need to specify some way of measuring the size of the problem the recursive 

procedure is solving: Let’s call that size n. The left side of the recurrence equation will be 

T(n). To make up the right side of the equation we need to estimate how much the various 
—— . . > . > ~ > 

blocks in the procedure will cost as a function of n. Often the cost for some block will be 

a constant. We can just call all constants | if we are satisfied with an answer that is within 

a constant factor. 

In our terminology, a subroutine is any procedure that is not recursive with the one 

we are analyzing; that is, no sequence of calls from the subroutine can lead back to this 

procedure. Quantities related to subroutines usually carry the subscript S$. Quantities related 

to recursive calls usually carry the subscript R. 

no loops. 

1. Fora sequence of blocks, add the individual costs. 

2. For an alternation of blocks, where neither is a base case, take the maximum of the 

alternatives. 
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3. Ifa block contains a subroutine call, figure out how big its actual parameters are, as 

a function of n. For simplicity assume only one parameter size is needed, and call it 

ns(n). We need to know the cost function, say 7s, for the subroutine. Then the cost of 

this call is specified as Ts(75(n)). 

4. Ifa block contains a recursive procedure call, figure out how big its actual parameter 

size is, as a function of n, and call it nr(n). Then the cost of this recursive call is 

T(npr(n)). This is the same 7 that is on the left side of the recurrence equation. 

The terms that occur on the right side of the equation, other than those containing the-func- 

“tion T (which appears on the Teft side), are called the nonrecursive cost of the 
call. This is to distinguish this cost from the total cost of the procedure call, which includes 

the T terms as well. 

Combining the costs of blocks for average-case analysis requires a different treatment 

of the alternation construct. The cost of each alternative is weighted by its probability 

of occurring, and the weighted costs are summed, to yield the expected, or average cost 

for this block. Also, if the sizes of subproblems (15(7) and np(n)) can vary tor different 

inputs, the costs of subroutine calls and recursive calls need to be averaged. For this reason, 

average-case analysis is often considerably more difficult than worst-case analysis. 

Example 3.8 

For a simple application of these rules, consider the recursive function 

seqSearchRec(E, m, num, K) 

from Algorithm 3.1, whose procedure body is repeated here for convenience: 

1. if (m > num) 

De ans =-1; 

3. else if (E[m] == kK) 

A. ans =™; 

5. else 

6. ans = seqSearchRec(E, m+1, num, K); 

7. return ans; 

We specify as our measure of problem size the number of elements in the array F’ that 

might contain the key K being searched for. Thus 7 = num — im, where m and num are 

the second and third actual parameters of the current call. Let’s decompose the procedure 

into blocks, so the rules can be applied. Blocks can be described by their range of line 

numbers. The whole procedure is 1-7. It is decomposed as suggested in this diagram, in 

which “OR” denotes alternation and “;” denotes sequence. 

| 2 3 4 5 6 7 

ERO? L}-0 
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The base case is block 2—2 and is excluded from the recurrence equation, which only 

applies to nonbase cases. All innermost blocks are simple statements, except for 6-6. When 

the cost is running time, we will assume simple statements require constant cost and use | 

to represent any constant (so 1+1=I1 in this context). When the cost is the number of some 

specified operation, then the operations are counted. We will assume, for definiteness, that 

the cost is the number of comparisons with an array element. Thus line 3 incurs a cost of | 

and the other simple statements are free in this cost model. 

Looking at the call on line 6 in Algorithm 3.1, we see the actual second and third 

parameters are m + | and num, so its problem size is num — (m + 1) =n — 1. Therefore 

the cost of 6-6 is T(n — 1). The cost for the whole block is built up from the costs of the 

statements using max to combine alternatives and + to combine sequential blocks. Block 

2-2 is excluded as an alternative here. Note that 1—7 is the sum of 1-6 and 7—7, and gives 

us the expression on the right side of the recurrence equation for seqSearchRec: 

(0 + (1 + max(0, T(n — 1))) +0. 

Simplifying, we see that the recurrence equation 1s T (7) = T(n — 1) + 1. The nonrecursive 

cost is | in this case. 

Base cases are always small problems, so we assume they are always unit cost when 

time is the cost. But here we are counting comparisons, so 7(0) =O. @ 

Example 3.9 

For another example, consider the Binary Search procedure, Algorithm 1.4, repeated in 

Section 3.5.7. The problem size is n = last — first + 1. The cost measure is again key 

comparisons, so line 5 costs 1. On lines 8 and 10 the recursive calls are on problems of 

size n/2 or (n — 1)/2, but these are alternatives, so the combination cost is the maximum, 

not the sum. None of the remaining statements does a key comparison so the recurrence 

equation is found to be 

Ly = TG 2yS 1, 

In this procedure only one recursive call is actually made although two appear in the 

procedure. In Chapter 4 we will encounter sorting procedures that actually make both 

recursive calls, and their recurrence equations have terms on the right-hand side for each 

recursive call. 

Problems arise if the sizes ns(71) or np(7) are not known very accurately. For example, 

in a binary-tree traversal on a tree with nm nodes (Section 2.3.3), we know that the left and 
right subtrees add up to n — | nodes, but we don’t know how the sum is divided between 
them. Suppose we introduce an extra variable r to represent the size of the right subtree. 
Then we arrive at the recurrence equation 

LEG) Gh EAC) AL Oar 

Fortuitously, we can determine by substitution that the function T(n) = 2n + 1 solves 
this recurrence without knowing any values for r. In general, we are not so lucky, and 
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behavior is different for different values of r. This problem has to be addressed in Quicksort 

(Section 4.4.3). 

Common Recurrence Equations 

We can describe several categories of recurrence equation that occur frequently and can 

be solved (to some degree) by standard methods. In all cases “subproblem” refers to a 

smaller instance of the main problem, to be solved by a recursive call. Symbols b and ¢ are 

constants. 

Divide and Conquer: In many cases of the divide-and-conquer paradigm, the sizes of 

subproblems are known to be n/2 or some other fixed fraction of n, the size of the 

current problem. Examples of this behavior are Binary Search (Section 1.6), which we have 

seen, and algorithms we study in Chapter 4: Mergesort (Section 4.6) and heap operations 

(Section 4.8.3). For example, in Section 4.6 we derive this recurrence equation for Ty 5, 

the number of comparisons done by Mergesort: 

2 2 
hl Hl 

Tys(n) = Tus = Tus( + Min), Types) = 0. (3,2) 

The cost M(7) arises from a subroutine call. We need to know what that function is before 

we can make progress on solving for Tyy5(”). 

In general, for problems of the divide-and-conquer type, the main problem of size 

n can be divided into b subproblems (b = 1) of size n/c (c¢ > 1). There is also some 

nonrecursive cost f (7) (to split up the problem into subproblems and/or to combine the 

solutions of the subproblems into a solution of the main problem). 

Nn 

TG) 6 r( ) + ron, (3.3) 
te 

We call b the branching factor. 

Chip and Conquer: The main problem of size n can be “chipped down” to one subprob- 

lem of size n — c, where c > 0, with nonrecursive cost f(n) (to create the subproblem 

and/or to extend the solution of the subproblem into a solution of the overall problem). 

T(n)=T(n —c)+ f(n). (3.4) 

Chip and Be Conquered: The main problem of size n can be “chipped down” to b 

subproblems (b > 1), each of size n — c, where c > 0, with nonrecursive cost f(n) (to 

split up the problem into subproblems and/or to combine the solutions of the subproblems 

into a solution of the main problem). We call b the branching factor. 

LG) =ba (i — cy f(r). (3.5) 

If the subproblems have various sizes, but all are within some constant range 2 — Cina, to 

n — Cmin, then upper and lower bounds can be obtained by using Cmin and Cmax, respec- 

tively, in place of c in the equation. This case is also considered in Exercise 3:11, 

In the next section we look at a methodical approach to analyzing these typical recur- 

rence equations. 
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Recursion Trees 

Recursion trees provide a tool for analyzing the cost (running time, number of key compar- 

isons, or other measure) of recursive procedures for which we have developed recurrence 

equations. First we will show how to develop a recursion tree from a recurrence equation 

with an example, then we will describe the general procedure. From the general procedure 

we will be able to derive several general solutions (Lemma 3.14, Lemma 3.15, Theo- 

rem 3.16, Theorem 3.17, Equations 3.12 and 3.13). These solutions cover many of the 

recurrence equations that arise in practice from analysis of algorithms, and they serve as 

a rough guide even when the recurrence equations are not exactly in one of the standard 

forms. It is not necessary to follow all of the technical details in this section to be able to 

apply the general solutions mentioned. 

Each node in the recursion tree has two fields, the size field and the nonrecursive cost 

field. A node 1s represented as follows: 

nonrec, COSt 

The size field states the actual parameter of T for this node. We include the recurrence 

name T to remind us that the size field is not a cost. 

Example 3.10 Simple divide-and-conquer recursion tree 

rov-r(G)+r(G)os 
This is a special case of the form in Equation ( with b= 2 and c=2. This is a 

slightly simplified form of the recurrence ee Mergesort, and it comes up in 

many situations. We will go through the steps to develop the corresponding recursion 

tree. The first step, which helps to avoid substitution errors, is to rewrite the equation 
with an auxiliary variable (there is an analogy with the auxiliary variable in an induction 

hypothesis). We call this our work copy of the recurrence equation. 

k k 
ri=T (> Jer (s )+e (3.6) 

A node can be created as soon as its size field is known; later we can use the size field to 
calculate a value for the nonrecursive cost field. We are ready to create the root node of the 
recursion tree for 7 (1); here size =n. 

Consider the recurrence equation: 

dil Ss 

Tp) 

The process of determining the nonrecursive cost field and the children of an in- 
complete node is called expansion of that node. We take the size field in the node to be 
expanded, 7 in this case, and substitute it for k in our work copy, Equation (3.6). We look 
at the resulting right side, which is T(n/2) + T(n/2) +n. All the terms with T become 
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children of the node we are expanding and all the remaining terms become that node’s 
nonrecursive cost, as follows: 

Since all nodes at the same depth look the same we can generate them in batches. In 

general, each incomplete node must be generated according to its own size field. Here all 

the size fields are n/2, so this time we substitute n/2 for k in Equation (3.6), and we see 

that the right side looks like: T(n/4) + T(n/4) + n/2. So now we have 

| T (n/4) 

We continue several levels until we can see what pattern the tree is following. Fig- 

ure 3.9 shows the tree after expanding another level; there are eight incomplete children 

for which details are not shown. Here we can see that at depth d the size parameter is n/24 

and the nonrecursive cost also happens to be n/2“. (Recall that the depth of the root is zero 

in our convention.) In this simple example all nodes at the same tree depth are identical, 

but this is not always the case. & 

We summarize the rules for developing a recursion tree on the next page. 

Figure 3.9 Three top levels of a recursion tree. The size fields of the eight incomplete children 

are not shown. 
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Definition 3.5 © Recursion tree rules 

|. The work copy of the recurrence equation uses a different variable from the origi- 

nal copy; it is called the auxiliary variable. Let k be the auxiliary variable for pur- 

poses of this discussion. The left side of the original copy of the recurrence equation 

(let’s assume it is 7'(72)) becomes the size field of the root node for the recursion 

(ree. 

2. An incomplete node has a value for its size field, but not for its nonrecursive cost. 

3. The process of determining the nonrecursive cost field and the children of an incom- 

plete node is called expansion of that node. We take the size field in the node to be 

expanded and substitute it for the auxiliary variable & in our work copy of the recur- 

rence equation. The resulting terms containing 7 on the right side of that equation 

become children of the node being expanded; all the remaining terms become that 

node’s nonrecursive cost. 

4. Expanding a base-case size gives a nonrecursive cost field and no children. 

To simplify the presentation, we assume that the recurrence equation 1s defined in 

such a way that no base case has cost zero. If the equation is presented with base cases 

costing zero, we can just compute the smallest cases that have nonzero cost and use 

them as the base cases, instead. 

In fact, we will usually assume the base case costs |, for definiteness. Variations 

can be worked out if necessary. 

In any subtree of the recursion tree, the following equation holds: 

size field of root = ) nonrec. costs of expanded nodes 

++ ) size fields of incomplete nodes. 

This is easy to prove by induction. In the base case, 7 (1) = T(n). After one expansion, 

the root node has been expanded and the children are incomplete, so Equation (3.7) gives 

exactly the original recurrence equation, and so on. 

Example 3.11 Recursion tree interpretation 

In the seven-node tree in Example 3.10 (with four incomplete nodes), Equation (3.7) states 
that T(n) =n + 2(n/2)+47T(n/4) =2n+4T7(n/4). @ 

The technique to evaluate the recursion tree is this: First sum the nonrecursive costs 
of all nodes at the same depth; this is called the row-swm for that tree depth. Then sum 
those row-sums over all depths. Continuing the example of Figure 3.9, some row-sums are 
shown in Figure 3.10. 

To evaluate the sum of row-sums, it is necessary (usually) to know the maximum depth 
of the recursion tree. This is the depth at which the size parameter reduces to a base case. 
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99 

Figure 3.10 Summing nonrecursive costs in a recursion tree. The row sum for each of the first 

three rows is shown at the right. 

Example 3.12 Recursion tree evaluation 

For the tree of Example 3.10 (see Figure 3.10) we observe that the size as a function of 

node depth d is n/24, so the base cases occur about at d = Ig(n). Since each row-sum is n, 

the total for the tree, which gives the value of 7(n), is aboutnlg(n). 

3.7.1. Divide-and-Conquer, General Case 

Following the same steps as in Examples 3.10 through 3.12, we can evaluate the general 

divide-and-conquer recurrence equation (Equation (3.3), repeated here for convenience), 

to get the asymptotic order of T (1). 

rin) =b7(™ ) + fin). (3.8) e 

This section gets technical, but the lemmas and theorems can be understood and used 

without following all the steps of the derivations. 

First, we can see that the size parameter decreases by a factor of c each time the depth 

increases (we had c = 2 in the example). Therefore the base cases (leaves of the tree) occur 

about when (n/c?) = 1, where D is the node depth of base-case nodes. We solve and get 

D = \g(n)/Ig(c) € O(log(n)). However, we should not jump to the conclusion that row- 

sums are the same at all depths. 

It is useful to know how many leaves the tree has. The branching factor is b so the 

number of nodes at depth D is L = b?. To get this into a more convenient form we take 

logs: lg(L) = D lg(b) = (1g(b)/ 1g(c)) Ig(n). The coefficient of lg(7) is very significant, so 

we give it a name. 

Definition 3.6 Critical exponent 

For b and c in Equation (3.3) (or Equation 3.8) we define the critical exponent as 

_ Ig(d) 
= ig). 
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By Lemma 1.1, part 8, any convenient base can be used for the logarithms in the 

formula for E, as long as it is the same in the numerator and denominator. With this 

notation, the paragraph before the definition has shown that: 

Lemma 3.14 The number of leaves in the recursion tree for Equation (3.8) is approxi- 

mately L =n", where E is the critical exponent defined in Definition 3.6. 5 

Assuming the nonrecursive cost is | in the leaves, this tells us that the cost of the tree 

is at least n©. Even if the nonrecursive costs in the leaves are zero, there will be nonzero 

costs in the level above the leaves (or some constant number of levels above the leaves in 

an extreme case). But there are still O(n") nodes at this level, so a lower bound of Q(n®) 

still holds. 

Let’s summarize what we know. 

Lemma 3.15 With the notation of the foregoing discussion, we have, approximately: 

The recursion tree has depth D = Ig(n)/ 1g(c), so there are about that many row-sums. 

2. The zeroth row-sum is f (7), the nonrecursive cost of the root. 

3. The Dth row-sum is n&, assuming base cases cost 1, or @(n”) in any event. 

4. The value of 7 (7), that is, the solution of Equation (3.8), is the sum of the nonrecursive 

costs of all nodes in the tree, which is the sum of the row-sums. © 

In many practical cases the row-sums form a geometric series (or can be well approx- 

imated from above and below by two geometric series). Recall that a geometric series has 

the form Shae ar“ (Section 1.3.2). The constant r is called the ratio. Quite a few simpli- 

fications occur in practice that are based on the principle of Theorem 1.13, part 2, which 

stated that, for a geometric series whose ratio is not |, the sum is in © of its largest term. 

By this theorem and Lemma 3.15, we can conclude the following: 

Theorem 3.16 (Little Master Theorem) With the notation of the foregoing discussion, 

and T(n) defined by Equation (3.8): 

1. If the row-sums form an increasing geometric series (starting from row 0 at the top 

of the tree), then T(n) € O(n”), where E is the critical exponent defined in Defi- 

nition 3.6. That is, the cost is proportional to the number of leaves in the recursion 

tree. 

2. If the row-sums remain about constant, T (1) € O( f(n) log(n)). 

3. If the row-sums form a decreasing geometric series, then T(n) € O( f(n)), which is 

proportional to the cost of the root. 

Proof Incase | the sum is dominated by the last term. In case 2 there are © (log(7)) equal 

terms. In case 3 the sum is dominated by the first term. 

By going into greater technical depth it is possible to generalize this theorem consider- 

ably. The generalization is often useful when the function f (7) in Equation (3.8) involves 
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logarithms, because then the row-sums may not behave very neatly. (For an even more 
general version, see Exercise 3.9.) 

Theorem 3.17 (Master Theorem) With the terminology of the preceding discussion, the 

solution of the recurrence equation 

Hl 
ECD Ste r( 

re 
aT ) G9) 

(restated from Equations 3.3 and 3.8) has forms of solution as follows, where E = 

lg(b)/ lg(c) is the critical exponent defined in Definition 3.6. 

1. If f(n) € O(n®~*) for any positive €, then T(n) € O(n“), which is proportional to 

the number of leaves in the recursion tree. 

2. If f(n) € O(n®), then T(n) € O( f(n) log(n)), as all node depths contribute about 

equally. 

If f(n) € Q(n®**) for any positive €, and f(n) € O(n®+°) for some 6 > €, then 

T(n) € ©(f(n)), which is proportional to the nonrecursive cost at the root of the 

recursion tree. 

os) 

(Possibly none of these cases applies.) 

Proof At node depth d there are b4 nodes, and each contributes a nonrecursive cost of 

f(n/c“). Therefore we have the following general expression for the solution of Equa- 

tion (3.8): 

le g(n)/ Ie(c) 

Tiny= So bf (5). (3.10) 
(es 

d=0 

We will just sketch the proof, which follows the lines of the reasoning for Theorem 3.16. 

(See Notes and References for sources with a complete proof.) Consider case 3. Ignoring 

E+e for some positive €. So 

ae a net fe CD) 

: cd (cao cEdted ‘ 

coefficients, f(m) is about n 

Then b¢ f (n/c“) is about f(n) b“/ (c4 ec“). But c’ = b through standard identities, so 

c 4 in the denominator cancels b“ in the numerator. We finally have f(n )/c®, which gives 

a decreasing geometric series in d. Analysis of other cases is similar. 0 

3.7.2 Chip and Conquer, or Be Conquered 

A different picture emerges for Equations (3.4) and (3.5). If the branching factor is greater 

than 1, we have Equation (3.5), repeated here for convenience: 

T(n)=bT(n—c)+ f(a). (aly 
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tO 

fs. 

oe) 

oe") 
Figure 3.11 Summing nonrecursive costs in a chip-and-be-conquered recursion tree 

Figure 3.11 shows the recursion tree for an example of Equation (3.11) with f(k) = 

Since the size decreases by c with each depth increase of 1, the base cases occur at about 

at SS HOKe, 

As illustrated in Figure 3.11, the total for the tree is exponential in 7, the problem size. 

This holds even with the most favorable assumption that f(m) = 1. The following general 

expression can be found by inspection of the recursion tree for Equation (3.11): 

Hye n/c 
(ch) ‘ 

a= b¢ fin —cd) =b"!" u = (solution of Eq. 3.11) (3.12) 
? 

h=0 

where the second sum uses hh = (n/c) — d, so h is zero at the leaves and increases toward 

the root. In most practical cases, the last sum is ©(1), giving T(n) € © (pe ). This function 

grows exponentially inn. A more general case of chip-and-be-conquered is considered in 

Exercise 3.11. As we saw in Section 1.5, algorithms with exponential growth rates will not 

be able to solve the worst cases of problems of any significant size. 

However, if the branching factor b is | in Equation (3.11) (giving Equation 3.4), then 

the general expression of Equation (3.12) becomes much friendlier: 

n/c n/e 

Twe)> fl f(n — cd) = a f(ch)*& =f # f(x) dx (solution of Eq. 3.4) (3.13) 

d=0 h=0 

Por example, if f(7) is a polynomial n®, then T(n) € O(n%*!), Alternatively, if f(n) = 
log(n), then T(n) € O(n log(n)). (See Section 1.3.2.) 

In summary, we have two tools for evaluating the cost of a recursive procedure: the 
recursion tree and the recurrence equation. They are different representations of the same 
information. Several techniques have been developed to evaluate commonly occurring 
forms of these trees and equations. Even if a situation arises that does not fit a standard 
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form, the recursion tree still expresses the correct solution of the recurrence equation; it 

just may be difficult to evaluate. 

3.7.3. Why Recursion Trees Work 

This section explains the connection between the recursion tree for a given recurrence 

equation and a programmed function to calculate the solution by recursion. It can be 

omitted without loss of continuity. 

One way to visualize the recursion tree is to imagine that we actually programmed a 

simple recursive function (call it evalT(k)) to evaluate some recurrence equation, such as 

Equations 3.2 through 3.5. The activation tree for the programmed function corresponds 

very exactly to the recursion tree. The recurrence equation looks like T(k) = f(k) +... 

(terms with 7). We assume our recursive function evalT has one parameter, A, that rep- 

resents problem size, and a local variable nonrecCost to store the computed value of 

nonrecursive cost (1.e., f(A)). Ignoring the base case, the code of evalT(k) is assumed to be 

nonrecCost = f(k); 

return nonrecCost +... (terms with evalT): 

where the terms with evalT just mimic the terms with 7 on the right side of the recurrence 

equation. 

The recursion tree for that recurrence equation, with 7(7) at the root, would be the 

activation tree for evalT(n). (This assumes that the nonrecursive cost function, f(A), can 

be evaluated with simple statements.) 

The essential insight is that the sum of all nonrecCost values throughout the tree is 

exactly the value returned to top level. We assume the top-level call is evalT(1), to compute 

the value of 7 () for the recurrence equation. 

Exercises 

Section 3.2. Recursive Procedures 

3.1 Show that every 2-tree (Definition 3.2) with n internal nodes has n + | external nodes. 

3.2. In Lemma 3.7 we used the fact that x Ig(x) is convex. Prove this. 

3.3. Show that the external path length ep/ in a 2-tree with m external nodes satisfies 

epl < !(m2 +m — 2). Conclude that ep! < 4n(n + 3) for a 2-tree with m internal nodes. 

3.4 Equation (1.13) defined the Fibonacci sequence as F(n) = F(n — 1) + F(n 2) for 

n> 2, F(O) =0, and F(1) = 1. Prove (by induction) the correct statement between the 

following: 

A 1. Forn > 1, F(n) < 100 (3) 

i) Forn > 1, Fin) >.01 (3). 
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The constants have been chosen to make it hard to guess which statement is correct—you 

will have to rely on your proof. 

Section 3.5 Proving Correctness of Procedures 

3.5 Consider this procedure, which takes two arrays as parameters: 

shiftAdd(int[] A, int[] B) 

A[O] = B[O]; 
B[O] ++; 

return: 

Assuming no integer overflow occurs, is it necessarily true that A[O] < B[O]? 

3.6 In this exercise all integers are considered to be nonnegative, for simplicity. A divisor 

of an integer k is any integer d 4 0 such that k/d has no remainder. A common divisor for 

a set of integers 1s an integer that is a divisor for each integer 1n the set. Euclid’s algorithm 

for finding the greatest common divisor (GCD) of two nonnegative integers, m and n, can 

be written without using division, as follows: 

int gcd(int m, int n) 

int ans: 

ll if (nt == 0) 

2 ans =n" 

3. else if (m > n) 

aS ans = gcd(n, m) 

5. else 

6 nLess = n-m; 

Ts ans = gcd(m, nLess): 

8. return ans; 

The preconditions for gcd(m, n) are that m > 0, n > 0, and at least one of m and n is 

positive. You will need a few (not too many) facts about arithmetic for the following proofs. 

1. Ifa > b, thena —c > b —c. (See Equation (1.20) for other variations.) 

2. If d is a divisor of k, then d is a divisor of k — d and k + d. (However, you have to 

check separately whether k — d < 0.) 

3. Ifdisadivisor of k, thend <k ork =0. 

Prove the following using induction and the lemmas of Section 3.5.2, as needed. 

a. If the preconditions of gcd(m, n) are satisfied, then the value that the function returns 
is some common divisor of m and n. 

* b. If the preconditions of gcd(m, n) are satisfied, then the value that the function returns 

is the greatest common divisor of m and n. 
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Section 3.6 Recurrence Equations 

3.7 Suppose that the function M is defined for all powers of 2 and is described by the 
following recurrence equation and base case: 

M(n) =n—-—1+2M(n/2) 

MAT) =O. 

a. What is the asymptotic order of M(n)? 

b. Find an exact solution for M when n is a power of 2. 

3.8 Suppose W satisfies the following recurrence equation and base case (where c is a 

constant): 

W(n) =cn + W([n/2]) 

Wid 1: 

What is the asymptotic order of W(n)? 

3.9 Another approach to solving divide-and-conquer recurrence equations involves 

changes of variables and function transformations. This is a long exercise involving some 

complicated mathematics; its last part gives a generalization of the Master Theorem. 

The starting equation, as in Theorem 3.17, is 

on 
EG — 12 r( ) + f(n). 

C 

First, we will limit ourselves to n of the form n =c*, and assume that T(1) = f(1). The 

variable k will be a nonnegative integer throughout this exercise. We perform a change of 

variables by defining U(k) = T(c*) for all k. Then we perform a function transformation 

by defining V(k) = U(k)/b* for all k. 

a. Derive the recurrence equation for U(k), and determine the value of U (0). The vari- 

able n should be completely eliminated. 

b. Derive a recurrence equation for V(k), and determine the value of V (QO). The left-hand 

side of the equation should be V(x), and the right-hand side should be reasonably 

simplified. 

c. Re-express the recurrence equation for V as V (7), introducing 7 as an auxiliary vari- 

able. Then express V (k) as a certain sum from 7 = 0 to k. 

d. Let £ =lg(b)/ Ig(c), as in Theorem 3.17, for the rest of this exercise. Show that if 

m =c', then m® =b'. 

e. Suppose f(m) € ©(m* ). Note that this is case 2 of the Master Theorem. (We have 

introduced m as an auxiliary variable to avoid confusion with n, which we want in the 

final answer.) Find the asymptotic order of V (Kk). 

f. Convert your expression for V(x) in part (e) into an expression for U(k), and then for 

T (n). (It should agree with case 2 of the Master Theorem. Part (d) can help.) 
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g. Now suppose f (i) € @(m® log“(m)), where E is ne as in Theorem 3.17, for 

some positive constant a. (Note that log“(m) = (log m)“.) Find the asymptotic order 

of V(K). 

h. Convert your expression for V(k) in part (g) into an expression for U(k), and then for 

T(n). Conclude that when f(m) € O(m® log“(m)), the solution for the divide-and- 

conquer recurrence is 

T(n) € O(n® log’*'(n)) (3.14) 

This is the generalization of case 2 of the Master Theorem. (Which special case of 

Equation (3.14) gives case 2 of the Master Theorem?) 

3.10 Find the asymptotic order of the solutions for the following recurrence equations. 

You may assume 7(1) = 1, the recurrence is for > 1, and c is some positive constant. For 

some of these, Equation (3.14) is needed, and it may be used without proving it. 

a. Are ul Curie 

Dae) = eae 

Gi Sr. 

ds Tia) = 2) (n72) on len. 

e. T(n)=2T(n/2) + en’. 

3.11 Consider the chip-and-be-conquered recurrence equation 

T(n)=b, Tin — 1) +b. T(n—2)4+---+bTn—-k) + f(n) forn>k (3.15) 

for some constant k > 2. The coefficients b; are nonnegative; some may be zero. For 

example, the Fibonacci recurrence, Equation (1.13), corresponds to k = 2, bj = bo = 1, 

and f(n) =0. 

The characteristic equation for the above recurrence equation Is 

ab x bee ee bee, (3.16) 

a. (This part requires advanced calculus and some theory of polynomials.) Show that 

Equation (3.16) has exactly one positive real root, and that root 1s greater than | if and 

only if (b) +---+ bx) > 1. Also, show that the magnitude of any root is at most the 

size of the positive root. 

b. Suppose r is a solution of Equation (3.16). Show that T(m) =r" is a solution of 

Equation (3.16) if f(m) = 0 and the base cases are T(i) =r fort) ick. 

c. Letr be the positive solution of Equation (3.16). Conclude that if (b) +---+b,) > 1 

and T(i) > 1 forO <i <k and f(n) > 0, then T(n) € Q(r"). You can use earlier parts 

of this exercise even if you did not prove them. 

d. Define ¢ = !(1 + J/5); this is known as the Golden Ratio and is about 1.618. Show 

that the a of the Fibonacci recurrence, Equation (1.13), is in @(6"). You can 

use earlier parts of this exercise even if you did not prove them. 
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Figure 3.13 Moving the disks 

Additional Problems 

3.12 The Towers of Hanoi problem is often used as an example when teaching recursion. 

Six disks of different sizes are piled on a peg in order by size, with the largest at the bottom, 

as shown in Figure 3.12. There are two empty pegs. The problem is to move all the disks to 

the third peg by moving only one at a time and never placing a disk on top of a smaller one, 

The second peg may be used for intermediate moves. The usual solution recursively moves 

all but the last disk from the starting peg to the spare peg, then moves the remaining disk 

on the start peg to the destination peg, and then recursively moves all the others from the 

spare peg to the destination peg. The three steps are illustrated in Figure 3.13 and described 

in the following procedure. 

hanoi(numberOfDisks, start, destination, spare) 

/«xx Objective: move numberOfDisks from top of start peg 

x to top of destination peg, using spare peg as buffer. «/ 

if (numberOfDisks > 0) 

hanoi(numberOfDisks—1, start, spare, destination); 

Move top disk from peg start to peg destination. 

hanoi(numberOfDisks—1, spare, destination, start): 

return 
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Write a recurrence equation for the number of moves done. Then solve it. 

3.13 Consider a general tree T (Section 2.3.4) in which each vertex v has a weight, v.wgt, 

associated with it. An independent set of vertices is a set 7 such that there is no edge in 

T between any two vertices in /; in other words, if vertex v € / then neither the parent 

of v nor any of the children of v are in /. The weight of a set of vertices is the sum of 

their individual weights. The goal of this exercise is to design a function that computes the 

maximum weight of any independent set of vertices in the tree 7. (Although your function 

does not need to identify an independent set that has this maximum weight, it will be easy 

to modify it to do so.) 

The key to an efficient design is to consider two restricted collections of independent 

sets for JT: those that include the root of T and those that exclude the root of 7. Let takeWgt 

denote the maximum weight of any independent set in 7 that inc/udes the root of 7, and let 

dropWgt denote the maximum weight of any independent set in 7 that excludes the root 

ont 

a. Give a recursive definition for takeWgt for 7 in terms of root(T).wgt and the values 

of takeWgt and dropWat for the principal subtrees of 7. 

b. Give a recursive definition for dropWgt for 7 in terms of the values of takeWgt and 

dropWogt for the principal subtrees of 7. 

c. Designa function (clear pseudocode is okay, even preferred) based on the tree traversal 

skeleton of Figure 2.13 that computes takeWgt and dropWgt. Use an organizer class 

with those two fields so that your function can return both quantities. If you are careful, 

you won't need any arrays or global variables. 

d. Analyze the time and space requirements of your function. 

Notes and References 

Perlis (1978) credits McCarthy with advocating that the design of Algol 60 should include 

recursion. The importance of recursion in program design is stressed in Roberts (1997), 

where the topic 1s treated thoroughly. 

Gries (1981) is concerned with proving correctness of programs and techniques for 

writing programs that make them more likely to be correct. Hantler and King (1976) is 

a survey of both formal and informal techniques for proving program correctness. Sethi 

(1996) describes proof rules for partial correctness in some detail. Kingston (1997) con- 

siders proof techniques for algorithms. Practical difficulties in proving correctness are 
discussed by De Millo, Lipton, and Perlis (1979). Grassmann and Tremblay (1996) discuss 
induction on numerous sets other than the natural numbers. 

There are numerous articles on Sisal, a single-assignment language for parallel pro- 
gramming, one of the earlier ones being Oldehoeft, Cann, and Allan (1986). Cytron, Fer- 
rante, Rosen, Wegman, and Zadeck (1991) discuss the advantages of single-assignment 
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form for program analysis, and describe an algorithm for converting a procedure into static 

single-assignment form. This form is now a popular tool for compiler optimization and 

automatic code parallelization. 

The use of recursion trees and the Master Theorem (Theorem 3.17) for evaluating re- 

currence equations are based on Cormen, Leiserson, and Rivest (1990). Aho, Hopcroft, and 

Ullman (1983) contains an excellent discussion of the structure of solutions for recurrence 

equations. For more advanced mathematical tools for analysis of algorithms, see Purdom 

and Brown (1985), Lueker (1980), and Greene and Knuth (1990). 
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4.1 

Chapter 4 Sorting 

Introduction 

In this chapter we will study several algorithms for sorting, that is, for arranging the el- 

ements of a set into order. The problem of sorting a set of objects was one of the first 

intensely studied computer science problems. Many of the best-known applications of the 

Divide-and-Conquer algorithm design paradigm are sorting algorithms. During the 1960s, 

when commercial data processing became automated on a large scale, the sort program 

was the most frequently run program at many computer installations. One software com- 

pany stayed in business for years on the strength of its better sort program. With today’s 

hardware, the performance issues of sorting have shifted somewhat. In the 1960s, transfer- 

ring data between slow storage (tape or disk) and main memory was a major performance 

bottleneck. Main memory was in the neighborhood of 100,000 bytes, and files to be sorted 

were orders of magnitude larger. Algorithms to perform this kind of sorting were the main 

focus of attention. Today, main memories 1,000 times that size (1.e., 100 megabytes) are 

commonplace, and 10,000 times that size (a few gigabytes) are available. So most files can 

fit in main memory. 

There are several good reasons for studying sorting algorithms. First, they are of 

practical use because sorting is done often. Just as having the entries in telephone books 

and dictionaries in alphabetical order makes them easy to use, working with large sets of 

data in computers is facilitated when the data are sorted. Second, quite a lot of sorting 

algorithms have been devised (more than will be covered here), and studying a number of 

them should impress upon you the fact that you can take many different points of view 

toward the same problem. The discussion of the algorithms in this chapter should provide 

some insights on the questions of how to improve a given algorithm and how to choose 

among several. Third, sorting is one of few problems for which we can easily derive strong 

lower bounds for worst case and average behavior. The bounds are strong in the sense that 

there are algorithms that do approximately the minimum amount of work specified. Thus 

we have essentially optimal sorting algorithms. 

In the descriptions of most of the algorithms, we assume the set to be sorted is stored 

as an array, so that the element at any position can be accessed at any time; this is called 

random access. However, some of the algorithms are useful for sorting files and linked lists, 

as well. When the set is only accessed in a sequential fashion, we use the term sequence, 

to emphasize that the structure might be a linked list or sequential file, as well as an array. 

If an array is defined over the range of indexes 0, ..., 2 — 1, then a range or subrange of 

that array is a contiguous sequence of entries between two specified indexes, first and last, 

such that 0 < first and last <n — |. If last < first, the range is said to be empty. 

We assume that each element in the set to be sorted contains an identifier, called a key, 

which is an element of some linearly ordered set, and that two keys can be compared to de- 

termine which is larger or that they are equal. We always sort keys into nondecreasing order. 

Each element in the set might contain other information aside from the key. When keys are 

rearranged during the sorting process, the associated information is also rearranged as ap- 

propriate, but sometimes we refer only to the keys and make no explicit mention of the rest 

of the entry. 
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4.2 Insertion Sort 

The algorithms considered in Sections 4.2 through 4.10 are all from the class of sorting 
algorithms that may compare keys (and copy them) but must not do other operations on the 
Keys. We call these “algorithms that sort by comparison of keys,” or “comparison-based 

algorithms,” for short. The measure of work primarily used for analyzing algorithms in this 

class is the number of comparisons of keys. In Section 4.7, lower bounds on the number of 

comparisons performed by such algorithms are established. Section 4.11 discusses sorting 

algorithms for which operations other than comparisons of keys are available, and for 

which different measures of work are appropriate. 

The algorithms in this chapter are called internal sorts because the data are assumed 

to be in the computer’s high-speed, random-access memory. Different performance issues 

arise for sorting data sets that are too large to fit in memory. Algorithms for sorting large 

sets of data stored on external, slower storage devices with restrictions on the way data are 

accessed are called external sorts. See Notes and References at the end of the chapter for 

sources on such algorithms. 

When analyzing sorting algorithms, we will consider how much extra space they use 

(in addition to the input). If the amount of extra space is constant with respect to the input 

size, the algorithm is said to work in place. 

To help make the algorithms as clear as possible, we use Element and Key as type 

identifiers, but treat Key as a numeric type in that we use the relational operators “=, 4, <.” 

and so on. When the book has a key-comparison expression like “E[i].key < x,” 1f the actual 

types are nonnumeric (String, for example), a Java program requires syntax involving a 

method call, such as “less(E[i].key, x). This holds for many languages besides Java. 

Java sidelight: By means of the Comparable interface in Java, it is possible to write 

one procedure that is able to compare a wide variety of key types. The type name Key would 

be replaced by the key word Comparable. Some details are given in Appendix A. Recall 

that an array with entries of type Element is declared as 

Element[] arrayName; 

in Java. 

Insertion Sort 

Insertion Sort is a good sorting algorithm to begin with because the idea behind it is a 

natural and general one, and its worst-case and average-behavior analyses are easy. It is 

also used as part of a faster sorting algorithm that we describe in Section 4.10. 

4.2.1 The Strategy 

We begin with a sequence E of n elements in arbitrary order, as illustrated by Figure 4.1. 

(Insertion Sort can be used on keys from any linearly ordered set, but for the stick figure 

illustrations, think of the keys as the heights of the sticks, which are the elements.) 

Suppose we have sorted some initial segment of the sequence. Figure 4.2 shows a 

snapshot of the sequence after the five elements on the left end have been sorted. The 
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Figure 4.1 Unsorted elements 
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Figure 4.2 Partially sorted elements 

Figure 4.3 Insertion of x in proper order 

general step is to increase the length of the sorted segment by inserting the next element in 

its proper place. 

Let x be the next element to be inserted in the sorted segment, that is, x 1s the leftmost 

element in the unexamined segment. First we pull x “out of the way” (that is, copy it to 

a local variable), leaving a vacancy in its former position. Then we repeatedly compare 

x to the element just to the left of the vacancy, and as long as x is smaller, we move the 

that element into the vacancy, thereby leaving a vacancy where it was. That is, the vacancy 

shifts one place to the left. This process stops when we run out of elements to the left 

of the current vacancy, or when the element to the left of the current vacancy is smaller 

than or equal to x. Then x is inserted in the vacancy, as shown in Figure 4.3. To get the 

algorithm started, we need only observe that the first element alone can be considered a 

sorted segment. As we formalize this into a procedure, we assume the sequence is an array; 

however, the idea works with lists and other sequential structures. 



4.2 Insertion Sort 

int shiftVac(Element[] E, int vacant, Key x) 

Precondition: vacant is nonnegative. 

Postconditions: Let xLoc be the value returned to the caller. Then: 

1. Elements in E at indexes less than xLoc are in their original positions and have keys 

less than or equal to x. 

i) Elements in E at positions xLoc + 1, ..., vacant are greater than x and were shifted 

up by one position from their positions when shiftVac was invoked. 

Figure 4.4 Specifications for shiftVac 

4.2.2. The Algorithm and Analysis 

We now spell out the sorting procedure in more detail. Let the subroutine shiftVac(E, va- 

cant, x) have the job of shifting elements until the vacancy is at the correct position in 

which to place x among the sorted elements. The procedure returns the index of the va- 

cancy, say xLoc, to the caller. The preconditions and postconditions are stated in Figure 4.4. 

In other words, shiftVac makes the transition from Figure 4.2 to Figure 4.3. Now inser- 

tionSort can just keep calling shiftVac, making a longer and longer sorted segment at the 

left end, until all elements are in the sorted segment. 

The shiftVac procedure takes a typical form for generalized searching routines (Defi- 

nition 1.12). If there is no more data to look at, fail; else look at one data item, and if it is 

what we are looking for, succeed; otherwise continue with the unexamined data. Because 

there are two terminating cases, this can be awkward for a while loop, unless a break 

is used for one or more of the terminating cases. The recursive formulation is straight- 

forward. 

int shiftVacRec(Element[] E, int vacant, Key x) 

int xLOc; 

ll. if (Vacant == 0) 

De xLoc = vacant; 

3. else if (E[vacant-1].key < x) 

4 xLoc = vacant; 

5. else 

6. E[vacant] = E[vacant-1]; 

i xLoc = shiftVacRec(E, vacant—1, x); 

8. return xLoc; 

To verify that we are using recursion properly on line 7, we note that the recursive call 

is working on a smaller range, and its second argument is nonnegative, so the precondition 

(stated in Figure 4.4) is satisfied. (You should check the chain of reasoning for why 

vacant — | is nonnegative—why can’t it be negative?) Correctness is now straightforward 

if we remember that we can assume that the recursive call on line 7 accomplishes its 

objective. 

(N33 
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Although the procedure for shiftVacRec is very simple, if we visualize the activation 

trace for the nth element of E to be inserted, we realize that the depth of recursion, or the 

frame stack, could grow to size n. This could be undesirable for large n. Therefore this is a 

case where the recursion should be changed into an iteration, after we are sure everything 

is working correctly. (Trying to optimize a nonworking program is surely an exercise in 

futility.) The purpose is not so much to save time as to conserve space. Actually, many 

compilers, if told to optimize shiftVacRec, will perform this transformation automatically. 

The full algorithm below includes the iteratively coded version of shiftVac. 

Algorithm 4.1 Insertion Sort 

Input: E, an array of elements, and n > 0, the number of elements. The range of indexes 

i ea n— I. 

Output: E, with elements in nondecreasing order of their keys. 

Remark: The specifications for the shiftVac subroutine are given in Figure 4.4. 

void insertionSort(Element[] E, int n) 

int xindex; 

for (xindex = 1; xindex <n: xindex ++) 

Element current = E[xindex]; 

Key x = current.key; 

int xLoc = shiftVac(E, xindex, x); 

E[xLoc] = current; 

return: 

int shiftVac(Element{] E, int xindex, Key x) 

int vacant, xLoc: 

vacant = xindex: 

xLoc = 0; // Assume failure. 

while (vacant > 0) 

if (E[vacant-1].key < x) 

xLoc = vacant; // Succeed. 

break: 

E[vacant] = E[vacant-1]; 

vacant —-; // Keep looking. 

return xLoc; 

Worst-Case Complexity 

For the analysis, we use i for xindex. For each value of 7, the maximum number of key 
comparisons possible (in one call to the iterative shiftVac, or one top-level call of the 
recursive shiftVacRec) is 7. Thus the total is 
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Note that we have established an upper bound on the worst-case behavior; it takes a 

moment of thought to verify that there are indeed inputs for which n(n — 1)/2 comparisons 

are done. One such worst case is when the keys are in reverse (i.e., decreasing) order. So 

n(n — 1) z 
A 72) — Se: E O(n-). 

Average Behavior 

We assume that all permutations of the keys are equally likely as input. We will first 

determine how many key comparisons are done on the average to insert one new element 

into the sorted segment, that 1s, one call of shiftVac, for any particular value of 7 (used for 

xindex). To simplify the analysis, we assume that the keys are distinct. (The analysis is 

very similar to that done for the Sequential Search algorithm in Chapter 1.) 

There are i + | positions where x may go. Figure 4.5 shows how many comparisons 

are done depending on the position. 

The probability that « belongs in any one specific position is 1/(7 + 1). (This depends 

on the fact that x has not been examined earlier by the algorithm. If the algorithm had made 

any earlier decisions based on the value of x, we could not necessarily assume that x is 

uniformly random with respect to the first keys.) Thus the average number of comparisons 

in shiftVac to find the location for the ith element is 

(ie ee | i i i 
ff l= a, a ee ai 2! sl ee es eS) fe 

J= 

Now, adding for all n — | insertions, 
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where we substituted 7 =i + | to get the last sum. We saw from Equation (1.16) that 

ee? ~ Inn, and we can incorporate the | preceding the sum to make the lower 

limit 7 = |. [Ignoring lower-order terms, we have 

ACA OG?) ME —— eT Ne 
4 

Space 

Clearly, Insertion Sort is an in-place sort with the iterative version of shiftVac. With the 

recursive version the frame stack can grow to ©(71). 

4.2.3. Lower Bounds on the Behavior of Certain 

Sorting Algorithms 
Think of the element whose key is x as occupying the “vacant” position in the array while 

Insertion Sort compares x to the key to its left. Then after each comparison, Insertion Sort 

either moves no elements or simply interchanges two adjacent elements. We will show 

that all sorting algorithms that do such limited, “local” moving of elements after each 

comparison must do about the same amount of work as Insertion Sort. 

A permutation on 7 elements can be described by a one-to-one function from the set 

N ={1, 2,...,n} onto itself. There are n! distinct permutations on n elements. Let the 

elements in the wnsorted sequence E be x1, x5,....,- v,. To simplify the notation in this 

discussion, let’s assume that the elements to be sorted are stored in positions |, .... of 

E, rather than in 0,..., — 1. There is a permutation 7 such that, for 1 <i <n, m(i) 1s 

the correct position of x; when the sequence is sorted. Without loss of generality, we can 

assume that the keys are the integers |, 2, ..., 7 since we can substitute | for the smallest 

key, 2 for the next smallest, and so on, without causing any changes in the instructions 

carried out by the algorithm. Then the unsorted input is 7 (1), 7(2),..., 7(n). For example, 

consider the input sequence 2, 4, 1, 5, 3. w(1) =2 means that the first key, 2, belongs in 

the second position, which it clearly does. (2) = 4 because the second key, 4, belongs 

in the fourth position, and so on. We will identify the permutation 7 with the sequence 

Le 2) eae 

An inversion of the permutation z 1s a pair (7 (/), 7(/)) Such that 7 < 7 and w(/) > 

m(j). If (7), w(/)) 18 an inversion, the 7th and jth keys in the sequence are out of order 

relative to each other. For example, the permutation 2, 4, 1,5, 3 has four inversions (2, 1), 

(4, 1), (4, 3), and (5, 3). If a sorting algorithm removes at most one inversion after each 

key comparison (say, by interchanging adjacent elements, as Insertion Sort does), then the 

number of comparisons performed on the input (1), 7(2),..., (n) 1s at least the number 

of inversions of 7. So we investigate inversions. 

It is easy to show that there is a permutation that has n(m — 1)/2 inversions. (Which 

permutation?) Thus the worst-case behavior of any sorting algorithm that removes at most 

one inversion per key comparison must be in Q (v7). 

To get a lower bound on the average number of comparisons done by such sorting al- 

gorithms, we compute the average number of inversions in permutations. Each permutation 

m can be paired off with its transpose permutation m(n), m(n — 1),..., 71). For example, 
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the transpose of 2, 4, 1, 5, 3 is 3,5, 1, 4, 2. Each permutation has a unique transpose and 
is distinct from its transpose (form > 1). Let and j be integers between | and 7, and sup- 
pose J <1. Then (7, /) is an inversion in exactly one of the permutations 7 and transpose 
of 7. There are n(n — 1)/2 such pairs of integers. Hence each pair of permutations has 
n(n — 1)/2 inversions between them, and therefore an average of n(n — 1)/4. Thus, over- 
all, the average number of inversions ina permutation is n(n — 1)/4, and we have proved 
the following theorem. 

Theorem 4.1 | Any algorithm that sorts by comparison of keys and removes at most one 
inversion after each comparison must do at least n( — 1)/2 comparisons in the worst case 

and at least n(m — 1)/4 comparisons on the average (for n elements). 0 

Since Insertion Sort does n(n — 1)/2 key comparisons in the worst case and approx- 

imately n-/4 on the average, it is about the best we can do with any algorithm that works 

“locally,” for example, interchanging only adjacent elements. It is, of course, not obvious at 

this point that any other strategy can do better, but if there are significantly faster algorithms 

they must move elements more than one position at a time. 

Divide and Conquer 

The principle behind the Divide-and-Conquer algorithm design paradigm 1s that it 1s (often) 

easier to solve several small instances of a problem than one large one. Algorithms in 

Sections 4.4 through 4.8 use the Divide-and-Conquer approach. They divide the problem 

into smaller instances of the same problem (in this case into smaller sets to be sorted), then 

solve (conquer) the smaller instances recursively (1.e., by the same method), and finally 

combine the solutions to obtain the solution for the original input. To escape from the 

recursion, we solve some small instances of the problem directly. In contrast, Insertion 

Sort just “chipped off” one element and created one subproblem. 

We have already seen one prime example of Divide and Conquer—Binary Search 

(Section 1.6). The main problem was divided into two subproblems, one of which did not 

even have to be solved. 

In general, we can describe Divide and Conquer by the skeleton procedure in Fig- 

ure 4.6. 

To design a specific Divide-and-Conquer algorithm, we must specify the subroutines 

directlySolve, divide, and combine. The number of smaller instances into which the input 

is divided is k. For an input of size n, let B(z) be the number of steps done by directlySolve, 

let D(n) be the number of steps done by divide, and let C() be the number of steps done 

by combine. Then the general form of the recurrence equation that describes the amount 

of work done by the algorithm 1s 

k 

T(n) = D(n) + oS T (sizeU/;)) + C(n) forn > smallSize 

i=] 

Wa 
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solve(/) 

n = Size(/); 

if (1 < smallSize) 

solution = directlySolve(/); 

else 

divide / into /;,..., Ik. 

foreach 7 € {l,..., k}: 

S; = solve(/;); 

solution = combine(S;,..., Sx); 

return solution; 

Figure 4.6 The Divide-and-Conquer skeleton. 

with base cases T(n) = B(n) forn < smallSize. For many Divide-and-Conquer algorithms, 

either the divide step or the combine step is very simple, and the recurrence equation for T 

is simpler than the general form. The Master Theorem (Theorem 3.17) gives solutions for 

a wide range of Divide-and-Conquer recurrence equations. 

Quicksort and Mergesort, the sorting algorithms presented in the next few sections, 

differ in the ways they divide the problem and later combine the solutions, or sorted sub- 

sets. Quicksort 1s characterized as “hard division, easy combination,’ while Mergesort is 

characterized as “easy division, hard combination.” Aside from the bookkeeping of pro- 

cedure calls, we will see that all the “real work” is done in the “hard” section. Both 

sorting procedures have subroutines to do their “hard” section, and these subroutines are 

useful in their own rights. For Quicksort, the workhorse is partition, and it is the di- 

vide step in the general framework; the combine step does nothing. For Mergesort, the 

workhorse is merge, and it is the combine step; the divide step does one simple calcula- 

tion. Both algorithms divide the problem into two subproblems. However, with Mergesort, 

those two subproblems are of equal size (within a margin of one element), whereas with 

Quicksort, an even subdivision is not assured. This difference leads to markedly differ- 

ent performance characteristics, which will be discovered during analysis of the respective 

algorithms. 

At the top level, HeapSort (Section 4.8) is not a Divide-and-Conquer algorithm, but 

uses heap operations that are in the Divide-and-Conquer category. The accelerated form of 

Heapsort uses a more sophisticated Divide-and-Conquer algorithm. 

In later chapters, the Divide-and-Conquer strategy will come up in numerous prob- 

lems. In Chapter 5, it is applied to the problem of finding the median element of a set. (The 

general problem is called the selection problem.) In Chapter 6, we will use Divide and 

Conquer in the form of binary search trees, and their balanced versions, red-black trees. In 

Chapter 9, we will apply it to problems of paths in graphs, such as transitive closure. In 

Chapter 12, we will use it on several matrix and vector problems. In Chapter 13, we will 

apply it to approximate graph coloring. In Chapter 14, it reappears in a slightly different 

form for parallel computation. 
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4.4 Quicksort 

Quicksort is one of the earlier Divide-and-Conquer algorithms to be discovered; it was 

published by C. A. R. Hoare in 1962. It is still one of the fastest in practice. 

4.4.1 The Quicksort Strategy 

Quicksort’s strategy is to rearrange the elements to be sorted so that all the “small” keys 

precede the “large” keys in the array (the “hard division” part). Then Quicksort sorts the 

two subranges of “small” and “large” Keys recursively, with the result that the entire array 

is sorted. For an array implementation there is nothing to do in the “combination” step, but 

Quicksort can also work on lists (see Exercise 4.22), in which case the “combination” step 

concatenates the two lists. We describe the array implementation for simplicity. 

Let E be the array of elements and let first and last be the indexes of the first and 

last entries, respectively, in the subrange Quicksort is currently sorting. At the top level 

first = 0 and last = n — 1, where n is the number of elements. 

The Quicksort algorithm chooses an element, called the pivot element, whose key is 

called the pivot, from the subrange that it must sort, and “pulls it out of the way”; that is, it 

moves the pivot element to a local variable, leaving a vacancy in the array. For the moment 

we assume that the leftmost element in the subrange is chosen as the pivot element. 

Quicksort passes the pivot (the key field only) to the Partition subroutine, which 

rearranges the other elements, finding an index splitPoint such that: 

1. for first < i < splitPoint, E[i].key < pivot; 

2. and for splitPoint <i < last, E[i].key = pivot. 

Notice that there is now a vacancy at splitPoint. 

Then Quicksort deposits the pivot element in E[splitPoint], which is its correct po- 

sition, and the pivot element is ignored in the subsequent sorting. (See Figure 4.7.) This 

completes the “divide” process, and Quicksort continues by calling itself recursively to 

solve the two subproblems created by Partition. 

The Quicksort procedure may choose to partition around any key in the array between 

E[first] and E[last], as a preprocessing step. Whatever element is chosen is moved to a 

local variable named pivot, and if it is nor E[first], then E[first] is moved into its position, 

ensuring that there is a vacancy at E[first] when Partition is called. Other strategies for 

choosing a pivot are explored in Section 4.4.4, 

Algorithm 4.2 © Quicksort 

Input: Array E and indexes first, and last, such that elements E[i] are defined for first < 

i= laste 

Output: Effirst],..., Eflast] is a sorted rearrangement of the same elements. 
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first last 

pivot 

partition 

first splitPoint last 

< pivot pivot 2 pivot 

\ ne 2 PM 

Sort recursively by Quicksort Sort recursively by Quicksort 

Figure 4.7 Quicksort 

void quickSort(Element[] E, int first, int last) 

if (first < last) 

Element pivotElement = E[first]; 

Key pivot = pivotElement.key; 

int splitPoint = partition(E, pivot, first, last); 

E[splitPoint] = pivotElement; 

quickSort (E, first, splitPoint — 1): 

quickSort (E, splitPoint + 1, last): 

return: 

4.4.2. The Partition Subroutine 

All the work of comparing keys and moving elements is done in the Partition subroutine. 

There are several different strategies that may be used by Partition; they yield algorithms 
with different advantages and disadvantages. We present one here and consider another in 
the exercises. The strategy hinges on how to carry out the rearrangement of elements. A 
very simple solution is to move elements into a temporary array, but the challenge is to 
rearrange them in place. 

The partitioning method we now describe is essentially the method originally de- 
scribed by Hoare. As motivation, remember that the lower bound argument in Section 4.2.3 
showed that, to improve on Insertion Sort, it is necessary to be able to move an element 
many positions after one compare. Here the vacancy is initially at E[first]. Given that we 
want small elements at the left end of the range, and that we want to move elements long 
distances whenever possible, it is very logical to start searching backward from E[last] for a 
small element, that is, an element less than pivot. When we find one, we move that element 
into the vacancy (which was at first). That leaves a new vacancy where the small element 
used to be; we call it highVac. The situation is illustrated in the first two array diagrams in 
Figure 4.8. 
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Figure 4.8 The progression of Partition through its first cycle 

We know all the elements with indexes greater than highVac (through last) are greater 

than or equal to pivot. If possible, some other large element should be moved into highVac. 

Again, we want to move elements long distances, so it is logical to search forward for a 

large element this time, starting at first + 1. When we find one, we move that element into 

the vacancy (which was at highVac), and that leaves a new vacancy, which we call lowVac. 

We know all the elements with indexes less than lowVac (down to first) are less than pivot. 

Finally, we update the variables low and high as indicated in the last row of Figure 4.8 

to prepare for another cycle. As at the beginning of the first cycle, the elements in the range 

low+1 through high have not been examined yet, and E[low] is vacant. We can repeat the 

cycle just described, searching backward from high for a small element, moving it to the 

low vacancy, then searching forward from low+1 for a large element, and moving it to 

highVac, creating a vacancy at lowVac, the position from which the large element was 

moved. Eventually lowVac and highVac meet, meaning all elements have been compared 

with the pivot. 

The Partition procedure is implemented as a repetition of the cycle just described, us- 

ing subroutines to organize the code. The subroutine extendLargeRegion scans backward 

from the right end, passing over large elements until it either finds a small element and 

moves it into the vacancy at the left end, or runs into that vacancy without finding any small 

element. In the latter case, the partitioning is completed. In the former case, the new vacant 

position is returned, and the second subroutine is invoked. The subroutine extendSmallRe— 

gion is similar, except that it scans forward from the left end, passing over small elements, 
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until it finds and moves a large element into the vacancy at the right end, or runs out of 

data. 

Initially, the small-key region (left of low) and large-key region (right of high) are 

both empty, and the vacancy is at the left end of the middle region (which is the whole 

range at this point). Each call to a subroutine, extendLargeRegion or extendSmallRegion, 

shrinks the middle region by at least one, and shifts the vacancy to the other end of the 

middle region. The subroutines also ensure that only small elements go into the small- 

key region and only large elements go into the large-key region. This can be seen from 

their postconditions. When the middle region shrinks to one position, that position is the 

vacancy, and it is returned as splitPoint. It is left as an exercise to determine, line by line 

in the while loop of partition, what the boundaries are for the middle region and at which 

end the vacancy is located. Although the procedure for Partition can “make do” with fewer 

variables, each variable we define has its own meaning, and simplifies the answer for the 

exercise. 

Algorithm 4.3 — Partition 

Input: Array E, pivot, the key around which to partition, and indexes first, and last, such 

that elements E[i] are defined for first + 1 <7 < last and E[first] is vacant. It is assumed 

that first < last. 

Output: Let splitPoint be the returned value. The elements originally in first+1,..., last 

are rearranged into two subranges, such that 

1. the keys of Effirst], .. ., E[splitPoint—1] are less than pivot, and 

2. the keys of E[splitPoint+1], ..., E{last] are greater than or equal to pivot. 

Also, first < splitPoint < last, and E[splitPoint] is vacant. 

Procedure: See Figure 4.9. @ 

To avoid extra comparisons inside the while loop in partition, there is no test for high- 

Vac = lowVac before line 5, which would indicate that all elements have been partitioned. 

Consequently, high might be one less than low when the loop terminates, when logically it 

should be equal. However, high is not accessed after the loop terminates, so this difference 

is harmless. 

A small example is shown in Figure 4.10. The detailed operation of Partition is shown 

only the first time it is called. Notice that the smaller elements accumulate to the left of low 

and the larger elements accumulate to the right of high. 

4.4.3. Analysis of Quicksort 

Worst case 

Partition compares each key to pivot, so if there are & positions in the range of the array 
it is working on, it does A — | key comparisons. (The first position is vacant.) If E[first] 
has the smallest key in the range being split then splitPoint = first, and all that has been 
accomplished is splitting the range into an empty subrange (keys smaller than pivot) and 
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int partition(Element[] E, Key pivot, int first, int last) 

int low, high: 

1. low = first; high = last; 

2. while (low < high) 

3 int highVac = extendLargeRegion(E, pivot, low, high); 

4. int lowVac = extendSmallRegion(E, pivot, low+1, highVac); 

5 low = lowVac; high = highVac — 1; 

6. return low; // This is the splitPoint. 

«x Postcondition for extendLargeRegion: 

The rightmost element in E[lowVac+1],..., Efhigh] 

whose key is < pivot is moved to E[lowVac] and 

the index from which it was moved is returned. 

x If there is no such element, lowVac is returned. 

«/ 
int extendLargeRegion(Element[] E, Key pivot, int lowVac, int high) 

int highVac, curr; 

highVac = lowVac; // In case no key < pivot. 

curr = high; 

while (curr > lowVac) 

if (E[curr].key < pivot) 

Ef{lowVac] = E[curr]; 

highVac = curr; 

break; 

curr --; // Keep looking. 

return highVac; 

% 

% 

% 

/«* Postcondition for extendSmallRegion: (Exercise) */ 

int extendSmallRegion(Element[] E, Key pivot, int low, int highVac) 

int lowVac, curr; 

lowVac = highVac; // In case no key = pivot. 

curr = low; 

while (curr < highVac) 

if (E[curr].key = pivot) 

E[highVac] = E[curr]; 

lowVac = curr; 

break; 

curr ++; // Keep looking. 

return lowVac; 

Figure 4.9 Procedure for Algorithm 4.3 
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Figure 4.10 Example of Quicksort 
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Figure 4.11 Average behavior of Quicksort. 

a subrange with k — | elements. Thus, if pivot is the smallest key each time Partition is 

called, then the total number of key comparisons done 1s 

n 

n(n — 1) 
Re: 1) = ———. 
k=2 

This is as bad as Insertion Sort and Maxsort (Exercise 4.1). And, strangely enough, the 

worst case occurs when the keys are already sorted in ascending order! Is the name Quick- 

sort just a bit of false advertising? 

Average Behavior 

In Section 4.2.3 we showed that if a sorting algorithm removes at most one inversion 

from the permutation of the keys after each comparison, then it must do at least (n? — 

n)/4 comparisons on the average (Theorem 4.1). Quicksort, however, does not have this 

restriction. The Partition algorithm can move an element across a large section of the array, 

eliminating up to n — | inversions with one move. Quicksort deserves its name because of 

its average behavior. 

We assume that the keys are distinct and that all permutations of the keys are equally 

likely. Let k be the number of elements in the range of the array being sorted, and let A(k) 

be the average number of key comparisons done for ranges of this size. Suppose the next 

time Partition is executed pivot gets put in the ith position in this subrange (Figure 4.11), 

counting from 0). Partition does k — | key comparisons, and the subranges to be sorted next 

have i elements and k — | — i elements, respectively. 

It is important for our analysis that after Partition finishes, no two keys within the 

subrange (first, .... splitPoint — 1) have been compared to each other, so all permuta- 

tions of keys in this subrange are still equally likely. The same holds for the subrange 

(splitPoint + 1,..., last). This justifies the following recurrence. 

Each possible position for the split point 7 is equally likely (has probability 1/k) so, 

letting k =n, we have the recurrence equation 

n—l | 

A(n)=n-1+ ) (AW + Ale 1-0) HOT aD 

10 

AQ) =A) =0: 
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Inspection of the terms in the sum lets us simplify the recurrence equation. The terms of 

the form A(n — | — 7) run from A(n — 1) down to A(Q), so their sum is the same as the 

sum of the A(i) terms. Then we can drop the A(O) terms, giving 

5 n—| 

A =f 1 = A(i) One We (4.1) (i) =n % »— > 

tA 

This is a more complicated recurrence equation than the ones we saw earlier, because the 

value of A(m) depends on all earlier values. We can try to use some ingenuity to solve 

the recurrence, or we can make a guess at the solution and prove it by induction. The 

latter technique is especially suitable for recursive algorithms. It is instructive to see both 

methods, so we will do both. 

To form a guess for A(7), let’s consider a case in which Quicksort works quite 

well. Suppose that each time Partition is executed, it partitions the range into two equal 

subranges. Since we’re just making an estimate to help guess how fast Quicksort is on the 

average, we will estimate the size of the two subranges at n/2 and not worry about whether 

this is an integer. The number of comparisons done is described by the recurrence equation 

O(n) ¥n+2Q(n/2). 

The Master Theorem (Theorem 3.17) can be apphed: b= 2, c=2, so E = 1, and f(n) = 

n'. Therefore O(n) € O(n log n). Thus if E[first] were close to the median each time the 

range is split, the number of comparisons done by Quicksort would be in O(7 log n). This 

is significantly better than ©(n7). But if all permutations of the keys are equally likely, are 

there enough “good” cases to affect the average? We prove that there are. 

Theorem 4.2 Let A(n) be defined by the recurrence equation Equation (4.1). Then, for 

n= 1, A(n) <cn Inn for some constant c. (Note: We have switched to the natural logarithm 

to simplify some of the computation in the proof. The value for c will be found in the proof.) 

Proof The proof is by induction on 1, the number of elements to be sorted. The base case 

isn = 1. We have AC) = Oand cl Int =0. 

For n > 1, assume that A(i) < ci In(’) for | <i <n, for the same constant c stated in 

the theorem. By Equation (4.1) and the induction hypothesis, 

vl n—| 
2 9) 

A(n)=n—14+- AG eal sa “indi. 
= (i) <n ute ) ci In(i) 

i=l cI 

We can bound the sum by integrating (see Equation 1.16): 

n—| 
ia! 

oe Gy Ina) <e / x Ini dic. 
J\ 

I 

Using Equation (1.15) from Section 1.3.2 gives 
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To show that A(n) < cn Inn, it suffices to show that the second and third terms are negative 

or zero. The second term is less than or equal to zero for c > 2. So we can let c = 2 and 

conclude that A(n) <2nInn. oO 

A similar analysis shows that A(n) > cn Inn for any c < 2. Since Inn © 0.693 Ig n, 

we therefore have: 

Corollary 4.3 On average, assuming all input permutations are equally likely, the number 

of comparisons done by Quicksort (Algorithm 4.2) on sets of size n is approximately 

1.386nlgn,forlargen. O 

Average Behavior, More Exactly 

Although we have established the average behavior of Quicksort, it is still instructive 

to return to the recurrence equation (Equation 4.1) and try to solve it directly, getting 

more than the leading term. This section uses some sophisticated mathematics, and can 

be omitted without loss of continuity. 

We have, by Equation (4.1), 

7 n—-| 

A(n)=n—-1+-—) A(i). (4.2) n) n 5 1 

t= 

S 
Ice? 

2) 

y> Ai). (4.3) 
{iP 

il 

A(n —1)=n—2+ 

If we subtract the summation in Equation (4.3) from the summation in Equation (4.2), most 

of the terms drop out. Since the summations are multiplied by different factors, we need a 

slightly more complicated bit of algebra. Informally, we compute 

n x Equation (4.2) — (n — 1) x Equation (4.3). 

So 

n—| n—2 

nA(n) —(n — IA(n — I =n(n—1) +290 AG) (n 1)(n — 2) 25 AG@) 

t=1 i=] 

= 2A(n — 1) +2(n — 1). 
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So 

A(n) Ave 1) 2(n — 1) 

Weel © n n(n + 1) 

Now let 

The recurrence equation for B is 

2(n — 1) 
Bin) = Bin — 1) + Bi 0% 

n(n + 1) 

With the aid of Equation (1.11), we leave it for readers to verify that 

n V5 n i 

2h) | | 
BH) = ——_——— =2 —~-—4 ——. 

‘ DFGFD aS sy 
I= = — 

~2(Inn + 0.577) — 4n/(n + 1). 

Therefore 

A(n) © 1.386 lgn — 2.846 n. 

Space usage 

At first glance it may seem that Quicksort is an in-place sort. It is not. While the algorithm 

is working on one subrange, the beginning and ending indexes (call them the borders) of all 

the other subranges yet to be sorted are saved on the frame stack, and the size of the stack 

depends on the number of subranges into which the range will be split. This, of course, 

depends on n. In the worst case, Partition splits off one entry at a time; the depth of the 

recursion is n. Thus the worst-case amount of space used by the stack is in @(7). One of 

the modifications to the algorithm described next can significantly reduce the maximum 

stack size. 

4.4.4 Improvements on the Basic Quicksort Algorithm 

Choice of Pivot 

We have seen that Quicksort works well if the pivot key used by Partition to partition 

a segment belongs near the middle of the segment. (Its position is the value, splitPoint, 

returned by Partition.) Choosing E[first] as the pivot element causes Quicksort to do poorly 

in cases where sorting should be easy (for example, when the array is already sorted). There 

are several other strategies for choosing the pivot element. One is to choose a random 

integer g between first and last and let pivot = E[q].key. Another is to let pivot be the 

median key of the entries E[first], Ef(first+last)/2], and E[last]. (In either case, the element 

in E[first] would be swapped with the pivot element before proceeding with the Partition 
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algorithm.) Both of these strategies require some extra work to choose pivot, but they pay 

off by improving the average running time of a Quicksort program. 

Alternative Partition Strategy 

The version of Partition presented in the text does the fewest element movements, on 

average, compared to other partitioning strategies. It is shown with subroutines for clarity, 

and coding these in-line would save some overhead; however, some optimizing compilers 

can make this change automatically. Other optimization considerations are mentioned in 

Notes and References at the end of the chapter. There is an alternative version in the 

exercises that is easy to understand and program, but somewhat slower. 

Small Sort 

Quicksort is not particularly good for small sets, due to the overhead of procedure calls. 

But, by the nature of the algorithm, for large n Quicksort will break the set up into small 

subsets and recursively sort them. Thus whenever the size of a subset is small, the algorithm 

becomes inefficient. This problem can be remedied by choosing a small smallSize and 

sorting subsets of size less than or equal to smallSize by some simple, nonrecursive sort, 

called smallSort in the modified algorithm. (Insertion Sort is a good choice.) 

quickSort(E, first, last) 

if (last — first > smallSize) 

pivotElement = E[first]; 

pivot = pivotElement.key; 

int splitPoint = partition(E, pivot, first, last); 

E[splitPoint] = pivotElement; 

quickSort(E, first, splitPoint — 1); 

quickSort(E, splitPoint + 1, last); 

else 

smallSort(E, first, last); 

A variation on this theme is to skip calling smallSort. Then when Quicksort exits, the 

array is not sorted, but no element needs to move more than smallSize places to reach its 

correct sorted position. (Why not?) Therefore one postprocessing run of Insertion Sort will 

be very efficient, and will do about the same comparisons as all the calls to it in its role as 

smallSort. 

What value should smallSize have? The best choice depends on the particular imple- 

mentation of the algorithm (that is, the computer being used and the details of the program), 

since we are making some trade-offs between overhead and key comparisons. A value close 

to 10 may do reasonably well. 

Stack Space Optimization 

We observed that the depth of recursion for Quicksort can grow quite large, proportional 

to n in the worst case (when Partition splits off only one element each time). Much of the 

pushing and popping of the frame stack that will be done is unnecessary. After Partition, 
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the program starts sorting the subrange E[first], .. ., E[splitPoint — 1]; later it must sort the 

subrange E[splitPoint+1], ..., E{last]. 

The second recursive call is the last statement in the procedure, so it can be converted 

into iteration in the manner we have seen earlier for shiftVac in Insertion Sort. The first 

recursive call remains, so the recursion 1s only partially eliminated. 

With only one recursive call left in the procedure, we still need to be concerned about 

excessive depth of recursion. This can occur through a succession of recursive calls that 

each work on a subrange only slightly smaller than the preceding one. So the second trick 

we use 1s to avoid making the recursive call on the /arger subrange. By ensuring that each 

recursive call is on at most half as many elements as its “parent” call, the depth of recursion 

is guaranteed to remain within about Ig 7. The two ideas are combined in the following 

version, in which “TRO” stands for “tail recursion optimization.” The idea is that after 

each partition, the next recursive call will work on the smaller subrange, and the larger 

subrange will be handled directly in the while loop. 

quickSortTROC(E, first, last) 

int first], last], first2, last2: 

first2 = first; last2 = last; 

while (last2 — first2 > 1) 

pivotElement = E[first]; 

pivot = pivotElement.key; 

int splitPoint = partition(E, pivot, first2, last2): 

E[splitPoint] = pivotElement; 

if (splitPoint < (first2 + last2) / 2) 

first] = first2; last] = splitPoint — 1; 

first2 = splitPoint + 1; last2 = last2:; 

else 

first] = splitPoint + 1; last] = last2: 

first2 = first2; last2 = splitPoint — 1; 

quickSortTRO(E, first], last1); 

// Continue loop for first2, last2. 

return; 

Combined Improvements 

We discussed the preceding modifications independently, but they are compatible and can 
be combined in one program. 

Remarks 

In practice, Quicksort programs run quite fast on the average for large n, and they are 
widely used. In the worst case, though, Quicksort behaves poorly. Like Insertion Sort (Sec- 
tion 4.2), Maxsort and Bubble Sort (Exercises 4.1 and 4.2), Quicksort’s worst-case time is 
in ©(n7), but unlike the others, Quicksort’s average behavior is in ©(n log n). Are there 
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sorting algorithms whose worst-case time is in @(n log n), or can we establish a worst- 
case lower bound of ©(n7)? The Divide-and-Conquer approach gave us the improvement 
in average behavior. Let’s examine the general technique again and see how to use it to 
improve on the worst-case behavior. 

Merging Sorted Sequences 

In this section we review a straightforward solution to the following problem: Given 

two sequences A and B sorted in nondecreasing order, merge them to create one sorted 

sequence C. Merging sorted subsequences is essential to the strategy of Mergesort. It also 

has numerous applications in its own right, some of which are covered in the exercises. 

The measure of work done by a merge algorithm will be the number of comparisons of 

keys performed by the algorithm. 

Let k and m be the number of items in sequences A and B, respectively. Letn =k +m 

be the “problem size.” Assuming neither A nor B is empty, we can immediately determine 

the first item in C: It is the minimum between the first items of A and B. What about the 

rest of C? Suppose the first element of A was the minimum. Then the remainder of C must 

be the result of merging all elements of A after the first with all elements of B. But this is 

just a smaller version of the same problem we started with. The situation is symmetrical if 

the first element of B was the minimum. In either case the problem size for the remaining 

problem (of constructing the rest of C) ism — 1. Method 99 (Section 3.2.2) comes to mind. 

If we assume that we only need to merge problems of size up to 100, and we can call 

upon merge99 to merge problems of size up to 99, then the problem is already solved. The 

pseudocode follows: 

merge(A, B, C) 

if (A is empty) 

rest of C= Test of 

else if (B is empty) 

rest of C =rest of A 

else 

if (first of A < first of B) 

first of C = first of A 

merge99(rest of A, B, rest of C) 

else 

firshol C= iirston a 

merge99(A, rest of B, rest of C) 

return 

Now just change merge99 to merge for the general recursive solution. 

Once the solution idea is seen, we can also see how to formulate an iterative solution. 

The idea works for all sequential data structures, but we state the algorithm in terms of 
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arrays, for definiteness. We introduce three indexes to keep track of where “rest of A,” 

“rest of B,” and “rest of C” begin at any stage in the iteration. (These indexes would be 

parameters in the recursive version.) 

Algorithm 4.4 Merge 

Input: Arrays A with k elements and B with m elements, each in nondecreasing order of 

their keys. 

Output: C, an array containing n = k + m elements from A and B in nondecreasing order. 

C is passed in and the algorithm fills it. 

void merge(Element[] A, int k, Element{] B, int m, Element[] C) 

int n=k+m:; 

int indexA = 0: indexB = 0; indexC = 0; 

// indexA is the beginning of rest of A; same for B, C. 

while (indexA < k && indexB < m) 

if (AlindexA].key < B[indexB].key) 

C[indexC] = A[indexA]; 

indexA ++; 

indexC ++: 

else 

ClindexC] = B[indexB]; 

indexB ++; 

indexC ++; 

// Continue loop 

if (indexA => k) 

Copy B[indexB, ..., m-1] to C[indexC, ..., n-1]. 

else 

Copy AlindexA, ..., k-1] to C[indexC, ..., n-1]. 

4.5.1 Worst Case 

Whenever a comparison of keys from A and B is done, at least one element is moved to 
C and never examined again. After the last comparison, at least two elements—the two 
just compared—have not yet been moved to C. The smaller one is moved immediately, 
but now C has at most n — | elements, and no more comparisons will be done. Those that 
remain in the other array are moved to C without any further comparisons. So at most n — | 
comparisons are done. The worst case, using all n — | comparisons, occurs when A[k — 1] 
and B[m — 1] belong in the last two positions in C. 

4.5.2 Optimality of Merge 
We show next that Algorithm 4.4 is optimal in the worst case among comparison-based 
algorithms when k =m =n/2. That is, for any comparison-based algorithm that merges 
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correctly on all inputs for which k =m =n/2 there must be some input for which it 
requires 1 — | comparisons. (This is not to say that for a particular input no algorithm 

could do better than Algorithm 4.4.) After considering k =m = n/2, we look at some other 

relationships between & and m. 

Theorem 4.4 Any algorithm to merge two sorted arrays, each containing k =m = n/2 

entries, by comparison of keys, does at least 2 — | such comparisons in the worst case. 

Proof Suppose we are given an arbitrary merge algorithm. Let a; and 5; be the ith entries 

of A and B, respectively. We show that keys can be chosen so that the algorithm must 

compare a; with b;, forO <i < m, and a; with bj +1, forO <i <m — 1. Specifically, choose 

keys so that, whenever the algorithm compares a; and b;, if i <j, the result is that aj < bj, 

and if i > j, the result is that bj < a;. Choosing the keys so that 

lay) ely la, tel) a oe oh eal Seay) os aa) Sy (4.4) 

will satisfy these conditions. However, if for some /, the algorithm never compares a; and 

b;, then choosing keys in the same order as in Equation (4.4), except that a; < bj, will 

also satisfy these conditions and the algorithm would not be able to determine the correct 

ordering. 

Similarly, if for some 7, it never compares a; and b;+,, the arrangement of Equa- 

tion (4.4), except that bj; < a; would be consistent with the results of the comparisons 

done, and again the algorithm could not determine the correct ordering. =O 

Can we generalize this conclusion? Suppose k and m differ slightly (as we will see 

they might in Mergesort)? 

Corollary 4.5. Any algorithm to merge two sorted arrays by comparison of keys, where 

the inputs contain k and m entries, respectively, k and m differ by one, and n = k + m, does 

at least m — | such comparisons in the worst Case. 

Proof The same proof as in Theorem 4.4 applies, except there is no aj,—|. 0 

Can we generalize this conclusion still further? If we find one kind of behavior at 

one extreme, it is often a good idea to check the other extreme. Here the first “extreme” 

was k =m. so the other extreme makes k and m as different as possible. Let’s look at an 

extreme case, where k = | and m is large, son =m + 1. We can devise an algorithm that 

uses at most [lg(m + 1)] comparisons. (What is it?) So clearly n — | is not a lower bound 

in this case. The improvement for k = | can be generalized to other cases where k 1s much 

less than n (see Exercise 4.24). Therefore the lower bound arguments of Theorem 4.4 and 

Corollary 4.5 cannot be extended to all combinations of k and m. For further possibilities, 

look at Exercise 4.33 after reading Section 4.7. 

4.5.3 Space Usage 

[t might appear from the way in which Algorithm 4.4 is written that merging sequences 

with a total of n entries requires enough memory locations for 27 entries, since all entries 

lees 
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Before the merge 

ty YY | sae | NS _ y 

0) n— | n+m-— | 0) m— 1 

During the merge 

LIL 
0 n—-] nem 1 0 m—1 

Remaining keys from A Merged keys B 

Finished 

Be eareceeanecenn Empty 
0) n+m-—1 0 m—| 

Merged lists B 

Figure 4.12 Overlapping arrays for Merge 

are copied to C. In some cases, however, the amount of extra space needed can be de- 

creased. One case is that the sequences are linked lists, and A and B are not needed (as 

lists) after the inerge is completed. Then the list nodes of A and B can be recycled as C is 

created. 

Suppose the input sequences are stored in arrays and suppose k > m. If A has enough 

room for n =k +m elements, then only the extra m locations in A are needed. Simply 

identify C with A, and do the merging from the right ends (larger keys) of A and B, as 
indicated in Figure 4.12. The first m entries moved to “C” will fill the extra locations of A. 
From then on the vacated locations in A are used. There will always be a gap (i.e., some 
empty locations) between the end of the merged portion of the array and the remaining 
entries of A until all of the entries have been merged. Observe that if this space-saving 
storage layout is used, the last lines in the merge algorithm (else Copy Al[indexAl], . .., 
A[k-1] to C[indexC], ..., C[{n-—1]) can be eliminated because, if B empties before A, the 
remaining items in A are in their correct position and do not have to be moved. 

Whether or not C overlaps one of the input arrays, the extra space used by the Merge 
algorithm when k =m =n/2 is in ©(n). 

Mergesort 

The problem with Quicksort is that Partition doesn’t always decompose the array into 
two equal subranges. Mergesort just slices the array in two halves and sorts the halves 
separately (and of course, recursively). Then it merges the sorted halves (see Figure 4.13). 
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Merge 

Sorted 

Figure 4.13 Mergesort strategy 

Thus, using the divide-and-conquer terminology of Section 4.3, divide merely computes 

the middle index of the subrange and does no key comparisons; combine does the merging. 

We assume that Merge is modified to merge adjacent subranges of one array, putting 

the resulting merged array back into the cells originally occupied by the elements being 

merged. Its parameters now are the array name E, and the first, mid, and last indexes of the 

subranges it is to merge; that is, the sorted subranges are Effirst], . . .. E[mid] and E[mid+1], 

_.., Eflast], and the final sorted range is to be Effirst], .. ., E{last]. In this modification, the 

merge subroutine is also responsible for allocating additional workspace needed. Some of 

the issues were discussed in Section 4.5.3. 

Algorithm 4.5 Mergesort 

Input: Array E and indexes first, and last, such that the elements of E[i] are defined for 

first <i < last. 

Output: E[first], ..., E[last] is a sorted rearrangement of the same elements. 

void mergeSort(Element[] E, int first, int last) 

if (first < last) 

int mid = (first+last) / 2; 

mergeSort(E, first, mid); 

mergeSort(E, mid + 1, last); 

merge(E, first, mid, last); 

return: 

UZES: 
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We have observed that students often confuse the Merge and Mergesort algorithms. 

Remember that Mergesort is a sorting algorithm. It begins with one scrambled array and 

sorts it. Merge begins with fwo arrays that are already sorted; it combines them into one 

sorted array. 

Mergesort Analysis 

First, we find the asymptotic order of the worst-case number of key comparisons for 

Mergesort. As usual, we define the problem size as n = last — first + 1, the number of 

elements in the range to be sorted. The recurrence equation for the worst-case behavior of 

Mergesort 1s 

Wan) =W(n/2)) = W(nj2|) +n — 1 (4.5) 

W(t) = 0. 

The Master Theorem tells us immediately that W(n) € ©(n logn). So we finally have 

a sorting algorithm whose worst-case behavior is in ©(n log n). Rather than carry out 

a separate analysis of the average complexity of Mergesort, we will defer this question 

until we have developed the very general Theorem 4.11, concerning average behavior, in 

Section 4.7, just ahead. 

A possible disadvantage of Mergesort is its requirement for auxiliary workspace. 

Because of the extra space used for the merging, which is in ©(n), Mergesort is not an 

in-place sort. 

Mergesort Analysis, More Exactly 

It is of some interest to obtain a more exact estimate of the worst-case number of compar- 

isons, in light of lower bounds to be developed in the next section (Section 4.7). We will 

see that Mergesort is very close to the lower bound. Readers may skip the details of this 

section without loss of continuity and proceed to its main conclusion, Theorem 4.6. 

In the recursion tree for Equation (4.5) (see Figure 4.14), we observe that the nonre- 

cursive costs of nodes at depth d sum to n — 24 (for all node depths not containing any 

base cases). We can determine that all base cases (for which W(1) = 0) occur at depths 

fIg(n + 1)] — 1 or [lg(a + 1)]. There are exactly n base-case nodes. Let the maximum 

depth be D (that is, D = [lg(n + 1)]) and let B be the number of base cases at depth 
D — |. Then there are n — B base cases at depth D (and no other nodes at depth D). Each 

nonbase node at depth D — | has two children, so there are (1 — B)/2 nonbase cases at 

depth D — |. Using this information, we compute the sum of nonrecursive costs for the 
last few depths as follows: 

wo) 
_ 2 

|. Depth D — 2 has 2?~? nodes, none of which are base cases. The sum of nonrecursive 

costs for this level is n — 2?-?. 

2. Depth D — I has (n — B)/2 nonbase cases. Each has problem size 2 (with cost 1), so 
the sum of the nonrecursive costs for this level is (2 — B)/2. 

3. Depth D has n — B base cases, cost 0. 
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Figure 4.14 Recursion tree for Mergesort. Wherever a node size parameter is odd, the left 

child size is rounded up and the right child size is rounded down. 

You can verify that B = 2? — n (Exercise 4.29). Therefore 

D=2 

W(n)= » (n _ 25 + (n — B)/2 

a (4.6) 

=n = 1) 2" 4 f+ r= B22 

=n D —2? +1, 

Because D is rounded up to an integer and occurs in the exponent, it is hard to tell how 

Equation (4.6) behaves between powers of 2. We prove the following theorem, which 

removes the ceiling function from the exponent. 

Theorem 4.6 The number of comparisons done by Mergesort in the worst case is be- 

tween [n lg(n) —n + 1] and fn Ig(n) — .914n}. 

Proof ff we define a = 2? /n, then | <a@ <2, and D can be replaced throughout Equa- 

tion (4.6) by (Ig(7) + lg(a)). This leads to W(n) =n Ig(n) — (a — Ig an + |. The mini- 

mum value of (w — lg @) is about .914 (see Exercise 4.30) and the maximum in the range 

under consideration is 1. 

Thus Mergesort does about 30 percent fewer comparisons in the worst case than 

Quicksort does in the average case. However, Mergesort does more element movement 

than Quicksort does on average, So its time may not be faster (see Exercises 4.21 and 4.27). 

ea 
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Figure 4.15 Decision tree for a sorting algorithm, n = 3. 

Lower Bounds for Sorting by Comparison of Keys 

The number of key comparisons done by Insertion Sort and Quicksort in the worst case is in 

©@(n*). We were able to improve on this with Mergesort, whose worst case is in ©(n log n). 

Can we do even better? 

In this section we derive lower bounds for the number of comparisons that must be 

done in the worst case and on the average by any algorithm that sorts by comparison of 

keys. These results tell us when we can stop looking for a better algorithm. To derive the 

lower bounds we assume that the keys in the array to be sorted are distinct. 

4.7.1 Decision Trees for Sorting Algorithms 

Let n be fixed and suppose that the keys are xj, .x2,...,- x,. We will associate with each 

algorithm and positive integer n, a (binary) decision tree that describes the sequence of 

comparisons carried out by the algorithm on any input of size n. Let Sort be any algorithm 

that sorts by comparison of keys. Each comparison has a two-way branch (since the keys 

are distinct), and we assume that Sort has an output instruction that outputs the rearranged 

array of keys. The decision tree for Sort is defined inductively by associating a tree with 

each comparison and each output instruction as follows. The tree associated with an output 

instruction consists of one node labeled with the rearrangement of the keys. The tree 

associated with an instruction that compares keys x; and x; consists of a root labeled (7 : /), 

a left subtree that is the tree associated with the (comparison or output) instruction executed 

nextif x; <.x;, anda right subtree that is the tree associated with the (comparison or output) 

instruction executed next if x; > x;. The decision tree for Sort is the tree associated with 

the first comparison instruction it executes. Figure 4.15 shows an example of a decision 

trecmonyt:— 3. 

The action of Sort on a particular input corresponds to following one path in its 

decision tree from the root to a leaf. The tree must have at least n! leaves because there 

are 7! ways in which the keys can be permuted. Since the unique path followed for each 

input depends only on the ordering of the keys and not on their particular values, exactly 
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n! leaves can be reached from the root by actually executing Sort. We will assume that 

any paths in the tree that are never followed are removed. We also assume that comparison 

nodes with only one child are removed and replaced by the child, and that this “pruning” 

is repeated until all internal nodes have degree 2. The pruned tree represents an algorithm 

that is at least as efficient as the original one, so the lower bounds we derive using trees 

with exactly ! leaves and all internal nodes of degree 2 will be valid lower bounds for all 

algorithms that sort by comparison of keys. From now on we assume Sort is described by 

such a tree. 

The number of comparisons done by Sort on a particular input is the number of internal 

nodes on the path followed for that input. Thus the number of comparisons done in the 

worst case is the number of internal nodes on the longest path, and that is the height of the 

tree. The average number of comparisons done is the average of the lengths of all paths 

from the root to a leaf. (For example, for n = 3, the algorithm whose decision tree 1s shown 

in Figure 4.15 does three comparisons in the worst case and two and two-thirds on the 

average.) 

4.7.2. Lower Bound for Worst Case 

To get a worst-case lower bound for sorting by comparison, we derive a lower bound for 

the height of a binary tree in terms of the number of leaves, since the only quantitative 

information we have about the decision trees is the number of leaves. 

Lemma 4.7 Let L be the number of leaves in a binary tree and let /: be its height. Then 

Leads 

Proof A straightforward induction onh. 0 

Lemma 4.8 Let L and h be as in Lemma 4.7. Then hh > [lg L]. 

Proof Taking logs of both sides of the inequality in Lemma 4.7 gives Ig L < h. Since h 

isaninteger,h>fIgL]. oO 

Lemma 4.9 For a given n, the decision tree for any algorithm that sorts by comparison 

of keys has height at least [lg n!]. 

Proof LetL=nlmLemma4.s. o 

So the number of comparisons needed to sort in the worst case is at least [Ig m!]. Our 

best sort so far is Mergesort, but how close is [lg 1!] ton lg n? To find the answer, we need 

to put Ign! into a more convenient form, and get a lower bound on its value. There are 

several ways to do this. Perhaps the simplest, but not very exact, way Is to observe that 

l= n 
n!>n(n—1)---([n/2])= (=) 

Uye) 



180 Chapter 4 Sorting 

n n 
len!> —le-, g ze 85 

to 

which is in @(n log 7). Thus we see already that Mergesort is of optimal asymptotic order. 

To get a closer lower bound, we use the fact that 

rl 

Ign!=)_ Ig(j). 
== 

Using Equation (1.18) we get 

lgn! >nlign — (lg e)n, 

where e denotes the base of natural logarithms, and Ig(e) is about 1.443. Thus the height 

of the decision tree is at least [n lg n — 1.4437]. 

Theorem 4.10 Any algorithm to sort 7 items by comparisons of keys must do at least 

[lg 2!], or approximately [n lg n — 1.4431], key comparisons in the worst case. 0 

So Mergesort is very close to optimal. There is some difference between the exact 

behavior of Mergesort and the lower bound. Consider the case where n = 5. Insertion sort 

does 10 comparisons in the worst case, and Mergesort does 8, but the lower bound is [lg 5!] 

= {lg 120] = 7. Is the lower bound simply not good enough, or can we do better than 

Mergesort? We encourage you to try to find a way to sort five elements with only seven 

key comparisons in the worst case (Exercise 4.32). 

4.7.3 Lower Bound for Average Behavior 

We need a lower bound on the average of the lengths of all paths from the root to a leaf 

in a decision tree. Recall from Definition 3.2 that a binary tree in which every node has 

degree O or 2 is called a 2-rree. Leaves in such a tree may be external nodes, which are of a 

different type from the internal nodes. Our decision trees are 2-trees, and all of their leaves 

are Output instructions, whereas all of the internal nodes are comparison instructions. 

Recall from Definition 3.3 that the external path length of a tree is the sum of the 

lengths of all paths from the root to an external node (1.e., output instruction); it will be 

denoted by ep/. If a decision tree has L leaves, the average path length from the root to a 

leaf is epl/L. 

We are looking for a lower bound on ep/ among all decision trees (2-trees) with L 

leaves, thinking of L as fixed, for the moment. We can argue that the trees (with L leaves) 

that minimize ep/ are as balanced as possible. Suppose we have a 2-tree with height h 

that has a leaf X at depth k, where & is two or more less than h. See Figure 4.16(a) for 

an illustration. Figure 4.16(b) shows a 2-tree with the same number of leaves and lower 

epl. We choose a node Y at depth / — | that is not a leaf, remove its two children, and 

attach those two children to X. The total number of leaves has not changed but the ep/ 

has. Three paths in the original tree, with lengths totaling h + h + k, are no longer counted 
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Figure 4.16 Reducing external path length 

(the paths to the children of Y and to X ). There are three new paths (to Y and to X’s new 

children), with lengths totaling h — | + 2(k + 1). The net change in epl isk + 1 — h, which 

is negative, so ep! has decreased. Therefore if a 2-tree has minimum epl among all 2-trees 

with L leaves, its external path length 1s about L Ig(L). 

Lemma 3.7 makes this bound more precise; it states (in our context) that any decision 

tree with L leaves has ep! = L Ig(L), and so the average path length to an output- 

instruction node 1s at least lg(L). This immediately implies the following theorem: 

Theorem 4.11 9 The average number of comparisons done by an algorithm to sort 1 items 

by comparison of keys is at least lg(n!), which is aboutn Ign — 1.443 nn. Oo 

The only difference from the worst-case Jower bound 1s that there is no rounding up 

to an integer—the average need not be an integer, but the worst case must be. Although we 

never analyzed the average behavior of Mergesort, this general bound allows us to conclude 

that it cannot be much lower than its worst case: the leading terms must agree and there is 

only a gap of about 0.5 1 in the second-order term. Also, the average case for Quicksort can 

be improved only by about 30 percent at the most by any enhancements, such as choosing 

the splitting element more carefully. 
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Heapsort 

Quicksort rearranges elements in the original array, but cannot be sure of making an even 

subdivision of the problem, and so it has a bad worst case. Mergesort can guarantee an even 

subdivision, and has a nearly optimal worst case, but cannot rearrange the elements in the 

original array; it needs sizable auxiliary workspace. Heapsort rearranges elements in the 

original array, and its worst case 1s in ©(n log), which is optimal in terms of growth rate, 

so in a sense it combines the advantages of Quicksort and Mergesort. The disadvantage 

of Heapsort is a higher constant factor than the other two. However, a newer version of 

Heapsort reduces this constant factor to a level that is competitive with Quicksort and 

Mergesort. We call this newer version Accelerated Heapsort. Thus Accelerated Heapsort 

may become the sorting method of choice. 

4.8.1 Heaps 

The Heapsort algorithm uses a data structure called a heap, which is a binary tree with 

some special properties. The definition of a heap includes a description of the structure and 

a condition on the data in the nodes, called the partial order tree property. Informally, a 

heap structure is a complete binary tree with some of the rightmost leaves removed. (See 

Figure 4.17 for illustrations.) A heap provides an efficient implementation of the priority 

queue abstract data type (Section 2.5.1). In a heap the element of “highest” priority is 

kept in the root of the binary tree. Depending on the notion of priority, this might be the 

minimum key (for a minimizing heap) or the maximum key (for a maximizing heap). For 

Heapsort to sort in ascending order, a maximizing heap is used, so we will describe heaps 

in these terms. Elsewhere we will encounter uses for minimizing heaps. 

We will use the terminology that S is a set of elements with keys that have a linear 

ordering, and 7 is a binary tree with height / whose nodes contain elements of S. 

Definition 4.1 Heap structure 

A binary tree T is a heap structure if and only if it satisfies the following conditions: 

1. T is complete at least through depth h — 1. 

2. All leaves are at depth h or h — 1. 

3. All paths to a leaf of depth / are to the left of all paths to a leaf of depth h — 1. 

The rightmost internal node at depth / — | of a heap structure may have a left child and no 
right child (but not vice versa). All other internal nodes have two children. Another name 
for a heap structure is a /eft-complete binary tree. ™ 

Definition 4.2 | Partial order tree property 

A tree T’ is a (maximizing) partial order tree if and only if the key at any node is greater 
than or equal to the keys at each of its children (if it has any). 

Observe that a complete binary tree is a heap structure. When new nodes are added to 
a heap, they must be added left to right at the bottom level, and if a node is removed, it 
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Figure 4.17 2-trees, complete binary trees, and heaps 

must be the rightmost node at the bottom level if the resulting structure is still to be a heap. 

Note that the root must contain the largest key in the heap. 

4.8.2 The Heapsort Strategy 

If the elements to be sorted are arranged in a heap, then we can build a sorted sequence 

in reverse order by repeatedly removing the element from the root (the largest remaining 

key), and rearranging the elements still in the heap to reestablish the partial order tree 

property, thus bringing the next largest key to the root. This operation is just deleteMax 

for the priority queue ADT. (We could build the sorted sequence in ascending order with a 

minimizing heap; the reason for using a maximizing heap becomes clear when we study a 

particularly efficient implementation in Section 4.8.5.) 

Since this approach requires constructing a heap in the first place, and then repeatedly 

doing deleteMax, which involves some rearranging of the elements in the heap, it does 

not look like a promising strategy for getting an efficient sorting algorithm. However, it 

turns out to do quite well. Thus we outline the strategy here, and then proceed to work 

out the details. As usual, we assume the n elements are stored in an array E, but this time 

we assume the range of indexes is 1,..., n, for reasons that will become clear when we 

look at the implementation of the heap. For the moment we assume the heap (named #H) is 

elsewhere. 
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heapSort(E, n) // OUTLINE 

Construct H from E, the set of n elements to be sorted; 

for (i =n, i> 1;i--) 

curMax = getMax(H); 

deleteMax(H): 

E{i] = curMax; 

The first and last pictures in Figure 4.18 show an example before and after one iteration of 

the for loop. The intervening pictures show steps in the rearrangements that are carried out 

by deleteMax and the subroutine fixHeap, which is called by deleteMax. 

deleteMax(H) // OUTLINE 

Copy the rightmost element on the lowest level of H into K. 

Delete the rightmost element on the lowest level of H. 

fixHeap(H, K): 

As we see, almost all the work is done by fixHeap. 

We now need an algorithm to construct a heap and an algorithm for fixHeap. Since 

fixHeap can be used to solve the heap construction problem as well, we consider it next. 

4.8.3 FixHeap 

The fixHeap procedure restores the partial order tree property in a heap structure for which 

that property already exists everywhere except possibly at the root. Specifically, when 

fixHeap begins, we have a heap structure with a “vacant” root. The two subtrees are partial 

order trees, and we have an extra element, say K, to be inserted. Since the root 1s vacant, 

we begin there and let K (and the vacant node) filter down to its correct position. At its final 

position, K (more precisely, K’s key) must be greater than or equal to each of its children, 

so at each step K is compared to the larger of the children of the currently vacant node. If 

K is larger (or equal) it can be inserted at the currently vacant node. Otherwise, the larger 

child is moved up to the vacant node and the process is repeated. 

Example 4.1 FixHeap in action 

The action of fixHeap is illustrated in the second through fifth pictures of Figure 4.18. To 

back up a little, the first picture shows the initial configuration, at the beginning of the 

for loop in the heapSort outline in Section 4.8.2. First, heapSort copies the key 50 from 

the root of H into curMax, making the root of the tree effectively vacant; then it calls 

deleteMax, which copies the key 6 from the rightmost node on the bottom level of the tree 

into K, and actually deletes that node. 

This brings us to the second picture and that is where fixHeap(H, K) begins. The larger 

child of the vacant node is 30, and this is also larger than K , which is 6, so 30 moves up into 

the vacant position and the vacant node filters down, leading to the third picture. Again, the 

larger child of the vacant node is larger than K, so the vacant node filters down again. The 

next time, the vacant node is a leaf, so K can be inserted there, and the partial order tree 

property of H is restored. @ 
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(a) The heap (b) The key at the root has 

been removed; the rightmost 

leaf at the bottom level has 

been removed. K = 6 must 

be reinserted. 

(c) The larger child of (d) The larger child of 

vacant, 30, is greater than vacant, 18, is greater than 

K, so it moves up and K, so it moves up and 

vacant moves down. vacant moves down. 

(e) Finally, since vacant is a 

leaf, K = 6 1s inserted. 

Figure 4.18 Deleting the element at the root and reestablishing the partial order tree property 
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Although the tree structure of the heap is essential to motivating and understanding 

Heapsort, we will see later that we will be able to represent heaps and subheaps without 

any explicit edges. 

Algorithm 4.6 FixHeap (Outline) 

Input: A nonempty binary tree H with a “vacant” root, such that its left and right subtrees 

are partial order trees, and an element K to be inserted. The type of H is called Heap for 

this outline. Nodes of H are assumed to be type Element. 

Output: A binary tree H consisting of K and the original elements of H, satisfying the 

partial order tree property. 

Remark: The structure of H is not altered, but the contents of its nodes are changed. 

fixHeap(H, K) // OUTLINE 

if (H is a leaf) 

insert K in root(H); 

else 

Set largerSubHeap to leftSubtree(H) or rightSubtree(H), whichever 

has larger key at its root. This involves one key comparison, unless 

rightSubtree 1s empty. 

if (K.key > root(largerSubHeap).key) 

insert K in root(H); 

else 

insert root(largerSubHeap) in root(H); 

fixHeap(largerSubHeap, K); 

return; 

Lemma 4.12 The fixHeap procedure does 2/ comparisons of keys in the worst case on 

a heap with height /. 

Proof At most two comparisons of keys are done in each procedure activation, and 

the tree height decreases by one in the recursive call. (One comparison 1s implicit in the 

determination of largerSubHeap. ) 

4.8.4 Heap Construction 

Suppose we start by putting all the elements in a heap structure in arbitrary order; that 

is, the partial order tree property is not necessarily satisfied in any subheap. The fixHeap 

algorithm suggests a Divide-and-Conquer approach to establishing the partial order tree 

property. The two subtrees can be turned into heaps recursively, then fixHeap can be used 

to filter the element at the root down to its proper place, thus combining the two smaller 

heaps and the root into one large heap. The base case is a tree consisting of one node (i.e., 

a leaf); itis already a heap. The following algorithm implements this idea. 

Algorithm 4.7 Construct Heap 

Input: A heap structure H that does not necessarily have the partial order tree property. 
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Figure 4.19 Constructing the heap: The leaves are heaps. The fixHeap procedure is called for 

each circled subtree. 

Output: H with the same nodes rearranged to satisfy the partial order tree property. 

void constructHeap(H) // OUTLINE 

if (H is not a leaf) 

constructHeap(left subtree of H); 

constructHeap(right subtree of 1); 

Element K = root(H); 

fixHeap(H, K); 

return; 

If we unravel the work done by this Divide-and-Conquer algorithm, we see that it 

really starts rearranging elements near the leaves first, and works its way up the tree. (It is 

a sort of postorder traversal.) See Figure 4.19 for an illustration. Exercise 4.38 asks you to 

write an iterative version of constructHeap. 
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Correctness 

Theorem 4.13 Procedure constructHeap establishes the partial order tree property in its 

parameter, 1. 

Proof The proof is by induction on heap structures. The base case 1s a heap of one node, 

which has the partial order tree property vacuously. 

For heaps H of more than one node, assume the theorem holds for proper subheaps 

of H. The recursive calls to constructHeap are on such subheaps. There is no problem 

about meeting the preconditions for the recursive calls, because subtrees of a heap structure 

are also heap structures. Therefore, by the inductive hypothesis, we can assume they 

accomplish their objectives, it is not necessary to burrow into the recursion. 

The final point concerning correctness 1s whether the preconditions for the subroutine 

fixHeap are satisfied at the point it is called. But those preconditions are just the postcondi- 

tions of the two recursive calls to constructHeap. So we can assume fixHeap accomplishes 

its objective, which is just the objective of the current invocation of constructHeap: to 

make H satisfy the partial order tree property. 0 

Worst-Case Analysis 

A recurrence equation for constructHeap depends on the cost of fixHeap. Defining the 

problem size as n, the number of nodes in the heap structure H, we saw that fixHeap 

requires about 2 lg(7) key comparisons. Let r denote the number of nodes in the right 

subheap of H. We then have 

Wm) =W@a=r— 1) Wo) + 21s@) OG viele 

Although heaps are as balanced as possible, r can be as little as n/3. Therefore, while 

constructHeap is a Divide-and-Conquer algorithm, its two subproblems are not necessar- 

ily equal. With some difficult mathematics the recurrence can be solved for arbitrary n, but 

we will take a shortcut. We first solve it for N = 2“ — 1, that is, for complete binary trees, 

then note that for n between +N and N, W(N) is an upper bound on W(7). 

For N = 2“ — 1, the numbers of nodes in the right and left subtrees are equal, so the 

recurrence equation becomes 

W(N) =2W(5(N—1))+21g(N) — forN > 1. 

Now apply the Master Theorem (Theorem 3.17). We have b = 2, c = 2 (the difference 

between N/2 and (N — 1)/2 is unimportant), E = 1, and f(N) = 2 1g(N). Now choosing 

€ = 0.1 (or any fraction less than one) shows that case | of that theorem applies: 2 lg(V) € 

O (n””). It follows that W(N) € O(N). 
Now, returning to general n, since N < 2n, W(n) < W(N) € ©(2n) = O(n). Thus 

the heap is constructed in linear time! (An alternative counting argument is given in 
Exercise 4.39.) : 

It is not yet clear that Heapsort is a good algorithm; it seems to require extra space. It 
is time to consider the implementation of a heap. 
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Figure 4.20 Storage of the heaps in Figure 4.17 

4.8.5 Implementation of a Heap and the 
Heapsort Algorithm 

Binary trees are usually implemented as linked structures with each node containing point- 

ers (Or some other kind of references) to the roots of its subtrees. Setting up and using such 

a structure requires extra time and extra space for the pointers. However, we can store and 

use a heap efficiently without any pointers at all. In a heap there are no nodes at, say, depth 

d unless depth d — | is completely filled, so a heap can be stored 1n an array level by level 

(beginning with the root), left to right within each level. Figure 4.20 shows the storage ar- 

rangement for the heaps in Figure 4.17. For this scheme to be useful we must be able to 

find the children of a node quickly and determine if a node is a leaf quickly. It is important 

that the root be stored at index |, not 0, in the array, for the specific formulas that we are 

about to describe. 

Suppose the index 7 of a node is given. Then we can use a counting argument to show 

that its left child has index 27 and that its right child has index 27 + 1; similarly, the parent 

is [1/2]. (The proof ts left for an exercise.) It is to keep these formulas simple that we use 

indexes beginning at | for heaps. 

The startling feature of Heapsort is that the whole sorting procedure can be carried 

out in place: the small heaps built during the construction phase and, later the heap and 

the deleted elements, can occupy the array F that originally contained the unsorted set 

of elements. During the deletion phase, when the heap contains, say, k elements, it will 

occupy the first k locations in the array. Thus just one variable is needed to mark the end 

of the heap. Figure 4.21 illustrates the sharing of the array between the heap and the sorted 

elements. (Note that the fixHeap outline in Algorithm 4.6 had only two parameters. The 

more detailed implementation below has four.) 

Algorithm 4.8 Heapsort 

Input: E, an unsorted array, and n > 1, the number of elements. The range of indexes is 

Output: E, with elements in nondecreasing order of their keys. 

Remark: E[0] is not used. Remember to allocate n + | positions for E. 
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Figure 4.21. The heap and sorted elements in the array 

void heapSort(Element[] E, int n) 

int heapsize; 

constructHeap(E, n): 

// Repeatedly remove root element and rearrange heap. 

for (heapsize = n; heapsize > 2: heapsize ——;) 

Element curMax = E[1]: 

Element K = E[heapsize]; 

fixHeap(E, heapsize-1, 1, K): 

E{heapsize] = curMax:; 

return; 

The fixHeap algorithm (Algorithm 4.6), revised for the array implementation, is given 
next. The revisions for constructHeap (Algorithm 4.7) follow the same pattern and are 
omitted. 

Algorithm 4.9 FixHeap 

Input: An array E representing a heap structure; heapSize, the number of elements in the 
heap; root, the root of the subheap to fix, a vacant position; K, the element to be inserted 
into the subheap in a way that restores the partial order tree property. The precondition 1s 
that the subheaps rooted at the left and right children of root have the partial order tree 
property. 

Output: The subheap rooted at root has K inserted and has the partial order tree property. 

Procedure: See Figure 4.22. a 

Heapsort Analysis 

We can now see clearly that Heapsort is an in-place sort in terms of work space for the 
elements to be sorted. Although some subroutines use recursion, the depth of recursion is 
limited to about lg, which is usually not a cause for concern. However, we can recode 
these subroutines to eliminate recursion and work in place (see Exercise 4.38). 
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void fixHeap(Element{] E, int heapSize, int root, Element K) 

int left = 2 x root, right = 2 « root + 1; 

if (left > heapSize) 

E[root] = K; // Root is a leaf. 

else 

// Determine largerSubHeap. 

int largerSubHeap; 

if (left == heapSize) 

largerSubHeap = left; // No right SubHeap. 

else if (E[left].key > E[right].key) 

largerSubHeap = left: 

else 

largerSubHeap = right: 

// Decide whether to filter K down. 

if (K.key > E{largerSubHeap].key) 

EFOotlakG 

else 

E({root] = E[largerSubHeap]; 

fixHeap(E, heapSize, largerSubHeap, K); 

return: 

Figure 4.22 Procedure for Algorithm 4.9 

We have seen in Section 4.8.4 that the number of comparisons done by constructHeap 

is in ©(n). Now consider the main loop of Algorithm 4.8. By Lemma 4.12 the number of 

comparisons done by fixHeap on a heap with k& nodes is at most 2[lg kJ, so the total for 

all the deletions is at most 2 ie [1g kJ. This sum can be bounded by an integral, which 

takes the form of Equation (1.15), 

n—\| n 

2 tek] <2 | (Ig ¢) Inx dx 
k=] 

= (ren iin —n)=2n lea) — 1.443 7). 

The following theorem sums up our results. 

Theorem 4.14 The number of comparisons of keys done by Heapsort in the worst case 

is 2nlgn+ O(n). Heapsort is an ©(n log 7) sorting algorithm. 

Proof The heap construction phase does at most O(n) comparisons, and the deletions do 

at most 2n lg(n). 

Heapsort does @(n log n) comparisons on the average as well as in the worst case. 

(How do we know this’) 
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4.8.6 Accelerated Heapsort 
Recall that fixHeap handles the case that the root of a heap is vacant, but all other elements 

satisfy the partial order tree property. A new element is to be inserted, but it may be too 

small to belong in the root. The element is “filtered down” to either the left or the right, 

until it is in the correct relation to its children. 

Suppose a key happens to be too low in the partial order tree, that is, too large for its 

current position? A dual procedure suggests itself for “bubbling” that element up the tree 

(i.e., toward the root), in analogy with an air bubble rising through water. In fact, “bubbling 

up” is simpler, because the element in question has only one parent—there is no “‘left or 

right” decision to make. The bubbleUpHeap procedure is a natural complement to fixHeap 

(Algorithm 4.9). After working out the details of bubbleUpHeap, we will see how to use 

the expanded repertoire to speed up Heapsort by about a factor of two. 

We continue to assume a maximizing heap, because that is the kind used by Heapsort. 

More exactly, bubbleUpHeap is given an element K and a “vacant” position, such that 

placing the element in that vacant position may place it too low in the heap; that is, K may 

be bigger than its parent. 

The procedure lets small elements on the path from vacant to the root migrate down, 

as vacant bubbles up, until the proper place for the new element is found. (For an index 

i, parent(z) = |7/2].) The operation is similar to the action of Insertion Sort as it inserts a 

new element into the sorted portion of the array. 

Algorithm 4.10 Bubble-Up Heap 

Input: An array E representing a heap structure; integers root and vacant, and an element 

K to be inserted at vacant or some ancestor node of vacant, up to root, in such a way as 

to maintain the partial order tree property in E. As a precondition, E has the partial order 

tree property if the node vacant is disregarded. 

Output: The subheap rooted at root has K inserted and has the partial order tree property. 

Remark: The structure of E is not altered, but the contents of its nodes are changed. 

void bubbleUpHeap(Element{] E, int root, Element K, int vacant) 

if (vacant == root) 

E[vacant] = K: 

else 

int parent = vacant / 2; 

if (K.key < E[parent].key) 

E[vacant] = K: 

else 

E[vacant] = E[parent]; 

bubbleUpHeap(E, root, K, parent); 

Bubbling an element up through the heap using bubbleUpHeap requires only one 
comparison per level. Algorithm 4.10 can be used to support insertion into a heap (see 
Exercise 4.41). 
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Combining bubbleUpHeap with a slightly modified fixHeap allows us to cut the 
number of comparisons done by Heapsort by about a factor of two. This makes Heapsort 
very competitive with Mergesort in terms of the number of comparisons—their worst-case 

leading terms now have the same coefficient (one). The number of element movements is 

not reduced further, but that measure was already comparable to Mergesort. Heapsort has 

the advantage of not requiring an auxiliary array, as Mergesort does. 

The main idea is simple. Filtering an element down with fixHeap requires two compar- 

isons per level. But we can avoid one of these comparisons—the one with K, the element 

being filtered down—without upsetting the partial order tree property. That is, compare the 

left child of vacant with the right child of vacant and move the larger element up to va- 

Cant (assuming a maximizing heap). Now vacant moves down to the former position of 

the child that moved up. This costs only one comparison per level, instead of two. We will 

call this variant risky fixHeap, for the moment. 

By not comparing the larger child with K, we risk going too far down the tree and 

“promoting” elements that are smaller than K. However, if this kind of overshooting 

occurs, We can use bubbleUpHeap to move K up to its correct position, at a cost of one 

compare per level. Since bubbling K back up the tree at most pays back the comparisons we 

saved on the way down, we can’t really lose. Let / be the height of the heap with n nodes. 

The normal fixHeap costs 2 comparisons in the worst case. Running the risky fixHeap all 

the way down the tree costs only 4 comparisons. Now bubbleUpHeap requires at most h 

comparisons, and might require a lot fewer. 

Recall how deleteMax works. After removing the element at the root, we reinsert an 

element K taken from the bottom of the heap. So K is likely to be a rather small node, 

and probably will not bubble very far up the tree. In fact, on average, this modified method 

saves a factor of two in the number of comparisons needed for deleteMax. However, in the 

worst case, K will bubble almost all the way back up to the root of the heap, and wipe out 

almost all the savings. Is there a way to do better in the worst case, also? We invite you to 

think about this problem before continuing. 

The solution is a surprising application of Divide and Conquer. Let’s call “risky fix- 

Heap” by the more descriptive name: promote. Use promote to filter the vacant position 

halfway down the tree—that is, +h levels. See Figure 4.23 for an illustration. Then test 

whether K is bigger than the parent of vacant. If it is, then start bubbleUpHeap from this 

level, and the cost is at most another 4h compares, for a total of h. If not, then recursively 

find the correct position for K in the subheap rooted at vacant; this subheap has height 

of only th. That is, run promote to filter the vacant position down another /1/4 levels and 

test K against the parent of vacant. If K is bigger, then start bubbleUpHeap from this level 

(depth (3/4)h). But now bubbleUpHeap can bubble K up at most to depth th, because we 

already found out that K was smaller than (or equal to) the parent of the node at depth sh. 

If K is again smaller, then promote is run down another //8 levels, and so on. 
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Figure 4.23 Calling promote on the heap at the left (nodes not near the path are not shown) 

with h = 6 and hStop = 3 leads to the heap at right. 

Figure 4.24 Continuing from Figure 4.23, with K = 55 to be reinserted. Since K < 70, 

promote is called with h = 3 and hStop = | leading to the heap at the left. Then bubbleUpHeap 

is called, leading to the final configuration on the right. 

Example 4.2 Accelerated fixHeap in action 

Suppose the element to be reinserted into the heap is K = 55, beginning. with the heap 

that is partially shown at the left of Figure 4.23. As mentioned, promote does three 

comparisons and promotes 90, 80, and 70 without ever inspecting K, leading to the 

situation on the right. 
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Now K is compared with 70, the parent of the current vacStop, and is found to be 
smaller. Therefore promote is invoked again to lower the vacant node from height 3 to 
height 1; that is, 60 > 25, so 60 is promoted, then 50 > 45, so 50 is promoted, leading to 
the situation on the left of Figure 4.24. 

Now K (55) is compared with 50, and is larger, so it needs to bubble up somewhere 
higher in the tree, but no higher than height 3, due to the earlier comparison with 70. The 
fixHeap operation is concluded by using bubbleUpHeap to bubble K (55) back up the 
path, leading to the final heap shown on the right of Figure 4.24. = 

Algorithm 4.11 Accelerated FixHeap 

Input: E, an array storing a heap structure, E[1] being the root of the entire heap; n, the 
number of elements in E; K, an element for which a correct location in the heap must be 
found; vacant, an index in E that is a candidate location for K and currently has no element 
in it; h, the maximum possible height of the subheap rooted at vacant (due to incomplete 

last level, the height may vary by 1). 

The precondition is that the partial order tree property is satisfied in proper subheaps 

of the subheap rooted at vacant. 

Output: E with K inserted in the subheap rooted at vacant so that the partial order tree 

property holds for this subheap. 

Remark: Procedure deleteMax would call fixHeapFast with the parameters vacant = 1 

and A = [lg(# + 1)| —1. 

Procedure: See Figure 4.25. @ 

Analysis 

Essentially, there is one comparison each time vacant changes a level due to the action 

of either bubbleUpHeap or promote. The first promote moves vacant down th levels. If 

bubbleUpHeap is called now, it moves vacant up by at most +/ levels, completing the work 

of fixHeapFast. Otherwise, K has been found to be smaller than the element at the parent 

of vacant, and promote is called again and moves vacant down by another //4 levels. But 

in this case, if bubbleUpHeap is called next, it will move vacant up by at most //4 levels, 

because we already found out that K was smaller than (or equal to) the parent of the node 

at depth 4h. Therefore the total cost is still limited to about / in this case. This pattern 

continues, going down another //8 levels, then h/16 levels, and so on. So the total number 

of comparisons done by all calls to promote and possibly one call to bubbleUpHeap is 

h + 1 (allowing for rounding if / is odd). 

Assume bubbleUpHeap is never called, so fixHeapFast reaches its base case (and 

possibly needs two more comparisons in the base case). Then, eventually, fixHeapFast 

has made lg(h) checks to see whether to reverse direction. Adding these to the compar- 

isons made by promote and bubbleUpHeap gives approximately / + lg(/) comparisons 

altogether. 

Proceeding more formally, the recurrence equation 1s 

T(h) = [5h] + max ([5h1,14+7(5h))) TU) =2. 
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void fixHeapFast(Element[] E, int n, Element K, int vacant, int h) 

ea Ly) 

Process heap of height 0 or I. 

else 

int hStop =h / 2; 

int vacStop = promote(E, hStop, vacant, h); 

// vacStop is new vacant location, at height hStop. 

int vacParent = vacStop / 2; 

if (E[vacParent].key < K.key) 

E[vacStop] = E[vacParent]: 

bubbleUpHeap(E, vacant, K, vacParent); 

else 

fixHeapFast(E, n, K, vacStop, hStop); 

int promote(Element [] E, int hStop, int vacant, int h) 

int vacStop; 

if (h < hStop) 

vacStop = vacant: 

else if (E[2*vacant].key < E[2*vacant+]].key) 

E[vacant] = E[2*vacant+ 1]: 

vacStop = promote(E, hStop, 2*vacant+1, h — 1); 

else 

E[vacant] = E[2*vacant]; 

vacStop = promote(E, hStop, 2*vacant, h — 1): 

return vacStop; 

Figure 4.25 Procedure for Algorithm 4.11 

If we assume T(/) > h, as it is for the base case, the recurrence simplifies to 

Tw)=[SA+147Qsn)) rdy=2. 

We can obtain the solution from the recursion tree (see Section 3.7). We might also guess 

the solution by computing a few small cases, then verify it by induction. (See Exercise 4.44 

for the key identity.) 

Thy=f-P ete 1). 

Thus deleteMax on a heap of n elements can be carried out with lg(n + 1) + lg lg(m + 1) 

comparisons, roughly, instead of about 2 lg(7 + 1). The following theorem summarizes the 

result. 

Theorem 4.15 © The number of comparisons for the accelerated Heapsort using the fix- 

HeapFast subroutine is n lg(n) + ©(n log log()), in the worst case. 
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4.10 

4.10 Shellsort 

Algorithm Worst case — Average Space usage 

Insertion sort no /2 @(n2) In place 

Quicksort n> /2 ©(nlogn) — Extra space proportional to log n 

Mergesort nign ©O(nlogn) — Extra space proportional to n for merging 

Heapsort 2n ign O(n logn) — In place 

Accel. Heapsort niga O(n logn) — In place 

Table 4.1 Results of analysis of four sorting algorithms. Entries are number of comparisons 

and include the leading terms only. 

Comparison of Four Sorting Algorithms 

Table 4.1 sums up the results of the analysis of the behavior of the four sorting algorithms 

that have been discussed so far. Although Mergesort is close to optimal in the worst case, 

there are algorithms that do fewer comparisons. The lower bound obtained in Section 4.7 

is quite good. It is known to be exact for some values of ; that is, [lg 2!] comparisons are 

sufficient to sort, for some values of n. It is also known that [lg n!] comparisons are not 

sufficient for all n. For example, [lg 12!] = 29, but it has been proved that 30 comparisons 

are necessary (and sufficient) to sort 12 items in the worst case. See Notes and References 

at the end of the chapter for references on sorting algorithms whose worst-case behavior 1s 

close to the lower bound. 

Shellsort 

The technique used by Shellsort (named for its inventor Donald Shell) is interesting, and 

the algorithm is easy to program and runs fairly quickly. Its analysis, however, is very 

difficult and incomplete. 

4.10.1 The Algorithm 

Shellsort sorts an array E with n elements by successively sorting subsequences whose 

entries are intermingled in the whole array. The subsequences to be sorted are determined 

by a sequence, h,, h;—1, ..., 41, of parameters called increments. Suppose, for example, 

that the first increment, /,, is 6. Then the array ts divided into six subsequences, as follows: 

EJO} EG) Elh2),.004 

2 SEIS EZ), Ellsi. ss . 

S PEELS) ELPA a. 

4. E(t EO) ENS)... 

5 ESTP EIMOL ELVGI. x. 

6 EIS EW eli Al. : 

HOY, 



198 Chapter 4 Sorting 

hs =6 

WwW oo WO tw \o ill 19 44 6 > Be) I ws) in oo i) aS Be) = oo 

hy = 2 5 q 18 13 8 24 Si 19 295568 82. 44 

hy =1 SI a 8 13 18 i) 20) 24 31 44 82 663 

Sorted list 5 i 8 131 18 19 24 29 31 44 63 82 

Figure 4.26 Shellsort: Note that only two pairs of elements are interchanged on the final pass. 

As we see, the subsequences skip through the array at intervals of 6, in this example, and 

at intervals of h,, in general. 

After these subsequences are sorted, the next increment /1;_; is used to separate 

the array again into subsequences, this time with entries /,_; elements apart, and again 

subsequences are sorted. The process is repeated for each increment. The final increment, 

h,, 1s always I, so at the end, the entire array will be sorted. Figure 4.26 illustrates the 

action of this method on a small array. 

The informal description of Shellsort should prompt a number of questions. What 

algorithm should be used to sort the subsequences? Considering that the last increment 

is | and the entire array is sorted on the last pass, 1s Shellsort any more efficient than the 

algorithm used to sort the subsequences? Can the algorithm be written to minimize all the 

bookkeeping that seems to be needed to control the sorting of all the subsequences? What 

increments should be used? 

We tackle the first two questions first. As the example in Figure 4.26 shows, when the 

last few passes are made using small increments, few elements will be out of order because 

of all the work that was done in earlier passes. So Shellsort may be efficient if, and indeed 

would be efficient only if, the method used to sort subsequences 1s one that does very little 

work if the array is already sorted or nearly sorted. Insertion Sort (Section 4.2) has this 

property. It does only n — | comparisons if the array is completely sorted, it is simple to 

program, and it has very little overhead. 
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Now suppose Shellsort is using an increment / and is to sort 4 subsequences, each con- 

taining approximately n/h entries. If each subsequence is to be completely sorted before 

any work is begun on the next, the algorithm would need to keep track of which subse- 

quences have been sorted and which remain to be done. We avoid this bookkeeping by 

having the algorithm make one pass through the entire array (for each increment) inter- 

mingling its work on all the subsequences. Consecutive elements of a subsequence are / 

cells apart rather than one apart. Recall Insertion Sort (Algorithm 4.1) and its iterative sub- 

routine shiftVac. Generally, “1” in shiftVac is replaced by “h” in shiftVacH, the subroutine 

used by Shellsort. 

Algorithm 4.12 —Shellsort 

Input: E, an unsorted array of elements, n > 0, the number of elements, a sequence of 

diminishing increments h,, h;_\, ..., 4}, where h; = 1, and rf, the number of increments. 

The range of indexes of the array E is 0,..., n— I. 

Output: E, with elements in nondecreasing order of their keys. 

Remark: The sequence of increments might be computed rather than input. 

void shellSort(Element[] E, int n, int[] h, int t); 

int xindex, s; 

fon (G=t seis ——) 

for (xindex = h[s]; xindex < n; xindex ++) 

// xindex begins at second element of subsequence 0. 

Element current = E[xindex]:; 

Key x = current.key; 

int xLoc = shiftVacH(E, h[s], xindex, x); 

E[xLoc] = current; 

return: 

// Shellsort version of shiftVac, uses increment h. 

int shiftVacH(Element{] E, int h, int xindex, Key x) 

int vacant, xLOc; 

vacant = xindex; 

xLoc = 0; // Assume failure. 

while (vacant > h) 

// vacant-h is preceding index in current subsequence. 

if (E[vacant—h].key < x) 

xLoc = vacant; // Succeed. 

break; 

E[vacant] = E[vacant-h]; 

vacant -=h; // Keep looking. 

return XLOc; 
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Recall that Insertion Sort was slow because shiftVac removed at most one inversion 

after each comparison. Although after each comparison in Shellsort, shiftVacH removes at 

most one inversion from the subsequence it is sorting, it has the chance of eliminating up 

to h inversions from the whole array for each comparison because it causes elements to be 

moved across many others. Thus there is a possibility that the average behavior of Shellsort 

is in o(n7). The efficiency of Shellsort stems from the fact that sorting with one increment, 

say k, will not undo any of the work done previously when a different increment, say h, 

was used. More precisely, we say that a list is h-ordered if E[i] < Efi + h] forO <1 <n —/A, 

in other words, if all the subsequences consisting of every ith element are sorted. To h-sort 

an array means to sort subsequences using increment h. 

Theorem 4.16 If an /-ordered array is k-sorted, the array will still be h-ordered. 

Proof See Notes and References at the end of the chapter. It is worthwhile to examine 

Figure 4.26 to see that the theorem is true for the example given there. 

4.10.2 Analysis and Remarks 

The number of comparisons done by Shellsort is a function of the sequence of increments 

used. A complete analysis is extremely difficult and requires answers to some mathematical 

problems that have not yet been solved. Therefore the best possible sequence of increments 

has not been determined, but some specific cases have been thoroughly studied. One of 

these is the case where ¢ = 2, that is, where exactly two increments, /; and 1, are used. It 

has been shown that the best choice for / is approximately 1.72 </n, and with this choice 

the average running time is proportional to n>/>. This may seem surprising since using the 

increment | is the same as doing Insertion Sort, which has @(n*) average behavior; just 

doing one preliminary pass through the array with increment /: lowers the asymptotic order 

of the running time. By using more than two increments, the running time can be improved 

even more. 

It is known that if the increments are hy; = 2* — | for 1 <k < [lgn], the number of 

comparisons done in the worst case is in O(n*/*). Empirical studies (with values of n as 

high as 250,000) have shown that another set of increments gives rise to very fast-running 

programs. These are defined by h; = (3! — 1)/2 for | <i <1, where ¢ is chosen as the 

smallest integer such that h;;2 > n. These increments are easy to compute iteratively. We 

can find /, at the beginning of the sort by using the relation 4,4) = 3h, + | and comparing 

the results to n. Instead of storing all the increments, we can recompute them in reverse 

order during the sort using the formula h, = (A, 4) — 1)/3. 

It has been proven that, if the increments consist of all integers of the form 2'3/ that 

are less than n (used in decreasing order), then the number of comparisons done is in 

O(n(log n)*). The worst-case running times for the other sets of increments are known 

or expected to be of higher asymptotic order. However, because of the large number of 

integers of the form 2!3/, there will be more passes through the array, hence more overhead, 

with these increments than with others. Therefore they are not particularly useful unless 1 

is fairly large. 
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4.11 Radix Sorting 

Shellsort is clearly an in-place sort. Although the analysis of the algorithm is far from 
complete, and it is not known which increments are best, its speed and simplicity make it 
a good choice in practice. 

Radix Sorting 

For the sorting algorithms in Sections 4.2 through 4.10, only one assumption was made 

about the keys: They are elements of a linearly ordered set. The basic operation of the 

algorithms is a comparison of two keys. If we make more assumptions about the keys, we 

can consider algorithms that perform other operations on them. This section studies a few 

such algorithms, called “bucket sorts,” “radix sorts,” and “distribution sorts.” 

4.11.1 Using Properties of the Keys 

Suppose the keys are names and are printed on cards, one name per card. To alphabetize the 

cards by hand we might first separate them into 26 piles according to the first letter of the 

name, or fewer piles with several letters in each; alphabetize the cards in each pile by some 

other method, perhaps similar to Insertion Sort; and finally combine the sorted piles. If the 

keys are all five-digit decimal integers, we might separate them into 10 piles according to 

the first digit. If they are integers between | and m, for some m, we might make a pile for 

each of the k intervals [1], m/k], [m/k + 1, 2m/k], and so on. In each of these examples 

the keys are distributed into different piles as a result of examining individual letters or 

digits in a key or by comparing keys to predetermined values. Then the piles are sorted 

individually and recombined. Algorithms that sort by such methods are not in the class 

of algorithms previously considered because to use them we must know something about 

either the structure or the range of the keys. 

We will present one radix sort algorithm in detail later. To distinguish the specific 

algorithm from others of the same type, we use the term “bucket sorts” for the general 

class of algorithms. 

How Fast Are Bucket Sorts? 

A bucket sort has three phases: 

|. distribute keys, 

NO sort buckets individually, 

3. combine buckets. 

The type of work done 1n each phase is different, so our usual approach of choosing one 

basic operation to count will not work well here. Suppose there are k buckets. 

During the distribution phase, the algorithm examines each key once (either exam- 

ining a particular field of bits or comparing the key to some constant number of preset 

values). Then it does some work to indicate in which bucket the key belongs. This might 

involve copying the element or setting some indexes or pointers. The number of operations 

performed by a reasonable implementation of the first phase should be in © (71). 

201 
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To sort the buckets, suppose that we use an algorithm that sorts by comparison of 

keys doing, say, S(m) comparisons for a bucket with m elements. Let 1; be the number of 

elements in the ith bucket. The algorithm does te S(n;) comparisons during the second 

phase. 

The third phase, combining buckets, may require, at worst, that all of the elements be 

copied from the buckets into one list; the amount of work done 1s in O(7). 

Thus most of the work is done while sorting buckets. Suppose S(m) is in O(m log m). 

Then if the keys are uniformly distributed among the buckets, the algorithm does roughly 

ck(n/k) lg(n/k) = cn \g(n/k) comparisons of keys in the second phase, where c is a 

constant that depends on the sorting algorithm used in the buckets. Increasing k, the number 

of buckets, decreases the number of comparisons done. If we choose k = n/10, then n lg 10 

comparisons would be done and the running time of the bucket sort would be linear in 7, 

assuming that the keys are evenly distributed and that the running time for the first phase 

does not depend on k. (As a caveat, the fewer elements per bucket, the less likely it is that 

the distribution will be even.) However, in the worst case, all of the elements will go into 

one bucket and the entire list will be sorted in the second phase, turning all of the work of 

the first and last phases into wasteful overhead. Thus, in the worst case, a bucket sort would 

be very inefficient. If the distribution of the keys is known in advance, the range of keys 

to go into each bucket can be adjusted so that all buckets receive an approximately equal 

number of elements. 

The amount of space needed by a bucket sort depends on how the buckets are stored. 

If every bucket is to consist of a set of sequential locations (e.g., an array), then each 

must be allocated enough space to hold the maximum number of elements that might 

belong in one bucket, and that is n. Thus kn locations would be used to sort 7 elements. 

As the number of buckets increases, the speed of the algorithm increases but so does the 

amount of space used. Linked lists would be better; only O(n + k) space (for n elements 

plus links and a list head for each bucket) would be used. Distributing keys among the 

buckets would require constructing list nodes. But then how would the elements in each 

bucket be sorted? Quicksort and Mergesort, two of the faster algorithms discussed, can 

easily be implemented to sort linked lists (see Exercises 4.22 and 4.28). If the number 

of buckets is large, the number of elements in each will generally be small and a slower 

algorithm could be used. Insertion Sort can also be modified easily to sort elements in a 

linked list (see Exercise 4.11). With approximately n/k elements per bucket, Mergesort 

will do approximately (n/k)(lg(7) — Ig(k)) comparisons on the average for each bucket, 

or n(lg() — lg(k)) comparisons in all. Here again, as k increases, so does the speed, but 

so also does the amount of space used. 

You might wonder why we don’t use a bucket sort algorithm recursively to create 

smaller and smaller buckets. There are several reasons. The bookkeeping would quickly get 

out of hand; pointers indicating where the various buckets begin and information needed 

to recombine the elements into one list would have to be stacked and unstacked often. Due 

to the amount of bookkeeping necessary for each recursive call, the algorithm should not 

count on ultimately having only one element per bucket, so another sorting algorithm will 

be used anyway to sort small buckets. Thus if a fairly large number of buckets is used in 

the first place, there is little to gain and a lot to lose by bucket sorting recursively. However, 
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Unsorted First Second Third Fourth Fifth Sorted 
file bkt Pass bkt Pass bkt Pass bkt Pass bkt Pass file 

48081 1 fFeqe7] 0 [48001 0 {48001 0 [90283 0 [00972] 00972 
97342 48001 53202 48081 90287 E— 38107 
90287 2 [97342 38107 1 |38107 90583 3 |38107} 41983 

90583 53202 | )65215 2 (53202 00972} 4 |41983) jenny 
53202 00972 65315 G55) 1) BESGS so aan seule 2. (0583! -_—— 90283 41983 4808 | a 
65215 5 4 [07342 53202 78307 41983 ad NS 8 er EES oe 8. -——— cae) ee mente} 65215 90283 6 [81664 3 [65315 Ej 6 [65215 
4800 ieee! 5 [65215 

; 4 [81664 7 [00972 97342 ae 65315| ©5315 
00072 5 [65215] 8 [48081 78397 “| 7 [78397] 78397 

41983 —— 41983 8 |48001] 9 [oo283} 90283 7 [90287 6 [81664 
90283 78407 90283 48081 90287} 90287 
81664 a ar 90287| 9 [00972 oe 90583] 90583 

a —— 33 5 78397 97342 38107 2 [78397 41983 ——] 7342) 97342 

Figure 4.27 Radix Sort 

although recursively distributing keys into buckets is not efficient, something quite useful 

can be salvaged from this idea. 

4.11.2. Radix Sort 

Suppose that the keys are five-digit numbers. A recursive algorithm, as just suggested, 

could first distribute the keys among 10 buckets according to the leftmost, or most signif- 

icant, digit and then distribute the keys in each bucket among 10 more buckets according 

to the next most significant digit, and so on. The buckets could not be combined until they 

were completely sorted, hence the large amount of messy bookkeeping. It is startling that if 

the keys are distributed into buckets first according to their least significant digits (or bits, 

letters, or fields), then the buckets can be combined in order before distributing on the next 

digit. The problem of sorting the buckets has been completely eliminated. If there are, say, 

five digits in a key, then the algorithm distributes keys into buckets and combines the buck- 

ets five times. It distributes keys on each digit position in turn, right to left, as illustrated in 

Figure 4.27. 

Does this always work? On the final pass when two keys are put into the same bucket 

because they both start with, say, 9, what ensures that they are in the proper order relative 

to each other? In Figure 4.27, the keys 90283 and 90583 differ in the third digit only and 

are put in the same bucket in each pass except the third. After the third pass, so long as the 

buckets are combined in order and the relative order of two keys placed in the same bucket 

is not changed, these keys remain in proper order relative to each other. In general, if the 

leftmost digit position in which two keys differ is the 7th position (from the right), they will 
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be in the proper order relative to each other after the /th pass. This statement can be proved 

by straightforward induction. 

This sorting method is used by card-sorting machines. On old machines, the machine 

did the distribution step; the operator collected the piles after each pass and combined them 

into One for the next pass. 

The distribution into piles, or buckets, may be controlled by a column on a card, a 

digit position, or a bit field in the key. The algorithm is called Radix Sort because it treats 

the keys as numbers in a particular radix, or base. In the example in Figure 4.27, the radix 

is 10. If the keys are 32-bit positive integers, the algorithm could use, say, four-bit fields, 

implicitly treating the keys as numbers in radix 16. It would distribute them among 16 

buckets. Thus the radix is also the number of buckets. In the Radix Sort algorithm that 

follows, we assume that distribution is done on bit fields. The fields are extracted from the 

keys beginning with the low-order bits. If possible, the number of fields 1s held constant and 

does not depend on 7, the number of elements in the input. In general, this requires that the 

radix (number of buckets) increases with n. A versatile choice is the largest 2" <n, where 

w is an integer. Then each field is w bits wide. If the keys are densely distributed (i.e., in 

a range proportional to some polynomial in 77), this strategy yields a constant number of 

fields. 

The data structure is illustrated in Figure 4.28 for the third pass of the example in 

Figure 4.27. Note that each buckets list is in reverse order because new elements are 

attached to the beginning of the prior list. However, the combine procedure reverses them 

again as it combines them, so the final combined list is in the correct order. 

Algorithm 4.13 Radix Sort 

Input: An unsorted list L, radix the number of buckets for distribution, and numFields, 

the number of fields in a key on which the distribution is done. 

Output: The sorted list, newL. 

Remark: The procedure distribute reverses lists going into buckets and combine reverses 

them again coming out (and has its loop in reverse order), so the combination preserves 

the desired order. Operations of the List ADT are used to manipulate linked lists (see 

Figure 2.3). 

List radixSort(List L, int radix, int numFields) 

List{] buckets = new List[radix]: 

int field; // field number within the key. 

List newL,; 

newk = 

for (field = 0; field < numFields; field ++) 

Initialize buckets array to empty lists. 

distribute(newL, buckets, radix, field): 

newL = combine(buckets, radix): 

return newL; 
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Figure 4.28 The data structure for Radix Sort during distribution on the third digit 

void distribute(List L, List{] buckets, int radix, int field) 

// Distribute keys into buckets. 

List remL; 

remL = L; 

while (remL + nil) 

Element K = first(remL); 

int b = maskShift(field, radix, K.key); 

// maskShift(f, vr, key) selects field f (counting 

// from the right) of key, based on radix r. 

// The result, b, is the range 0... radix—1, 

// and is the bucket number for K. 

buckets[b] = cons(K, buckets[b]); 

remL = rest(remL); 

return; 
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List combine(List[] buckets, int radix) 

// Combine linked lists in all buckets into one list L. 

int b> // bucket number 

List L, remBucket; 

mille 

for (b = radix—1; b => 0; b —-) 

remBucket = buckets[b]; 

while (remBucket + nil) 

Key K = first(remBucket); 

E=consi(k, 1; 

remBucket = rest(remBucket): 

return L; 

Analysis and Remarks 

Distributing one key requires extracting a field and doing a few link operations; the number 

of steps is bounded by a constant. So, for all keys, distribute does ©(7) steps. Similarly, 

combine does ©(n) steps. The number of distribution and combination passes is num— 

Fields, the number of fields used for distribution. If this can be held constant, the total 

number of steps done by Radix Sort is linear inn. 

Our implementation of Radix Sort used ©(n) extra space for the link fields, provided 

the radix is bounded by 7. Other implementations that do not use links also use extra space 

in O@). 

Exercises 

Section 4.1 Introduction 

4.1 One of the easiest sorting algorithms to understand is one that we call Maxsort. 

It works as follows: Find the largest key, say max, in the unsorted section of the array 

(initially the whole array) and then interchange max with the element in the last position in 

the unsorted section. Now max 1s considered part of the sorted section consisting of larger 

keys at the end of the array; it is no longer in the unsorted section. Repeat this procedure 

until the whole array 1s sorted. 

a. Write an algorithm for Maxsort assuming an array E contains n elements to be sorted, 

with indexes 0,..., n— 1. 

b. How many comparisons of keys does Maxsort do in the worst case? On the average? 

4.2 The next few exercises are about a sorting method called Bubble Sort. It sorts by 

making several passes through the array, comparing pairs of keys in adjacent locations, 

and interchanging their elements if they are out of order. That is, the first and second keys 

are compared and interchanged if the first is larger than the second: then the (new) second 
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and the third keys are compared and interchanged if necessary, and so on. It is easy to see 
that the largest key will bubble up to the end of the array; on subsequent passes it will be 
ignored. If on any pass no entries are interchanged, the array is completely sorted and the 
algorithm can halt. The following algorithm makes this informal description of the method 
precise. 

Algorithm 4.14 Bubble Sort 

Input: E, an array of elements, and n > 0, the number of elements. 

Output: E with elements in nondecreasing order of their keys. 

void bubbleSort(Element[] E, int n) 

int numPairs; // the number of pairs to be compared 
boolean didSwitch; // true if an interchange is done 

ints: 

numPairs =n - 1: 

didSwitch = true; 

while (didSwitch) 

didSwitch = false: 

for (j = 0; j < numPairs; j ++) 

if (EUj] > Efj + 1]) 

Interchange E[{j] and E[j + 1]. 

didSwitch = true: 

// Continue for loop. 

numPairs —-; 

return: 

The example in Figure 4.29 illustrates how Bubble Sort works. 

Input 8 3} 4 9 7 

8 5 4 9 i didSwitch = true 

3 4 8 7 2) didSwitch = true 

3} 4 7 8 9 didSwitch = false 

Figure 4.29 Bubble Sort 
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a. How many key comparisons does Bubble Sort do in the worst case? What arrangement 

of keys is a worst case? 

b. What arrangement of keys is a best case for Bubble Sort, that is, for what input does it 

do the fewest comparisons? How many comparisons does it do in the best case? 

4.3 The correctness of Bubble Sort (Exercise 4.2) depends on several facts. These are 

easy to verify but worth doing in order to consciously recognize the mathematical proper- 

ties involved. 

a. Prove that, after one pass through the array, the largest entry will be at the end. 

b. Prove that, if there is no pair of consecutive entries out of order, then the entire array 

is sorted. 

4.4 We can modify Bubble Sort (Exercise 4.2) to avoid unnecessary comparisons in the 

tail of the array by keeping track of where the last interchange occurred in the for loop. 

a. Prove that if the last exchange made in some pass occurs at the jth and (j + I)st 

positions, then all entries from the (7 + 1)st through the (7 — 1)th are in their correct 

position. (Note that this is stronger than saying simply that these items are in order.) 

b. Modify the algorithm so that if the last exchange made in a pass occurs at the jth 

and (7 + 1)st positions, the next pass will not examine any entries from the (7 + 1)st 

position to the end of the array. 

c. Does this change affect the worst-case behavior of the algorithm? If so, how? 

4.5 Can something similar to the improvement in the preceding exercise be done to avoid 

unnecessary comparisons when the keys at the beginning of the array are already in order? 

If so, write the modifications to the algorithm. If not, explain why not. 

Section 4.2. Insertion Sort 

4.6 We observed that a worst case for Insertion Sort occurs when the keys are initially 

in decreasing order. Describe at least two other initial arrangements of the keys that are 

also worst cases. Show inputs for which the exact number of key comparisons (not just the 

asymptotic order) is the worst possible. 

4.7 What is a best case for Insertion Sort? Describe how the elements in the list would be 

arranged, and tell how many comparisons of list elements would be done in that case. 

4.8 Consider the following variation of Insertion Sort: For | <i <n, to insert the element 

E[i] among E[O] < E[]] <--- < Eli — 1], doa Binary Search to find the correct position for 

E[i]. 

a. How many key comparisons would be done in the worst case? 

b. How many times are elements moved in the worst case? 

¢. What is the asymptotic order of the worst-case running time? 
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d. Can the number of moves be reduced by putting the elements in a linked list instead 
of an array? Explain. 

4.9 In the average analysis of Insertion Sort we assumed that the keys were distinct. 
Would the average for all possible inputs, including cases with duplicate keys, be higher or 
lower? Why? 

4.10 Show that a permutation on n items has at most n(n — 1)/2 inversions. Which 

permutation(s) have exactly n(n — 1)/2 inversions? 

4.11 Give an algorithm to perform Insertion Sort on a linked list of integers, using 

the operations of the IntList abstract data type, in Section 2.3.2. Analyze its time and 

space requirements. Does the space usage depend on whether the language has “garbage 

collection” (see Example 2.1)? 

Section 4.3 Divide and Conquer 

4.12 Suppose we have a straightforward algorithm for a problem that does ©(n7) steps 

for inputs of size n. Suppose we devise a Divide-and-Conquer algorithm that divides an 

input into two inputs half as big, and does D(n) =n Ign steps to divide the problem and 

C(n) =n |gn steps to combine the solutions to get a solution for the original input. Is 

the Divide-and-Conquer algorithm more or less efficient than the straightforward scheme? 

Justify your answer. Hint: See Equation (3.14) and Exercise 3.10. 

Section 4.4 Quicksort 

4.13 Complete the postconditions of extendSmallRegion in Algorithm 4.3. 

4.14 In Algorithm 4.3, define the middle region to be the range of indexes containing the 

unexamined elements and the vacancy. For each of the lines 2 through 5 in the partition 

procedure, which variables or variable expressions (some plus or minus I’s might be 

needed) specify the left and right ends of the middle region? For each of the lines 2 

through 5, which end of the middle region contains the vacancy? Answer for the situation 

immediately before each line is executed. 

4.15 How many key comparisons does Quicksort (Algorithms 4.2 and 4.3) do if the array 

is already sorted? How many element movements does it do? 

4.16 Prove that if the “stack space optimization” improvement in Section 4.4.4 is used in 

Algorithm 4.2, then the maximum stack size is in O(log 7). 

4.17 Suppose that, instead of choosing E[first] as pivot, Quicksort lets pivot be the 

median of Effirst], E[(first+last)/2], and E[last]. How many key comparisons will Quicksort 

do in the worst case to sort n elements? (Remember to count the comparisons done in 

choosing pivot.) 
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4.18 This exercise examines an alternative algorithm for Partition, with simple and el- 

egant code. This method is due to Lomuto; we call it partitionL. The idea, as illustrated 

in Figure 4.30, is to collect small elements to the left of the vacancy, large elements im- 

mediately to the right of the vacancy, with unknown (i.e., unexamined) elements being at 

the far right of the range. Initially, all the elements are in the unknown group. “Small” and 

“large” are determined with respect to pivot. When partitionL finds a small element in the 

unknown group, it moves the small element to the vacancy, then creates a new vacancy one 

place to the right by moving a large element from that place to the end of the “large” range. 

int partitionL(Element[] E, Key pivot, int first, int last) 

int vacant, unknown; 

lle vacant = first 

2. for (unknown = first+1; unknown < last; unknown ++) 

3 if (E[unknown] < pivot) 

a E[vacant] = E[unknown]: 

5 E[unknown] = E[vacant+1]; 

6. vacant ++: 

7. return vacant; 

At each iteration of its loop partitionL compares the next unknown element, which is 

E[unknown], to pivot. Finally, after all the elements have been compared to pivot, vacant 

is returned as the splitPoint. 

a. At the beginning of each of the lines 2 through 6, what are the boundaries of the small- 

key region and the large-key region? Express your answer using unknown and other 

index variables. 

b. At the beginning of line 7, what are the boundaries of the small-key region and the 

large-key region? Express your answer without using unknown. 

c. How many key comparisons does partitionL do on a subrange of E with & elements? If 

Quicksort uses partitionL instead of partition, what is the impact on the total number 

of key comparisons done in the worst case? 

4.19 Suppose the array E contains the keys 10, 9, 8, ..., 2, 1, and is to be sorted using 

Quicksort. 

a. Show how the keys would be arranged after each of the first two calls to the partition 

procedure in Algorithm 4.3. Tell how many element movements are done by each of 

these two calls to partition. From this example, estimate the total number of element 

movements that would be done to sort n elements initially in decreasing order. 

b. Do the same for partitionL described in the preceding exercise. 

List some of the relative advantages and disadvantages of the two partition algorithms. 
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Figure 4.30 How PartitionL works: initial, intermediate, and final views 

4.20 Suppose all n elements in the array to be sorted by Quicksort are equal. How many 

key comparisons will Quicksort do to sort the array (using partition in Algorithm 4.3)? 

Justify your answer. 

4.21. This exercise explores the average number of element movements done by Quick- 

sort using different versions of Partition. Hint for parts (a) and (b): When an element is 

compared with the pivot, what is the probability that it has to be moved? 

a. How many element movements does Quicksort do on the average, using the partitionL 

subroutine of Exercise 4.18? 

b. How many element movements does Quicksort do on the average, using the partition 

subroutine of Algorithm 4.3? 

c. How do these results compare to Mergesort (see Exercise 4.27)? 

4.22 Write a version of Quicksort and Partition for linked lists of integers, using the 

operations of the IntList abstract data type, in Section 2.3.2. Analyze its time and space 
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requirements. Does the space usage depend on whether the language has “garbage collec- 

tion” (see Example 2.1)? 

Section 4.5 Merging Sorted Sequences 

4.23 Give an algorithm to merge two sorted linked list of integers, using the operations 

of the IntList abstract data type, in Section 2.3.2. 

4.24 Suppose the array subranges to be merged are of lengths k and m, where k is much 

less than m. Describe a merging algorithm that takes advantage of this to do at most (say) 

(k + m)/2 comparisons, provided k is sufficiently small in relation to m. How small does k 

have to be to achieve this bound in the worst case? Is there a range of k for which the bound 

Vk +m can be achieved? What can you say about the amount of element movement that 

is needed in these cases? 

4.25 Show that the number of permutations that can be formed by merging two sorted 

segments A and B of lengths k and m, where k + m =n. is () = (/"). (Recall this notation 
from Equation 1.1.) Assume & < m for definiteness, and assume no duplicate keys. Hint: 

Formulate a recurrence based on the relationship of A[O] and B[O], then look at Exercise 1.2. 

There are several other ways of looking at this problem that also work. 

Section 4.6 Mergesort 

4.26 How many key comparisons are done by Mergesort if the keys are already in order 

when the sort begins? 

4.27 Mergesort (Algorithm 4.5) was described assuming that Merge developed its output 

in a work array, then copied the contents of the work array back to the input array when it 

was done. 

a. Work out a strategy for “toggling” between the input array and the work array to avoid 

this extra copying. That is, at alternate levels of the recursion either the original input 

array has the data to be merged or the work array has it. 

b. With the above optimization, how many element movements does Mergesort do on the 

average? How does this compare to Quicksort (see Exercise 4.21)? 

4.28 Write a version of Mergesort for linked lists of integers, using the operations of 

the IntList abstract data type, in Section 2.3.2. Analyze its time and space requirements. 

Does the space usage depend on whether the language has “garbage collection” (see 

Example 2.1)? 

4.29 For the Mergesort analysis using the recursion tree (Section 4.6), where D is the 

maximum depth of the tree and B is the number of base cases at depth D — 1, verify that 
B=2” —n. 

4.30 Derive the minimum value of the expression (@ — lg @) in the interval (1,2), which 
was used in the proof of Theorem 4.6. Show that it is (1 + In In 2)/ In 2. 
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Section 4.7 Lower Bounds for Sorting by Comparison of Keys 

4.31 Draw the decision tree for Quicksort with n = 3. (You will have to modify the 
conventions a bit. Some branches should be labeled “<” or “>.”) 

4.32 

a. Give an algorithm to sort four elements using only five key comparisons in the worst 

case. 

b. Give an algorithm to sort five elements that is optimal in the worst case. (This problem 

will be revisited in Chapter 5 after some new techniques have been introduced.) 

4.33 Using the result of Exercise 4.25, give a lower bound based on decision trees for the 

number of comparisons needed to merge two sorted segments of lengths k and m, where 

k +m=n. Assume k < m for definiteness, and assume no duplicate keys. Your expression 

will involve both & and m, since they are not assumed to be equal; n might also be used for 

convenience, but it can be replaced by k + m. 

a. First, derive an expression that may involve sums, but 1s exact. 

b. Fork =m =n/2, find an approximation in closed form that is close to, but guaranteed 

to be less than, your expression from part (a). (“Closed form” means that the expres- 

sion should not contain sums or integrals.) How does your expression compare with 

Theorem 4.4? 

c. This part may require some involved mathematics. Find an approximation in closed 

form for the case when k < m. As in part (b), it should be close to, but guaranteed 

to be less than, your expression from part (a). To get good results, you might wish to 

consider several ranges for the relationship between k and n. 

Section 4.8 Heapsort 

4.34 Suppose the elements in an array are (starting at index 1) 25, 19, 15,5, 12, 4, 13, 3, 

7, 10. Does this array represent a heap? Justify your answer. 

4.35 Suppose the array to be sorted (into alphabetical order) by Heapsort initially con- 

tains the following sequence of letters: 

COMPLET ¥ 

Show how they would be arranged in the array after the heap construction phase (Algo- 

rithm 4.7). How many key comparisons are done to construct the heap with these keys? 

4.36 The nodes of a heap are stored in an array E level by level beginning with the root 

and left to right within each level. Prove that the left child of the node in the /th cell is in 

the 2ith cell. (Recall that a heap is stored with the root in E[1]. E[O] is not used.) 

4.37. An array of distinct keys in decreasing order is to be sorted (into increasing order) 

by Heapsort (not Accelerated Heapsort). 
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a. How many comparisons of keys are done in the heap construction phase (Algo- 

rithm 4.7) if there are 10 elements? 

b. How many are done if there are n elements? Show how you derive your answer. 

Is an array in decreasing order a best case, worst case, or intermediate case for Algo- 

rithm 4.7? Justify your answer. 

4.38 Heapsort, as described in the text, is not quite an in-place sort because recursion 

uses space on the activation-frame stack. 

How much space is used on the activation-frame stack? 

Convert fixHeap to an iterative procedure. 

Convert fixHeapFast to an iterative procedure. 

a or Convert constructHeap to an iterative procedure by calling fixHeapFast (or fixHeap) 

in a for loop starting at E[n/2] and going backwards to E[1], the root of the heap. 

e. How many comparisons does the iterative version of constructHeap do in the worst 

case (what asymptotic order)? 

4.39 This exercise gives an alternative argument for the worst-case analysis of the heap 

construction phase of Heapsort. The constructHeap procedure calls fixHeap once for each 

node in the heap, and we know that the number of key comparisons done by fixHeap in the 

worst case is twice the height of the node. (Recall that the height of a node in a binary tree 

is the height of the subtree rooted at that node.) Thus the number of key comparisons done 

in the worst case is at most twice the sum of the heights of all the nodes. Prove that the 

sum of the heights of the nodes in a heap of n nodes is at most n — |. Hint: Use a marking 

strategy, systematically marking off one branch in the tree for each unit of height in the 

sum. 

4.40 We could eliminate one call to fixHeap in Heapsort (Algorithm 4.8) by changing 

the for loop control to 

for (heapsize =n; heapsize > 3; heapsize —-:) 

What statement, if any, must be added after the for loop to take care of the case when two 

elements remain in the heap? How many comparisons, if any, are eliminated? 

4.41 Suppose we have a heap with heapSize elements stored in an array H, and we want 

to add a new element, A. Using bubbleUpHeap from Section 4.8.6, the procedure is simply 

int heapInsert(Element[] H, Element K, int heapSize) 

int newSize = heapSize + 1; 

bubbleUpHeap(H, 1, K, newSize): 

return newSize; 

a. How many comparisons of keys does heapIinsert do in the worst case on a heap that 
contains 7 elements after the insertion? 
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b. An earlier version of Heapsort used heapInsert to construct a heap from the elements 
to be sorted by inserting the elements, one at a time, into a heap that was initially 
empty. How many comparisons are done by this method in the worst case to construct 
a heap of n elements? 

¢. How many comparisons would be done in the worst case by Heapsort if heapInsert 

were used, as described in part (b), to construct the heap? 

4.42 A heap contains 100 elements, which happen to be in decreasing order in the array, 

with keys 100, 99, ..., 1. 

a. Show how deleteMax will work on this heap (to delete key 100 only) if it is imple- 

mented with fixHeapFast. Show specifically what comparisons and element move- 

ments occur. 

b. How many comparisons are done? 

How does this compare with the implementation using fixHeap? 

4.43 An array of distinct keys in decreasing order is to be sorted (into increasing order) 

by Accelerated Heapsort. Assume fixHeapFast is used instead of fixHeap. 

a. How many comparisons of keys are done in the heap construction phase (Algo- 

rithm 4.7) if there are 31 elements? 

b. How many are done if there are n elements? Show how you derive your answer. 

c. Is an array in decreasing order a best case, worst case, or intermediate case for Algo- 

rithm 4.7, using fixHeapFast? Justify your answer. 

4.44 Show that [lg(|3/] + 1)] + | = [lg(h + 1)] for all integers h > 1. 

Section 4.10 Shellsort 

4.45 Suppose five increments are used in Shellsort and they are all constant (independent 

of n, the number of elements being sorted). Show that, although the number of comparisons 

done in the worst case may be somewhat smaller than the number done by Insertion Sort, 

it will still be in (n°). 

Section 4.11 Radix Sorting 

4.46 Suppose Radix Sort does m distribution passes on keys with w bits (where m is a 
. ~ ~ . . »/ 

divisor of w) and there is one bucket for each pattern of w/m bits, hence radix = 27". 

Since mn key distributions are done, it may seem advantageous to decrease m. How large 

must the new radix be if m is halved? 

Additional Problems 

4.47 Suppose an algorithm does m> steps on an array of m elements (for any m > 1). The 

algorithm is to be used on two arrays Aj and Ap (separately). The arrays contain a total of 

n elements. A; has k elements and Az has n — k elements (0 < k <n). 
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For what value(s) of k will the most work be done? For what value(s) of k will the least 

work be done? Justify your answers. (Remember that an example is not a proof. There is a 

good solution for this problem using some simple calculus.) 

4.48 To sort or not to sort: Outline a reasonable method of solving each of the following 

problems. Give the order of the worst-case complexity of your methods. 

a. You are given a pile of thousands of telephone bills and thousands of checks sent in to 

pay the bills. (Assume telephone numbers are on the checks.) Find out who didn’t pay. 

b. You are given an array in which each entry contains the title, author, call number, and 

publisher of all the books in a school library and another array of 30 publishers. Find 

out how many of the books were published by each of those 30 companies. 

c. You are given an array containing checkout records of all the books checked out of the 

campus library during the past year. Determine how many distinct people checked out 

at least one book. 

4.49 Solve the following recurrence equation: 

T(n) = J/nT(JSn) +n forn >2 T(2)=1 

where c is some positive constant. 

4.50 Give an efficient in-place algorithm to rearrange an array of n elements so that all 

the negative keys precede all the nonnegative keys. How fast is your algorithm? 

4.51 A sorting method is stable if equal keys remain in the same relative order in the 

sorted sequence as they were in the original sequence. (That is, a sort is stable if for any 

i < j such that initially E[i] = E[j], the sort moves E[i] to E[k] and moves E[j] to E[m] for 

some & and m such that k < m.) Which of the following algorithms are stable? For each 

that is not, give an example in which the relative order of two equal keys is changed. 

Insertion Sort. 

Maxsort (Exercise 4.1). 

Bubble Sort (Exercise 4.2). 

Quicksort. 

Heapsort. 

Mergesort. 

Shellsort. 

Radix Sort. Feme aces 

4.52 Suppose you have an array of 1000 records in which only a few are out of order and 

they are not very far from their correct positions. Which sorting algorithm would you use 

to put the whole array in order? Justify your choice. 

4.53 What sorting algorithm described in this chapter would be difficult to adapt to sort 

elements stored in a linked list (without changing the worst-case asymptotic order)? 
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4.54 Throughout most of this chapter we have assumed that the keys in the set to be 
sorted were distinct. Often, there are duplicate keys. Such duplication could make sorting 
easier, but algorithms that were designed for distinct (or mostly distinct) keys may not take 

advantage of the duplication. Let’s consider the extreme case where there are only two 

possible key values, say, 0 and 1. 

a. What is the asymptotic order of the number of key comparisons done by Insertion Sort 

in the worst case? (Describe a worst-case input.) 

b. What is the order of the number of key comparisons done by Quicksort in the worst 

case? (Describe a worst-case input.) 

c. Give an efficient algorithm for sorting a set of n elements whose keys may each be 

either 0 or 1. What is the order of the worst-case running time of your algorithm? 

4.55 Each of n elements in an array may have one of the key values red, white, or blue. 

Give an efficient algorithm for rearranging the elements so that all the reds come before all 

the whites, and all the whites come before all the b/ues. (It may happen that there are no 

elements of one or two of the colors.) The only operations permitted on the elements are 

examination of a key to find out what color it is, and a swap, or interchange, of two elements 

(specified by their indexes). What is the asymptotic order of the worst-case running time 

of your algorithm? (There is a linear solution.) 

4.56 Suppose that you have a computer with n memory locations, numbered | through n, 

and one instruction CEX, called “compare-exchange.” For | <i, 7 <n, CEX i, j compares 

the keys in memory cells ¢ and / and interchanges them if necessary so that the smaller key 

is in the cell with the smaller index. The CEX instruction can be used to sort. For example, 

the following program sorts for n = 3: 

Ghele2 

EX 253 

CEx dy 

a. Write an efficient program using only CEX instructions to sort six elements. (Sugges- 

tion: Write programs for n = 4 and n =S first. It is easy to write programs for n = 

4. 5, and 6 using 6, 10, and 15 instructions, respectively. However, none of these 1s 

optimal. ) 

b. Write a CEX program to sort 1 elements in 7 cells for a fixed but arbitrary n. Use 

as few instructions as you can. Describe the strategy your program uses and include 

comments where appropriate. Since there are no loop and test instructions, you may 

use ellipses to indicate repetition of instructions of a certain form; for example: 

GCEX. M52 

CE 253 

CEXn — I.n 

PAE 
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ec. How many CEX instructions does your program for part (b) have? 

d. Give a lower bound on the number of CEX instructions needed to sort n elements. 

4.57 

a. Suppose CEX instructions (described in the preceding exercise) can be carried out si- 

multaneously if they are working on keys in different memory cells. For example CEX 

1,2, CEX 3,4, CEX 5,6, and so on, can all be carried out at the same time. Give an algo- 

rithm to sort four elements in only three time units. (Recall that sorting four elements 

requires five comparisons. ) 

b. Give an algorithm using (simultaneous) CEX instructions to sort n elements in 

o(log(n!)) time units. 

4.58 M isann x n integer matrix in which the entries of each row are in increasing order 

(reading left to right) and the entries in each column are in increasing order (reading top to 

bottom). Give an efficient algorithm to find the position of an integer x in M, or determine 

that x is not there. Tell how many comparisons of x with matrix entries your algorithm 

does in the worst case. You may use three-way comparisons; that is, a comparison of x 

with M[i][j] tells if x < M[i][jJ, x = M[iJUj], or x > M[i[j]. 

4.59 E is an array containing n integers, and we want to find the maximum sum for a 

contiguous subsequence of elements of E. (If all elements of a sequence are negative, we 

define the maximum contiguous subsequence to be the empty sequence with sum equal to 

zero.) For example, consider the sequence with elements 

36. = 02,47, — 35,2041), le 46,6, 2a lo 

The maximum subsequence sum tor this array is 55. The maximum contiguous subse- 

quence occurs in positions 3 through 6 (inclusive). 

a. Give an algorithm that finds the maximum subsequence sum in an array. What is the 

asymptotic order of the running time of your algorithm? (The data in Tables 1.1 and 1.2 

come from various algorithms for this problem. As those tables indicate, there are 

many solutions of varying complexity, including a linear one.) 

b. Show that any algorithm for this problem must examine all elements in the array in the 

worst case. (So any algorithm does (2(7) steps in the worst case.) 

4.60 Instead of rearranging an array FE of large records during sorting, it is easy to change 

to code to work with an array of indexes of these records, and rearrange the indexes, 

instead. When the sorting is finished, the array of indexes defines the correct permutation, 

m, of the original array, E, to bring those records into sorted order. That is, E[z[0]] is the 

minimum record, E[sr[1]] is the next smallest, and so on. This exercise studies the problem 

of rearranging the records themselves, after the correct permutation has been determined. 

Your algorithm is given £, an array of records, and integer n, such that entries of E 

are defined for indexes 0, 1, .... — 1. Your algorithm is also given another array, zr, that 

stores a permutation of the numbers 0, 1,....1 — 1. 
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Write an algorithm that rearranges the records of E in the order [0], z[l], .... 
m[{n — 1]. That is, the record originally in E[s[0]] should wind up in E[0], the record 
originally in E[z[1]] should wind up in E[1], and so forth. Assume that the records in 

E are large; in particular, they will not fit in the 7 array. Your algorithm may destroy 

m, and you may store values outside of the range 0,..., — | in z entries. If you use 

extra space, state how much. 

What is the total number of times records are moved by your algorithm in the worst 

case? Is the running time of your algorithm proportional to the number of moves? If 

so, explain why. If not, what is the asymptotic order of the running time? 

What sorting method would you use for each of the following problems? Explain 

your choice. 

a. 

4.62 

A university in Southern California has about 30,000 full-time students and about 

10,000 part-time students. (There is a cap of 50,000 students allowed to enroll in the 

university at one time, due to parking limitations.) Each student record contains the 

student’s name, nine-digit identification number, address, grades, and so forth. A name 

is stored as a string of 41 characters, 20 characters each for the first and last name, and 

one character for the middle initial. 

The problem is to produce an alphabetized class list for each of approximately 

5000 courses at the beginning of each semester. These lists are given to the instructors 

before the first day of class. The maximum class size is about 200. Most of the classes 

have about 30 students. The input for each class is an unsorted array with at most 200 

records. These records contain a student’s name, identification number, and university 

standing (freshman, sophomore, junior, senior, grad), and the address of the student’s 

full record on disk. 

The problem 1s to sort SOO exam papers alphabetically by student’s last name. The 

sorting will be done by one person in an office with two desktops temporarily cleared 

of all other papers, books, and coffee cups. It is 1:00 A.M., and the person would like 

to go home as soon as possible. 

Is it always true that an array that is already sorted is a best-case input for sorting 

algorithms? Give an argument or a counterexample. 

4.63 Suppose we have an unsorted array A of n elements and we want to know if the 

array contains any duplicate elements. 

Outline (clearly) an efficient method for solving this problem. 

What is the asymptotic order of the running time of your method in the worst case? 

Justify your answer. 

Suppose we know the n elements are integers from the range I,..., 2, so other 

operations besides comparing keys may be done. Give an algorithm for the same 

problem that is specialized to use this information. Tell the asymptotic order of the 

worst-case running time for this solution. It should be of lower order than your solution 

for part (a). 
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4.64 Suppose a large array is maintained with the following policy. The list is initially 

sorted. When new elements are added, they are inserted at the end of the array and counted. 

Whenever the number of new elements reaches 10, the array is resorted and the counter is 

cleared. What strategy would be good to use for the resorting of the array? Why? 

4.65 You are given a sorted array E] with k elements and an unsorted array E2 with lg k 

elements. The problem is to combine the arrays into one sorted array (with n elements, 

where n =k + lg k). You may assume that the first array has space for all n elements if you 

wish. 

One way to solve the problem is simply to sort the combined array, doing ©(n log 1) 

key comparisons in the worst case. We want to do better. Describe two other algorithms 

for this problem. (You don’t have to write any code.) Clearly describe the main steps for 

each method (in enough detail so that 1t is easy to estimate the number of key comparisons 

done). Tell the asymptotic order of the number of key comparisons for each method as a 

function of n (preferred) or as a function of & (if it is difficult to express as a function of 77). 

For at least one of the methods you describe, the number of key comparisons should 

be in o(n log n). 

4.66 Ata large university, each semester, a program must be run to detect student com- 

puter accounts that are to be deleted. Any enrolled student may have an account, and they 

have a “grace period” of one semester after they leave. So an account is to be deleted if the 

student is not currently enrolled and was not enrolled in the previous semester. 

a. Outline an algorithm to make a list of accounts to be deleted. The next two paragraphs 

describe the files you have to work with. You don’t have to give code, but be clear 

about what you are doing. | 
The Account File is sorted by username. Each entry contains the username, real 

name, ID number, creation date, expiration date, major code, and other fields. The ex- 

piration date is set as Dec. 31, 2030 when a student account is established because the 

true expiration date is unknown at that time. For faculty accounts and other nonstudent 

accounts, the ID number field contains zero. There are approximately 12,000 accounts 

in the file. 

The Student Master File, maintained by the administration, contains a record for 

each student currently enrolled, approximately 30,000 entries. It is sorted alphabeti- 

cally by real name. Each record includes the student ID number and other information. 

There are duplicate names; that is, sometimes different students have the same name. 

The Student Master File for the previous semester is available, 

b. Let 1 be the number of accounts and let » be the number of students. Express the 
asymptotic order of the running time of your method in terms of n and s. (Give some 
justification for your answer.) 

¢. Real-world problems often have complications. Describe at least one situation that can 
occur (and is reasonably likely) but is not covered clearly in the specifications. 

| : anager at are: iversity r ; 7 : B The system manager ata real university reported that two people wrote programs for this problem. One took 45 
minutes to run; the other took 2 minutes. 
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Programs 

For each program include a counter that counts comparisons of keys. Include among your 
test data files in which the keys are in decreasing order, increasing order, and random order. 

Use files with various numbers of elements. Output should include the number of elements 

and the number of comparisons done. 

1. Quicksort. Use the improvements described in Section 4.4.4. 

2. Accelerated Heapsort. Show the full heap after all the elements have been inserted. 

3. Radix Sort. 

4. Mergesort: Implement the improvement suggested in Exercise 4.27. ro 

Notes and References 

Much of the material in this chapter is based on Knuth (1998), without a doubt the major 

reference on sorting and related problems. Interested readers are strongly encouraged to 

consult this book for more algorithms, analyses, exercises, and references. Some of the 

original sources of the algorithms are: Hoare (1962) for Quicksort, including variations and 

applications; Williams (1964) for Heapsort (with an early improvement by Floyd (1964)): 

and Shell (1959) for Shellsort. 

The version of Partition given in Algorithm 4.3 is very close to that published by 

Hoare. Recent empirical evidence (unpublished) has shown that “optimizations” that re- 

duce the number of instructions in the inner loop, at the expense of extra instructions 

elsewhere, are actually counterproductive on modern workstations. The reason seems to 

be that the eliminated instruction, a comparison of two indexes, is performed in machine 

registers, so is very fast anyway, whereas the extra instructions entail memory accesses and 

take relatively longer. 

The version of the Partition procedure in Exercise 4.18 appears in Bentley (1986) 

where it 1s attributed to N. Lomuto. 

Carlsson (1987) seems to be the first paper to describe a version of Heapsort that 

uses about n lg(7) comparisons instead of about 2n Ig(7), in the worst case. Several other 

researchers rediscovered the idea since then. 

The concise argument given in Section 4.2 for the average number of inversions in a 

permutation was pointed out by Sampath Kannan. At the end of Section 4.8 we commented 

that there are algorithms that do fewer comparisons than Mergesort in the worst case. The 

Ford-Johnson algorithm, called Merge Insertion, is one such algorithm. It is known to be 

optimal for small values of 7. Binary Insertion ts another algorithm that does approximately 

n lg n comparisons in the worst case. See Knuth (1998) for descriptions of these algorithms, 

a discussion of various choices of increments for Shellsort, a proof of Theorem 4.16, and 

discussion of external sorting. 

The sorting problem in Exercise 4.55 is solved in Dijkstra (1976) where it is called 

“The Dutch National Flag Problem.” Bentley (1986) gives some history and several solu- 

22k 
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tions for the maximum subsequence sum problem (Exercise 4.59). The data in Table 1.2 

and all but the exponential column of Table 1.1 come from solutions to this problem. Ex- 

ercise 4.61 was contributed by Roger Whitney. 

Adaptive sorting procedures are procedures that take advantage of favorable input 

permutations to sort more efficiently. Estivill-Castro and Wood (1996) study this subject 

in depth. 
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Chapter 5 Selection and Adversary Arguments 

Introduction 

In this chapter we study several problems that can be grouped under the general name, 

selection. Finding the median element of a set is a well-known example. Besides finding al- 

gorithms to solve the problems efficiently, we also explore lower bounds for the problems. 

We introduce a widely applicable technique known as adversary arguments for establishing 

lower bounds. 

5.1.1. The Selection Problem 

Suppose E is an array containing 7 elements with keys from some linearly ordered set, and 

let k be an integer such that | < k <n. The selection problem is the problem of finding an 

element with the kth smallest key in E. Such an element is said to have rank k. As with most 

of the sorting algorithms we studied, we will assume that the only operations that may be 

performed on the keys are comparisons of pairs of keys (and copying or moving elements). 

In this chapter keys and elements are considered identical, because our focus is on the 

number of key comparisons, and we are usually not concerned with element movement. 

Also, when storing keys 1n an array, we will use positions |, ..., 7, to agree with common 

ranking terminology, rather than 0,...,2 — |. Position 0 of the array is simply left unused. 

In Chapter | we solved the selection problem for the case k =n, for that problem is 

simply to find the largest key. We considered a straightforward algorithm that did n — | key 

comparisons, and we proved that no algorithm could do fewer. The dual case for & = 1, that 

is, finding the smallest key, can be solved similarly. 

Another very common instance of the selection problem is the case where k = [n/2]. 

that is, Where we want to find the middle, or median, element. The median is helpful for 

interpreting very large sets of data, such as the income of all people in a particular country, 

or in a particular profession, the price of houses, or scores on college entrance tests. Instead 

of including the whole set of data, news reports, for example, summarize by giving us the 

mean (average) or median. It is easy to compute the average of nm numbers in ©(7) time. 

How can we compute the median efficiently? 

Of course, all instances of the selection problem can be solved by sorting E: then, 

for whatever rank k we are interested in, E[k] would be the answer. Sorting requires 

©(n log n) key comparisons, and we have just observed that for some values of k, the 

selection problem can be solved in linear time. Finding the median seems, intuitively, to 

be the hardest instance of the selection problem. Can we find the median in linear time? 

Or can we establish a lower bound for median finding that is more than linear, maybe 
©(n log n)? We answer these questions in this chapter, and we sketch an algorithm for the 
general selection problem. 

5.1.2. Lower Bounds 

So far we have used the decision tree as our main technique to establish lower bounds. 
Recall that the internal nodes of the decision tree for an algorithm represent the compar- 
isons the algorithm performs, and the leaves represent the outputs. (For the search problem 
in Section 1.6, the internal nodes also represented outputs.) The number of comparisons 
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done in the worst case is the height of the tree; the height is at least [lg L], where L is the 
number of leaves. 

In Section 1.6 we used decision trees to get the worst-case lower bound of [lg(n + 1)] 

for the search problem. That is exactly the number of comparisons done by Binary Search, 

so a decision tree argument gave us the best possible lower bound. In Chapter 4 we used 

decision trees to get a lower bound of [lg n!], or roughly fn lgn — 1.5n], for sorting. 

There are algorithms whose performance is very close to this lower bound, so once again, 

a decision tree argument gave a very strong result. However, decision tree arguments do 

not work very well for the selection problem. 

A decision tree for the selection problem must have at least 7 leaves because any one 

of the 7 keys in the set may be the output, that is, the Ath smallest. Thus we can conclude 

that the height of the tree (and the number of comparisons done in the worst case) is at 

least [lg]. But this is not a good lower bound; we already know that even the easy case of 

finding the largest key requires at least n — | comparisons. What’s wrong with the decision 

tree argument? In a decision tree for an algorithm that finds the largest key, some outputs 

appear at more than one leaf, and there will in fact be more than n leaves. To see this, 

Exercise 5.1 asks you to draw the decision tree for FindMax (Algorithm 1.3) with n = 4. 

The decision tree argument fails to give a good lower bound because we don’t have an easy 

way of determining how many leaves will contain duplicates of a particular outcome. 

Instead of a decision tree, we use a technique called an adversary argument for 

establishing better lower bounds for the selection problem. This technique is described 

next. 

5.1.3 Adversary Arguments 

Suppose you are playing a guessing game with a friend. You are to pick a date (a month 

and day), and the friend will try to guess the date by asking yes/no questions. You want 

to force your friend to ask as many questions as possible. If the first question is, “Is it in 

the winter?” and you are a good adversary, you will answer “No,” because there are more 

dates in the three other seasons. To the question, “Is the first letter of the month’s name in 

the first half of the alphabet?” you should answer “Yes.” But is this cheating? You didn’t 

really pick a date at all! In fact, you will not pick a specific month and day until the need 

for consistency in your answers pins you down. This may not be a friendly way to play a 

guessing game, but it is just right for finding lower bounds for the behavior of an algorithm. 

Suppose we have an algorithm that we think is efficient. Imagine an adversary who 

wants to prove otherwise. At each point in the algorithm where a decision (a key compar- 

ison, for example) is made, the adversary tells us the result of the decision. The adversary 

chooses its answers to try to force the algorithm to work hard, that is, to make a lot of 

decisions. You may think of the adversary as gradually constructing a “bad” input for the 

algorithm while it answers the questions. The only constraint on the adversary’s answers 

is that they must be internally consistent; there must be some input for the problem for 

which its answers would be correct. If the adversary can force the algorithm to perform 

f(n) steps, then f (7) is a lower bound for the number of steps done in the worst case. This 

approach is explored in Exercise 5.2 for sorting and merging by key comparisons. 

ANG: 
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In fact, “designing against an adversary” is often a good technique for solving a 

comparison-based problem efficiently. In thinking about what comparison to make in a 

given situation, imagine that the adversary will give the least favorable answer—then 

choose a comparison where both outcomes are about equally favorable. This technique 

is discussed in more detail in Section 5.6. However, here we are primarily interested in the 

role of adversary arguments in lower-bound arguments. 

We want to find a lower bound on the complexity of a problem, not just a particular 

algorithm. When we use adversary arguments, we will assume that the algorithm is any 

algorithm whatsoever from the class being studied, just as we did with the decision tree 

arguments. To get a good lower bound we need to construct a clever adversary that can 

thwart any algorithm. 

5.1.4 Tournaments 

In the rest of this chapter we present algorithms for selection problems and adversary argu- 

ments for lower bounds for several cases, including the median. In most of the algorithms 

and arguments, we use the terminology of contests, or tournaments, to describe the results 

of comparisons. The comparand that is found to be larger will be called the winner; the 

other will be called the loser. 

Finding max and min 

Throughout this section we use the names max and min to refer to the largest and smallest 

keys, respectively, in a set of 1 keys. 

We can find max and min by using Algorithm 1.3 to find max, eliminating max from 

the set, and then using the appropriate variant of Algorithm 1.3 to find min among the 

remaining n — | keys. Thus max and min can be found by doing (7 — 1) + (7 — 2), or 

2n — 3, comparisons. This is not optimal. Although we know (from Chapter |) that n — | 

key comparisons are needed to find max or min independently, when finding both, some of 

the work can be “shared.” Exercise 1.25 asked for an algorithm to find max and min with 

only about 37/2 key comparisons. A solution (for even 77) 1s to pair up the keys and do n/2 

comparisons, then find the largest of the winners, and, separately, find the smallest of the 

losers. If n 1s odd, the last key may have to be considered among the winners and the losers. 

In either case, the total number of comparisons is [37/2] — 2. In this section we give an 

adversary argument to show that this solution is optimal. Specifically, in the remainder of 

this section we prove: 

Theorem 5.1) Any algorithm to find max and min of 7 keys by comparison of keys must 

do at least 3n/2 — 2 key comparisons in the worst case. 

Proof To establish the lower bound we may assume that the keys are distinct. To know 

that a key x is max and a key y is min, an algorithm must know that every key other 

than x has lost some comparison and every key other than y has won some comparison. 

If we count each win and loss as one unit of information, then an algorithm must have 



5.2 Finding max and min 

Status of keys x and y Units of new 

compared by an algorithm Adversary response — New status information 

Iai ON Hi Sey! W, L 2 

W,NorWL,N ay W, Lor wi, 2 | 

EN yoy L, W | 

W,W ie aM W,WL | 

lesa ay) WL,L | 

W,LorWL, LorW, WL Cy No change 0 

WE We Consistent with No change 0 

assigned values 

Table 5.1 The adversary strategy for the min and max problem 

(at least) 27 — 2 units of information to be sure of giving the correct answer. We give a 

Strategy for an adversary to use in responding to the comparisons so that it gives away 

as few as possible units of new information with each comparison. Imagine the adversary 

constructing a specific input set as it responds to the algorithm’s comparisons. 

We denote the status of each key at any time during the course of the algorithm as 

follows: 

Key status Meaning 

W Has won at least one comparison and never lost 

i Has lost at least one comparison and never won 

WL Has won and lost at least one comparison 

N Has not yet participated in a comparison 

Each W or L is one unit of information. A status of N conveys no information. The 

adversary strategy is described in Table 5.1. The main point is that, except in the case 

where both keys have not yet been in any comparison, the adversary can give a response 

that provides at most one unit of new information. We need to verify that if the adversary 

follows these rules, its replies are consistent with some input. Then we need to show that 

this strategy forces any algorithm to do as many comparisons as the theorem claims. 

Observe that in all cases in Table 5.1 except the last, either the key chosen by the 

adversary as the winner has not yet lost any comparison, or the key chosen as the loser 

has not yet won any. Consider the first possibility; suppose that the algorithm compares 

x and y, the adversary chooses x as the winner, and x has not yet lost any comparison. 

Even if the value already assigned by the adversary to x is smaller than the value it has 

assigned to y, the adversary can change x’s value to make it beat y without contradicting 

any of the responses it gave earlier. The other situation, where the key to be the loser has 

never won, can be handled similarly—by reducing the value of the key if necessary. So the 

D2. 
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Compar- - ¥ ae a a as ne 

ison Status Value Status Value Status Value Status Value Status Value Status Value 

x1. X2 Ww 20 Ih 10 N N f N e N 

Renae Ww 20 1b, 5 

pelea W IS) L 8 

Big eeNG Ww 15 lb 12 

XS, Ny WL 20 W HS, 

x2, X4 WL 10 iE 8 

H5, X6 WL 5 L 3 

X6, 4 IE 2 WL 3 

Table 5.2 An example of the adversary strategy for max and min 

adversary Can construct an input consistent with the rules in the table for responding to the 

algorithm’s comparisons. This is illustrated in the following example. 

Example 5.1 Constructing an input using the adversary’s rules 

The first column in Table 5.2 shows a sequence of comparisons that might be carried out 

by some algorithm. The remaining columns show the status and value assigned to the keys 

by the adversary. (Keys that have not yet been assigned a value are denoted by asterisks.) 
Each row after the first contains only the entries relevant to the current comparison. Note 
that when x3 and x; are compared (in the fifth comparison), the adversary increases the 
value of 13 because x3 is supposed to win. Later, the adversary changes the values of 2x4 
and x6 consistent with its rules. After the first five comparisons, every key except x3 has 
lost at least once, so x3 1s max. After the last comparison, 4 is the only key that has never 
won, so itis min. In this example the algorithm did eight comparisons; the worst-case lower 
bound for six keys (still to be proved) is 3/2 x 6—-2=7. 

To complete the proof of Theorem 5.1, we just have to show that the adversary rules 
will force any algorithm to do at least 31/2 — 2 comparisons to get the 27 — 2 units of 
information it needs. The only case where an algorithm can get two units of information 
from one comparison is the case where the two keys have not been included in any previous 
comparisons. Suppose for the moment that 7 is even. An algorithm can do at most n/2 
comparisons of previously unseen keys, so itcan get at most 7 units of information this way. 
From each other comparison, it gets at most one unit of information. The algorithm needs 
n — 2 additional units of information, so it must do at least 7 — 2 more comparisons. Thus 
to get 2n — 2 units of information, it must do at least 2/2 + n — 2 = 3n/2 —2 comparisons 
in total. The reader can easily check that for odd n, at least 3n/2 — 3/2 comparisons are 
needed. This completes the proof of Theorem 5.1. 
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Finding the Second-Largest Key 

We can find the second-largest element of a set by finding and eliminating the largest, then 

finding the largest remaining element. Is there a more efficient method? Can we prove a 

certain method is optimal? This section answers these questions. 

5.3.1. Introduction 

Throughout this section we use max and secondLargest to refer to the largest and second- 

largest keys, respectively. For simplicity in describing the problem and algorithms, we will 

assume that the keys are distinct. 

The second-largest key can be found with 2n — 3 comparisons by using FindMax 

(Algorithm 1.3) twice, but this is not likely to be optimal. We should expect that some 

of the information discovered by the algorithm while finding max can be used to decrease 

the number of comparisons performed in finding secondLargest. Specifically, any key that 

loses to a key other than max cannot possibly be secondLargest. All such keys discovered 

while finding max can be ignored during the second pass through the set. (The problem of 

keeping track of them will be considered later.) 

Using Algorithm 1.3 on a set with five keys, the results might be as follows: 

Comparands Winner 

Velo.) Nal 

AGilg 2e3 X| 

X1, X4 X4 

X4, X5 X4 

Then max = x4 and secondLargest is either x5 or x; because both x2 and x3 lost to x1. 

Thus only one more comparison 1s needed to find secondLargest in this example. 

It may happen, however, that during the first pass through the set to find max we don't 

obtain any information useful for finding secondLargest. If max were x), then each other 

key would be compared only to max. Does this mean that in the worst case 21 — 3 com- 

parisons must be done to find secondLargest? Not necessarily. In the preceding discussion 

we used a specific algorithm, Algorithm 1.3. No algorithm can find max by doing fewer 

than n — | comparisons, but another algorithm may provide more information that can be 

used to eliminate some keys from the second pass through the set. The tournament method, 

described next, provides such information. 

5.3.2 The Tournament Method 

The tournament method is so named because it performs comparisons in the same way 

that tournaments are played. Keys are paired off and compared in “rounds.” In each round 

after the first one, the winners from the preceding round are paired off and compared. (If 

at any round the number of keys is odd, one of them simply waits for the next round.) A 

tournament can be described by a binary-tree diagram as shown in Figure 5.1. Each leaf 

contains a key, and at each subsequent level the parent of each pair contains the winner. 

L29 
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Figure 5.1. An example of a tournament; max = x6; secondLargest may be x4, x5, Or x7. 

The root contains the largest key. As in Algorithm 1.3, 2 — | comparisons are done to find 

max. 

In the process of finding max, every key except max loses in one comparison. How 

many lose directly to max? If 7 1s a power of 2, there are exactly Ig n rounds; in general, 

the number of rounds is [lg]. Since max is involved in at most one comparison in each 

round, there are at most [lg] keys that lost only to max. These are the only keys that 

could possibly be secondLargest. The method of Algorithm 1.3 can be used to find the 

largest of these [lg] keys by doing at most [lg] — | comparisons. Thus the tournament 

finds max and secondLargest by doing a total of n + [lg] — 2 comparisons in the worst 

case. This is an improvement over our first result of 27 — 3. Can we do better? 

5.3.3 An Adversary Lower-Bound Argument 

Both methods we considered for finding the second-largest key first found the largest 

key. This is not wasted effort. Any algorithm that finds secondLargest must also find 

max because, to know that a key is the second largest, one must know that it is not the 

largest; that is, it must have lost in one comparison. The winner of the comparison in which 

secondLargest loses must, of course, be max. This argument gives a lower bound on the 

number of comparisons needed to find secondLargest, namely n — |, because we already 

know that nm — | comparisons are needed to find max. But one would expect that this lower 

bound could be improved because an algorithm to find secondLargest should have to do 

more work than an algorithm to find max. We will prove the following theorem, which has 

as a corollary that the tournament method is optimal. 

Theorem 5.2 Any algorithm (that works by comparing keys) to find the second largest 
ina set of n keys must do at least n + [lg] — 2 comparisons in the worst case. 

Proof For the worst case, we may assume that the keys are distinct. We have already ob- 
served that there must be 7 — | comparisons with distinct losers. If max was a comparand 
in [lg 1] of these comparisons, then all but one of the [lg 7] keys that lost to max must lose 
again for secondLargest to be correctly determined. Then a total of at least n + [lg n] — 2 
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comparisons would be done. Therefore we will show that there is an adversary strategy that 
can force any algorithm that finds secondLargest to compare max to [lg 1] distinct keys. 

The adversary assigns a “weight” w(x) to each key x in the set. Initially w(x) = 1 for 
all x. When the algorithm compares two keys x and y, the adversary determines its reply 
and modifies the weights as follows. 

Case Adversary reply — Updating of weights 

w(x) > w(y) Xa) New w(x) = prior (w(x) + w(y)); 

new w(y) =0. 

w(x) =w(y)>O0O Same as above. Same as above. 

w(y) > w(x) Saeae New w(y) = prior (w(x) + w(y)); 

new w(x) =0. 

w(x)=w(y)=0 Consistent with No change. 

previous replies. 

To interpret the weights and adversary rules, imagine that the adversary builds trees to 

represent the ordering relations between the keys. If x is the parent of y, then x beat y in 

a comparison. Figure 5.2 shows an example. The adversary combines two trees only when 

their roots are compared. If the algorithm compares nonroots, no change is made in the 

trees. The weight of a key is simply the number of nodes in that key’s tree, if it is a root, 

and zero otherwise. 

We need to verify that if the adversary follows this strategy, its replies are consistent 

with some input, and max will be compared to at least [lg | distinct keys. These conclu- 

sions follow from a sequence of easy observations: 

1. A key has lost a comparison if and only if its weight is zero. 

tw In the first three cases, the key chosen as the winner has nonzero weight, so it has not 

yet lost. The adversary can give it an arbitrarily high value to make sure it wins without 

contradicting any of its earlier replies. 

3. The sum of the weights is always n. This is true initially, and the sum is preserved by 

the updating of the weights. 

4. When the algorithm stops, only one key can have nonzero weight. Otherwise there 

would be at least two keys that never lost a comparison, and the adversary could choose 

values to make the algorithm’s choice of secondLargest incorrect. 

Let x be the key that has nonzero weight when the algorithm stops. By facts | and 4, 

x = max. Using fact 3, w(x) =n when the algorithm stops. 

To complete the proof of the theorem, we need to show that x has directly won against 

at least [lg n] distinct keys. Let w, = w(x) just after the kth comparison won by x against 

a previously undefeated key. Then by the adversary’s rules, 

Wins 2a 

251 
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Before comparisons: (“) (3) 

After comparing x, and x5: (1) 

After comparing x, and x3: gx 3 

After comparing x4 and x5: (") Cs) 

After comparing x, and xs: 

o 

© 

Figure 5.2 Trees for the adversary decisions in Example 5.2 

Now let K be the number of comparisons x wins against previously undefeated keys. Then 

ie = Bye 2K wo = 2* 

Thus K > lgn, and since K is an integer, K > [lgn]. The K keys counted here are of 

course distinct, since once beaten by x, a key is no longer “previously undefeated” and 

won t be counted again (even if an algorithm foolishly compares it to x again). 

Example 5.2. The adversary strategy in action 

To illustrate the adversary’s action and show how its decisions correspond to the step-by- 

step construction of an input, we show an example for 7 = 5. Keys in the set that have not 

yet been specified are denoted by asterisks. Thus initially the keys are *, *, *, *, *. Note that 



5.4 

5.4 The Selection Problem 

Comparands Weights Winner — New weights Keys 

x, 269 w(x)) = w(x) iw PAO ee PAO KO) eg ea 

Bie ee w(x)) > w(x3) vy Se Olea 20 OMS, 

¥5, .X4 Wi x5) = w(x4) V5 STOnOM One: 20, 10; 15, 30.40 

015.X5 w(x,) > w(xs) v1 SL OVORORO 41, 10, 15, 30, 40 

Table 5.3 Example of the adversary strategy for the Second-Largest Key problem 

values assigned to some keys may be changed at a later time. See Table 5.3, which shows 

just the first few comparisons (those that find max, but not enough to find secondLargest). 

The weights and the values assigned to the keys will not be changed by any subsequent 

comparisons. 

5.3.4 Implementation of the Tournament Method 
for Finding max and secondLargest 

To conduct the tournament to find max we need a way to keep track of the winners in 

each round. After max has been found by the tournament, only those keys that lost to it 

are to be compared to find secondLargest. How can we keep track of the elements that 

lose to max when we don’t know in advance which key 1s max? Since the tournament is 

conceptually a binary tree that is as balanced as possible, the heap structure of Section 4.8. | 

suggests itself. For a set of n elements, a heap structure of 2” — | nodes is used; that is, an 

array E[1], ..., E[2*n-1]. Initially, place the elements in positions n,..., 2n — 1. As the 

tournament progresses, positions I,..., — | will be filled (in reverse order) with winners. 

Exercise 5.4 covers the additional details. This algorithm uses linear extra space and runs 

in linear time. 

The Selection Problem 

Suppose we want to find the median of n elements in an array E in positions I,..., n. 

(That is, we want the element of rank [7/2].) In earlier sections we found efficient methods 

for finding ranks near one extreme or the other, such as the maximum, the minimum, 

both maximum and minimum, and the second-largest key. The exercises explore more 

variations, but all of the techniques for these problems lose efficiency as we move away 

from the extremes, and are not useful for finding the median. If we are to find a solution 

that is more efficient than simply sorting the whole set, then a new idea is needed. 

5.4.1. A Divide-and-Conquer Approach 

Suppose we can partition the keys into two sets, 5; and Sz, such that all keys in Sj are 

smaller than all keys in S>. Then the median is in the larger of the two sets (that is, the set 

with more keys, not necessarily the set with larger keys). We can ignore the other set and 

restrict our search to the larger set. 

233 



234 Chapter 5 Selection and Adversary Arguments 

But what key do we look for in the larger set? Its median is not the median of the 

original set of keys. 

Example 5.3 Partitioning in search of the median 

Suppose n = 255. We are seeking the median element (whose rank 1s k = 128). Suppose, 

after partitioning, that 5; has 96 elements and S> has 159 elements. Then the median of the 

whole set is in S$, and it is the 32nd-smallest element in Sj. Thus the problem reduces to 

finding the element of rank 32 in So, which has 159 elements. 

The example shows that this approach to solving the median problem naturally sug- 

gests that we solve the general selection problem. 

Thus we are developing a divide-and-conquer solution for the general selection prob- 

lem that, like Binary Search and FixHeap, divides the problem to be solved into fwo smaller 

problems, but needs to solve only one of the smaller problems. Quicksort uses Partition to 

divide the elements into subranges of elements “small” and “large” relative to a pivot el- 

ement (see Algorithm 4.2). We can use a modified version of Quicksort for the selection 

problem, called findkKth, in which only one recursive subproblem needs to be solved. The 

details are worked out in Exercise 5.8. 

In the analysis parts of Exercise 5.8 we learn that the same pattern emerges that we 

found when we analyzed Quicksort. Although findKth works well on average, the worst 

case 18 plagued by the same problem that confronts Quicksort: The pivot element may give 

a very uneven division of the elements into S; and $2. To develop a better solution, consider 

what we learned from Quicksort. 

Seeing that the crux of the problem is to choose a “good” pivot element, we can review 

the suggestions of Section 4.4.4, but none of them guarantees that the pivot will divide the 

set of elements into subsets of equal, or almost equal, size. In the next section we will 

see that, by investing more effort, it is possible to choose a pivot that 1s guaranteed to be 

“good.” It guarantees that each set will have at least 0.3 n and at most 0.7 n elements. With 

this “high-quality” pivot element, the divide-and-conquer method works efficiently in the 

worst case, as well as the average case. 

5.4.2 A Linear-Time Selection Algorithm 

The algorithm we present in this section is a simplification of the first linear algorithm 

discovered for solving the selection problem. The simplification makes the general strategy 

easier to understand (though the details are complicated and tricky to implement), but it is 

less efficient than the original. The algorithm is important and interesting because it solves 

the selection problem in general, not just for the median, because it is linear, and because 

it opened the way for improvements. 

As usual, to simplify the description of the algorithm, we assume the keys are distinct. 

It is not hard to modify if there are duplicate keys. 

Algorithm 5.1 Selection 

Input: S,aset of n keys; and k, an integer such that 1 < k <n. 
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Output: The kth smallest key in S. 

Remark: Recall that |S| denotes the number of elements in S. 

Element select(SetOfElements S, int k) 

0. 

WwW 

if (|S| <5) 

return direct solution for kth element of S. 

Divide the keys into sets of five each, and find the median of each set. (The 

last set may have fewer than five keys; however, later references to “set of five 

keys” include this set, too.) Call the set of medians M. Let ny = |M| = [n/5]. 

At this point we can imagine the keys arranged as shown in Figure 5.3(a). 

In each set of five keys, the two larger than the median appear above the median, 

and the smaller two appear below the median. 

m* = select(M, [|M|/2]); 

(m™ is now the median of M, 1.e., the median of medians.) 

Now imagine the keys as in Figure 5.3(b), where the sets of five keys have 

been arranged so that the sets whose medians are larger than m™* appear to 

the right of the set containing m”*, and the sets with smaller medians appear to the 

left of the set containing m*. Observe that, by transitivity, all keys in the section 

labeled B are larger than m”*, and all keys in the section labeled C are smaller 

than mm”. 

Compare each key in the sections labeled A and D in Figure 5.3(b) to m*. 

Sia) SEU, {keys from A U D that are smaller than m* \. 

Lets = BU {keys from A U D that are larger than mt. 

This completes the partitioning process with mm” as pivot. 

Divide and conquer: 

if =7S5\ 41) 

m”* is the kth-smallest key, so: 

return: 

else if (k < |S;]) 

the kth-smallest key is in S), so: 

return select(S). k): 

else 

the kth-smallest key is in S>, so: 

return select(.S5, k — |S;| — 1); 

Algorithm 5.1 is expressed in terms of a set S and rank k. Here we briefly discuss 

implementation for an array E, using indexes | through 1, rather than 0 through n — 1. 

Finding an element with rank k is equivalent to answering the question: If this array were 

sorted. which element would be in E[k]? If $; has 2; elements, then we rearrange E so that 
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(b) Medians less than m”* are to its left; medians greater than m* are to its right. This diagram 

assumes 77 is an odd multiple of 5 for simplicity. Therefore 2 = 5(2r + 1) for some r. 

Figure 5.3 Steps | and 2 for the linear-time selection algorithm 

all elements of Sj are in positions 1,...,,, 7m" is in position n; + 1, and all elements of 

O97 are in positions #7] -- 2, ...571. 

First we observe that if A =n, + 1, then m* is the desired element. If & < nj, then for 

the next call to select, the question is: If the segment E[1], ..., E[7)] were sorted, which 

element would be in E[k]? If k >, + 2, then for the next call to select. the question Is: 



5.4 The Selection Problem 

If the segment E{n,; + 2]... .. E[n] were sorted, which element would be in E[k]? (This is 

equivalent to the problem of finding an element of rank k — ny, — | in set S> by itself.) 

The point here is that the variable & will be the same for all recursive calls. However, 

some changes are needed in the details of the tests to determine which subrange to search 

recursively. These are left as an exercise (Exercise 5.9). 

5.4.3. Analysis of the Selection Algorithm 

We next show that select is a linear algorithm. We will not completely prove this claim, 

but we will give the structure of the argument assuming that 7 1s an odd multiple of 5 to 

simplify the counting. 

Let W (77) be the number of key comparisons done by select in the worst case on inputs 

with n keys. Assuming n = 5(2r + 1) for some nonnegative integer r (and ignoring the 

problem that this might not be true of the sizes of the inputs for the recursive calls), we 

count the comparisons done by each step of select. Brief explanations of the computation 

are included after some of the steps. 

1. Find the medians of sets of five keys: 6(7/5) comparisons. 

The median of five keys can be found using six comparisons (Exercise 5.14). 

There are 7/5 such sets. 

2. Recursively find the median of the medians: W (7/5) comparisons. 

iS) Compare all keys in sections A and D to m* (see Figure 5.3b): 4r comparisons. 

- Call select recursively: W(7r + 2) comparisons. 

In the worst case, all 4r keys in sections A and D will be on the same side of m* 

(i.e., all smaller than m* or all greater than m*). B and C each have 3r + 2 elements. 

So the size of the largest possible input for the recursive call to select is 7r + 2. 

Since n = 5(2r + 1), r is approximately n/10. So 

W(n) <1.2n + W(0.2n) + 0.4n + W(0.7n) = 1.6n + W(0.2n) + W(0.7n). (5.1) 

Although this recurrence equation (actually inequality) is of the divide-and-conquer type, 

the two subproblems are not of equal size, so we cannot simply apply the Master Theorem 

(Theorem 3.17). However, we can develop a recursion tree (Section 3.7), as shown in 

Figure 5.4. Since the row-sums form a decreasing geometric series, whose ratio is 0.9, 

the total is © of the largest term, which is O(7). Equation (1.10) gives the exact expression 

for the geometric series, which is 167 minus some very small term. This result can also be 

verified by induction. Thus the selection algorithm is a linear algorithm. 

The original presentation of the algorithm in the literature included improvements to 

cut the number of key comparisons down to approximately 5.4 1. The best currently known 

algorithm for finding the median does 2.95 1 comparisons in the worst case. (It, too, is 

complicated. ) 

Since select is recursive, it uses space on a stack; it is not an in-place algorithm. 

However, the depth of recursion is in O(log 7), so itis unlikely to cause a problem. 
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Figure 5.4 Recursion tree for select 

5.5 A Lower Bound for Finding the Median 

We are assuming that E is a set of n keys and that n is odd. We will establish a lower bound 

on the number of key comparisons that must be done by any key-comparison algorithm 

to find median, the (mn + 1)/2-th key. Since we are establishing a lower bound, we may, 

without loss of generality, assume that the keys are distinct. 

We claim first that to know median, an algorithm must know the relation of every other 

key to median. That is, for each other key, x, the algorithm must know that x > median 

or x < median. In other words, it must establish relations as illustrated by the tree in 

Figure 5.5. Each node represents a key, and each branch represents a comparison. The 

key at the higher end of the branch is the larger key. Suppose there were some key, say y, 

whose relation to median was not known. (See Figure 5.6(a) for an example.) An adversary 

could change the value of y, moving it to the opposite side of median, as in Figure 5.6(b), 

without contradicting the results of any of the comparisons done. Then median would not 

be the median; the algorithm’s answer would be wrong. 

Since there are n nodes in the tree in Figure 5.5, there are n — | branches, so at least 

mn — | comparisons must be done. This is neither a surprising nor exciting lower bound. 
We will show that an adversary can force an algorithm to do other “useless” comparisons 

before it performs the 7 — | comparisons it needs to establish the tree of Figure 5.5. 

Definition 5.1 Crucial comparison 

A comparison involving a key x is a crucial comparison for x if it is the first comparison 
where « > y, for some y > median, or x < y for some y < median. Comparisons of x and 
y where x > median and y < median are noncrucial. © 

A crucial comparison establishes the relation of x to median. Note that the definition 
does not require that the relation of y to median be already known at the time the crucial 
comparison for x is done. 
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> median 
median 

< median 

Figure 5.5 Comparisons relating each key to median 

median es 

(a) y < median. (b) y > median; median is not the median. 

Figure 5.6 An adversary conquers a bad algorithm 

We will exhibit an adversary that forces an algorithm to perform noncrucial compat- 

isons. The adversary chooses some value (but not a particular key) to be median. It will 

assign a value to a key when the algorithm first uses that key in a comparison. So long as 

it can do so, the adversary will assign values to new keys involved in a comparison so as 

to put the keys on opposite sides of median. The adversary may not assign values larger 

than median to more than (n — 1)/2 keys, nor values smaller than median to more than 

(n — 1)/2 keys. It keeps track of the assignments it has made to be sure not to violate these 

restrictions. We indicate the status of a key during the running of the algorithm as follows: 

L_ Has been assigned a value Larger than median. 

S Has been assigned a value Smaller than median. 

N Has not yet been in a comparison. 
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Comparands Adversary’s action 

N,N Make one key larger than median, the other smaller. 

L,NorN,L Assign a value smaller than median to the key with status V. 

SAN or iN ons: Assign a value larger than median to the key with status NV. 

Table 5.4. The adversary strategy for the median-finding problem 

The adversary’s strategy is summed up in Table 5.4. In all cases, if there are already 

(n — 1)/2 keys with status S (or L), the adversary ignores the rule in the table and assigns 

value(s) larger (or smaller) than median to the new key(s). When only one key without a 

value remains, the adversary assigns the value median to that key. Whenever the algorithm 

compares two keys with statuses L and L, S and S, or L and S, the adversary simply gives 

the correct response based on the values it has already assigned to the keys. 

All of the comparisons described in Table 5.4 are noncrucial. How many can the ad- 

versary make any algorithm do? Each of these comparisons creates at most one L-key, and 

each creates at most one S-key. Since the adversary is free to make the indicated assign- 

ments until there are (n — 1)/2 L-keys or (n — 1)/2 S-keys, it can force any algorithm to 

do at least (2 — 1)/2 noncrucial comparisons. (Since an algorithm could start out by do- 

ing (n — 1)/2 comparisons involving two N-keys, this adversary can’t guarantee any more 

than (2 — 1)/2 noncrucial comparisons.) 

We can now conclude that the total number of comparisons must be at least n — | (the 

crucial comparisons) + (7 — 1)/2 (noncrucial comparisons). We sum up the result in the 

following theorem. 

Theorem 5.3 Any algorithm to find the median of n keys (for odd 2) by comparison of 

keys must do at least 3n/2 — 3/2 comparisons in the worst case. 0 

Our adversary was not as clever as it could have been in its attempt to force an 

algorithm to do noncrucial comparisons. In the past several years the lower bound for the 

median problem has crept up to roughly 1.75n — log n, then roughly 1.87, then a little 

higher. The best lower bound currently known is slightly above 2 (for large 1). There is 

still a small gap between the best known lower bound and the best known algorithm for 

finding the median. 

Designing Against an Adversary 

Designing against an adversary can be a powerful technique for developing an algorithm 
with operations like comparisons, which elicit information about the input elements. The 
main idea is to anticipate that any “question” (1.e., comparison or other test performed by 
the algorithm) is going to receive an answer chosen by an adversary to be as unfavorable 
as possible for the algorithm, usually by giving the least information. To counter this, 
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the algorithm should choose comparisons (or whatever the operation is) for which both 
answers give the same amount of information, as far as possible. 

The idea that a good algorithm uses some notion of balance has come up before, when 
we studied decision trees. The number of comparisons done in the worst case is the height 
of a decision tree for the algorithm. To keep the height small, for a fixed problem size, 
means keeping the tree as balanced as possible. A good algorithm chooses comparisons 
such that the number of possible outcomes (outputs) for one result of the comparison is 

roughly equal to the number of outcomes for the other result. 

We have seen several examples of this technique already: Mergesort, finding both 

max and min, and finding the second-largest element. The first phase of the tournament 

method for finding the second-largest element, that is, the tournament that finds the max- 

imum element, is the clearest example. In the first round each key comparison is between 

two elements about which nothing is known, so an adversary has no basis for favor- 

ing One answer over another. In subsequent rounds, to the extent possible, elements that 

have equal win—loss records are compared, so the adversary never can give one answer 

that is less informative than the other. In contrast, the straightforward algorithm to find 

the maximum first compares x; with x2, then compares the winner (say x2) with x3. 

In this case, the adversary can give one answer that is less informative than the other. 

(Which?) 

In general, for comparison-based problems, the complete status of an element includes 

more than the number of prior wins and losses. Rather, an element’s status includes the 

number of elements known to be smaller and the number of elements known to be larger 

by transitivity. Tree structures like those in Figure 5.2 can be used to represent the status 

information graphically. 

To further illustrate the technique of designing against an adversary, we consider 

two problems whose optimum solution is difficult: finding the median of five elements 

and sorting five elements (Exercises 5.14 and 5.15). The median can be found with six 

comparisons, and five elements can be sorted with seven comparisons. Many students 

(and instructors) have spent hours trying various strategies, looking unsuccessfully for 

the solutions. The optimal algorithms squeeze the most information possible out of each 

comparison. The technique we are describing in this section gives a big boost in getting 

started right. The first comparison is arbitrary; it is necessarily between two keys about 

which we have no information. Should the second comparison include either of these keys? 

No; comparing two new keys, which have equal status, gives more information. Now we 

have two keys that (we know) are each larger than one other, two keys that (we know) 

are each smaller than one other, and one unexamined key. Which two will you compare 

next? 

Are you beginning to wonder which problem we are working on? The technique of 

designing against an adversary suggests the same first three comparisons for both the 

median problem and the sorting problem. Finishing the algorithms is still tricky and makes 

instructive exercises. 
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Exercises 

Section 5.1 Introduction 

5.1 Draw the decision tree for FindMax (Algorithm 1.3) with n = 4. 

5.2 Consider the problem of sorting n elements. Essentially, there are only n! distinct 

outcomes, one for each permutation. Adversaries are not limited in how much computation 

they are allowed to do in deciding the outcome, or answer, for a comparison that is “asked” 

by the algorithm. In principle, an adversary for the sorting problem could look at all 

permutations before arriving at a decision. 

a. Use the above idea to develop an adversary strategy for comparison-based sorting. 

Find a lower bound based on your strategy. How does your result compare with the 

lower bound of Theorem 4.10? 

b. Develop an adversary strategy for the problem of merging two sorted sequences, each 

containing n/2 keys. It should be a simple modification of your strategy for part 

(a). Find a lower bound for the worst case of comparison-based algorithms for this 

problem, based on your strategy. How does your result compare with the lower bound 

of Theorem 4.4? Hint: Look at Exercise 4.25. 

Section 5.2. Finding max and min 

5.3. We used an adversary argument to establish the lower bound for finding the minimum 

and maximum of 7 keys. What lower bound do we get from a decision tree argument? 

Section 5.3 Finding the Second-Largest Key 

5.4 In this exercise you will write an algorithm based on the heap structure (Section 4.8.1) 

for the tournament method to find max and secondLargest. 

a. Show that the following procedure places the max in E[1]. Array F is allocated for 

indexes 1,..., 2n — 1. (Recall that “last -= subtracts 2 from last.) 

heapFindMax(E, n) 

int last; 

Load n elements into E[n], ..., E[2*n—-1]. 

for (last = 2*n — 2: last > 2: last -= 2) 

E{last/2] = max(E[last], E[last+1]); 

b. Explain how to determine which elements lost to the winner. 

Complete the code to find secondLargest after heapFindMax finishes. 

5.5 How many comparisons are done by the tournament method to find secondLargest 

on the average, 

a. ifn isa power of 2? 
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b. if 7 is not a power of 2? 

Hint: Consider Exercise 5.4. 

5.6 The following algorithm finds the largest and second-largest keys in an array E of n 
keys by sequentially scanning the array and keeping track of the two largest keys seen so 
far. (It assumes n > 2.) 

Lf (E[ 1] > El2]) 

inedeS 180 If 

second = E[2]. 

else 

max = E[2]- 

second = E[1]; 

for (i = 3; i < n; i +4) 

if (E[i] > second) 

if (E[i] > max) 

second = max: 

max = E[i]: 

else 

second = Efi]; 

a. How many key comparisons does this algorithm do in the worst case? Give a worst- 

case input for n = 6 using integers for keys. 

b. How many key comparisons does this algorithm do on the average for n keys assuming 

any permutation of the keys (from their proper ordering) is equally likely? 

5.7. Write an efficient algorithm to find the third-largest key from among n keys. How 

many key comparisons does your algorithm do in the worst case? Is it necessary for such 

an algorithm to determine which key is max and which is secondLargest? 

Section 5.4. The Selection Problem 

5.8 Quicksort can be modified to find the Ath-smallest key among n keys so that in most 

cases it does much less work than is needed to sort the set completely. 

a. Write a modified Quicksort algorithm called findKth for this purpose. 

b. Show that when this algorithm 1s used to find the median, the worst case 1s in (17). 

c. Develop a recurrence equation for the average running time of this algorithm. 

d. Analyze your algorithm’s average running time. What is the asymptotic order? 

5.9 Following the pseudocode outline for the Selection algorithm (Algorithm 5.1), we 

briefly discussed implementation in an array. Finding an element with rank & in an array 

E with n elements is equivalent to answering the question: If this array were sorted, which 

element would be in E[k]? The point was that the parameter A will be the same for all 
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recursive calls. Rewrite the test conditions in the two if statements in step 4 to work 

properly with this implementation. 

5.10 Suppose we use the following algorithm to find the k largest keys in a set of n keys. 

(See Section 4.8 for heap algorithms. ) 

Build a heap H out of the n keys; 

for (i= 1; i < k; i ++) 
output(getMax(H)); 

deleteMax(H); 

How large can & be (as a function of 7) for this algorithm to be linear in 1? 

* 5.11 Generalize the tournament method to find the & largest of nm keys (where | <k <n). 

Work out any implementation details that affect the order of the running time. How fast is 

your algorithm as a function of n and k? 

Section 5.5 A Lower Bound for Finding the Median 

5.12 Suppose n is even and we define the median to be the n/2th-smallest key. Make 

the necessary modifications in the lower bound argument and in Theorem 5.3 (where we 

assumed 7 was odd). 

Section 5.6 Designing Against an Adversary 

5.13. How well do the sorting algorithms below meet the criterion of performing com- 

parisons for which either outcome is about equally informative? How would an adversary 

respond to the comparisons using a “least new information” strategy? Does this push the 

algorithms into their worst cases? 

a. Insertion Sort? 

b. Quicksort? 

c. Mergesort? 

d. Heapsort? 

e. Accelerated Heapsort? 

* 5.14 Give an algorithm to find the median of five keys with only six comparisons in the 

worst case. Describe the steps, but don’t write code. Using tree diagrams like those in 
Figure 5.2 may be helpful in explaining what your algorithm does. Hint: A useful strategy 

and the first few steps were partly sketched in Section 5.6. 

* 5.15 Give an algorithm to sort five keys with only seven comparisons in the worst case. 
Describe the steps, but don’t write code. Using tree diagrams like those in Figure 5.2 may 
be helpful in explaining what your algorithm does. Hint: A useful strategy and the first few 
steps were partly sketched in Section 5.6. 
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Additional Problems 

5.16 Prove Theorem 1.16 (the lower bound for searching an ordered array) by means 

of an adversary argument. Hint: Define an active range consisting of the minimum and 

maximum indexes of the array that might contain K, the key being searched for. 

5.17 Let E be an array with elements defined for indexes 0, .... n (thus there are 

n + | elements). Suppose it is known that E is unimodal, which means that E[i] is strictly 

increasing up to some index M, and is strictly decreasing for indexes i > M. Thus E{M] is 

the maximum. (Note that // may be O orn.) The problem is to find M. 

a. Asa warm-up, show that for 7 = 2, two comparisons are necessary and sufficient. 

b. Write an algorithm to find M, by comparing various keys in E. 

¢. How many comparisons does your algorithm do in the worst case? (You should be able 

to devise an algorithm that is in o(7).) 

d. Suppose that n = F;, the kth Fibonacci number, as defined in Equation (1.13), where 

A > 2. Describe an algorithm to find M with & — | comparisons. Describe the ideas, 

but don’t write code. 

e. Devise an adversary strategy that forces any comparison-based algorithm to do at least 

lg nm + 2 comparisons to find M, for n = 4. This shows that the problem is at least a 

little harder than searching an ordered array. Hint: Try a more elaborate version of the 

adversary strategy suggested for Exercise 5.16. 

5.18 Suppose El and E2 are arrays, each with n keys sorted in ascending order. 

a. Devise an O(log) algorithm to find the nth smallest of the 2” keys. (This is the 

median of the combined set.) For simplicity, you may assume the keys are distinct. 

b. Give a lower bound for this problem. 

Lo 

a. Give an algorithm to determine if the 7 keys in an array are all distinct. Assume three- 

way comparisons; that is, the result of a comparison of two keys is <, =, or >. How 

many key comparisons does your algorithm do? 

b. Give a lower bound on the number of (three-way) key comparisons needed. (Try for 

Q(n log n).) 

5.20 Consider the problem of determining if a bit string of length 1 contains two con- 

secutive zeroes. The basic operation is to examine a position in the string to see if itis a 0 

ora 1. For each n = 2, 3, 4, 5 either give an adversary strategy to force any algorithm to 

examine every bit, or give an algorithm that solves the problem by examining fewer than 1 

bits. 

5.21 Suppose you have a computer with a small memory and you are given a sequence 

of keys in an external file (on a disk or tape). Keys can be read into memory for processing, 

but no key can be read more than once. 
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a. What is the minimum number of storage cells needed for keys in memory to find the 

largest key in the file? Justify your answer. 

b. What is the minimum number of cells needed for keys in memory to find the median? 

Justify your answer. 

a. Youare givenn keys and an integer k such that | < & <n. Give an efficient algorithm to 

find any one of the k smallest keys. (For example, if k = 3, the algorithm may provide 

the first-, second-, or third-smallest key. It need not know the exact rank of the key it 

outputs.) How many key comparisons does your algorithm do? Hint: Don’t look for 

something complicated. One insight gives a short, simple algorithm. 

b. Give a lower bound, as a function of n and &, on the number of comparisons needed 

to solve this problem. 

5.23 Let E be an n-element array of positive integers. A majority element in E is an 

element that occurs more than n/2 times in the array. The majority element problem is to 

find the majority element in an array if it has one, or return —1 if it does not have one. The 

only operations you may perform on the elements are to compare them to each other and 

move or copy them. 

Write an algorithm for the majority element problem. Analyze the time and space used 

by your algorithm in the worst case. (There are easy ©@(n~) algorithms, but there is a linear 

solution. Hint: Use a variation of the technique in Section 5.3.2.) 

5.24 M is ann x n integer matrix in which the keys in each row are 1n increasing order 

(reading left to right) and the keys in each column are in increasing order (reading top to 

bottom). Consider the problem of finding the position of an integer + in M, or determining 

that x 1s not there. Give an adversary argument to establish a lower bound on the number 

of comparisons of x with matrix entries needed to solve this problem. The algorithm is 

allowed to use three-way comparisons; that is, a comparison of x. with M[i]Uj] tells if 

x < MUil[j], x = MUL], or» > MUil[jl. 

Note: Finding an efficient algorithm for the problem was Exercise 4.58 in Chapter 4. 

If you did a good job on both your algorithm and your adversary argument, the number of 

comparisons done by the algorithm should be the same as your lower bound. 

Notes and References 

Knuth (1998) is an excellent reference for the material in this chapter. It contains some his- 

tory of the selection problem, including the attempt by Charles Dodgson (Lewis Carroll), in 

1883, to work out a correct algorithm so that second prize in lawn tennis tournaments could 

be awarded fairly. The tournament algorithm for finding the second-largest key appeared 
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ina 1932 paper by J. Schreier (in Polish). It was proved optimal in 1964 by S. S. Kislitsin 

(in Russian). The lower bound argument given here is based on Knuth (1998). 

The algorithm and lower bound for finding min and max and Exercise 5.21 are 

attributed to I. Pohl by Knuth. 

The first linear selection algorithm is in Blum, Floyd, Pratt, Rivest, and Tarjan (1973). 

Other selection algorithms and lower bounds appear in Hyafil (1976), Schonhage, Paterson, 

and Pippenger (1976), and Dor and Zwick (1995, 1996a, 1996b). 
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6.1 
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Chapter 6 Dynamic Sets and Searching 

Introduction 

Dynamic sets are sets whose membership varies during computation. In some applications 

the sets are initially empty and elements are inserted as the computation progresses. Often 

the maximum size to which a set might grow is not known very accurately in advance. 

Other applications begin with a large set and delete elements as the computation progresses 

(often terminating when the set becomes empty). Some applications both insert and delete 

elements. Various data structures have been developed to represent these dynamic sets. 

Depending on the needed operations and the access patterns, different data structures are 

efficient. First we describe the array-doubling technique, which is a basic tool. Then we 

introduce the basics of amortized time analysis, which is a technique that is often needed 

to demonstrate the efficiency of sophisticated implementations of dynamic sets. Finally, we 

survey several popular data structures that have been found useful for representing dynamic 

sets. They are presented as implementations of appropriate abstract data types (ADTs). 

Red-black trees provide a form of balanced binary trees, which are useful to implement 

binary search trees efficiently. Binary search trees and hash tables are popular implemen- 

tations of the Dictionary ADT. 

Dynamic equivalence relations occur in numerous applications, and their operations 

are Closely related to the Union-Find ADT, which has a very efficient implementation in 

certain cases, using the In-Tree ADT. 

Priority queues are the workhorses of many algorithms, especially greedy algorithms. 

Two efficient implementations of the Priority Queue ADT are binary heaps (used also for 

Heapsort) and pairing forests, which are also called lazy pairing heaps. 

This chapter introduces these topics. For further reading and more extensive treat- 

ments, consult Notes and References at the end of the chapter. 

Array Doubling 

A typical situation that arises in connection with dynamic sets is that we don’t know how 

big an array we might need when the computation begins. Allocating the “largest possibly 
needed” array is usually not very satisfactory, although it is one common solution. A 
simple, more flexible solution is to allocate a small array initially with the intention of 
doubling its size whenever it becomes apparent that it is too small. For this to work we 
need to keep track of how full the current array is and how many entries are currently 
allocated. Java keeps track of the latter information automatically with the length field, but 
the first number is the programmer's responsibility and it depends on the application for 
which the array is used. 

Let’s assume we have an organizer class setArray with two fields, setSize and ele— 
ments, the latter being an array of the element type, which we assume is simply Object. 
Initially, we might construct an object in this class as follows: 

setArray mySet = new setArray(); 

mySet.setSize = 0: 

mySet.elements = new Object[1 00]; 
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Now each time an element is added to mySet the program also increments setSize. Before 
inserting a new element, however, the program should be sure there is room, and if not, 
double the array size. This is accomplished by allocating a new array that is twice as large as 
the current array, and then transferring all the elements into the new array. The application 
code might be the following: 

if (mySet.setSize == mySet.elements.length) 

arrayDouble(mySet); 

Continue with insertion of new element. 

The arrayDouble subroutine takes the following form: 

arrayDouble(set) 

newLength = 2 « set.elements.length; 

newElements = new Object[newLength]: 

Transfer all elements from the set.elements array to the newElements array. 

set.elements = newElements; 

The expensive part is the transfer of elements. However, we will now show that total 

overhead for inserting 7 elements into a set that is stored this way is in ©(7). 

Suppose that inserting the (7 + |)-th element triggers an array-doubling operation. Let 

t be the cost of transferring one element from the old array to the new array (we assume f 

is some constant). Then n transfers occur as part of this array-doubling operation. But then 

n/2 transfers occurred in the previous array-doubling operation, and 1/4 before that, and 

so on. The total cost of all transfers since the set was created cannot exceed 2tn. 

This is a simple example in which it is possible to amortize, or spread out, the cost of 

occasional expensive operations, so that the average overhead per operation is bounded by 

a constant. Amortized time analysis is explained in the next section. 

Amortized Time Analysis 

As we saw in the previous section, situations can arise in which the work done for indi- 

vidual operations of the same type varies widely, but the total time for a long sequence of 

operations is much less than the worst-case time for one operation multiplied by the length 

of the sequence. These situations arise fairly frequently in connection with dynamic sets 

and their associated operations. A technique called amortized time analysis has evolved 

to provide more accurate analysis in these situations. The name amortized comes (some- 

what loosely interpreted) from the business accounting practice of spreading a large cost, 

which was actually incurred in a single time period, over multiple time periods that are 

related to the reason for incurring the cost. In the case of algorithm analysis, the large cost 

of one operation is spread out over many operations, where the others are less expensive. 

This section gives a brief introduction to amortized time analysis. The technique is simple 

in concept, although it requires creativity to come up with effective schemes for difficult 

problems. 

Suppose we have an ADT and we want to analyze its operations using amortized 

time analysis. We use the term individual operation to mean a single execution of an 
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operation. Amortized time analysis is based on the following equation, which applies to 

each individual operation of this ADT that occurs in the course of some computation: 

amortized cost = actual cost + accounting Cost. (ont) 

The creative part is to design a system of accounting costs for individual operations that 

achieves these two goals: 

|. In any legal sequence of operations, beginning from the creation of the ADT object 

being analyzed, the sum of the accounting costs 1S nonnegative. 

2. Although the actual cost may fluctuate widely from one individual operation to the 

next, it is feasible to analyze the amortized cost of each operation (i.e., it 1s fairly 

regular). 

If these two goals are achieved, then the total amortized cost of a sequence of operations 

(always starting from the creation of the ADT object) is an upper bound on the total actual 

cost, and the total amortized cost is amenable to analysis. 

Intuitively, the sum of the accounting costs is like a savings account. When times are 

good, we make a deposit to save up for a rainy day. When the rainy day arrives, in the form 

of an unusually expensive individual operation, we make a withdrawal. However, to remain 

solvent, our account balance cannot go negative. 

The main idea for designing a system of accounting costs is that “normal” individual 

operations should have a positive accounting cost, while the unusually expensive individual 

Operations receive a negative accounting cost. The negative accounting cost should offset 

the unusual expense, that is, the high actual cost, so that the amortized cost comes out about 

the same for “normal” and “unusually expensive” individual operations. The amortized cost 

might depend on how many elements are in the data structure, but it should be relatively 

independent of details of the data structure. Working out how big to make the positive 

charges often requires creativity, and may involve a degree of trial and error to arrive at an 

amount that is reasonably small, yet large enough to prevent the “account balance” from 

going negative. 

Example 6.1. Accounting scheme for Stack with array doubling 

Consider the Stack ADT, which has two operations, push and pop, and is implemented 

with an array. (We will ignore the costs of access operations in this example, because they 

do not change the stack and they are in O(1).) Array doubling, as described in Section 6.2, 

is used behind the scenes to enlarge the array as necessary. Say the actual cost of push or 

pop is | when no resizing of the array occurs, and the actual cost of push is | + n¢, for 

some constant f, if itinvolves doubling the array size from n to 2n and copying n elements 

over to the new array. (Exercise 6.2 considers schemes in which both push and pop might 

cause array resizing.) 

The worst-case actual time for push ts in @(7). Looking at the worst-case actual time 

might make it seem that this implementation is very inefficient, since @(1) implementa- 
tions for these operations are possible. However, the technique of amortized analysis gives 
amore accurate picture. We can set up the following accounting scheme: 
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|. The accounting cost for a push that does not require array doubling is 2. 

2. The accounting cost for a push that requires doubling the array from n to 2n is 

Set ee 

3. The accounting cost for a pop is 0. 

The coefficient of 2 in the accounting costs was chosen to be large enough that, from the 

time the stack is created, the sum of the accounting costs can never be negative. To see 

this informally, assume that doubling will occur at stack sizes of N, 2N, 4N, 8N, and so 

on. Let’s consider the worst case, in which only pushes occur. The “account balance’”’—net 

sum of accounting costs—will grow to 2Nr, then the first negative charge will reduce it to 

Nr + 2t, then it will grow back to 3Nr before the second array doubling, at which time it 

drops back to Nr + 2r. From there is grows to 5Nr, gets cuts to Nt + 2t, grows to 9Nr, 

gets cut to Nr + 2r, and so on. Therefore, this is a valid accounting scheme for the Stack 

ADT. (With some experimentation we can convince ourselves that any coefficient less than 

2 will lead to eventual bankruptcy in the worst case.) 

With this accounting scheme, the amortized cost of each individual push operation 

is | + 2t, whether it causes array doubling or not, and the amortized cost of each pop 

operation is |. Thus we can say that both push and pop run in worst-case amortized time 

thatisin@(1). 

More complicated data structures often require more complicated accounting schemes, 

which require more creativity to think up. In later sections of this chapter (Sections 6.6.6 

and 6.7.2) we will encounter ADTs and implementations that require amortized time 

analysis to demonstrate their efficiency. 

Red-Black Trees 

Red-black trees are binary trees that satisfy certain structural requirements. These struc- 

tural requirements imply that the height of a red-black tree with n nodes cannot exceed 

2 Ig(n + 1). That is, its height is within a factor of two of the height of the most balanced 

binary tree with n nodes. The most popular use of red-black trees is for binary search 

trees, but this is not the only application. This section shows how to use red-black trees 

to maintain balanced binary search trees (with the degree of balance just mentioned) very 

efficiently. Some other schemes for maintaining balanced binary trees are mentioned in 

Notes and References at the end of the chapter. We have chosen to focus on red-black trees 

because the deletion procedure is simpler than most of the alternatives. 

After introducing some notation here, we review binary search trees. Then we in- 

troduce the structural properties that are required for red-black trees, and show how to 

maintain them efficiently in insert and delete operations. 

Red-black trees are objects in a class RBtree, whose implementation will probably 

have many similarities to an implementation of the BinTree ADT of Section 2.3.3; however, 

the specifications and the interface are quite different. This 1s because a red-black tree has 

a more specific purpose than a general binary tree in the BinTree ADT, and has operations 

that modify its structure, whereas the BinTree ADT has no such operations defined. An 
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empty tree is represented by nil as in the BinTree ADT. The operations on red-black trees 

are rbtinsert, rbtDelete, and rbtSearch. They respectively insert, delete, or search for a 

given key in the tree. No direct access to subtrees of a red-black tree is provided, as itis with 

the BinTree ADT. However, such access functions can be added with the understanding that 

the subtrees are binary search trees, but are not necessarily red-black trees. 

The RBtree class is suitable for use in an implementation of the Dictionary ADT, 

or other ADTs that need balanced binary trees. Nodes of a red-black tree are objects 

in some class Element; the details are not important for the red-black tree algorithms. 

This would be the type of the elements being stored in the dictionary. Many of the same 

conventions regarding elements, keys, and comparison of keys that were introduced for 

sorting (Chapter 4) are carried over here. We assume that one of the fields in the Element 

class is named key and is in the class Key. For notational convenience, we assume that keys 

can be compared with the usual operators such as “<”. 

Properly Drawn Trees 

The idea of a properly drawn tree helps to visualize many of the concepts involving binary 

search trees and red-black trees. This book uses properly drawn trees for all illustrations. 

Definition 6.1 

A tree is properly drawn in a two-dimensional plane if: 

1. Each node is a point and each edge is a line segment or a curve connecting a parent 

to a child. (In a drawing in which a node is a circle or similar figure, its “point” is 

considered to be at the center, and the edges are considered to go to these points.) 

i) The left and right child of any node are to the left and right, respectively, of that node, 

in terms of horizontal locations. 

3. For any edge wv, u being the parent node, no point on the edge wu has the same 

horizontal location as (1.e., is directly under or over) any proper ancestor of vu. 

In a properly drawn tree, all nodes in the left subtree of a given tree are to the left of 

the root, and all nodes in the right subtree are to the right of the root, considering only their 

horizontal locations. If a binary tree is properly drawn, then sweeping a vertical line from 

left to right encounters the nodes in their inorder traversal order. 

Empty Trees as External Nodes 

For binary search trees and particularly for red-black trees, it is convenient to treat empty 

trees as a special kind of node, called an external node. External nodes were introduced in 

connection with 2-trees (Section 3.4.2) and used for analyzing decision trees (Section 4.7). 

In this scheme, an external node cannot have any children, and an internal node must have 

two children. Only internal nodes contain any data, including a key. In terms of the BinTree 

ADT, we may think of an empty subtree (nil, as returned by the functions leftSubtree and 

rightSubtree) as an edge to an external node. All other subtrees are rooted at internal nodes. 
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(a) (b) 

Figure 6.1 (a) A node group with four nodes, circled, and its five principal subtrees, shown 

in gray: Small nodes denote external nodes. (b) The new tree T: The principal subtrees are 

replaced by external nodes. 

Definition 6.2 Node groups and their principal subtrees 

A node group is any connected group of internal nodes of a binary tree. A subtree S is a 

principal subtree of a node group if the parent of the root of S$ is in the group, but no node 

of S$ is. A principal subtree of a node group can be an external node (empty tree). 

Figure 6.1(a) shows a node group and its principal subtrees. A node group can be 

thought of as the internal nodes of a new tree 7, as suggested in Figure 6.1(b). The node 

group 1s extracted, and external nodes are attached where the principal subtrees were. The 

number of principal subtrees of a node group is always one more than the number of nodes 

in the group. (What property of 2-trees is related to this fact?) 

6.4.1. Binary Search Trees 

In a binary search tree the keys at the nodes satisfy the following constraints. 

Definition 6.3 Binary search tree property 

A binary tree in which the nodes have keys from an ordered set has the binary search tree 

property if the key at each node is greater than all the keys in its left subtree and less than 

or equal to all keys in its right subtree. In this case the binary tree is called a binary search 

tree (abbreviated to BST). 

An inorder traversal of a binary search tree produces a sorted list of the keys. Whether 

a properly drawn binary tree is a binary search tree is easily determined by inspection, by 

passing a vertical line from left to right, as mentioned in connection with Definition 6.1. 

See Figure 6.2 for examples. As this figure shows, binary search trees can vary greatly in 

their degree of balance. 
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Figure 6.2 Two binary search trees on the same set of keys, with different degrees of balance: 

Black dots denote empty trees, also called external nodes in this section. 

To search for a particular key, we begin at the root and follow the left or right branch 

depending on whether the key sought is less than or greater than the key at the current 

node. This procedure sets the pattern for all BST operations. The insertion and deletion 

operations for red-black trees developed in Sections 6.4.5 and 6.4.6 contain the same search 

logic embedded within them. 

Algorithm 6.1) Binary Search Tree Retrieval 

Input: bst, the binary search tree; and K, the key sought. 

Output: An object in the tree whose key field is A, or null if K is not the key of any node 

in the tree. 

Element bstSearch(BinTree bst, Key K) 

Element found; 

if (bst == nil) 

found = null: 

else 

Element root = root(bst); 

if (K == root.key) 

found = root; 

else if (K < root.key) 

found = bstSearch(leftSubtree(bst), K): 

else 

found = bstSearch(rightSubtree(bst), K): 

return found; 

We use as our measure of work the number of internal nodes of the tree that are 
examined while searching for a key. (Although, in the high-level language algorithm, K is 
compared to a key in the tree twice, it is reasonable to count it as one three-way comparison, 
as we argued in Section 1.6. Either way, the number of comparisons is proportional to 
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the number of nodes examined.) In the worst case (including cases where K is not in the 
tree), the number of nodes examined is the height of the tree. (In this section the height 
of a tree with one internal node is 1, because empty trees are treated as external nodes; in 
Section 2.3.3 the height of such a tree was defined as 0; the difference is not important as 

long as one convention is used consistently.) 

Suppose there are n internal nodes in the tree. If the tree structure is arbitrary (hence 

may consist of one long chain), the worst case is in @(n). If the tree is as balanced as 

possible, the number of nodes examined in the worst case is roughly lg n. All operations 

on binary search trees follow the pattern of bstSearch and have worst cases proportional 

to the height of the tree. The goal of a balanced-tree system is to reduce the worst case to 

© (log n). 

6.4.2 Binary Tree Rotations 

The structure of a binary tree can be modified locally by operations known as rotations, 

without upsetting the binary search tree property. Although the rebalancing operations for 

red-black trees can be described without using rotations, rotations are valuable operations 

in their own right, and they provide a good introduction for more complex restructuring 

operations. In fact, the more complex restructuring operations can be built up by a sequence 

of rotations. 

A rotation involves a group of two connected nodes, say p and c, for parent and 

child, and the three principal subtrees of the group. Figure 6.3 illustrates the following 

description, with 15 in the role of p and 25 in the role of c. The edge between p and c 

changes direction and the middle principal subtree (shown in gray in the figure) changes 

parent, from c to p. Since c is now the root of the group, the former parent of p (50 in the 

figure) is now the parent of c, so it must now have an edge to c instead of p. Thus three 

edges are revised altogether during a rotation. 

Figure 6.3 A left rotation on (15, 25) transforms the tree on the left into the tree on the night. 

(The right subtree of node 50 is not shown.) A right rotation on (25, 15) transforms the tree on 

the right into the tree on the left. 
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In a left rotation p is to the left of c, so p sinks, c rises, and the edge to the middle 

subtree moves to the left to hook up with p. The left principal subtree sinks along with p; 

the right principal subtree rises along with c; the middle principal subtree remains at the 

same level. A right rotation is the inverse of a left rotation; that is, doing a left rotation 

followed by a right rotation on the same group of two nodes leaves the tree unchanged. As 

Figure 6.3 suggests, properly chosen rotations may improve the balance of a binary tree. 

6.4.3. Red-Black Tree Definitions 

Red-black trees are objects in a class RBtree. We define this class to have four instance 

fields, root, leftSubtree, rightSubtree, and color. The color field specifies the color of the 

root node of the tree. Although individual nodes (of class Element) do not have a color 

field, every node is the root of some subtree, hence every node has a color associated with 

it. For implementation purposes, we define color as a field for the tree instead of the node, 

so that node types do not have to be specific to red-black trees. However, when we are 

discussing trees and nodes abstractly, we speak of nodes as having a color. 

Node colors may be red or black (constants defined in the class). A node may be 

temporarily gray during deletion but the structure is not a red-black tree until this condition 

is changed. The color of an empty tree (represented by the constant nil, and also called an 

external node) is, by definition, black. 

Definition 6.4 Red-black tree 

Let T be a binary tree in which each node has a color, red or black, and all external nodes 

are black. An edge to a black node is called a black edge. The black length of a path is the 

number of black edges on that path. The black depth of a node is the black length of the 

path from the root of the tree to that node. A path from a specified node to an external node 

is called an external path for the specified node. A tree T is a red-black tree (RB tree for 

short) if and only if: 

No red node has a red child. 

2. The black length of all external paths from a given node w is the same; this value is 

called the black height of u. 

3. The root is black. 

A tree 7 1s an almost-red-black tree (ARB tree) if the root is red, but the other conditions 

above hold. @ 

Figure 6.4 shows some possible red-black trees on the same keys as Figure 6.2. The 
light nodes are red. The root of each tree has black height two. The rightmost tree has the 
largest height possible for a red-black tree with six nodes. Notice that its height is less than 
the height of the right tree of Figure 6.2. 

We can gain greater insight into the structure of red-black trees by drawing them so 
that red nodes are on the same level as their parents. With this convention, geometric depth 
corresponds to black depth and all external nodes (empty trees) appear at the same depth! 
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20 

Figure 6.4 Several red-black trees on the same set of keys: Thicker edges are black edges. 

(30) (50) = G—-680) 

(" (60) 

eS teh hk 
30 (60) 

Figure 6.5 Red-black trees drawn with the black-depth convention. We draw an arrow to the 

root for clarity. 

The trees of Figure 6.4 are redrawn in Figure 6.5 using this convention, which is called the 

black-depth convention. 

Now let us look at some ARB trees. In Figure 6.5, the subtree rooted at 60 in the lowest 

figure is an example of an ARB tree. If this subtree were the whole tree, we could simply 

change the color of the root to black and we would have an RB tree. In fact, looking at the 

other subtrees of that figure that have red roots, we see that all of them are ARB trees. The 

following inductive definition is equivalent to Definition 6.4 in that both definitions define 
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the same structures, but the new definition gives more details. Notice that an RB, tree isa 

red-black tree of black height h. 

Definition 6.5 RB, trees and ARB, trees 

Binary trees whose nodes are colored red or black, with external nodes being black, are 

RB), trees or ARB, trees, as follows: 

1. An external node is an RBo tree. 

2. Forh > 1, a binary tree is an ARBy, tree if its root is red and its left and right subtrees 

are each an RB; _ | tree. 

3. Forh => 1, a binary tree is an RB;, tree if its root is black and its left and right subtrees 

are each either an RB,_, tree or an ARB; tree. 

Doing Exercise 6.4 (drawing some RB, and ARB;, trees) will help make this definition 

clear. 

Lemma 6.1 The black height of any RB, tree or ARB, tree is well defined and is h. 

Proof Exercise 6.5. © 

6.4.4 Size and Depth of Red-Black Trees 

Just from the definitions, without looking at any algorithms, we can derive several useful 

facts about red-black trees. These facts are easy to prove by induction, using Definition 6.5, 

and are left as exercises. 

Lemma 6.2 Let T be an RB; tree. That is, let 7 be a red-black tree with black height h. 

Then: 

1. T has at least 2” — 1 internal black nodes. 

WO T has at most 4” — | internal nodes. 

3. The depth of any black node is at most twice its black depth. 

Let A be an ARB, tree. That is, let A be an almost-red-black tree with black height h. Then: 

1. A has at least 2” — 2 internal black nodes. 

2. A has at most | (4”) — 1 internal nodes. 

3. The depth of any black node is at most twice its black depth. © 

This lemma leads to bounds on the depth of any node in terms of n, the number of 

internal nodes. The following theorem shows that the longest path in a red-black tree is 

at most twice as long as the longest path in the most balanced binary tree with the same 

number of nodes. 

Theorem 6.3 Let T be a red-black tree with n internal nodes. Then no node has depth 
greater than 2 lg(m + 1). In other words, the height of T in the usual sense is at most 
2 lea + 1). 
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Proof Let h be the black height of 7. The number of internal nodes, n, is at least the 
number of internal black nodes, which is at least 2” — |. by Lemma 6.2. Soh <Ig(n + 1). 
The node with greatest depth is some external node, and the black depth of all external 
nodes is h. By Lemma 6.2, the depth of any external node is therefore at most 2h. 0 

6.4.5 Insertion into a Red-Black Tree 

The red-black tree definition specifies a constraint on colors and a constraint on black 

height. The idea of insertion into a red-black tree is to insert a red node, thereby guarantee- 

ing that the black-height constraint remains intact. However, the new red node may violate 

the requirement that no red node has a red child. We can repair this violation while main- 

taining the black-height constraint, by changing some combination of colors and structure. 

The first phase of the procedure to insert key K is essentially the same as searching 

for key K ina BST and arriving at an external node (empty tree) because the search fails 

to find the key (see Algorithm 6.1). The next step is to replace that empty tree with a 

tree containing one node: K. The final phase, which is carried out while returning from 

recursive calls, is to fix up any color violations. There are no violations of the black-height 

constraint at any time. 

Example 6.2 Phase one of red-black insertion 

Before looking at the full algorithm, let us consider what happens in phase one of insertion 

if we insert a new key 70 1n the red-black trees shown in Figure 6.5. In all three trees 70 is 

compared to the root and is larger, so the search descends into the right subtree. Then 70 

is compared to 60 and again the search descends right, where 70 is compared to 80. Now 

the search goes left and encounters the external node that is the left subtree of the node 

containing 80. This external node is replaced by a new red node that contains key 70 and 

has two external nodes as children. The present configuration for the upper tree is shown 

in Figure 6.6. In the lower and middle trees, the location of the new node is similar, but its 

parent is black, so there is no color violation, and the procedure is finished. In the upper 

tree, shown in Figure 6.6, a color violation has occurred, because the red node 80 has a 

red child 70. This violation must be repaired to complete the insertion operation. We will 

return to this example after describing the repair method. ™ 

Figure 6.6 A violation of red-black tree color constraint after inserting key 70 in the upper 

tree of Figure 6.5. 
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Definition 6.6 Clusters and critical clusters 

We define a cluster as the set of internal nodes consisting of a black node and all the red 

nodes that can be reached from that black node by following only nonblack edges. (Hence, 

each cluster has exactly one black node, called the root of the cluster.) 

If any node in a cluster is reached by a path of length greater than one from the root 

of the cluster, the cluster is called a critical cluster. (Since all paths within a cluster consist 

of nonblack edges, a path of length two implies that some red node has an edge to another 

red node.) @ 

By Definition 6.2, the principal subtrees of a cluster are those subtrees whose roots 

are not in the cluster, but whose parents are in the cluster. By the definition of cluster, the 

roots of principal subtrees of a cluster are black. A principal subtree can be an external 

node (empty tree). 

Example 6.3 Clusters in red-black trees 

In Figure 6.6 node 40 is a cluster, nodes (20, 30) are a cluster, and nodes (60, 50, 80, 70) 

are a cluster. The latter cluster is a critical cluster because 70 is reached by a path of length 

two from 60, the root of that cluster. The principal subtrees of cluster 40 are rooted at 20 

and 60. The principal subtrees of cluster (60, 50, 80, 70) are five external nodes, and the 

principal subtrees of cluster (20, 30) are three external nodes. & 

If the black height 1s well defined for the root of a cluster, and has the value /, then it 

is well defined and equals / for all the other nodes in the cluster, because they are all red 

nodes. This black height is well defined and equals / if and only if every principal subtree 

has black height / — 1. We will see that this condition does hold at all times during the 

insertion procedure. 

Using the terminology of clusters and critical clusters, we can describe in general 

terms the violations of the red-black tree definition that might occur during insertion of 

anew node. If there is no critical cluster in the tree, there is no violation, and the operation 

is complete. A critical cluster can have either three or four nodes; Figure 6.6 shows an 

example with four nodes. If node 50 were absent (replaced by an external node), then the 

cluster would still be a critical cluster and it would have three nodes. 

Before an insertion operation begins, a red-black tree has no critical clusters (by 

definition). As we saw, phase one of the insertion may create one critical cluster. During 

rebalancing (phase two) the strategy is to repair the one critical cluster either leaving no 

critical clusters or creating one new critical cluster higher in the tree. At no time is there 

more than one critical cluster. Eventually, if the root of the critical cluster is the root of 

the entire tree, the repair will succeed, so the rebalancing eventually succeeds. The repair 

method depends on whether the critical cluster has three or four nodes. 

First, consider a critical cluster of four nodes, as in Figure 6.6, for the cluster (60, 50, 

80, 70). We perform a color flip with the root of the cluster, call it r (r is initially black), 

and its two children (which are both initially red). That is, we make the root, r, red and 
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Figure 6.7 Color flip repairs the critical cluster of four nodes in Figure 6.6. 

the two children black. This increases the black height of r by one, as seen in Figure 6.7 

where r is node 60. However, the edge from the parent of r (node 40 in the figure) to r 

is no longer a black edge, so the black length of paths from the parent through r does not 

change, and the black height of the parent remains well defined. The color flip cures the 

color violation: The path that was black, red, red is now red, black, red. 

If r happens to be the root of the whole tree, and it is turned red by a color flip, it will 

be turned back to black at the end of the insertion procedure. (The root of the whole tree 

also becomes red when the first node is inserted into an empty tree.) The only times that the 

black height of the whole tree changes 1s when the root becomes red during an insertion. 

Since a color flip changes r, the root of the former cluster, to red and puts it in a 

different cluster, there is a possibility that the parent of r 1s a red node and the new cluster 

becomes a critical cluster. In this case the new critical cluster must be repaired. 

Example 6.4 Red-black tree insertion and color flips 

Suppose keys 85, then 90, are inserted into the tree shown in Figure 6.7. The first insertion 

creates no color violation, Phase one of the second insertion creates the situation shown at 

the top of Figure 6.8. The critical cluster consists of (80, 70, 85, 90). The situation after 

performing a color flip is shown at the bottom of Figure 6.8. Node 80 has joined the cluster 

(40, 60), making this cluster into a critical cluster of three nodes. Color flips are not useful 

on critical clusters of three nodes (see Exercise 6.7), so a new technique is needed to repair 

this critical cluster. & 

Now we turn to the technique for repairing a critical cluster of three nodes. Call the 

nodes L, M, and R, in left-to-right order (remember, the tree is assumed to be properly 

drawn). This cluster has four principal subtrees. Call them, again in left-to-right order, 

LL, LR, RL, RR. Recall that the root of each principal subtree must be black, or else 

it would be part of the cluster. The root of the critical cluster is either L or R, since 

otherwise it could not contain a path of length two. The four possible configurations are 

shown as trees (a) through (d) in Figure 6.9. Viewed as a tree of three nodes, the cluster 

is unbalanced. The solution is simply to rebalance the cluster itself, preserving its black 

height. That is, M becomes the new root of the cluster and becomes black; L becomes 

the new left child, and R becomes the new right child, and they both become red. Now 

the principal subtrees are reattached, preserving their order (hence preserving the binary 
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ae PR 

a PH 
Figure 6.8 Color flip repairs the critical cluster of four nodes in the upper tree, giving the 

lower tree, but this tree has a new critical cluster, (40, 60, 80). 

bic oso 
a) 

se0b souk 
Figure 6.9 Rebalancing repairs any critical cluster of three nodes. Four possible initial ar- 

rangements, (a) through (d), become the same final arrangement, right. 

search tree property). LL and LR become the left and right children of L, respectively; RL 

and RR become the left and right children of R, respectively. Notice that four different 

arrangements of the cluster are possible before rebalancing, but they are all the same after 

rebalancing. 
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20 

Figure 6.10 The result of rebalancing the critical cluster (40, 60, 80) in the lower tree of 

Figure 6.8: Node 60 is now the root of the tree. 

Example 6.5 Red-black tree insertion and rebalancing 

The critical cluster (40, 60, 80) in the lower tree of Figure 6.8 is repaired by rebalancing: 

L =40, M = 60, R = 80, LL is rooted at 20, LR is rooted at 50, RL is rooted at 70, and RR 

is rooted at 85. After rebalancing, the root of the tree is 60, as shown in Figure 6.10. = 

We are now ready to describe an implementation of the insertion procedure. See 

Figure 6.11 for the specifications and Figure 6.12 for the instance fields of the RBtree class. 

The insertion procedure rbtInsert uses a recursive procedure rbtIns. The return type 

for rbtIns is an organizer class, InsReturn (see Figure 6.12), because it is desirable for re- 

cursive calls to return both the subtree that has the new node inserted and status information 

to permit detection and repair of any violations. 

RBtree rbtinsert(RBtree oldRBtree, Element newNode) 

Precondition: oldRBtree has the binary search tree property and satisfies the red-black tree 

properties of Definition 6.4. 

Postconditions: The tree returned has newNode properly inserted. oldRBtree may be de- 

stroyed. 

RBtree rbtDelete(RBtree oldRBtree, Key K) 

Precondition: oldRBtree has the binary search tree property and satisfies the red-black tree 

properties of Definition 6.4. 

Postconditions: Hf oldRBtree contained no node with key K,, the tree returned is identical to 

oldRBtree; if oldRBtree contained exactly one node with key K, the tree returned does not 

contain that node; otherwise, one node with key K is deleted. oldRBtree may be destroyed. 

Element rbtSearch(RBtree T, Key K) 

Precondition: T has the binary search tree property. 

Postconditions: The returned value is an element in 7 with the key K, or null if no such 

key isin 7. 

RBtree nil 

Constant denoting the empty tree. 

Figure 6.11 Specifications of the RBtree class 
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class RBtree 

Element root; 

RBtree leftSubtree; 

RBtree rightSubtree; 

int color: 

static class InsReturn 

public RBtree newTree,; 

public int status; 

Figure 6.12 Private instance fields of the RBtree class, and the inner InsReturn class. In 

addition, the constant nil and several methods are public. 

We use the following symbolic constants. They should be defined as distinct integer 

values in the RBtree class. The three-letter status constants represent the colors of the top 

three nodes (left child, root, right child) in the tree returned by rbtIns. 

color red 

black 

status ok 

ror 

brb 

rrb 

brr 

root node 1s red 

root node 1s black 

operation completed, root is same as input root 

root is black, final repair was applied 

root is red, both children black 

root and left child are red 

root and right child are red 

Algorithm 6.2 Red-Black Tree Insertion 

Input: A red-black tree, oldRBtree, that is also a BST; newNode, the node (with key K ) 

to be inserted. If K duplicates an existing key it will be inserted anyway. 

Output: A red-black tree with the same nodes as oldRBtree and also newNode. 

Remarks: 

|. The recursive procedure rbtins is called by the wrapper rbtInsert. The preconditions 
and postconditions of rbtIns are contained in Lemma 6.4. 

tO 

black. 

Go 

If the newTree returned by rbtins to rbtInsert has a red root, the wrapper sets it to 

Additional subroutines appear in Figures 6.13 and 6.14. 

4. A number of subroutines are left for the exercises: colorOf, colorFlip, repairRight, 
and rebalRight. 
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RBtree rbtinsert(RBtree oldRBtree, Element newNode) 
InsReturn ans = rbtIns(oldRBtree, newNode) 

if (ans.newTree.color # black) 

ans.newTree.color = black: 

return ans.newTree; 

’ 

InsReturn rbtins(RBtree oldRBtree, Element newNode) 

InsReturn ans, ansLeft, ansRight; 

if (oldRBtree == nil) 

ans = new InsReturn(); 

ans.newTree = single-node RBtree with red root = newNode. 

ans.status = brb; 

else 

if (newNode.key < oldRBtree.root.key) 

ansLeft = rbtIns(oldRBtree.leftSubtree, newNode); 

ans = repairLeft(oldRBtree, ansLeft); 

else 

ansRight = rbtIns(oldRBtree.rightSubtree, newNode); 

ans = repairRight(oldRBtree, ansRight); 

return ans; 

Lemma 6.4 If the parameter oldRBtree of rbtins is an RB, tree or an ARB; | tree, then 

the newTree and status fields returned are one of the following combinations: 

status = ok and newTree is an RB, tree or an ARB; +, tree. 

2. status = rbr and newTree is an RB, tree. 

3. status = brb and newTree is an ARB, +, tree. 

4. status = rrb and newTree.color = red, newTree.leftSubtree is an ARB, +, tree, and 

newTree.rightSubtree is an RB; tree. 

5. status = brr and newTree.color = red, newTree.rightSubtree is an ARB; | tree, and 

newTree.leftSubtree is an RB;,, tree. 

Proof Exercise'6:12. oO 

Theorem 6.5 Algorithm 6.2 correctly inserts a new node in a red-black tree with n nodes 

in © (log n) time in the worst case. 

Proof The proof follows from Lemma 6.4 and Theorem 6.3. For example, if rbtlns 

returns status rrb or brr, then rbtInsert changes the color of the root to black, and the 

tree now satisfies all the red-black tree properties of Definition 6.4, as the color violation is 

removed. Similarly, if the returned status is brb or ok, changing the root to black ensures 

that the tree is a red-black tree. 0 

267 



268 Chapter 6 Dynamic Sets and Searching 

/«* Precondition for repairLeft: 

+ oldTree has well-defined black height, but possibly has 

«x two consecutive red nodes. «/ 

/«« Postcondition: Let ans be the value returned. 

*« ans.newTree is the result of a color flip, or rebalance, 

x if needed, on oldTree. Otherwise ans.newTree = oldTree. 

+ ans.status indicates which: If a color flip was done, 

ans.status = brb and ans.newTree has a red root. 

« If a rebalance occurred, ans.status = rbr and ans.newTree 

* is a red—black tree. 

« If neither, ans.status = ok and ans.newTree is a 

* red—black tree. 

+/ 
InsReturn repairLeft(RBtree oldTree, InsReturn ansLeft) 

InsReturn ans = new InsReturn(): 

if (ansLeft.status == ok) 

// Nothing to change 

ans.newTree = oldTree; 

ans.status = ok; 

else 

oldTree.leftSubtree = ansLeft.newTree:; 

if (ansLeft.status == rbr) 

// No more repair needed 

ans.newTree = oldTree: 

ans.status = ok; 

else if (ansLeft.status == brb) 

// Left subtree OK; check root color 

if (oldTree.color == black) 

ans.status = ok: 

else 

ans.status = rrb; 

ans.newTree = oldTree: 

else if (colorOf(oldTree.rightSubtree) == red) 

// Critical cluster is 4. 

colorFlip(oldTree); 

ans.newTree = oldTree; 

ans.status = brb; 

else 

// Critical cluster is 3. 

ans.newTree = rebalLeft(oldTree, ansLeft.status): 

ans.status = ok: 

return ans: 

% 

Figure 6.13. The repairLeft subroutine for Algorithm 6.2 
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/ «x Precondition for rebalLeft: 

+ oldTree has black root and well-defined black height, but 

« has 2 consecutive red nodes, as specified by leftStatus. 

+ oldTree.leftSubtree is red in all cases, and one of its 

x Children (grandchild of oldTree) is red. 

x If leftStatus = rrb, it is the left-left grandchild. 

« If leftStatus = brr, it is the left-right grandchild. 

x/ 

/ «x Postcondition: The tree returned is a 

« red-black tree that results from rebalancing oldTree. 

xf 

RBtree rebalLeft(RBtree oldTree, int leftStatus) 

RBtree L, M, R, LR, RL; 

if (leftStatus == rrb) // case (c) 

R = oldTree; 

M = oldTree.leftSubtree; 

L = M.leftSubtree: 

RL = M.rightSubtree; 

R.leftSubtree = RL; 

M.rightSubtree = R; 

else 

// leftStatus == brr, case (da) 

R = oldTree; 

L = oldTree.leftSubtree; 

M = L.rightSubtree; 

LR = M.leftSubtree; 

RL = M.rightSubtree; 

R.leftSubtree = RL; 

L.rightSubtree = LR; 

M.rightSubtree = R; 

M.leftSubtree = L; 

// Now cluster is rooted at M. 

L.color = red; 

R.color = red; 

M.color = black; 

return M; 

Figure 6.14 The rebalLeft subroutine for Algorithm 6.2: Variables L, M, R, LR, and RL corre- 

spond to Figure 6.9. This subroutine handles cases (c) and (d) in that figure, where R ts the root 

of the critical cluster before rebalancing. In case (c), rrb was returned from the subtree rooted at 

M. Incase (d), brr was returned from the subtree rooted at L. The tree is reconfigured as shown 

at the right of Figure 6.9. 
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6.4.6 Deletion from a Red-Black Tree 

Deleting a node from a red-black tree is rather more complicated than insertion. First, 

deleting a node from any BST is more complicated than inserting into a BST. The reason 

for this, intuitively, is that we always are able to insert at a leaf, but we may be forced to 

delete anywhere in the tree. 

In addition, for a red-black tree, it is necessary to restore the balance of black height in 

some cases. Whereas the insertion procedure was always able to maintain the correct black 

height, and just had to repair color violations, the deletion procedure never encounters a 

color violation, but must repair height errors. In particular, deleting a black node causes 

its parent to be out of balance. (That is, the parent will no longer have a well-defined 

black height as required in the second condition of Definition 6.4.) In several cases, simply 

recoloring a red node to black is sufficient to restore the balance. The difficult cases arise 

when this simple expedient 1s not available. 

Deletion from a Binary Search Tree 

First, we need to develop a procedure to delete from a BST, without worrying about it being 

a red-black tree. The thing to remember is that the node that is to be /ogically deleted, in 

the sense that its key disappears, is not usually the node that 1s structurally deleted. The 

structurally deleted node is normally the tree successor (defined below) of the logically 

deleted node, and the information (including the key) in the structurally deleted node 

replaces the information in the logically deleted node. This does not upset the key order 

for the BST property because the key of the tree successor immediately follows that of the 

logically deleted node; in other words, in a left-to-right sweep of a properly drawn tree, the 

tree successor appears immediately after the node to be logically deleted. 

Definition 6.7 Tree successor 

In a 2-tree the tree successor of any internal node w is the leftmost internal node in the right 

subtree of w, or simply the right subtree of uv if it is an external node. = 

If the tree successor of uw is an external node, then w is the maximum key in its tree, 

and it can simply be structurally deleted, moving its left child up to its position. For the rest 

of the discussion, we assume this case does not apply. 

Suppose node wu is to be logically deleted. Let o be the tree successor of u, let S be 

the subtree rooted at o, and let 7 be the parent of o. The left subtree of S is necessarily 

empty, because the tree successor is a leftmost node. Therefore structural deletion can be 

accomplished by attaching the right subtree of S as a subtree of z, replacing S. If 7 =u, 
then S was the right subtree of zr; otherwise S was the left subtree of 2. Note that the right 
subtree of S might be an external node. 

Example 6.6 BST deletion 

Figure 6.15 shows several examples of logical and structural deletion. Although node 
colors are included for later reference, they do not affect the basic BST deletion procedure. 
In the original tree, the tree successor of 80 is 85, the tree successor of 60 is 70, and so on. 
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: 
(a) Original tree 

(c) Logically delete 85 

(d) Logically delete 40 (e) Logically delete 60 

Figure 6.15 The result of logically deleting various nodes (marked as w) in a red-black tree 

(or any binary search with a similar node structure), as discussed in Examples 6.6 and 6.7: The 

structurally deleted node, o, is indicated by a dashed circle and its prior parent is marked as z. 

The parent of the gray node does not have a well-defined black height. 

For parts (b), (c), and (d), 7 =u. That is, the tree successor of uw is its right child. (This 

would be unusual in a larger tree.) The successor’s right subtree will become the right 

subtree of uw after the successor’s information is copied into uw. Specifically, to logically 

delete 80, the information from its tree successor, 85, is copied into the node that contained 

80; then the tree successor is structurally deleted. The subtree rooted at 90 was the right 

subtree of the former tree successor, so now it becomes the right subtree of 7. In the case 

of logically deleting 85, the structure looks the same as after deleting 80, but a different 

node was structurally deleted in each case. 

The more typical case 1s illustrated by deleting 60 in part (e) of Figure 6.15, because 

here uw and z are different nodes. The tree successor 1s 70. Information is copied from 70 

into w, the node that contained 60; then the tree successor is structurally deleted. The right 
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subtree of the former tree successor (in this case an external node) becomes the left subtree 

Ok mm 

We will return to these examples to consider the balancing implications for red-black 

trees. @ 

Overview of Red-Black Deletion 

The procedure for red-black tree deletion can be summarized as follows: 

1. Doa standard BST search to locate the node to be logically deleted; call it w. 

2. If the right child of wu is an external node, identify uw as the node to be structurally 

deleted. 

eS) If the right child of w is an internal node, find the tree successor of uv, copy the key and 

information from the tree successor to uv. (The color of w is not changed at this point.) 

Identify the tree successor as the node to be structurally deleted. 

4. Carry out the structural deletion and repair any imbalance of black height. 

We now consider the last step in more detail. 

Example 6.7 | Red-black tree deletion 

Let’s take another look at Figure 6.15. In part (b), although a black node was structurally 

deleted, its right child was an internal node, so it was necessarily red (why?), and could 

be changed to black to restore the balance of black heights. In part (c), a red node was 

structurally deleted, so no imbalance of black height occurred. 

Parts (d) and (e) show the result when the tree successor is black and its right subtree 

is black (and 1s necessarily an external node). The remaining subtree after deletion (just 

an external node) has insufficient black height, which is indicated by the color gray. For 

example, consider the case when 60 is to be deleted; 70 is its tree successor. Before the 

deletion, node 70 has black height 1, and is the left child of node 80. After 70 is copied 

and its former node structurally deleted (the lower right diagram), the external node in its 

place has black height 0. Now the tree rooted at node 80 is out of balance with respect to 

the black lengths of external paths. The situation is similar after logically deleting node 40. 

These are examples in which we need a repair that goes beyond a simple color change. 

Restoring Black Height 

A gray node is the root of a subtree that is itself an RB); tree, but is in a position where 

its parent requires an RB; tree. (More precisely, the subtree is an RB;,_; tree if the gray 

node is interpreted as being black.) That is, the subtree rooted at a gray node has a black 

height that is well defined, but is one less than what is required for its parent to have a well 

defined black height. The gray node initially is an external node, but the gray color might 

propagate up the tree. 

The theme of repairing this imbalance is to find some nearby red node that can be 

changed to black. Then by local restructuring, the black lengths of paths can be brought 
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Figure 6.16 (a) Nodes in the vicinity of g, the gray node, whose tree’s black height is too 

small, during deletion from a red-black tree. Colors of p, s, ¢ andr vary, creating different cases. 

(a) (b) 

(b) Propagation of the gray node when all nearby nodes are black. The operation is symmetric 

when g Is aright child. 

back into balance. If there is no such red node sufficiently nearby, then the imbalance must 

be propagated to a higher level of the tree, and repaired recursively. 

Let’s introduce some nomenclature. We call the gray node g, call its parent p, and call 

its sibling s (the other child of p). Two other important nodes are the left and right children 

of s, which we call € and r, respectively (see Figure 6.16a). 

The case that cannot be handled directly is that in which p,s, € and r are all black. The 

method of propagation is to change the color of s to red and g to black, bringing p back 

into balance, as shown in Figure 6.16(b). However, this decreases the black height of p by 

one, compared to its value before the deletion began, so p is now the gray node. This is 

the only case in which the gray node propagates up the tree, and it involves color changes 

only, no structural changes to the tree. 

Notice that, if p is the root of the whole tree and becomes gray, it has no parent to 

throw out of balance, and the red-black properties have been restored (after p is colored 

black). Therefore it is all right if the gray node propagates all the way to the root of the 

tree. We now concentrate on the cases when the gray node does nor propagate. 

If any of p, s. €, or r are red, then the black height imbalance can be repaired without 

propagation. The cases get complicated and there are quite a few of them, but there is a 

common theme. Recall that ¢ is the root of an RB, —, tree. Form a node group with p as the 

root, such that all the principal subtrees of the group (Definition 6.2) are RB; _| trees. Call 

this the deletion rebalance group. Now restructure the deletion rebalance group (isolated 

from the rest of the tree, with external nodes in place of the principal subtrees) as follows: 

1. If p was red, the group should form an RB, or ARB; tree; 

2. If p was black, the group should form an KB; tree. 

Now attach the restructured group as a subtree of the parent of p, replacing the former edge 

to p with an edge to the (possibly) new root of the group; also, reattach all the principal 

subtrees, in correct order. 

ITE 
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(is red: 

p is red: 

ris red: 

sis red: 

Figure 6.17 Repairs of black height errors during deletion: Cases are considered in order from 

top to bottom. The last case does not remove the gray node, but transforms into one of the first 

two cases. Cases are symmetric when g is the right child of p, and then the order is r, p, €, s. 

The number of cases can be reduced by following a certain order in looking for red 

nodes: When g ts a left child, check them in the order ¢, p, r, and finally s. Figure 6.17 

shows the appropriate transformations; note that it shows only the relevant part of each 

deletion rebalance group. For example, in the first case, where ¢ is red, the right child of 

s is in the deletion rebalance group if it is red, but 1s the root of a principal subtree of the 

group if itis black. However, the appropriate transformation is the same in both cases. 



6.5 

6.5 Hashing 

A question mark next to a node means that it might be either red or black, but both 
nodes that have question marks, one before and one after the transformation, must be the 
same color. 

The last case, when only s is red, does not remove the gray node, but transforms into 
one of the first two cases, depending on the color of ¢’s left child. (Node ¢ will be called s, 
the sibling of g, for the final restructuring. ) 

When g is a right child, the order is symmetric: check r, p, ¢, and finally s. (To help 

remember the order, s is always last, and the first three are in alphabetical order when g is 

a left child, and in reverse alphabetical order when g is a right child.) 

Example 6.8 Black-height repair 

Consider the tree in the upper part of Figure 6.18(a), which resulted from logical deletion 

of 60 in Figure 6.15(e). The deletion created a gray node. Now node 80 is in the role of p, 

85 is s, 90 is r, and the external (left) child of 85 is ¢. The case that applies in Figure 6.17 is 

the one in which p is red (and ¢ is black), that is, the second case. Therefore 80 descends to 

the level of 85, which is its new parent; 80 takes the former left child of 85 as its new right 

child. When the group is reattached to the tree, 70 will have 85 as its right child instead of 

80. The final tree is shown in the lower part of Figure 6.18(a). 

The tree in the upper part of Figure 6.18(b) resulted from logically deleting 40 in Fig- 

ure 6.15(d). In this case the gray node is a right child, so the mirror images of Figure 6.17 

are needed; note that ¢ and r interchange their roles. Node 50 is in the role of p, 20 is s, 

30 is r and the external child of 20 is ¢. Therefore the first case of Figure 6.17 applies (7 1s 

red): 30 moves up to the former level of 50 and adopts its color, while 50 drops one level 

and turns black. The former children of 30 are distributed to 20 and 50. When the group is 

reattached, 30 becomes the new left child of 60. The final tree is shown in the lower part of 

Figure 6.18(b). # 

As with repairs for insertion, repairs for deletion do O(1) structural changes, but may 

do O(log n) color changes. The implementation is tedious because of all the cases, but is 

straightforward, and is left as an exercise. 

Hashing 

Hashing is a technique often used to implement a Dictionary ADT, although it has other 

uses too. Imagine that we could assign a unique array index to every possible key that could 

occur in an application. Then locating, inserting, and deleting elements could be done very 

easily and quickly. 

Normally, of course, the key space (the set of all possible keys) is much too large. A 

typical example is the key space of strings of characters, perhaps names. Suppose a name 

is assumed to be at most 20 letters and spaces. The key space has more than 2!” elements. 

That is, if we are using an array, it would need 2!" cells to assign a different index to each 

string, which is completely infeasible. Even though the key space is extremely large, only 

a small fraction of the possible keys will occur in a particular application. The actual set of 

Jad fis. 
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+e abs 
rAR | LP RPS 

: 7 

9%) ee 
(a) Case 2: p (80) was red; € (85’s left child) CoG@aserlt 0) was red; p (50) changed 

was black. color. 

Figure 6.18 The result of rebalancing after deletions, according to cases of Figure 6.17: Note 

that part (b),the example for case |, has its gray node as the right child of p, so the operation is 

the mirror image of case | in Figure 6.17. 

elements being used might number in the hundreds, or even up to a few million. An array 

with 4 million would be enough to give a different index to each element, and such array 

sizes are feasible. 

The purpose of hashing is to translate an extremely large key space into a reasonably 

small range of integers. The translated value of the key is called the hash code for that 

key, and it is computed by some hash function. We can use an array to store each element 

according to its hash code. 

The name “hash” originates from the early practice of “chopping up” the key and 

selecting certain bits to make up the hash code for that key. 

The job of the hash function is to assign integers to keys in such a way that it is unlikely 

that two keys in a “typical” set of n elements are mapped to the same integer. When this 

happens, the event is called a collision. To reduce the chance of collisions, if we have n 

elements, we typically use a range of integers up to about 2 for hash codes. 

The most common, but not the only, use of hashing is to maintain a hash table. The 

hash table is an array H on indexes 0,...,/ — 1; that is, the table has / entries. The entries 

of H are called hash cells. The hash function maps each key into an integer in the range 

A) aac cake 

Example 6.9 Hashing 

For a small example, suppose the key space is four-digit integers, and it is desired to 

translate them into the integers 0,..., 7. We choose the hash function: 
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hashCode(x) = (5x mod 8). 

Assume our actual set consists of six important historical dates: 1055, 1492, 1776, 1812, 
1918, and 1945. They map into the range 0,... , 7 as follows: 

hash code 0 | 2 3 4 5 6 7 

1776 1492/1945} 1918 

1812 

If we have a hash table consisting of an array with eight entries, elements can be stored 

according to their hash code and they will be spread out over the whole table. However, 

some elements do have the same hash code, so some provision must be made for this event. 

In this example, keys 1492 and 1812 collided, meaning that they mapped to the same hash 

code. 

key 1055 

The two issues to be addressed in designing a hash table are: What is the hash function 

and what is the method of handling collisions? The two issues are fairly independent. The 

question of what function makes a good hash function may depend on the application. We 

will look at the collision issue. 

6.5.1 Closed Address Hashing 
Closed address hashing, also called chained hashing, is the simplest collision policy. Each 

entry in the hash table, say H[/], is a linked list (see Section 2.3.2) whose elements have 

hash code /. Initially, all entries in H are empty lists. To insert an element, first compute its 

hash code, say 7, then insert the element into the linked list H[/]. If the table H is currently 

storing 2 elements, the load factor is defined to be a =n/h. Note that @ is the average 

number of elements in one linked list. 

To search for a given key K, first compute its hash code, say 7, then search through the 

linked list at H[i], comparing the keys of the elements in the list with the key K. Notice 

that we can’t assume, just because an element’s hash code is / that its key is K. The hash 

function is a many-to-one function. 

Suppose any element in the table is equally likely to be searched for, and 7 elements 

are stored. What is the average cost of a successful search? Let’s assume that the cost 

of computing the hash code is equal to the cost of doing a small number, say a, of key 

comparisons. If an element hashes into a cell 7, whose linked list has L; elements, then 

the average number of comparisons needed to locate the element is (L; + 1)/2. Then the 

average cost of a successful search is given by 

ae S Uae ye 

For the arrangement of Example 6.9, this is a + 7/6. A total of seven key comparisons 

would be done to locate each element once. 

PIT 
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If some fixed fraction of the elements, say n/10, hash into the same cell, then the 

average successful search takes more than 1/200 key comparisons. In the worst case, 

all elements hash into the same cell, and the average successful search takes about 1/2, 

or @(n), key comparisons. These cases are no better (in growth rate) than searching an 

unordered array, as in Algorithm 1.1. They demonstrate the importance of spreading the 

hash codes fairly evenly over the entire range of / integers. 

If we assume that the hash code for each key in our set is equally likely to be any inte- 

ger in the range 0,...,  — 1, then it can be shown that the average successful search takes 

O(1 + @) key comparisons, where a = n/h is the load factor. (See Notes and References 

at the end of the chapter for sources that have all analytical results not derived in the text.) 

If h is proportional to n (which can be accomplished with array doubling, as described in 

Section 6.2), this is O(1) key comparisons, on average, for a successful search. 

In practical situations it is unlikely that we can rigorously justify a claim that hash 

codes are uniformly distributed. Nevertheless, with well-chosen hash functions, experience 

supports this assumption in many cases. 

Now consider the cost for an unsuccessful search for a key K that hashes to index 

i. It is clear that the worst case is proportional to the longest list in the hash table, and 

the average depends on the assumed distribution of unsuccessful search requests. Costs of 

unsuccessful searches are about a factor of two worse than costs for successful searches. 

Besides searching for a key in response to a retrieval request, the other operations to 

consider are insertion and deletion. Clearly, insertion involves no key comparisons, and 

just depends on the cost of computing the hash code. Deletion cost is proportional to the 

cost for a successful search if the deletion is successful (only one key is deleted in case of 

duplicates), and is proportional to the cost of an unsuccessful search otherwise. 

Instead of a linked list at each hash cell, why not use a balanced binary search tree? 

While this has theoretical advantages, it is rarely done because, in practice, load factors 

are kept small, and people rely on getting something resembling the favorable behavior 

of uniformly distributed hash codes. Therefore the space and time overheads for more 

sophisticated data structures are not usually considered worthwhile. 

6.5.2 Open Address Hashing 

Open addressing is a strategy for storing all elements right in the array of the hash table, 

rather than using linked lists to accommodate collisions. Thus H [i] contains an actual key, 

rather than a list of keys. Open addressing 1s less flexible than closed addressing because 

load factors in excess of I are impossible. However, it is usually more space efficient 

because linked lists are not used (but see Exercise 6.19). Searching takes place right in 

the hash table instead of traversing through linked lists, so it is likely to be more efficient 

in me also. 

The fundamental idea of open addressing is that, if the hash cell corresponding to the 

hash code is occupied by a different element, then a sequence of alternative locations for 

the current element is defined. The process of computing alternative locations is called 

rehashing. 
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The simplest rehashing policy is linear probing. Suppose a key K hashes to location 
i. Suppose some other key occupies H[i]. The following function is used to generate 
alternative locations: 

rehash(/) =(j +1) modh 

where j is the location most recently probed. Initially 7 =, the hash code for K. Notice 
that this version of rehash does not depend on K. 

Example 6.10 Linear probing 

Consider the linear probing policy for storing the keys given in Example 6.9. Assume the 
keys are inserted in the order given: 1055, 1492, 1776, 1812, 1918, 1945. 

1. 1055 hashes to 3 and is stored in H[3]. 

2. 1492 hashes to 4 and is stored in H[4]. 

3. 1776 hashes to 0 and is stored in H[O]. 

4. 1812 hashes to 4, but H[4] is occupied, so linear probing rehashes 4 to 5, which is 

empty, so 1812 1s stored in H[5]. 

5. 1918 hashes to 6 and 1s stored in H [6]. 

6. 1945 hashes to 5, but H[5] is occupied. Note that H[5] is not occupied by a key that 

hashed to 5. This shows how collisions can occur among keys with different hash codes 

under open addressing. However, since H[5] is occupied, linear probing rehashes 5 to 

6 for the next location in which to try to store 1945. This cell is also occupied, so 6 is 

rehashed to 7, which finally becomes the home for 1945. 

The final array layout for H 1s the following: 

TA OMe Ce ae a 
H [1776] | 10551492 1812]1918]1945 

The retrieval procedure imitates the insertion procedure, more or less. To search for 

key K, compute its hash code, say 7. If H[i] is empty, K is not in the table. Otherwise, if 

H{i] contains some key other than K, rehash to 7} = (i + 1) mod h). If H[i)] is empty, 

K is not in the table. Otherwise, if H[i,] contains some key other than K, rehash to 

i2 = ((i; + 1) mod hf), and so on. 

Example 6.11 High load factor for linear probing 

Consider searching for each of the keys in the table created in Example 6.10. Keys 1055, 

1492, 1776, and 1918 are found with one “probe”; that is, they are found in the first cell 

inspected, the cell of their hash codes. Key 1812 requires two probes and 1945 requires 

three probes. Thus the total probes, or key comparisons, for the set is 9, compared to 7 for 

the closed addressing policy. 

Now suppose we search for the key 1543, which is not in the table. This key hashes to 

3. So H{[3] is inspected, but does not contain 1543. Linear probing rehashes 3 to 4, 4 to 5, 

DATES) 
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5 to 6, and 6 to 7, but each time, the hash cell is occupied by a different key. Are we done 

finally? No! Rehashing “wraps around.” The next probe is at ((7 + 1) mod 8) = 0. And 

H{O] is occupied by a different key! Finally, 0 rehashes to 1, where an empty cell is found. 

This confirms that 1543 is not in the table. (You should work out why it is unnecessary to 

check H'[2].) 

This example shows the weakness of open addressing with linear probing when the 

load factor approaches |. Long chains of keys with different hash codes build up, making 

it necessary to travel a long way to find an empty cell. 

As you might suspect from the previous example, even with the favorable assumption 

that all hash codes are equally likely to occur among the elements of the set, the average 

cost of a successful search is not proportional to a, the load factor, under the policy of open 

addressing with linear probing. In fact, with high-powered mathematics, it can be shown to 

approach \/n for a load factor of 1. (See Notes and References at the end of the chapter.) 

With all these problems lurking, why even consider open addressing? One reason is 

that performance is quite good at low load factors. With array doubling, the load factor can 

always be kept under 0.5, for example. Long chains at a load factor of 0.5 are unlikely. 

Example 6.12 Expansion of hash table 

Consider again the keys of Example 6.9: 1055, 1492, 1776, 1812, 1918, and 1945. Suppose 

the hash table has been doubled to 16 entries and the new hash function is hashCode(x) = 

(5x mod 16). Now the hash code mapping looks like this: 

1 2 3 4 & 6. 4 

H\|1776 | [1492 1812/1918 | | | 1055] [1945 | 

oo \o S) 7 i n 

All keys are stored in the cells of their hash code except for 1812, which still collides with 

1492. The previous chain of six contiguous filled cells has been broken up into four separate 

chains. 

Another reason why open addressing is still an effective method is that a more so- 

phisticated rehashing scheme alleviates the problem of long chains of occupied cells, for 

moderate load factors, say up to 0.7. One such scheme is double hashing. Instead of hav- 

ing rehash increment by 1, as in linear probing, it increments by an amount d, calculated 

from the key A. That is, we compute d = hashIncr(K ) using a hash function different from 

hashCode, then compute 

rehash(j,d) =(j +d) modh. 

Thus if the hash code of K is and the increment is d, the sequence of cells to be searched is 

1, (1 +d), (i + 2d), and so on. Pseudocode for the search procedure would look something 

like this, assuming the constant emptyCell denotes an empty hash cell. 
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Element hashFind(Key K) 

Element ans; 

int code = hashCode(k); 

int incr = hashincr(K): 

int loc = code; , 

ans = null; // Default is failure 

while (H[loc] 4 emptyCell) 

if (H{loc].key == K) 

ans = H[{loc]: 

break; 

loc = rehash(loc, incr): 

if (loc == code) 

break: 

return ans: 

The second break prevents an infinite loop; it is unnecessary if d and / are chosen in a 

way that all cells in the array are eventually visited by the sequence that rehash generates, 

and it is known that the array has at least one empty cell. 

Deletion under Open Addressing 

Another complication arises if elements might be deleted from a hash table. The search 

procedure stops searching when it encounters an empty cell. Look at the table set up in 

Example 6.10, and recall that 1945 hashes to 5 in this example, but due to rehashing, 

1945 was stored in cell 7. Suppose 1918 is subsequently deleted, and H[6] is set back 

to emptyCell. Now a subsequent search for 1945 will start at 5, rehash to 6, and terminate 

in failure. Key 1945 has been “cut off” from the cell of its hash code. 

The simplest way to avoid this problem is to define another constant, obsolete. When 

1918 is deleted, the value of H[6]| is set to obsolete. Now the search procedure will 

continue over H[6] as though it had an element in it, but will nor attempt to match the 

search key K to this cell. However, the “obsolete” cell may be reused for a new element, 

if the occasion arises. In judging the load factor, “obsolete” cells count as elements. If the 

number of “obsolete” cells becomes excessive over time, it may be advisable to “clean up” 

by allocating a new (empty) hash table, then going through the old array sequentially and 

reinserting all genuine elements into the new hash table. 

6.5.3. Hash Functions 

As we have seen, the main criterion for a good hash function is that it spreads the keys 

around fairly uniformly. See the Notes and References at the end of the chapter for theo- 

retical work on the subject. We offer some simple prescriptions in this section. 

Intuitively, one way to judge if a function spreads the keys around 1s to ask whether its 

output is “predictable.” The opposite of predictability is randomness, so a simple approach 

to choosing a hash function is to pattern it after a pseudorandom number generator. One 

class of pseudorandom number generators is called “multiplicative congruential.” In words 
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of fewer syllables, this means “multiply by a constant, then take the remainder after 

dividing by another constant.’ The second constant is called the modulus. For a hash 

function the modulus ts /2, the size of the hash table. 

For strings, computing the hash code is likely to be the dominant cost in a search or 

insert operation, because all characters of the string are usually involved. (In most string 

comparisons, only one or two characters need to be checked before a difference is found.) 

Considering this fact, our prescription is the following: 

- 

Choose /h as a power of 2, say 2*, and h > 8. 

Implement “mod” by extracting the x low-order bits. (The code in Java, C or C++ can 

be “(num & (h-1))” because / is a power of 2.) 

Choose the multiplier a = 8 [h/23] +5. 

If the key type is integer, the hash function is 

hashCode(K ) = (a K) mod h. 

If the key type is a pair of integers, (K,;, K2), the hash function can be 

hashCode(K), K2) = (a> Kj +a K2) mod h. 

If the key type is a string of characters, treat them as a sequence of integers, kj, k2,.. .. 

and use as the hash function: 

hashCode(K) = (a‘ kj + oat ko +---+ak;) mod h where ¢ is length of K. 

Use the identity 

(a‘ ky a ko t---+takp)=(--: (ky a) + ko) a) ++ ->- + ke) a) 

to make the computation efficient. It might be a good idea to take the mod after each 

multiplication to avoid overflow. 

Use array doubling whenever the load factor gets high, say above 0.5. After allocating 

a new array for the hash table of size 2’*!, set up the constants / and a for the 

new hash function. Now go through the old array sequentially and, for each cell that 

contains a genuine key, insert that key into the new hash table using the new hash 

function. 

If double hashing is desired, the second hash function (called hashincr in the search 

procedure in Section 6.5.2) can be simpler, to save time. For example, if the key type 

is strings of characters, use (2k; + 1) mod h. Computing an odd increment ensures 

that the whole hash table is accessed in the search for an empty cell (provided h is a 

power of two). 

As we said, this is a prescription to get a hash table up and running, with a minimum of 

work. It is handy for the implementation of a dictionary ADT. 
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6.6 Dynamic Equivalence Relations and Union-Find Programs 

Dynamic Equivalence Relations and 
Union-Find Programs 

Dynamic equivalence relations arise in a variety of problems on sets or graphs. The Union- 

Find abstract data type provides a tool for maintaining dynamic equivalence relations. 

Although it has a very efficient (and simple!) implementation, the analysis is challenging. 

The applications include a minimum spanning tree algorithm, discussed in Section 8.4, 

and some problems mentioned at the end of this section. 

6.6.1. Dynamic Equivalence Relations 

An equivalence relation R on a set S is a binary relation on S that is reflexive, symmetric, 

and transitive (Section 1.3.1). That is, for all s, t, and wu in S, it satisfies these properties: 

sRs:if sRt, thent Rs; and, if sRt and +Ru, then s Ru. The equivalence class of an element 

s in Sis the subset of S that contains all elements equivalent to s. The equivalence classes 

form a partition of S, that is, they are disjoint and their union is S$. The symbol “=” will be 

used from now on to denote an equivalence relation. 

The problem studied in this section is to represent, modify, and answer certain ques- 

tions about an equivalence relation that changes during a computation. The equivalence 

relation is initially the equality relation, that is, each element is in a set by itself. The prob- 

lem is to process a sequence of instructions of the following two types, where s; and 5; are 

elements of S: 

[ss = 577 

2. MAKE s; = 5; (where s; =; 1s not already true). 

Question | is answered “yes” or “no.” The correct answer depends on the instructions of the 

second type that have been received already; the answer is yes if and only if the instruction 

“MAKE 5; = 5; has already appeared or s; = s; can be derived by applying the reflexive, 

symmetric, and transitive properties to pairs that were explicitly made equivalent by the 

second type of instruction. The response to the latter, that is, the MAKE instructions, is to 

modify the data structure that represents the equivalence relation so that later instructions 

of the first type will be answered correctly. 

Consider the following example where S = {1, 2, 3, 4, 5}. The sequence of instructions 

is in the left-hand column. The right-hand column shows the response—either a yes or no 

answer, or the set of equivalence classes for the relation as defined at the time. 

Equivalence classes to start: {1} , {2} , {3}. {4} . {5} 

1 w2=4? No 

iG No 

3. MAKE3=5._ {I}, {2}, (3, 5}, {4} 

a MARE = 9.” {1} 12.3757, (ah 

jee eon Yes 

6. MAKE4=1. {1,4}, {2,3,5} 

7. %2=4? No 
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6.6.2. Some Obvious Implementations 

To compare various implementation strategies we will count operations of various kinds 

done by each strategy to process a sequence of m MAKE and/or Is instructions on a set S$ 

with n elements. We start by examining two fairly obvious data structures for representing 

the relation: matrices and arrays. 

A matrix representation of an equivalence relation requires n° cells (or roughly n*/2 

if the symmetry is used). For an Is instruction only one entry need be examined; however, a 

MAKE instruction would require copying several rows. A sequence of m MAKE instructions 

(hence, a worst-case sequence of m MAKEs and Iss) would require at least mm operations. 

The amount of space used can be reduced to n by using an array, say, eqClass, where 

eqClass[i] is a label or name for the equivalence class containing s;. An instruction Is 

8; = 8;? requires looking up and comparing eqClass[i] and eqClassl[j]. For MAKE s; = Sis 

each entry is examined to see if it equals eqClass[i] and, if so, is assigned eqClass[j]. Again, 

for a sequence of m MAKEs (hence, for a worst-case sequence) at least mm operations are 

done. 

Both methods have inefficient aspects—the copying in the first and the search (for 

elements in eqClass[i]) in the latter. Better solutions use links to avoid the extra work. 

6.6.3 Union-Find Programs 

The effect of a MAKE instruction is to form the union of two subsets of S. An Is can be 

answered easily if we have a way of finding out which set a given element is in. The Union- 

Find abstract data type (Section 2.5.2) provides just these operations. Initially, makeSet is 

run on each element of S to make 7 singleton sets. The find and union operations would 

be used as follows to implement the equivalence instructions: 

IS Sj = Sj MAKE §; = Sj 

t = find(s;); t = find(s;): 

we find(s;); u = find(s;); 

(==) union(f, i) 

We regard create(n) as a shorthand for 

create(0), makeSet(1), makeSet(2), ..., makeSet(n). 

This-assumes that S = {1,...., n}. The resultis a collection of sets, each containing a single 
element, | <7 <n. If elements need to be added one by one during the program, instead 
of all at the beginning, we assume makeSet is run on them is numerical sequence, with no 
gaps: makeSet(1), makeSet(2), . . ., makeSet(k). If this is not the natural numbering for the 
elements, a Dictionary ADT (Section 2.5.3) can be used for the translation, 

Thus we turn our attention to the makeSet, union, and find operators and a particular 
data structure in which they can be implemented easily. We will represent each equivalence 
class, or subset, by an in-tree. Recall that the In-Tree abstract data type (Section 2.3.5) 
provides the following operations: 
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makeNode construct a tree of one node 

setParent change the parent of a node 

setNodeData — set an integer data value for the node 

isRoot return true if the node has no parent 

parent return the parent of the node 

nodeData return the data value 

Each root will be used as a label or identifier for its tree. The instruction r = find(v) 

finds and assigns to r the root of the tree containing v. The parameters of union must be 

roots; union(t, u) attaches together the trees with roots ¢ and u (t £ uw). 

The In-Tree ADT makes it easy to implement union, and find. To combine roots ¢ and 

u with uw being the root of the resulting in-tree, as required by union, simply execute the in- 

tree operation setParent(r, w). To find the root of a node, use the parent function repeatedly 

to find the ancestor for which isRoot is true. Implementing create and makeSet are also 

easy, using the in-tree operation makeNode. 

If the nodes of an 1n-tree are numbered |... . , n, where n = |S|, we can implement the 

in-tree with a few arrays of n + | entries each. Since this 1s usually the case in practice, and 

to focus on the essential points, we will adopt this assumption for the rest of this section. We 

can “un-abstract” the in-tree and simply access the array entry parent[i] instead of calling 

parent(i) as an access function or setParent(i) as a manipulation procedure. We adopt the 

convention that —1 as a parent value denotes that this in-tree node is a root, so no array Is 

needed for isRoot. Another array can hold nodeData, but this name is overly general for 

this application, so we will give it the more specific name weight, anticipating the weighted 

union method that will be described next. Array doubling (Section 6.2) can be used if the 

number of elements is not known in advance. 

Using arrays simplifies the code; however, for understanding the logic of the algo- 

rithms, it is best to keep in mind the underlying in-tree structure and to interpret the array 

accesses in terms of the tree operations. This implementation of in-trees using arrays Comes 

up in several other algorithms, so it 1s worth remembering. 

A create(n) operation (considered as n makeSets) followed by a sequence of m union 

and/or find operations interspersed in any order will be considered an input, or Union- 

Find program, of length m. That is, the initial makeSets are not counted in the length of 

the program. To simplify the discussion, we assume that makeSet is not used after the 

initial create. The analysis reaches the same general conclusions if makeSet is used later 

(see Exercise 6.31). 

We take the number of accesses to the parent array as the measure of work done; 

each access is either a /ookup or an assignment, and we assume they each take time O(1). 

(It will be clear that the total number of operations is proportional to the number of parent 

accesses.) Each makeSet or union does one parent assignment, and each find(i) does d + | 

parent lookups, where d is the depth of node / in its tree. The parent assignments and 

lookups collectively will be called dink operations. 

The program in Figure 6.19 builds the tree shown in Figure 6.20(a) and does. =. 70 — 

1 +n —n + I)n link operations, in total. This demonstrates that, using these methods, 

285 
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1. Union (1, 2) 

tO Union (2, 3) 

n—1, Union (n—-1,n) 

n. Find (1) 

m. Find (1) 

Figure 6.19 A Union-Find program P with S={l,..., n}, consisting of n — | unions, 

followed by m —n + | finds 

the worst-case time for a Union-Find program is in &2(mn). (We are assuming m > 0; 

otherwise we should write Q (mn + 7n).) It is not hard to show that no such program does 

more than mn + n link operations so the worst case is in O(n). This is not generally better 

than the methods described earlier. We will improve the implementation of the union and 

find instructions. 

6.6.4 Weighted Union 

The cost of the program in Figure 6.19 1s high because the tree constructed by the union 

instructions, Figure 6.20(a), has large height. It could be reduced by a more careful imple- 

mentation of union aimed at keeping the trees short. Let wUnion (for “weighted union’) 

be the strategy that makes the tree with fewer nodes a subtree of the root of the other tree 

(and, say, makes the first tree a subtree of the second if the trees have the same number of 

nodes). (Exercise 6.22 examines the possibility of using the height rather than the number 

of nodes as the “weight” of each tree.) To distinguish between the two implementations of 

the union operation, we will call the first one unwUnion, for unweighted union. For wU- 

nion the number of nodes in each tree is stored in the weight array (which corresponds 

to nodeData in ADT terms). Actually, the value is needed only in the root. wUnion must 

compare the numbers of nodes, compute the size of the new tree, and do assignments to 

parent and weight. The cost of a wUnion is still a small constant, including one link oper- 

ation. Now if we go back to the program in Figure 6.19 (call it P) to see how much work it 

requires using WUnion, we find that P is no longer a valid program because the parameters 

of union in instructions 3 through n — | will not all be roots. We may expand P to the 

program P’ by replacing each instruction of the form union(i, j) by the three instructions 

t = find(i); 

U=tind (): 

union(t, u); 
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Seen tena 
(a) Tree for P, using unweighted union (b) Tree for P’, using weighted union 

Figure 6.20 Trees obtained using unweighted union and weighted union 

Then, using wUnion, P’ requires only 2m + 2n — | link operations! Figure 6.20 shows 

the trees constructed for P and P’ using unwUnion and wUnion, respectively. We can’t 

conclude that wUnion allows linear time implementations in all cases; P’ is not a worst- 

case program for wUnion. The following lemma helps us obtain an upper bound on the 

worst case. 

Lemma 6.6 If union(t, u) is implemented by wUnion—that is, so that the tree with root 

u is attached as a subtree of ¢ if and only if the number of nodes in the tree with root u 

is smaller, and the tree with root f is attached as a subtree of wu otherwise—then, after any 

sequence of union instructions, any tree that has k nodes will have height at most [lg & J. 

Proof The proof is by induction on k. The base case is k = 1; a tree with one node has 

height 0, which is {lg 1]. Now suppose k > I and any tree constructed by a sequence of 

union instructions and containing m nodes, form < k, has height at most [lg m|. Consider 

the tree T in Figure 6.21 which has & nodes, height /, and was constructed from the trees 

T, and T> by a union instruction. Suppose, as indicated in the figure, that w, the root of 

T>, was attached to rf, the root of 7). Let k; and h,; be the number of nodes in and the 

height of 7;, and similarly let k2 and hz be the number of nodes in and the height of 

T>. By the inductive hypothesis, h; < [lg ky | and ho < [lg ko). The height of the new 

tree is h = max(hy, ho + 1). Clearly, hy < [lg k |. Since ky < k/2, hz < [Ig k| —1, and 

hy +1 <|lgk|. Soin both casesh < [Igk]. 0 
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height /, ; 
> height /5 

T 

A, nodes T, 
k5 nodes 

ie 

A nodes, height h 

Figure 6.21 An example for the proof of Lemma 6.6 

Theorem 6.7) A Union-Find program of size m, on a set of n elements, performs 

©(n + m log n) link operations in the worst case 1f wUnion and the straightforward find 

are used. 

Proof With n elements, at most n — | wUnion instructions can be done, building a tree 

with at most 7 nodes. Hence by the lemma, each tree has height at most [lg], so the cost 

of each find is at most [lg] + 1. Each wUnion does one link operation, so the cost of 

m find operations is an upper bound on the cost of any combination of m wUnion or find 

operations. The total number of link operations is therefore less than m( {Ig nj + 1), which 

isin O(n + mlogn). 

Showing, by example, that programs requiring QQ(7 + m log) steps can be con- 

structed is left for Exercise 6.23. 

The algorithms for wUnion (as well as create and makeSet) are very easy to write; we 

leave them as exercises. 

6.6.5 Path Compression 

The implementation of the find operation can also be modified to improve the speed of a 

Union-Find program by performing a process called path compression. Given parameter 

uv, cFind (for “compressing-find”) follows parents from the node for v to the root, and then 

resets the parents in all the nodes on the path just traversed so that they all point to the root. 

See Fisure'6,22. 

The effect of cFind is illustrated in Figure 6.23. Omitting lines 6 and 7 gives the 

procedure for the straightforward find. 

There is one link operation in line | (done by find and cFind) and one link operation 

done in line 7 (by cFind only). Thus, the function cFind does twice as many link opera- 

tions as the straightforward find for a given node in a given tree, but the use of cFind keeps 



6.6 Dynamic Equivalence Relations and Union-Find Programs 

int cFind(int v) 

int root; 

1. int oldParent = parent{[v]; 

2. if (oldParent ==-1) //vis a root 

3h hOOu =i 

4. else 

Sy root = cFind(oldParent); 

OF if (oldParent + root) // This if statement 

The parent[v] = root); // does path compression. 

8. return root; 

Figure 6.22 Procedure for cFind 

a KER 
Before cFind ( After cFind(v) 

Figure 6.23 Find with path compression (cFind) 

the trees very short so that, overall, the work will be reduced. It can be shown (see Notes 

and References at the end of the chapter) that, using cFind and unwUnion (the unweighted 

union), the worst-case running time for programs of length m is in O(n + m log n). Exer- 

cises 6.25 through 6.29 show that there is in fact a program that requires O(n + m log n) 

steps. Thus using either the improved implementation of union or the improved imple- 

mentation of find lowers the worst-case complexity of a program from ©(n + mn) to 

©(n + m logn). The next step is to combine the two improvements, hoping for a further 

reduction. 

Compatibility of wUnion and cFind 

Are cFind and wUnion compatible? cFind changes the structure of the tree it acts on but it 

does not alter the number of nodes in that tree. It may, however, change the height. Recall 

that it might have seemed more natural for wUnion to compare the heights of the trees it 

was joining rather than the number of nodes in each since the point was to keep the trees 

short. It would be difficult to update the height of a tree correctly after cFind modified 

it. The number of nodes was used as the weight specifically to make wUnion and cFind 

compatible. 
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6.6.6 Analysis of wUnion and cFind 
We will now derive an upper bound on the number of link operations done by a Union- 

Find program using wUnion and cFind, using the amortized analysis technique introduced 

in Section 6.3. In this discussion P is a Union-Find program of length m on the set of 

elementsss'— Wik +s n}. Several definitions and lemmas are needed to get the desired 

result, Theorem 6.13. 

Definition 6.8 Forest F’, node height, rank 

For a specified Union-Find program P, let F be the forest constructed by the sequence of 

union instructions in P, assuming wUnion is used and the finds are ignored. The height of 

anode v in any tree is the height of the subtree rooted at v. The height of a node v in F is 

defined as the rank of vv. & 

We derive a few properties of F. 

Lemma 6.8 In the set S$ there are at most 7/2’ nodes with rank r, for r > 0. 

Proof \t follows from Lemma 6.6 that any tree with height r constructed by a sequence 

of wUnions has at least 2” nodes. Each subtree in F (i.e., a node and all its descendants) 

was at one time a separate tree, so any subtree in F rooted at a node of rank r has at least 

2" nodes. Since the subtrees with root at rank r are disjoint, there can be at most n/2' of 

them. 

Lemma 6.9 No node of § has rank greater than [lg]. 

Proof Use Lemma 6.6 and the fact that S has only n nodes. 

Lemmas 6.8 and 6.9 describe properties of the forest F constructed by the union 

instructions of a Union-Find program, ignoring the finds. If the find instructions are 

executed as they occur in P, using cFind, a different forest results and the heights of the 

various nodes will be different from their ranks, which are based on F. 

Lemma 6.10 At any time during execution of a Union-Find program P, the ranks of the 
nodes on a path from a leaf to a root of a tree form a strictly increasing sequence. When a 
cFind operation changes the parent of a node, the new parent has higher rank than the old 
parent of that node. 

Proof Certainly in F the ranks form an increasing sequence on a path from leaf to root. 
If, during execution of P, a node v becomes a child of a node w, v must be a descendant 
of w in F, hence the rank of v is lower than the rank of w. If v is made a child of w by a 
cFind, then w was an ancestor of the previous parent of v; hence the second statement of 
the lemma follows. © 
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i 0 | 2 3 + 2 6 men 16 17 wae 65536 65537 

Be tw $ 16 65536 265536 22 

le*(i) 0 | 2 D 3 3 Be 3 4 ee 4 5 

Table 6.1 The functions H and lg* 

In Theorem 6.13 we will establish an upper bound of O(n Ig*(7)) on the running time 

of a Union-Find program using wUnion and cFind, where lg* is a function that grows 

extremely slowly. 

Definition 6.9 Log-star 

To define lg* we first define the function H as follows: 

HO) =, 

BQ) a2"? fori. 0: 

For example, 

lg*(j) is defined for j > 1 as the least i such that H(i) > /; that is, informally, lg*(j) is 

the number of 2’s that must be “piled up” to reach or exceed j. 

It can be seen from the definition that lg*(7) is in o(log'”’ n) for any constant p = 0. 

(We use the convention that lg‘”’ n =n.) Some values of H and lg* are shown in Table 6.1. 

For any conceivable input that might ever be used, Ig* 7 < S. 

We now partition the nodes of S into groups, according to their ranks. The accounting 

scheme for amortized cost will be based on these node groups. 

Definition 6.10 Node groups 

Define s; for i > 0 to be the set of nodes v € S such that Ig*(1 + rank Of vy). 7% the 

relationship of ranks to groups for “small” values is given by this table. 

Pranks 0 22s 4-15 16-65585, 5536-2 1) 

i(group) O | Zu 3 4 5 

a 

Lemma 6.11 The number of distinct node groups for S is at most Ig*(7 + 1). 

Proof The rank of any node is at most [Ig 7]. The maximum group index is 

lo" (1+ We nf) =e" (eG + Y= le + 1) — 1, 

and the minimum group index is0. 0 
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We are now ready to define accounting costs, from which we will derive amortized 

costs, using Equation (6.1), repeated here for convenience: 

amortized cost = actual cost + accounting cost. 

Recall that the program consists of m makeSets, followed by an arbitrary mixture of m 

union and find operations, except that there are at most n — | unions. Exercise 6.31 

considers the case in which makeSets might be spread throughout the program and 7 1s 

not Known in advance. 

Definition 6.11 Costs for wUnion and cFind 

Costs for the Union-Find ADT operations are as follows. The unit of cost 1s “link opera- 

tions” (parent assignments and lookups). 

|. The accounting cost for makeSet is 4 lg*(m + 1). Let’s think of these positive account- 

ing costs as deposits into a savings account. The actual cost is | (for assigning —I to 

the parent). The amortized cost is 1 + 41g¢*(m + 1). 

2. The accounting cost for a wUnion is 0. The actual cost is 1. The amortized cost is |. 

3. The accounting cost for cFind is the most involved. Suppose, at the time that cFind(v) 

is called (but not recursively from another cFind invocation), the path from v to the 

root of its in-tree is given by the sequence v = wo, w1,..., We, Where wy, is the root. 

We use the convention that k = 0 if v is a root. [fk is O or 1, the accounting cost is 0 

(and no parents change). 

For k > 2, the accounting cost is —2 for each pair (w;_1, w;) such that | <i < 

A — | and the node groups of w;—; and w,, as defined in Definition 6.10, are the same. 

Each such charge of —2 is called a withdrawal for w;—,. Notice that the ranks of w; 

increase with 7, so the node groups form a nondecreasing sequence. 

The actual cost of the cFind is 2k, because the root and the child of the root do a 

lookup, but no parent assignment. Therefore the amortized cost is 2 plus 2 times the 

number of cases that w;—| is in a different node group from w;, for | <i <k — 1. By 

Lemma 6.11, the amortized cost of any cFind is at most 21lg*(7 + 1). 

Although the worst-case cost of a cFind might be 2 lg 7, the amortization scheme has 

spread some of the cost onto the initial create operation. Is this robbing Peter to pay Paul? 

Not exactly. Observe that the accounting charges incurred by makeSets depend only on n, 
the number of elements in the set. But the number of cFind operations is at least m — n + 1, 
which may be arbitrarily larger than n. Nevertheless, the amortized cost per cFind is only 
2 Ig*(n + 1), a significant savings over 2 lg n. This is all very nice, but it remains to prove 
that we can “afford” it—that the “savings account” established by create will never be 
overdrawn. 

Lemma 6.12 The system of accounting costs in Definition 6.11 produces a valid amor- 
tized cost scheme in the sense that the sum of the accounting costs is never negative. 
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Proof The initial makeSet operations set the sum of accounting costs to 4n lg*(n + 1). 
It suffices to show that the sum of the negative charges, incurred by cFind operations, does 
not exceed this total. 

Each negative charge is identified as a withdrawal for some node, say w. This occurs 
if w is on the path traversed by a cFind and it is in the same node group as its parent, and 
the parent is not a root. Let i be that node group. So w will be assigned a new parent by 
this cFind, and by Lemma 6.10 the new parent will have a higher rank than the old parent. 
Once w is assigned a new parent in a higher node group it will not be associated with any 
more withdrawals. Therefore, w cannot be associated with more withdrawals than there are 
ranks in its node group. The number of ranks in group i is less than H(i), as defined by 
Definition 6.9, and this is an upper bound for the number of withdrawals for w. 

The number of withdrawals for all w € S$ is at most 

lg*(n+1)—1 

S H(1)(number of nodes in group /). (6.2) 
7) 

By Lemma 6.8, there are at most n/2’ nodes of rank r so the number of nodes in group / 1s 

H(i)—| Co 
n n | 2n 2n 

) a ) = = ; 
Ne = Dip) Di ek) H(i) 

r=H(i-1) r=) 

Thus the summation in Equation (6.2) is bounded above by 

Ig*(n+1)—1 4 
2n 

Ho (se = 2n le*(n + 1). 
De aad g 

p=() 

Each withdrawal is —2, so the sum of withdrawals cannot exceed 4n Ig*(n +1). 0 

Theorem 6.13 The number of link operations done by a Union-Find program imple- 

mented with wUnion and cFind, of length m on a set of n elements is in O((n + m) lg*(n)) 

in the worst case. 

Proof The amortization scheme defined in Definition 6.11 gives amortized costs of 

at most | + 41lg*(m + 1) for each Union-Find operation. There are n + m operations, 

including the makeSets. An upper bound for the total amortized cost is (nm + m)(1 + 

4 le*(n + 1)). By Lemma 6.12, the sum of the actual costs never exceeds the sum of the 

amortized costs, so the upper bound applies to the actual costs, as well. 

Since lg* n grows so slowly and the estimates made in the proof of the theorem are 

fairly loose, it 1s natural to wonder if we can in fact prove a stronger theorem, that is, that 

the running time of Union-Find programs of length m ona set of n elements, implemented 

with wUnion and cFind, is in ©(n + m). It has been shown that this is not true (see Notes 

and References at the end of the chapter). For any constant c, there are programs of length 

m on sets of size m that require more than cm operations using these (and a variety of other) 

techniques. However, see Exercise 6.30. 

ZO 



294 Chapter 6 Dynamic Sets and Searching 

It is an open question whether there exist different techniques that implement Union- 

Find programs in linear time. Nevertheless, as Theorem 6.13 shows, the use of cFind and 

wUnion results in a very efficient implementation of Union-Find programs. We will assume 

this implementation when discussing later applications. 

Equivalence Programs 

We began by attempting to find a good way of representing a dynamic equivalence relation 

so that instructions of the forms MAKE s; = s; and Is s; = s;? could be handled efficiently. 

We define an equivalence program of length m to be a sequence of m such instructions 

interspersed in any order. Since, as we observed earlier, each MAKE or IS instruction can be 

implemented by three instructions from the set wUnion, cFind, equality test, an equivalence 

program of length m ona set of n elements can be implemented in O((m + n) Ig* n) time. 

6.6.7 Applications 

One of the best known applications of an equivalence program is Kruskal’s minimum 

spanning tree algorithm. This algorithm is discussed in Section 8.4, after we introduce 

needed material on graphs. Additional applications are briefly described here. References 

on these applications can be found in Notes and References at the end of the chapter. In 

general, an equivalence program is indicated when information needs to be processed as it 

is received, discovered, or computed. This is called on-line operation. 

The union and find operators can be used to implement a sequence of two other types 

of instructions that act on the same kind of tree structures: link(r ,v), which makes the 

tree rooted at r a subtree of v, and depth(v), which determines the current depth of v. 

A sequence of 1 such instructions can be implemented in O(n lg*(7)) time. 

The study of equivalence programs was motivated by the problem of processing equiv- 

alence declarations in Fortran and other programming languages. An equivalence decla- 

ration indicates that two or more variables or array entries are to share the same storage 

locations. The problem is to correctly assign storage addresses to all variables and arrays. 

The declaration 

equivalence (A,B(3)), (B(4),C(2)), (X,Y,Z), JC1),K), (B(1),X), U(4),L,M) 

indicates that A and B(3) share the same location, B(4) and C(2) share the same location, and 

so forth. (Fortran uses parentheses, not square brackets, for array indexes.) The complete 

storage layout indicated by this equivalence statement is shown in Figure 6.24, which 

assumes for simplicity that each array has five entries. 

If there were no arrays, the problem of processing equivalence declarations (as soon 

as they appear in the source program) would be essentially the same as the problem of pro- 

cessing an equivalence program. The inclusion of arrays requires some extra bookkeeping 

and introduces the possibility of an unacceptable declaration. For example, 

equivalence (A(1),B(1)), (A(2),C(3)), (B(5),C(5)) 

could not be allowed because the elements of each array must occupy consecutive memory 

locations. 
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Figure 6.24 Storage arrangement (with Fortran array syntax) for an equivalence (A,B(3)), 

(B(4),C(2)), (X,¥,Z), UC1),K), (BCO),X), U(4),L,M) 

The union and find operations are only two of many possible operations on collections 

of subsets. Some others include insert, which inserts a new member in a set; delete, 

which removes an item from a set; min, which finds the smallest item in a set; intersect, 

which produces a new set consisting of the elements that occur in both of the two given 

sets; and member, which indicates whether or not a specified element 1s in a particular 

set. Techniques and data structures for efficiently processing “programs” consisting of 

sequences of two or three types of such instructions have been studied. In some cases, the 

union and find techniques can be used to implement such programs of size n in O(n Ig*(n)) 

time. 

Priority Queues with a Decrease Key Operation 

Recall that the main access function for the priority queue ADT (Section 2.5.1) is getBest, 

where “best” is min or max. The operations in a full minimizing priority queue ADT are: 

Constructor: create 

Access functions: isEmpty, getMin, getPriority 

Manipulation procedures: — insert, deleteMin, decreaseKey 

The names are revised suitably for a maximizing priority queue. A delete operation, 

which deletes an arbitrary key, might also be added. 

Partial order trees (Definition 4.2) are a family of data structures often used for the 

implementation of priority queues. The “best” element is at the root of the partial order 

tree, so it can be retrieved in constant time. A number of implementations of partial order 

trees have been developed over the years. The word “heap” is often seen in their names 

because the earliest structure for partial order trees was named “heap” by its inventor. 

The binary heap, introduced for Heapsort in Section 4.8.1, permits all manipula- 

tion procedures to be implemented in O(log n) time when the priority queue contains n 

elements. The driving force for further research was that some applications use the de- 

creaseKey operation far more often than any other, so it was desirable to make that op- 

eration more efficient without blowing up the other costs too much. Pairing forests were 

chosen for inclusion in this section because they are the simplest of many systems designed 

to make the decreaseKey operation very efficient. See Notes and References at the end of 

the chapter for sources that offer more sophisticated alternatives. 
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In this section we first describe how to implement the decreaseKey operation in a 

binary heap. An auxiliary data structure is needed; this auxiliary structure can also make 

a delete operation on an arbitrary element efficient. Then we describe the pairing forest 

strategy, which also uses a similar auxiliary structure, but its main data structure is a general 

partial order forest, rather than a binary partial order tree. 

Recall that a binary heap is a left-complete binary tree; that is, each level of the tree is 

full except possibly the deepest level, and all nodes on that level are packed to the left with 

no gaps. Consequently nodes can be stored in an array with the root in position |, and the 

binary tree can be traversed by using the rule that the children of the node in position k are 

in positions 2k and 2k + |. The number of elements, 7, is stored in a separate variable. 

6.7.1 The Decrease Key Operation 

The decreaseKey and getPriority operations are not needed by all priority-queue appli- 

cations. When they are needed, the implementation becomes more complicated. The name 

decreaseKey implicitly assumes a minimizing heap, as is typical of optimization problems, 

and in this section we work with minimizing heaps. 

The difficulty is that the decreaseKey operation specifies an element that is already 

somewhere in the priority queue. The getPriority operation is only needed in conjunction 

with decreaseKey; once the problems for decreaseKey are solved, getPriority will be 

easy, So it is not discussed further. Using a heap for the priority queue, the signature of 

decreaseKey would be something like: 

void decreaseKey(Key[] H, int id, Key K) 

where id is the identifier of the element to be modified, and K is the new key (priority) 

value. The task of the operation is to find that element, decrease its “key,” which can be 

thought of as a cost, and adjust its position in the priority queue according to the new 

key. Once the element is located, and its key modified, it is clear that bubbleUpHeap 

(Algorithm 4.10) can be used to perform the adjustment of position (with “<” changed 

to “>” in the code in Section 4.8.6 where we were using a maximizing heap), because the 

element moves toward the root, if it moves at all. 

It would be very inefficient to search through the whole heap to find the element with 

the required identifier, id. The technique is to maintain a supplementary data structure, 

organized by identifiers, that tells the current heap location of every element in the heap. 

If the identifiers are integers in a reasonably compact range, which is the most common 

case, the supplementary data structure can be an array. In general, the supplementary data 
structure could be in a Dictionary ADT. We will assume the simpler case, that the identifier 
is an integer, and call the supplementary array xref. 

Example 6.13 Heap and xref array 

Figure 6.25 shows a small example of a heap with a supplementary xref array to speed 
the location of arbitrary elements in the heap. If xref[{id] = 0, then element id is not in the 
heap. To execute decreaseKey(H, 5, 2.8), the xref array is consulted to find that element 5 
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| oy By Se aS | Day aE ey GE | RN aS 
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(a) Initial configuration (b) After decreaseKey(H, 5, 2.8) 

Figure 6.25 Heap H and supplementary xref array. The element identifier and key are shown 

inside the nodes; the key is floating point. Heap indexes are shown in italics outside the nodes. 

is currently at heap index 4. (The decreaseKey operation can be executed on any node in 

the heap, not just on leaves.) 

The key of element 5 is revised to 2.8. The whole element (5,2.8) is moved to a 

temporary location K. Heap index 4 is now vacant. Then bubbleUpHeap(H, 1, K, 4) is 

called. Element K is bubbled up to restore the partial order tree property. During the 

operation, element 3 moves to heap index 4, element 4 moves to heap index 2, and element 

5 moves to heap index |. The xref array is updated as each element movement occurs. 

Code needs to be added to bubbleUpHeap (and to all heap operations that move elements) 

to keep xref uptodate. 

Since elements never move within the xref array (they are always accessed using their 

identifier as the array index), it might be more efficient or convenient in some cases to store 

the priorities there, instead of in the heap array. 

6.7.2 Pairing Forests 

The main goal of the Pairing Forest implementation of the Priority Queue ADT 1s to 

make the decreaseKey operation very efficient, without pushing up the costs of other 

operations too much. In later chapters we will encounter algorithms for which decreaseKey 

is done many more times than any of the other priority queue operations. In this section 

we concentrate on minimizing priority queues to simplify the discussion. Applications 

needing the decreaseKey operation are normally minimizing a cost of some kind, rather 

than maximizing something. 

The Pairing Forest strategy uses a variant of a data structure called a pairing heap. 

The Pairing Forest is relatively simple to implement, and has performed well in practice. 

297 



298 Chapter 6 Dynamic Sets and Searching 

However, it is known not to be asymptotically optimal. See Notes and References at the 

end of the chapter. 

A Pairing Forest is a collection of general out-trees that have the partial order tree 

property (Definition 4.2); that is, on every path from the root of a tree to a leaf, nodes are 

encountered in increasing order of cost, or priority field value. The roots of the trees have 

the minimum priority of all nodes in their respective trees. However, no order relationship 

among roots of various trees in the forest is known. 

The pairing forest itself can be represented as a linked list of the type TreeList; let’s 

let the instance field forest in the class PairingForest be this list. Trees and subtrees in this 

forest are of type Tree. The Tree and TreeList ADTs were described in Section 2.3.4. We 

will use their operations, which include buildTree, root, children, as well as cons, first, 

and rest. 

The essence of Pairing Forests 1s the method for finding the minimum. As long as there 

are two or more trees in the forest, trees are paired up, as if for a tournament. The basic 

operation, called pairTree, takes two trees, tl and t2, compares their roots, and combines 

the two trees into a single tree with the “winning” root becoming the root of the com- 

bined tree. Since we are minimizing, the “winner” 1s the node with smaller priority. The 

combined tree is returned. 

Tree pairTree(Tree tl, Tree t2) // OUTLINE 

Tree newTree; 

if (root(tl).priority < root(t2).priority) 

newTree = buildTree(root(tl), cons(t2, children(t1))): 

else 

newTree = buildTree(root(t2), cons(tl, children(t2))): 

return newTree; 

Notice the similarity with the weighted union operation in Section 6.6.4. 

The forest is maintained as a list of trees. The operation pairForest performs pairTree 

on each pair of trees in the forest. If the forest started with k trees, pairForest cuts this 

number to [k/2], and returns the resulting list of trees. 

pairForest(oldForest) // OUTLINE 

Assume oldForest =f), fo... ., th. 

Apply pairTree to (tf), f2), (4, t4), .. ., and put the resulting trees in the list 

newForest with the result of pairing (f), f2) at the end of the list. If k is odd, 
ix is at the beginning of newForest, otherwise it is the result of pairing t_ 

and fy. 

return newForest; 

The getMin function carries out tournament rounds by calling pairForest repeatedly until 
a unique winner (minimum element) is established. 
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getMin(pq) // OUTLINE 

while (pq.forest has more than one tree) 

pq.forest = pairForest(pq.forest): 

min = id field of root of only remaining tree. 

return min; 

This tournament is essentially the same as that used in the algorithm to find the maximum 

and second largest elements of a set, in Section 5.3.2, except here we are finding the 

minimum and we are combining trees as we go, with the pairTree operation. Figure 6.26 

shows an example. 

As always, for finding the minimum of & elements (k roots of trees in the initial 

forest), K — 1 key comparisons are needed. Since k can be large, this operation can be 

expensive. However, it is not clear if it can be expensive time after time. For the example 

in Figure 6.26, the first getMin requires 7 comparisons. But if that element is deleted, there 

are only three candidates for the next minimum. The exact complexity of operations with 

this data structure is still not known. 

Let’s see what 1s involved in implementing the other priority queue operations. Nodes 

will be in an organizer class, PairingNode, that contains at least the id and priority fields. 

Insertion of a new node is very simple: create a tree of one node and add it as an additional 

tree in the forest: 

insert(pq, v, w) // OUTLINE 

Create newNode with id = v and priority = w. 

Tree newTree = buildTree(newNode, TreeList.nil): 

xref[v] = newTree; 

pq.forest = cons(newTree, pq.forest); 

Deleting the minimum, after it is found, simply makes all of its principal subtrees into trees 

in the forest. 

deleteMin(pq) // OUTLINE 

getMin(pq); // Ensure forest has only | tree. 

Tree t = first(pq.forest); 

pq.forest = children(t); 

This may result in an empty forest. 

For decreaseKey, we need to be able to locate the node, say oldNode, based on its 

id. An xref array, as was used for binary heaps in Section 6.7.1, can make this efficient. 

That is, oldNode = root(xref[id]). Now we need to evaluate the impact of decreasing a 

particular node’s priority. The node oldNode 1s still less than all the children in its own 

subtree. Therefore if we detach the entire subtree rooted at oldNode, this subtree is a valid 

partial order tree in its own right, even after the priority of its root is decreased. We can add 

this subtree as a new tree of the Pairing Forest. Although the TreeList ADT does not give 

us an operation for actually detaching a subtree of a tree in the list, we can set a special 
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Figure 6.26 An example of a tournament with pairTree operations on 8 roots of trees. For 

this example, the eight original trees have one node each, with priorities shown over the nodes. 

The steps would be the same if these were the roots of larger trees. Each loser is attached as the 

new leftmost child of the winner, and the list order of the winners is reversed. For example, in 

round 2, x7 lost to x6 and x2 lost to xy. Winners of earlier rounds are paired up in later rounds. 

After three rounds, the minimum root is identified as x6. The last row shows both the logical, 

or conceptual, view of the tree and the representation in which principal subtrees are in a list, 

as was introduced in Section 2.3.4. In the latter representation, downward sloping edges go to 

leftmost subtrees, while sideways arrows go to right sibling subtrees. In the last diagram an 

order relationship is implied only by paths that begin with a downward edge; thus x4 must be 

less than or equal to x3, but has no necessary relationship with x7 or xg. 
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Figure 6.27) An example of decreaseKey on node x7. The representation with principal sub- 
trees in a list is used. The tree that formerly contained 17 at its root still exists, but its root now 
identifies it as obsolete. Before the operation x6 was known to be less than or equal to x7 in 

priority value, but now no relationship is known. 

value in the id field of oldNode, to indicate that this tree is obsolete. We use —1 to denote 

this special id. Suppose that newNode has been created with the required id and priority. 

decreaseKey(pq, v, w) // OUTLINE 

Create newNode with id = v and priority = w. 

Tree oldTree = xref[v]; 

PairingNode oldNode = root(oldTree); 

Tree newTree = buildTree(newNode, children(oldTree)): 

xref[v] = newTree; 

oldNode.id = —1; // This tree is obsolete. 

pq.forest = cons(newTree, pq.forest): 

Figure 6.27 shows an example. 

Whenever a list of trees is traversed, any tree whose root has an id of —I is simply 

bypassed. This does not entail a significant loss of efficiency in the context of pairing 

forests, because the only such list to be traversed is forest itself, and the only time it 1s 

traversed, it is rebuilt as part of the getMin operation. (Also, isEmpty(pq) might have to 

traverse over, and discard, obsolete nodes until it reaches a genuine node.) Therefore, an 

obsolete node is encountered only once, and is discarded at that time. Although there are 

some implementation details to work out, they are straightforward, and are left for the 

exercises. 

Analysis 

All operations run in constant time, except for the combination of getMin, deleteMin. 

Most applications call these one right after the other, so it is common to package them 

into One operation named extractMin. For purposes of analysis, we assume that this is 

done. The extractMin operation on a forest of k trees runs in time proportional to &, 

assuming that list ADT operations take constant time. Since & can be 1, the number of 
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nodes in the priority queue (and this can happen by simply inserting 7 nodes into an empty 

priority queue), the worst-case time for extractMin is in @(n). However, as with Union- 

Find operations, discussed in Section 6.6.6, the worst case cannot happen every time in 

a series of operations. Closer analysis requires advanced techniques that are beyond the 

scope of this book, and some questions are still unanswered. Empirical studies indicate 

that pairing forests perform efficiently in practice. We refer interested readers to Notes and 

References at the end of the chapter. 

Most applications that would use a pairing forest know which elements will be in the 

priority queue, and so know n when the pairing forest 1s created. The space requirements 

are proportional to 7, no matter how many operations are performed, provided the element 

ids remain in the range 1,..., 27. 

Exercises 

Section 6.2. Array Doubling 

6.1 Evaluate the time and space trade-offs for the policy of multiplying the current array 

size by four, instead of by two, whenever the array needs to be enlarged. (Assume elements 

are never deleted.) 

Section 6.3 Amortized Time Analysis 

6.2 To conserve space for a stack, it is proposed to shrink it when its size 1s some fraction 

of the number of allocated cells. This supplements the array-doubling strategy for growing 

it. Assume that the cost is tm if there are n stack elements, similar to the cost of array 

doubling. 

Assume we stay with the policy that the array size is doubled whenever the stack size 

grows beyond the current array size. Evaluate each of these proposed shrinking policies, 

using amortized costs if possible. Do they offer constant amortized time per operation? 

Which scheme offers the lowest constant factor? The current array size is denoted as N. 

a. Ifa pop results in fewer than N/2 stack elements, reduce the array to N/2 cells. 

b. Ifa pop results in fewer than N/4 stack elements, reduce the array to N/4 cells. 

c. Ifa pop results in fewer than N/4 stack elements, reduce the array to N/2 cells. 

d. Can you devise a scheme with different parameters from those given above that does 

even better? 

Section 6.4 Red-Black Trees 

6.3 Show that the third part of Definition 6.1 is necessary. That is, draw a tree that does 

not have the binary search tree property (Definition 6.3), yet it satisfies parts | and 2 of 

Definition 6.1, and sweeping a vertical line from left to right encounters keys in ascending 

order. 

6.4 Draw all RB; and RB» trees and all ARB, and ARB; trees. 
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6.5 Prove Lemma 6.1. 

6.6 Prove Lemma 6.2. 

6.7. Why does a color flip not work to repair a critical cluster of three nodes? 

6.8 Beginning with an empty red-black tree, insert in succession the keys 10, 20, 30, 40, 
50, 60, 70, 80, 90, 100. 

6.9 Find a sequence in which to insert 15 nodes into an initially empty red-black tree so 

that the final result has black height two. 

6.10 Write these color-related subroutines for Algorithm 6.2: 

a. The function colorOf that returns black if its parameter is an empty tree and returns 

the color of the root, otherwise. 

b.  colorFlip, as described in Section 6.4.5. 

6.11 Write the subroutines repairRight and rebalRight for Algorithm 6.2. 

6.12 Prove Lemma 6.4. 

6.13 Express the structural changes for rebalancing after an insertion (see Figure 6.9) 

in terms of rotations. Hint: The eventual root of the revised subtree participates in each 

rotation. 

6.14 Delete nodes from the tree created by Exercise 6.8 according to each of the follow- 

ing rules. 

a. Logically delete each node independently of the others, from the original tree. 

b. Cumulatively, always logically delete the root of the tree that remains after the previ- 

ous deletion. 

c. Cumulatively, always logically delete the least key remaining in the tree. 

6.15 Delete nodes from the tree created by Exercise 6.9, cumulatively, always logically 

deleting the largest key remaining in the tree. 

6.16 Express the structural changes for rebalancing after a deletion (see Figure 6.17) in 

terms of rotations. 

6.17 

a. Does inserting a node into a red-black tree, then deleting it always result in the original 

tree? Prove it does, or give a counterexample where it does not. 

b. Does deleting a leaf node from a red-black tree, then reinserting the same key always 

result in the original tree? Prove it does, or give a counterexample where it does not. 
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Section 6.5 Hashing 

6.18 Write out the open addressing procedures in more detail for searching, inserting, 

and deleting keys in a hash table. How do the conditions under which loops terminate differ 

among these procedures? Take into account the possibility of “obsolete” cells. 

6.19 The type of a hash table H under closed addressing is an array of list references, and 

under open addressing is an array of keys. Assume a key requires one “word” of memory 

and a linked list node requires two words, one for the key and one for a list reference. 

Consider each of these load factors for closed addressing: 0.25, 0.5, 1.0, 2.0. Let he be the 

number of hash cells in the hash table for closed addressing. 

a. Estimate the total space requirement, including space for lists, under closed address- 

ing, and then, assuming that the same amount of space is used for an open addressing 

hash table, what are the corresponding load factors under open addressing? 

b. Now assume that a key takes four words and a list node is five words (four for the key 

and one for the reference to the rest of the list), and repeat part (a). 

Section 6.6 Dynamic Equivalence Relations and Union-Find Programs 

6.20 Write algorithms for processing a sequence of MAKE and IS instructions using a 

matrix to represent the equivalence relation. The underlying set has n elements. Use the fact 

that the relation is symmetric to avoid extra work. How many matrix entries are examined 

or changed in the worst case when processing a list of m instructions? 

6.21 Prove that a Union-Find program of length m ona set of n elements does at most 

(n + m)n link operations if implemented with the unweighted union and straightforward 

find. 

6.22 The weighted union, wUnion, uses the number of nodes in a tree as its weight. Let 

hUnion be an implementation which uses the height of a tree as its weight and makes the 

tree with the smaller height a subtree of the other. 

a. Write out an algorithm for hUnion. 

b. Either prove that the trees constructed for all Union-Find programs are the same 

regardless of whether wUnion or hUnion is used, or exhibit a program for which they 

differ. (For both implementations, if the trees are of equal sizes, attach the first tree as 

a subtree of the second.) 

c. What is the worst-case complexity of Union-Find programs using the straightforward 

find (without path compression) and hUnion? 

6.23 Exhibit a Union-Find program of size n which requires ©(n log 1) time using the 

straightforward find (without path compression) and the weighted union (wUnion). 

6.24 Let S={1,2,...,9} and assume wUnion and cFind are used. (If the sizes of the 
trees rooted at ¢ and wu are equal, union(t,~) makes wu the root of the new tree.) Draw the 
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Figure 6.28 Binomial trees, also called S; trees 

trees after the last union and after each find in the following program. For each find, tell 
how many parent accesses (link operations) are used. 

union(1,2) 

union(3,4) 

union(2,4) 

union(6, 7) 

union(8,9) 

union(7,9) 

union(4,9) 

find(1) 

find(4) 

find(6) 

find(2) 

find(1) 

6.25 Binomial trees, also called S; trees, are defined as follows: Sp is a tree with one 

node. For k > 0, an S, tree is obtained from two disjoint S;_; trees by attaching the root of 

one to the root of the other. See Figure 6.28 for examples. 

Prove that, if T is an S; tree, T has 2‘ vertices, height k, and a unique vertex at depth 

k. The node at depth k is called the handle of the S, tree. 

6.26 Using the definitions and results of Exercise 6.25, prove the following charac- 

terization of an S; tree: Let T be an S, tree with handle v. There are disjoint trees 

Ti Ly een T,—|, not containing v, with roots ro, 71,..., rk—1, respectively, such that 

1. 7; is an S; tree,O <i <k —1, and 

2. T results from attaching v toro, andr; torj4;,forO <i <k—1. 

This decomposition of an S4 tree is illustrated in Figure 6.29, 

6.27 Using the definitions and results of Exercise 6.25, prove the following characteri- 

zation of an S; tree: Let T be an S, tree with root r and handle v. There are disjoint trees 

VA Tj, not containing r, with roots ry, 7)... -, r,_,. respectively, such that 

lL 77 is anes; tree, OS 7 SK — 1, 
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Figure 6.29 Decomposition of S4 for Exercise 6.26 

Figure 6.30 Decomposition of Sy for Exercise 6.27 

2. T is obtained by attaching each r; to r for 0 <i <k — 1, and 

3. vis the handle of 7/_,. 

This decomposition of an S4 tree is illustrated in Figure 6.30. 

* 6.28 An embedding of a tree T ina tree U is a one-to-one function f:T > U (ie., from 

the vertices of T to the vertices of U) such that for all w and x in 7, x is the parent of 



Exercises 

Figure 6.31 Binomial tree embeddings for Exercise 6.28: The shaded nodes are properly 
embedded in U (left) and are initially embedded in U’ (right), 

w if and only if f(x) is the parent of f(w). An embedding f is an initial embedding if it 
maps the root of 7 to the root of U; it is a proper embedding otherwise. See Figure 6.31 
for examples. 

Using the results of Exercises 6.25 through 6.27, show that, if T is an S, tree with 

handle v, and f is a proper embedding of 7 in a tree U (which need not be a binomial 

tree), and U’ is the tree that results from doing a cFind on f(v) in U, then there is an Sk 

tree 7’ initially embedded in U’. Figure 6.31 illustrates the theorem with the shaded nodes 

in the roles of 7 (left) and 7’ (right). 

6.29 Show that a Union-Find program of length m =n on a set with nm elements can be 

constructed so that, if cFind and unwUnion are used to implement it, 2 (7 log 1) operations 

are done. (Hint: Read Exercises 6.25 through 6.28.) 

6.30 We stated that there are examples of Union-Find programs that take more than linear 

time even when weighted union and find with path compression are used. Show that in 

a program of length m on a set of n elements, if all the unions occur before the finds, 

then the total number of operations is in O(n + m). Hint: Modify the accounting costs in 

Definition 6.11. 

6.31 Suppose we relax the assumption that all singleton sets are created before the Union- 

Find program begins. To be sure our “savings account” never goes negative, we need 

the sum of positive accounting costs to be at least 41g*(m + 1) if the set currently has 

elements. The kth makeSet can occur anywhere in the program. Since we do not know n, 

the final number of elements, at the time of the kth makeSet, we cannot very well assign 

this operation an accounting cost based on n. However, we do know & at the time of the Ath 

makeSet. 
Show that an accounting cost of 4(2 + lg*(k + 1)) for the kth makeSet is sufficient to 

ensure that the sum of positive accounting costs for n makeSets is at least 4]g*(n + 1). 

6.32 Design an algorithm to process equivalence declarations and assign memory ad- 

dresses to all arrays and variables in the declarations. Assume that a dimension statement 

gives the dimensions of all the arrays. Does your algorithm detect invalid equivalences? 
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Section 6.7 Priority Queues with a Decrease Key Operation 

6.33 Show the intermediate stages of the decreaseKey operation of Example 6.13. 

6.34 Show how the heap and the xref array evolve during a deleteMin operation on the 

heap shown on the left side of Figure 6.25. 

6.35 Suppose the following elements are inserted into an empty pairing forest in the order 

epven (1.4), (ay Lae A s0.2) 4, Sell 7S), CO, 9) 3S, Gap a) oe 20); Baek 

element is written in the form (id, priority). Each part below assumes the operations in the 

previous parts have been carried out, so the results are cumulative. Be careful about order 

in all cases. 

a. Show the pairing forest after the above 9 inserts. 

b. Show the pairing forest after a getMin, also showing the intermediate results after each 

pairForest. 

c. Show the pairing forest after a deletemin. 

d. Show the pairing forest after the priority of 7 is decreased to 2.2. Be sure to include 

the obsolete node. 

e. Show the pairing forest after a second getMin. 

f. Show the pairing forest after a second deletemin. 

g. Show the pairing forest after a third getMin. 

6.36 Consider the following algorithm for finding the second largest element. Insert all 

elements into a maximizing pairing forest. Perform getMax, then deleteMax, then getMax 

again. Does this algorithm always perform an optimal number of comparisons when 1, the 

number of elements, is a power of 2? That is, does it always equal the lower bound given 

in Theorem 5.2? Either prove it does or give an example input where it fails. 

6.37 Recall that decreaseKey leaves obsolete nodes in the pairing forest. Complete the 

implementation of these operations so that they detect and discard obsolete nodes. 

a. isEmpty(pq). Does your function run in time O(1) in the worst case? If not, give a 

sequence of operations that causes isEmpty to require more than constant time. 

b.  pairForest(pq). Does your function run in time O(k) in the worst case, when there are 

A genuine trees in the forest (1.e., trees whose roots are not obsolete)? 

¢. Devise an accounting scheme for the work of dealing with obsolete nodes. Assume 
that discarding a tree whose root is obsolete is one unit of work, that making the root 
of a tree obsolete is one unit of work, and that checking the root of a tree to see if it 
is Obsolete is also one unit of work. Ignore all other work, because it is not related to 
obsolete nodes. Ensure that the amortized times for isEmpty and decreaseKey are in 
O(1) by this work measure, and that pairForest has amortized time in O(k) if there 
are A genuine trees in the forest. 
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6.38 = Which functions and procedures for pairing forests need to update the xref array? 
Complete their implementations. Hint: Entries in xref are of type Tree, so look for places 

where the constructor for Tree is used. 

6.39 The strategy for getMin that we described in the text is similar to the strategy called 

multipass in other reports. An alternative strategy, called nopass, works as follows: Call 

pairForest once on the initial forest, yielding an intermediate forest, say ty, fo, . . . t;. Note 

that pairForest reverses list order. Call pairTree on f; and f, getting the result w>; then 

call pairTree on w> and fs, getting the result w3, and so on. The result wj has the minimum 

element at its root. This is the usual “running minimum” method of finding the minimum, 

with calls to pairTree along the way. Work out the details of getMin2 using this strategy. 

Don’t forget about the xref array. 

Additional Problems 

6.40 Evaluate the suitability of red-black trees for implementing both an elementary pri- 

ority queue and a fu// priority queue, by treating the key of each element as its priority. 

(Recall that an elementary priority queue excludes the decreaseKey and getPriority op- 

erations.) Consider the worst-case asymptotic order of each operation. For a full priority 

queue, you can assume the elements have ids in the range I, ..., n. What auxiliary data 

structures, such as the xref array mentioned in Section 6.7, are needed for decreaseKey 

to be efficient? Are they straightforward to implement? If not, explain some complications 

that arise. 

Programs 

1. Write a program to implement red-black trees, and test the operations. Include an 

option to count the number of key comparisons, the number of color flips, and the 

number of rebalances. 

tO Write a program to implement the Union-Find ADT using the weighted union and 

find with path compression. It should test the operations by executing some Union- 

Find programs. Include an option to count the number of “link” operations. 

3. Write a program to implement a pairing forest, and test the operations. Include an 

option to count the number of key comparisons. Note that each pairTree performs a 

key comparison, and no other operations do. 

Notes and References 

Red-black trees have a long history, having been invented with other names and rediscov- 

ered a few times. The original version was called “symmetric binary B-trees” in Bayer 

(1972). The name red-black was given by Guibas and Sedgewick (1978), who gave top- 
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down insertion and deletion algorithms that required O(log n) structural changes (rota- 

tions). Another name is 2-3-4 trees. Algorithms to perform repairs after insertions and 

deletions with O(1) structural changes are due to Tarjan (1983a, 1983b). The methods 

for repair after deletion given in this chapter are somewhat different. We adopted the term 

black height from Cormen, Leiserson and Rivest (1990); Tarjan used the term rank. Aho, 

Hopcroft, and Ullman (1974) surveys several other schemes for maintaining balanced bi- 

nary trees, including AVL trees and 2-3 trees. Sleator and Tarjan (1985) introduced splay 

trees for the same purpose. Splay trees are the simplest to implement, but the most difficult 

to analyze, of all the balanced-tree methods mentioned. They do not have an efficient worst 

case per operation; however, their amortized cost is O(log 1) per operation. 

Hashing is analyzed in depth by Knuth (1998). A thorough treatment may also be 

found in Cormen, Leiserson and Rivest (1990) and in Gonnet and Baeza- Yates (1991). The 

latter book discusses practical hash functions. 

Van Leeuwen and Tarjan (1983) describes and analyzes a large number of techniques 

for implementing Union-Find, or equivalence, programs. Galler and Fischer (1964) intro- 

duced the use of tree structures for the problem of processing equivalence declarations. 

Knuth (1968) describes the equivalence problem and some suggestions for a solution (see 

his Section 2.3.3, Exercise 11, also in Knuth (1997)). Fischer (1972) proves that, using the 

unweighted union and find with path compression, there are programs that do Q(n log n) 

link operations. Exercises 6.25 through 6.29 develop Fischer’s proof. The upper bound of 

O(Gn + 1) login) was proved by M. Paterson (unpublished). Hopceroft and Ullman (1973) 

put wUnion and cFind together and proved Theorem 6.13—that is, that a program of length 

m ona set of m elements does O((m + 7) lg*(1)) operations. Tarjan (1975) establishes a 

slightly above linear lower bound for the worst-case behavior of cFind and wUnion as mea- 

sured by link operations; this is generalized by Fredman and Saks (1989) to the cell probe 

model of computation, 

There has been extensive research on data structure for priority queues that make 

the decreaseKey operation very efficient. Pairing heaps were introduced by Fredman, 

Sedgewick, Sleator, and Tarjan (1986), and several variations were described. The version 

that we call “pairing forests” is similar to their “lazy multipass” method. Exercise 6.39 

is similar to their “twopass.” They were able to prove somewhat stronger bounds for 

“twopass” than for “multipass.” Jones (1986) reported empirical studies of several prior- 

ity queue data structures, and found pairing heaps to be competitive. Stasko and Vitter 

(1987) performed empirical studies in which they found that “multipass” did better than 

“twopass.” They introduced new variations, called “auxiliary multipass” and “auxiliary 

twopass.” Auxiliary (wopass performed best of the four variants in their experiments, and 

they also proved a stronger amortized time bound for this variant than has been proven for 

any of the other variants in the literature, but only for the case that decreaseKey is not used. 

Meanwhile Fredman and Tarjan (1987) introduced Fibonacci heaps as a priority queue 

data structure, and proved that they are of optimal asymptotic order in terms of amortized 

time. That is, decreaseKey and insert run in O(1), while deleteMin runs in O(log n), 

in the amortized sense. Fredman (1999) closed the long-standing open question of whether 
pairing heaps might be optimal in the amortized sense, by demonstrating that they are not of 
optimal asymptotic order. He also presented additional empirical results and described an 
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important class of applications in which “twopass” pairing heaps are of optimal asymptotic 

order. However, the exact asymptotic orders of all variations of pairing heaps are still 

unknown. Despite their theoretical advantages, Fibonacci heaps have been described as 

complicated to implement and as having significant overhead, compared to pairing heaps 

(Stasko and Vitter (1987), Fredman (1999)). Surveys of priority queue data structures may 

be found in Cormen, Leiserson, and Rivest (1990) and Gonnet and Baeza- Yates (1991). 
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Chapter 7 Graphs and Graph Traversals 

Introduction 

A very rich group of problems can be cast as problems on some kind of graph. These prob- 

lems originate not just in connection with computers, but throughout the sciences, industry, 

and business. The development of efficient algorithms to solve many graph problems has 

had a major impact on people’s ability to solve real problems in all these fields. Yet, for 

many important graph problems no efficient solutions are known. For others, it is not 

known whether the currently known solutions are as efficient as possible or are amenable 

to further substantial improvements. 

In this chapter we introduce the definitions and basic properties of graphs. Then we 

cover the primary methods for traversing graphs efficiently. It turns out that many natural 

problems can be solved very efficiently—in linear time, in fact—by using a graph traversal 

as a foundation. Loosely speaking, we may call these “easy” graph problems, not in the 

sense that the solution was easy to find or easy to program, but in the sense that, once 

programmed, instances of the problem can be solved very efficiently, and it is practical to 

solve very large problem instances (graphs with millions of nodes, in some cases). 

Continuing our loose classification, the class of “medium” graph problems consists of 

those that can be solved in polynomial time, but require more work than one elementary 

graph traversal. That is, for each “medium” problem, an algorithm is known that solves 

instances of “size” n in time bounded above by some fixed polynomial, such as n7, n>, 

or n@ for some other fixed d. Several important problems in this class are covered in later 

chapters: see Chapters 8, 9 and 14. It is practical to solve fairly large problem instances 

(graphs with thousands or tens of thousands of nodes, say) on today’s powerful computers. 

Moving up the scale, we have “hard” graph problems, for which no polynomial-time 

algorithm is Known. In some cases problems on graphs with 50 to 100 nodes cannot be 

solved by any known algorithm, even after running for a year. Yet, our current knowledge 

does not allow us to rule out the possibility that some efficient algorithm will be found. 

These problems truly represent the frontier of our knowledge, and a selection of them are 

discussed in Chapter 13. 

One of the fascinating aspects of graph problems is that very slight changes in the way 

a problem is formulated can often place it in any of the three categories, easy, medium, 

or hard. Therefore a familiarity with what is known about existing problems, and what 

characterisics cause them to be easy, medium, or hard, can be very helpful when tackling 

anew problem. 

Definitions and Representations 

Informally, a graph is a finite set of points (vertices, or nodes), some of which are connected 

by lines or arrows (edges). If the edges are undirected or “two-way,” the graph is said 

to be an undirected graph. It the edges are directed or “one-way,” it is said to be a 
directed graph. “Directed graph” is often abbreviated to digraph. “Undirected graph” is 
sometimes abbreviated to “graph,” but this can be ambiguous because people often refer 
to both undirected and directed graphs simply as “graphs.” We will use the specific term 
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Figure 7.1 A (hypothetical) graph of nonstop airline flights between California cities 

in any context where confusion might arise. In general discussions “graph” refers to both 

undirected and directed graphs. 

7.2.1. Some Examples 

Graphs are useful abstractions for numerous problems and structures in operations re- 

search, computer science, electrical engineering, economics, mathematics, physics, chem- 

istry, Communications, game theory, and many other areas. Consider the following exam- 

ples: 

Example 7.1 Airline route map 

A map of airline routes can be represented by an undirected graph. The points are the 

cities; a line connects two cities if and only if there is a nonstop flight between them in 

both directions. See Figure 7.1 for a (hypothetical) map of airline routes between several 

California cities. 

Example 7.2 Flowcharts 

A flowchart represents the flow of control in a procedure, or the flow of data or materials 

in a process. The points are the flowchart boxes; the connecting arrows are the flowchart 

arrows. Figure 7.2 shows an example in Pascal syntax. 
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(a) Flowchart (b) Directed graph 

Figure 7.2 A flowchart and the corresponding directed graph: Arrows indicate the direction 

of flow. 

Example 7.3 A binary relation 

Binary relations are defined in Section 1.3.1. Define R to be the binary relation on the set 

isan Lege 10} consisting of ordered pairs (x, y) for which x is a proper factor of y; that 

is, x € y and y/x has remainder 0. Recall that x Ry 1s an alternative notation for (v, y) € R. 

In the digraph in Figure 7.3, the points are the elements of S and there is an arrow from x 

to y if and only if x Ry. Notice that A is transitive: If x Ry and yRz both hold, then « Rz 

also holds. 

Example 7.4 Computer networks 

The points are the computers. The lines (for an undirected graph) or arrows (for a directed 

graph) are the communication links. Figure 7.4 shows an example of each. 

Example 7.5 An electrical circuit 

The points could be diodes, transistors, capacitors, switches, and so on. Two points are 

connected by a line if there is a wire connecting them. = ™ 
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SS 
Figure 7.3. The relation R in Example 7.3, representing “‘x is a proper factor of y” 

cS C- 
(a) A star network (b) A ring network 

Figure 7.4 Computer networks 

The preceding five examples should be sufficient to illustrate that undirected and 

directed graphs provide a natural abstraction of relationships of diverse objects, including 

both physical objects and their arrangement, such as cities connected by airline routes, 

highways, or railway lines, and abstract objects, such as binary relations and the control 

structure of a program. 

These examples should also suggest some of the questions we may wish to ask about 

the objects represented and their relationships, questions that will be rephrased in terms of 

the graph. Such questions can be answered by algorithms that work on the graphs. For 

example, the question “Is there a nonstop flight between San Diego and Sacramento?” 

translates into “Is there an edge between the vertices SD and SAC in Figure 7.1?” Consider 

the following questions: 

1. What is the cheapest way to fly from San Diego to Sacramento? 

2. Which route involves the least flying time? 
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3. If one city’s airport is closed by bad weather, can you still fly between every other pair 

of cities? 

4. If one computer in a network goes down, can messages be sent between every other 

pair of computers in the network? 

5. How much traffic can flow from one specified point to another using certain specified 

roads? 

6. Isa given binary relation transitive? 

7. Does a given flowchart have any loops? 

How should wires be attached to various electrical outlets so that all are connected 

together using the least amount of wire? 

In this chapter and the next we will study algorithms to answer most of these questions. 

7.2.2 Elementary Graph Definitions 

This section is devoted to definitions and general remarks about graphs. Many statements 

and definitions are applicable to both undirected and directed graphs, and we will use a 

common notation for both to minimize repetition. However, certain definitions are different 

between undirected and directed graphs, and these differences will be emphasized. 

Definition 7.1 Directed graph 

A directed graph, or digraph, is a pair G = (V, E) where V is a set whose elements are 

called vertices, and E is a set of ordered pairs of elements of V. Vertices are often also 

called nodes. Elements of E are called edges, or directed edges, or arcs. For directed edge 

(v, w) in E, vis its tail and w its head; (v, w) is represented in the diagrams as the arrow, 

v— w.Intext we simply write vw. @ 

In the binary relation example (Example 7.3, Figure 7.3), 

Definition 7.2. Undirected graph 

An undirected graph is a pair G = (V, E), where V is a set whose elements are called 

vertices, and E is a set of unordered pairs of distinct elements of V. Vertices are often also 

called nodes. Elements of E are called edges, or undirected edges, for emphasis. Each edge 

may be considered as a subset of V containing two elements; consequently, {v, w} denotes 
an undirected edge. In diagrams this edge is the line v—w. In text we simply write vw. Of 
course, vw = wv for undirected graphs. 

For the graph of Example 7.1 and Figure 7.1, for example, we have 

V = {SF, OAK, SAC, STK, FRES, LA, SD} , 

{SF,STK}, {SF, SAC}, {SF, LA}, {SF,SD}, {SF,FRES}, {SD, OAK}, E= 
{SAC, LA}, {LA,OAK}, {LA,FRES}, {LA,SD}, {FRES,STK}, {SD, FRES} 
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The definition of undirected graph implies that there cannot be an edge that connects a 
vertex to itself: An edge is defined as a set containing two elements, and a set cannot have 
duplicate elements, by definition (Section 1.3.1). 

Definition 7.3 Subgraph, symmetric digraph, complete graph 

A subgraph of a graph G = (V, E) isa graph G’ = (V’, E’) such that V’ C V and E’ C E. 

By the definition of “graph” it is also required that E’ C V’ x V’, 

A symmetric digraph is a directed graph such that for every edge vw there is also 

the reverse edge wv. Every undirected graph has a corresponding symmetric digraph by 

interpreting each undirected edge as a pair of directed edges in opposite directions. 

A complete graph is a (normally undirected) graph with an edge between each pair of 

vertices. 

The edge vw is said to be incident upon the vertices v and w, and vice versa. ™ 

Definition 7.4 Adjacency relation 

The edges of a graph or digraph G = (V, E) induce a relation called the adjacency relation, 

A, on the set of vertices. Let v and w be elements of V. Then vAw (read “w is adjacent 

to uv’) if and only if vw is in E. In other words, vAw means w can be reached from v by 

moving along one edge of G. If G is undirected, the relation A is symmetric. (That is, w Av 

ifandonly if vAw.) 

The concept of a path is very useful in many applications, including some that involve 

routing of people, telephone (or electronic) messages, automobile traffic, liquids or gases 

in pipes, and so on, and others where paths represent abstract properties (see Exercise 7.3). 

Consider Figure 7.1 again and suppose we wish to travel by airplane from Los Angeles 

(LA) to Fresno (FRES). There is an edge {LA, FRES} that is one possible route, but there are 

others. We could go from LA to SAC to SF to FRES, or we could go from LA to SD to FRES. 

These are all “paths” from LA to FRES in the graph. 

Definition 7.5 Path ina graph 

A path from v to w ina graph G = (V, E£) is a sequence of edges vp}, U1, U2, . . ., Uk—1Uk, 

such that v = vg and v, = w. The length of the path is k. A vertex v alone is considered to 

be a path of length zero from v to itself, A simple path is a path such that vo, vj, .. ., v4 are 

all distinct. 

A vertex w is said to be reachable from v if there is a path from v tow. 

The path {sp, FRES}, {FRES, SF}, {SF, SAC} is shown in Figure 7.5. We denote a path by 

listing the sequence of vertices through which it passes (but remember that the length of a 

path is the number of edges traversed). Thus the path in Figure 7.5 is SD, FRES, SF, SAC, and 

has length three. 

SA) 
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Figure 7.5 A path from sp to sac 

Definition 7.6 Connected, strongly connected 

Definitions for connectivity require care because they differ between directed and undi- 

rected graphs. 

An undirected graph 1s connected if and only if, for each pair of vertices v and w, there 

is a path from v to w. 

A directed graph is strongly connected if and only tf, for each pair of vertices v and w, 

there isapathfromvtow. & 

The reason for separate definitions that apparently read the same is that, in an undi- 

rected graph, if there is a path from vu to w, then there is automatically a path from w to v. 

In a directed graph, this may not be true, hence the qualifier “strongly” is used to indicate 

that the condition is stronger. If we think of an undirected graph as a system of two-way 

streets and a directed graph as a system of one-way streets, then the condition of strong 

connectivity means that we can get from anywhere to anywhere, by traveling the one-way 

streets in their correct direction. This is clearly a more stringent condition than if they were 

all two-way streets. 
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Figure 7.6 A free tree representing an alcohol molecule 

Definition 7.7. Cycle in a graph 

Definitions for cycles require care because they differ between directed and undirected 

graphs. 

For a directed graph, a cycle is just a nonempty path such that the first and last vertices 

are identical, and a simple cycle is a cycle in which no vertex is repeated, except that the 

first and last are identical. 

For undirected graphs the definitions are similar, but there is the added requirement 

that if any edge appears more than once, it always appears with the same orientation. That 

is, using the notation of Definition 7.5, if vj =x and vj+,; = y for O <i <k, then there 

cannot be a j such that vj; = y and vj41 =x. 

A graph is acyclic if it has no cycles. 

An undirected acyclic graph is called an undirected forest. If the graph is also con- 

nected, it is a free tree, or undirected tree. 

A directed acyclic graph is often abbreviated as DAG. (A DAG is not assumed to 

satisfy any connectivity condition.) 

Figure 7.6 is an example of a free, or undirected, tree. Note that with this definition of 

a tree, no vertex is singled out as the root. A rooted tree is a tree with one vertex designated 

as the root. The parent and child relations often used with trees can be derived once a root 

is specified. 

The reason for defining a symmetric digraph separately from an undirected graph in- 

volves cycles. If the notion of cycles is not important, then a procedure intended for directed 

graphs can often be used on the symmetric digraph that corresponds to an undirected graph. 

However, if cycles are important in the problem at hand, this substitution is not likely to 

work. For example, the simple undirected graph with the edge ab has no cycle, but its 

symmetric counterpart has two directed edges, ab and ba, and has a cycle. 

Definition 7.8. Connected component 

A connected component of an undirected graph G is a maximal connected subgraph of 

G. For directed graphs, the corresponding concept is more involved, and its definition is 

deferred until Definition 7.18. 
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Figure 7.7 A graph with three connected components 

We should clarify the meaning of “maximal” in the definition of “connected compo- 

nent.” A graph is said to be maximal within some collection of graphs if it is not a proper 

subgraph of any graph in that collection. It need not have the most vertices nor the most 

edges of any graph in that collection. In Definition 7.8 the “collection” is all connected 

subgraphs of G. 

When the term component is used in connection with graphs and other abstract struc- 

tures, it usually carries the implication of maximality within some group. We will encounter 

the terms “strongly connected component” and “‘biconnected component” later in the chap- 

ter. In both cases there is a notion of maximality. 

If an undirected graph is not connected, it may be partitioned into separate connected 

components, and this partitioning is unique. The graph in Figure 7.7 has three connected 

components. 

In many applications of graphs it is natural to associate a number, usually called a 

weight, with each edge. The numbers represent costs or benefits derived from using the 

particular edge in some way. Consider Figure 7.1 once again and suppose that we want to 

fly from sp to SAC. There is no nonstop flight, but there are several routes or paths that could 

be used. Which one is best? To answer this question we need a standard by which to judge 

the various paths. Some possible standards are 

|. the number of stops, 

2. the total ticket cost, and 

3. the total flying time. 

After choosing a standard, we could assign to each edge in the graph the cost (in stops, 

money, or time) of traveling along that edge. The total cost of a particular path is the sum 

of the costs of the edges traversed by that route. Figure 7.8 shows the airline graph with 

the (hypothetical) cost of a plane ticket written beside each edge. You may verify that the 

cheapest way to get from sp to SAC is to make one stop in LA. The general problem of 

finding “best” paths is studied in Sections 8.3 and 9.4. 

Figure 7.9, which shows some of the streets in a city, might be used to study the flow of 

automobile traffic. The number assigned to an edge indicates the amount of traffic that can 

flow along that section of the street in a certain time interval. The number is determined 

by the type and size of road, the speed limit, the number of traffic lights between the 

intersections shown in the graph as vertices (assuming not every street is shown in the 
graph), and various other factors. 
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Figure 7.8 A weighted graph showing airline fares 

The assignment of numbers to edges occurs often enough in applications to merit a 

definition. 

Definition 7.9 Weighted graph 

A weighted graph is a triple (V, E, W) where (V, E) is a graph (directed or undirected) 

and W is a function from E into R, the reals. (Other types for weights, such as rationals or 

integers, may be appropriate for some problems.) For an edge e, W(e) is called the weight 

ofe. 

The functional terminology may seem very technical, but it is easily understood, once 

we recall from Section 1.3.1 that, conceptually, a function is just a table of two columns: 

the argument to the function and the corresponding function value. In this case each edge 

appears on some row in column one and its weight is on the same row in column two. The 

representation in a data structure may be different, but it will carry the same information. In 

diagrams of graphs, we simply write the weight next to each edge, as we did in Figures 7.8 

and 7.9. The weights in some applications will correspond to costs or undesirable aspects of 

an edge, whereas in other problems the weights are capacities or other beneficial properties 

of the edges. (The terminology varies with the application; thus the terms cost, length, or 

capacity may be used instead of weight.) In many applications weights cannot naturally be 

negative, as when they represent distances. The correctness of some algorithms depends 
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Figure 7.9 A street map showing traffic capacities 

on restricting the weights to nonnegative values, while other algorithms are able to handle 

negative values. 

7.2.3 Graph Representations and Data Structures 

We have seen two ways of representing a graph on paper: by drawing a picture in which 

vertices are represented by points and edges as lines or arrows, and by listing the vertices 

and edges. This section discusses data structures that are useful for representing graphs 

in a computer program. Let G = (V, E) be a graph with n=|V|, m=|E], and V = 

(UNPRU ones Unt 

Adjacency Matrix Representation 

G can be represented by ann x n matrix A = (a;;), called the adjacency matrix for G. A 

is defined by 
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Ll ivy, ek : s 
ay = Led oe WES jf Sie 

QO otherwise 

The adjacency matrix for an undirected graph is symmetric (and only half of it need be 

stored). If G =(V, E, W) is a weighted graph, the weights can be stored in the adjacency 

matrix by modifying its definition as follows: 

ae | W(ujv;) if vjv; € E fon San 

c otherwise 

where c is a constant whose value depends on the interpretation of the weights and the 

problem to be solved. If the weights are thought of as costs, oo (or some very high number) 

may be chosen for c because the cost of traversing a nonexistent edge is prohibitively high. 

If the weights are capacities, a choice of c = 0 is usually appropriate since nothing can 

move along an edge that is not there. See Figures 7.10(a, b) and 7.11(a, b) for examples. 

Algorithms for solving some problems on graphs require that every edge be examined 

and processed in some way at least once. If an adjacency matrix representation is used, we 

may as Well think of a graph as having edges between all pairs of distinct vertices, because 

many algorithms would examine each entry in the matrix to determine which edges really 

exist. Since the number of possible edges is n* in a directed graph, or n(n — 1)/2 in an 

undirected graph, the complexity of such algorithms will be in Q(n7). 

Array of Adjacency Lists Representation 

An alternative to the adjacency matrix representation is an array indexed by vertex number 

containing linked lists, called adjacency lists. For each vertex v; the /th array entry contains 

a list with information on all edges of G that “leave” v;. In a directed graph this means v; 

is the tail of the edge; in an undirected graph, the edge is incident upon v;. The list for v; 

contains one element per edge. For definiteness, let’s call this array adjlnfo. It might be 

defined by 

List[{] adjlnfo = new List[n+1]; 

We will use indexes 1, ..., 2, So we allocate n + | positions and don’t use the Oth position. 

Now adjlnfo[i] will be a list with information about the edges leaving vj. 

The merit of an adjacency-list structure is that edges that don’t exist in G don’t exist in 

the representation either. If G is sparse (has many fewer than n° edges), it can be processed 

quickly. Note that if the elements within an adjacency list appear ina different order, the 

structure still represents the same graph, but an algorithm using the list will encounter the 

elements in a different order and may behave somewhat differently. An algorithm should 

not assume any particular ordering (unless, of course, the algorithm itself constructs the 

list in a special way). 

The data in the adjacency lists will vary with the problem, but there are fairly standard 

basic structures that are useful for many algorithms. Suppose we define Edgelnfo to be an 

organizer class (see Section 1.2.2) with fields for each piece of information that we want 

to maintain about the edge. Then each element of an adjacency list will be an object in 

the Edgelnfo class. Three common fields are from, to, and weight, to record that the edge 

is from Vjom tO Vio and “weight” is its weight. We will write this information in the form 
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OO OOO 

Oe ae TORO: 

| 0 

(a) An undirected graph (b) Its adjacency matrix 

adjVertices 

| —+—| 2 | ——— 3 nil 

2 i l ———— |S —+——>| 14 nil 

3 Sees ia ee Smec n —+—| 6 nil 

4 oes 2. Ss 8 —= 6 nil 

3) iaelees 6 nil 

a al eects oe ee oe et. 

7 ay nil 

(c) Its adjacency-list structure 

Figure 7.10 Two representations for an undirected graph without edge weights are the adja- 

cency matrix and the array of adjacency lists. It could also be a symmetric digraph. 

(from, to, weight). However, in any single list, the from field will be the same for all edges. 

In particular, the list adjlnfo[i] will have from = i for all elements. Therefore the from field 

is redundant and is normally omitted from the adjacency lists. 

For unweighted graphs, there is no weight field either. Since Edgelnfo is reduced to 
a single field, to, in this case we don’t need an organizer class. We simply use lists of 
integers, as provided by the IntList abstract data type (Section 2.3.2). Since there is no 
“info” except vertices now, we rename the array to adjVertices. Each element, say /, in 
the list adjVertices[i] indicates the presence of the edge v; v; in G. For example, if 6 is in 
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(a) A weighted digraph (b) Its adjacency matrix 

adjlnfo 

ape 2 | 25.0] nil 

al al 

meee 

ie ae 

bo 3 | 100 +-| 4 | 14.0] nil 

+— 6 | 16.0] nil 

2 | 60 a [ 18.0 | nil 

6 a aS a | 32.0 | 5 42.0 | ++| fi | 14.0 | nil 

7 i} 6 | 11.0 nil 

(c) Its adjacency-list structure 

Figure 7.11 Two representations for a weighted directed graph 

the list adjVertices[7], it represents the edge (7, 6). This data structure is illustrated for an 

undirected graph (it could also be a symmetric digraph) by the example in Figure 7.10. 

For weighted graphs, we might wish to define a class of lists in which the elements are 

in Edgelnfo, and call this class EdgeList. Let’s denote an object in Edgelnfo as (to, weight). 

In this case an element (/, wj;) in the adjacency list adjInfo[i] represents the edge (vj, v;) 

with weight w;;. Figure 7.11 illustrates the conceptual structure for a weighted directed 

graph. Additional fields may be added to the array entries or the linked list elements as 

required by the algorithms to be used. 
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In an undirected graph, each edge is represented twice; that is, if vw is an edge, there is 

an element for w on the adjacency list for v and an element for v on the adjacency list for w. 

Thus there are 2m adjacency-list elements and n adjacency lists. For a directed graph each 

edge, being directed, is represented once. Notice that the adjacency-list representations of 

an undirected graph and the corresponding symmetric digraph are identical. 

Traversing Graphs 

Most algorithms for solving problems on a graph examine or process each vertex and each 

edge. Breadth-first search and depth-first search are two traversal strategies that provide an 

efficient way to “‘visit” each vertex and edge exactly once. (The terms depth-first search and 

depth-first traversal are interchangeable; similarly for breadth-first search and breadth- 

first traversal.) Consequently, many algorithms based on these foundations run in time that 

grows linearly with the size of the input graph. 

7.3.1 Overview of Depth-First Search 

The value of depth-first search was demonstrated by John Hopcroft and Robert Tarjan, who 

developed many important algorithms that use it. Several of these are presented in the rest 

of this chapter. 

Depth-first search is a generalization of general tree traversal (Section 2.3.4). The 

starting vertex may be determined by the problem or chosen arbitrarily. As with tree 

traversal, depth-first search is usefully visualized as a journey around the graph. The 

analogy with tree traversal is easier to see with directed graphs because the edges are 

directed, as are tree edges. We begin by describing depth-first search for directed graphs, 

then see how to adapt it for undirected graphs in Section 7.6. 

Imagine a directed graph as a cluster of islands connected by bridges. We'll assume 

that traffic is one-way on each bridge, but we are taking a walking tour, so we are allowed 

to walk in either direction. However, we decide on a policy that we will always walk across 

a bridge for the first time in the same direction as traffic; we call this exploring an edge 

(bridge). If we walk across a bridge in the reverse direction from traffic, then we must 

be returning to some place we have been before, so we call this backtracking. The theme 

of depth-first search is to explore if possible, otherwise backtrack. We have to add some 

restrictions on exploring, but we'll do that as we “walk” through an example in the persona 

of Terry the tourist. 

Example 7.6 Depth-first search 

Let’s begin a depth-first search from vertex A in the graph below. For simplicity, when we 

have a choice of edges to explore, we will select them in alphabetical order. 

HA) 
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Terry the tourist begins at A in the left diagram, explores to B in the middle, and then to 
C in the right diagram. Double solid lines denote edges that have been explored and led to 
undiscovered vertices, or islands. We say that A, B, and C are discovered when Terry first 
arrives. 

Remembering that exploration must be in the direction of traffic, there is nowhere to 

explore from C. We call this a dead end. So Terry backtracks. Backtracking is always done 

over the bridge that was used to arrive on the island for the first time. Once island C is 

backtracked from it will not be revisited, and is said to be finished. A heavy line indicates 

that an edge has both been explored and backtracked over. 

In the left diagram above, Terry has backtracked to B, and now applies the rule to explore if 

possible. The bridge to D has not been explored yet, so that is the next step, leading to the 

middle diagram. Now we have a situation that can’t arise 1n tree traversal. The right diagram 

shows Terry en route over the bridge from D to A. This would complete a cycle, but of 

course, trees don’t have cycles. For this reason, when searching a graph, it is necessary 

to remember where we have been—we must be able to distinguish undiscovered vertices 

from discovered vertices. We could walk around in circles forever if we don’t remember 

that we have already discovered A. 

Let’s assume Terry does recognize island A just before getting there, and backtracks to 

D, as shown in the left diagram above. We use dotted lines to indicate that an edge was 

explored, but it went to an already discovered vertex. 

For the journey metaphor, we say that such an edge is explored and backtracked over, 

even though it goes to a vertex that was previously discovered. However, when we are 

thinking of the search algorithmically, we will say that such an edge is checked, and use 

the term backtrack only when the edge was explored and it led to an undiscovered vertex. 

Similarly, the bridge from D to C is explored, but C has previously been discovered 

and even finished, so backtracking occurs without a visit, leading to the middle diagram. 

We also call D a dead end, even though it has edges leaving it, because they only go to 

discovered vertices. 

Notice that edges DA and DC both led to discovered vertices, but there is a difference: 

The edge to A led to a vertex that was discovered, but not finished, whereas the edge to C 
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led to a finished vertex. This distinction is important in many applications of depth-first 

search. 

There is nowhere else to explore from D, so Terry backtracks over the bridge by which 

D was discovered, returning to B in the right diagram. There are no further bridges to 

explore here either, so the next step is to backtrack to A. 

In the left diagram Terry has backtracked to A and is ready to explore in a new direction. 

The bridge AC is a third example of a bridge to an already discovered vertex, but again 

there is a slight difference from the other two. In this case, previous explorations carried 

Terry from A to C, and now this bridge is a shortcut. In the case of DC there was no 

previous path that was traveled from D to C. The middle diagram shows the situation after 

AC has been explored and backtracked over. In the right diagram Terry has explored AF, 

reaching an undiscovered vertex. 

From island F, first FA is explored and backtracked over (left diagram above), then FC 

is explored and backtracked over (middle diagram). Like D, F is a dead end. Terry finally 

backtracks to A, completing the day’s perambulations in the right diagram. Notice that 

Terry was never able to reach E or G. 

Looking at the final diagram, we see that the edges drawn as heavy solid lines, which 

went to undiscovered vertices during the search, form a tree. This makes sense when we 

think about it, because a vertex can only be discovered once, so it can only have one such 

edge coming into it (or none, if the search starts there). Having only one edge coming into 

each vertex is a property of trees. The tree defined by the edges that led to undiscovered 

vertices during the search is called a depth-first search tree, or DFS tree for short. DFS 

trees are studied in more detail in Section 7.4.3. 

Although we introduced depth-first search as a journey, our example shows that the 

journey has a certain structure: We always return the way we came. In other words, if the 

first step is from A to B, then eventually we return from B to A. What happened in the 
interim? Actually, we performed a depth-first search from B with the added condition that 
we could not revisit A. 

More generally, whenever the journey returns (backtracks) to A, the added condition 
on further exploration 1s that no vertex that has been visited will be revisited. For example, 
the edge AC led to a discovered vertex, but AF did not, so a depth-first search from F 
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Figure 7.12 The structure of depth-first search: G, is completely traversed before exploring 
G2, then G3. Since G might not be a tree, there might be edges from the subgraphs to previously 
visited vertices. 

was performed. Due to the rule against revisiting a vertex that has been discovered, the 
exploration from F did not visit A or C before backtracking to A. Instead the edges FA 
and FC are checked. These observations suggest a recursive decomposition of the search 
process: 

dfs(G, v) // OUTLINE 

Mark v as “discovered.” 

For each vertex w such that edge vw is in G: 

If w is undiscovered: 

dfs(G, w); that is, explore vw, visit w, explore from there 

as much as possible, and backtrack from w to v. 

Otherwise: 

“Check” vw without visiting w. 

Mark v as “finished.” 

To gain some further insight into the structure of depth-first search, let’s look at 

Figure 7.12. Suppose the vertices that will be reached from v during a depth-first search 

can be partitioned into several subgraphs, G;, G2, G3, such that there is no connection (via 

undiscovered vertices) among G;, G2, and G3. We also assume for this example that the 

adjacency list of v happens to be arranged such that some vertex in G, is discovered before 

any vertex in G2, and some vertex in G2 is discovered before any vertex in G3. 

The depth-first strategy of always exploring a path as far as possible before backtrack- 

ing (and exploring alternative paths as far as possible before backtracking further) has the 

effect of visiting all vertices in G; before going on to a new subgraph adjacent to v, in 

this case, G2 or G3. Then all vertices in G2 will be visited before visiting anything in G3. 
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This is analogous to tree traversal, which visits all vertices in one subtree before going to 

the next subtree. We will return to this analogy when we study the properties of depth-first 

search in more detail, in Section 7.4.1. 

So far we have concentrated on directed graphs. Depth-first search is equally applica- 

ble to undirected graphs. However, we have some ambiguity to resolve concerning “for- 

ward direction” and “backward direction” of edges, because now the edges are undirected. 

We will return to this issue in Section 7.6. 

Finally, we need to address the fact that not all vertices in a graph are necessarily 

reachable from the vertex at which a depth-first search commenced. We saw this for vertices 

E and G in Example 7.6. The following brief pseudocode describes how this is handled. 

dfsSweep(G) // OUTLINE 

Initialize all vertices of G to “undiscovered.” 

For each vertex v € G, in some order: 

If v is undiscovered: 

dfs(G, v); that is, perform a depth-first search beginning 

(and ending) at v; any vertices discovered during an earlier 

depth-first search visit are not revisited; all vertices visited 

during this dfs are now classified as “discovered.” 

Given the informal description of depth-first search, we see that dfsSweep (through calls to 

dfs) visits every vertex in G exactly once, and traverses every edge in G once in the forward 

direction (exploring) and once in the backward direction (backtracking). However, when 

the edge goes to a vertex that has already been discovered, rather than say that the edge is 

explored and immediately backtracked over, we say the edge 1s checked. 

7.3.2 Overview of Breadth-First Search 

Breadth-first search is quite different from depth-first search in terms of the order in which 

vertices are discovered. Rather than a journey by one individual, breadth-first search is 

best visualized as many simultaneous (or nearly simultaneous) explorations starting from 

a common point and spreading out independently. After giving an informal introduction, 

we develop a breadth-first search algorithm for a typical application, finding a breadth-first 

spanning tree. 

Example 7.7 Breadth-first search 

Let’s see how breadth-first search works, starting from vertex A in the same graph as we 

used in Example 7.6. Instead of Terry the tourist, a busload of tourists start walking at A in 

the left diagram. They spread out and explore in all directions permitted by edges leaving 

A, looking for bargains. (We still think of edges as one-way bridges, but now they are 

one-way for walking, as well as traffic.) 
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Various groups have arrived at B, C, and F in the middle diagram. We'll assume that only 
the first group to arrive at any island is able to find the best bargains—then they’re all 
gone. Although they keep spreading out, only a contingent from B reaches an undiscovered 

location, D, as shown in the right diagram. 

The dashed lines show edges that-were explored but went to vertices that were previ- 

ously discovered. (Again, in an algorithmic setting we will say these edges are checked, 

rather than explored.) The tourists that took these routes arrived at C (or back at A) too late 

to get any bargains. Not only that, but once they fall behind like this, they will be too late 

at any future islands that might be reached from A or C, so they might as well give up on 

bargain hunting. 

In the last phase of the search (not shown) the edges DA and DC will similarly be 

explored. There is no backtracking in breadth-first search and E and G are unreachable, so 

the search will be over after these last two edges are explored. 

Looking at the final diagram, we see that the edges drawn as heavy solid lines, which 

went to undiscovered vertices during the search, again form a tree, although it is different 

from the tree formed in Example 7.6. If there are two or more shortest paths to a particular 

vertex, the tie is broken somehow and only one edge is considered to “discover” the vertex. 

The winner depends on implementation details and details of the data structure, when a 

computer program is run. 

As we saw in the example, in a breadth-first search, vertices are visited in order of 

increasing distance from the starting point, say, s. The “distance” for this discussion is 

simply the number of edges in a shortest path. We now outline the procedure in a little 

more detail. Initially all vertices are undiscovered. 

The central step of the breadth-first search, beginning with d = 0 and repeated until 

no new vertices are found, is to consider in turn each vertex, v, at distance d from s 

and examine all edges leading from v to adjacent vertices. For each edge vw, if w is 

undiscovered, then add w to the set of vertices at distance d + | from the starting point 

s; otherwise w is closer than that, and its distance is already known. 

After all vertices at distance d are processed in this way, process vertices at distance 

d +1, and so on. The search terminates when a distance d occurs such that there are no 

vertices at all at distance d. 

Example 7.8 Breadth-first distances 

For the breadth-first search in Example 7.7, the distances are 0 for A, | for B, C, and F, 

and 2 for D. In Exercise 7.5 you are asked to calculate the breadth-first distances for the 

graph in Example 7.7, with G as the starting vertex. 

Because breadth-first search has fewer applications than depth-first search, we will 

conclude our presentation of it here with a representative application. The following algo- 

rithm puts the preceding description of breadth-first search into action, and finds a breadth- 

first spanning tree rooted at a specified start vertex, s. The tree is stored as an in-tree in the 

array parent. The In-Tree ADT was described in Section 2.3.5, and we have encountered 

the array implementation of an in-tree earlier in Section 6.6.3. 
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A breadth-first spanning tree contains a tree vertex for every graph vertex that is 

reachable from s, hence the name “spanning.” Moreover, the path in the tree from s to 

any vertex v contains the minimum possible number of edges; thus the depth of v in this 

tree is its minimum edge-distance from s. In the last part of the figure in Example 7.7 the 

solid-lined edges make up a breadth-first spanning tree. 

As always with in-trees, the path from the starting vertex s to any vertex v can be 

discovered in reverse order by following parent entries from v back to s. The parent of s 

is set to —1 to denote that s is the root. 

Algorithm 7.1 Breadth-First Search 

Input: G =(V, E), a graph represented by an adjacency list structure, adjVertices, as 

described: Section 72233; where V =; n}; s € V, the vertex from which the search 

begins. 

Output: A breadth-first spanning tree, stored in the parent array. The parent array is 

passed in and the algorithm fills it. 

Remarks: For a queue Q, we assume operations of the Queue abstract data type (Sec- 

tion 2.4.2) are used. The array color[1], ..., color[n] denotes the current search status of 

all vertices. Undiscovered vertices are white; those that are discovered but not yet processed 

(in the queue) are gray; those that are processed are black. 

void breadthFirstSearch(IntList[] adjVertices, int n, int s, int[] parent) 

int{] color = new int[n+1]; 

Queue pending = create(n): 

Initialize color[1], . . ., color[n] to white. 

parent[s] = -1; 

color[s] = gray; 

enqueue(pending, s); 

while (pending is nonempty) 

v = front(pending); 

dequeue(pending): 

For each vertex w in the list adjVertices[v]: 

if (color[w] == white) 

color[w] = gray; 

enqueue(pending, w); 

parent[w] =v; // Process tree edge vw. 

// Continue through list. 

// Process vertex v here. 

color[v] = black; 

return: 

Algorithm 7.1 serves as a skeleton for all breadth-first search applications. Comments 
indicate where code would be inserted for processing vertices and tree edges (edges to 
undiscovered vertices, which make up the breadth-first spanning tree). If it is desired to 
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process nontree edges, an else for the if is needed; however, such a requirement is unusual 
in breadth-first search. 

For the queue needed in Breadth-First Search (pending), the last part of Exercise 2.16 
provides a simple and efficient implementation, because only n enqueues will be done 
during the course of the algorithm. 

As we saw in Example 7.7, not all vertices are necessarily reachable from a selected 
Starting vertex. If it is necessary to explore the entire graph, a “wrapper” procedure similar 
to dfsSweep in Section 7.3.1 can be used. 

Analysis of Breadth-First Search 

We assume G has 7 vertices and m edges, and assume the search reaches of all G. Also, 

we assume that each queue operation takes constant time. Finally, we assume that the 

application’s processing for individual vertices and edges takes constant time for each; 

otherwise, the appropriate costs need to be multiplied by the time per processing operation. 

Each edge is processed once in the while loop for a cost of @(m). Each vertex is put 

into the queue once and is removed from the queue and processed once, for a cost of O(n). 

Extra space is used for the color array and the queue, and these are in ©(7). 

7.3.3. Comparison of Depth-First and Breadth-First Searches 

Before getting further into specific problems and algorithms, let’s take a high-level look at 

some similarities and differences of the two traversal methods just outlined. 

The descriptions of the two traversal methods are somewhat ambiguous. For example, 

if there are two vertices adjacent to v, which will be visited first? The answer depends 

on implementation details, for example, the way in which the vertices are numbered or 

arranged in the representation of G. An efficient implementation for either method must 

keep track of vertices that have been discovered but whose adjacent vertices have not yet 

all been discovered. 

Note that when a depth-first search backs up from a dead end, it is supposed to branch 

out from the most recently discovered vertex before exploring new paths from vertices that 

were discovered earlier. Thus vertices from which exploration is incomplete are processed 

in a last-in first-out (LIFO) order that is characteristic of a stack. On the other hand, in a 

breadth-first search, to ensure that vertices close to v are visited before those farther away, 

the vertices to be explored are organized as a FIFO queue. 

We presented high-level algorithms for both search methods in the preceding subsec- 

tions. Many variations and extensions can be made to these algorithms, depending on what 

they are used for. It is often necessary, for example, to do some sort of processing on each 

edge. The descriptions of the algorithms do not mention all edges explicitly, but of course 

the implementation of the lines that require finding an undiscovered vertex adjacent to a 

given vertex, say v, would involve examining edges incident upon v, and the necessary 

processing of edges would be done there. In Section 7.4.4 we will consider how to fit other 

kinds of processing into a general depth-first search skeleton. 

To conclude this comparison we observe that depth-first search contains two process- 

ing opportunities for v (when it is discovered and when it is marked “finished”), while 
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breadth-first search contains only one (when it is dequeued). Upon closer inspection, we 

observe that in both searches, the first processing opportunity occurs while there are (pos- 

sibly many) undiscovered vertices that are reachable from v and have not yet been dis- 

covered. Therefore the kind of computations that can be done at this point must be done 

in a state of relative ignorance about the rest of the graph. However, in depth-first search, 

there is a postorder processing opportunity, as well, just before the search finally back- 

tracks from v. At this time, in general, many more vertices have been discovered and much 

more information may have accumulated during the search. The postorder processing step 

is often able to exploit this additional information to perform much more sophisticated 

computations than were possible at preorder time. The presence of this postorder process- 

ing opportunity in depth-first search explains, in a very profound way, why we see so many 

applications for depth-first search, and relatively few for breadth-first search. 

Depth-First Search on Directed Graphs 

We begin our detailed study of depth-first search with directed graphs. We will develop a 

general depth-first search skeleton that can be used to solve many problems, and we will 

apply it to solve several standard problems. 

The general depth-first search procedure is somewhat more complicated for undirected 

graphs than it is for directed graphs, and so it is taken up in Section 7.6. This might seem 

surprising because undirected graphs seem to be simpler than directed graphs. However, 

a technically correct depth-first search explores each edge only once, and in undirected 

graphs each edge is represented twice in the data structure. In essence, depth-first search 

on an undirected graph transforms it into a directed graph on the fly, with each edge being 

oriented in the direction of exploration. We prefer to separate this issue from the main 

issues of depth-first search. We also note that several problems on undirected graphs can 

be recast as problems on symmetric digraphs, and the simpler directed depth-first search 

can then be used. As a rule of thumb, if the depth-first search on the undirected graphs 

ignores nontree edges, then the symmetric digraph can be substituted. 

In many problems where we model something using a directed graph, it may be natural 

to assign edges in either direction. For example, consider a “call graph” in which the 

vertices are procedures. We might reasonably define edges by the rule that vw means “v 

calls w,” or by the rule that uw means “vu is called by w.” For another example, consider 

a “genealogy chart” in which vertices are people. We might reasonably define edges in the 

direction from parent to child or from child to parent. Which choice is most useful is likely 

to depend on the specific problem at hand. Therefore it is convenient to be able to go back 

and forth between the two orientations. This motivates the next definition. 

Definition 7.10 | Transpose graph 

The transpose graph of digraph G, denoted as G", is the graph that results from reversing 

the direction of eachedgeinG. @ 
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Depth-first search explores in the forward direction, but there are some cases when 

we want to search “backwards” over a graph. It is possible to construct the adjacency- 

list structure of the transpose graph G! from the adjacency-list structure of G in linear 

time, and do a standard search on G!. Alternatively, if the need is anticipated when the 

adjacency-list structure is being built, both G and G’ can be built simultaneously. 

7.4.1 Depth-First Search and Recursion 

We have seen that depth-first search can be simply described by a recursive algorithm. 

In fact, there is a fundamental connection between recursion and depth-first search. In a 

recursive procedure, the call structure can be diagrammed as a rooted tree where each 

vertex represents a recursive call to the procedure, as we have seen in Sections 3.2.1 

and 3.7. The order in which the calls are executed corresponds to a depth-first traversal 

of the tree. 

Example 7.9 Fibonacci numbers 

Consider the recursive definition of the Fibonacci numbers, F, = F,—) + F,—2, from Equa- 

tion (1.13). The call structure for a recursive computation of F¢ is shown in Figure 7.13. 

Each vertex is labeled with the current value of 7, that is, the actual parameter of the activa- 

tion frame that the vertex represents. Essentially, the subtree rooted at that vertex computes 

F,, for the current value of n. 

Ist call 

17th call 2nd call 

3rd call 

4th 

Sth 10th llth 14th [5th 20th 21th 

6th 7th 

Figure 7.13 Call structure for recursive computation of Fibonacci numbers 
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The order of the execution of the recursive calls is indicated in the figure; it is the 

familiar preorder sequence. However, the order in which results are accumulated (by the 

“+4” Operation) is the postorder sequence. We saw a smaller example with more details on 

the activation frames in Example 3.1. 

For the diagram in Figure 7.13 we assumed that each ofthe 25 vertices is distinct, even 

though many have duplicated labels, because each vertex corresponds not just to its label, 

but also to a specific function invocation. You might suspect that this is an extremely ineffi- 

cient way to compute the Fibonacci numbers. You would be correct. [t would be much more 

efficient to do a depth-first search on a graph with seven vertices, each with a unique label 

from 0 through 6. We will return to this topic in Chapter 10, Section 10.2. For now, this ex- 

ample is used only to illustrate the connection between depth-first search and recursion. 

Thus the logical structure of the solutions to a number of interesting problems solved 

by recursive algorithms 1s a depth-first traversal of a tree. The tree is not always explicitly 

part of the problem, nor ts it explicitly represented as a data structure. As another example, 

let’s look at the famous eight-queens problem. 

Example 7.10 Eight queens on a chessboard 

Consider the problem of placing eight queens on a chessboard so that none is under attack 

by any other; in other words, so that none can reach another by moving along one row, 

column, or diagonal. It is not obvious that this can be done. 

We try as follows: Place a queen in the first (leftmost) square of the first (topmost) row. 

Then continue to place queens in each successive vacant row in the first column that is not 

under attack by any queen already on the board. Do this until all eight queens are on the 

board or all of the squares in the next vacant row are under attack. If the latter case occurs 

(which it does in the sixth row; see Figure 7.14), go back to the previous row, move the 

queen there as few places as possible farther to the right so that it is still not under attack, 

and then proceed as before. 

What tree is involved in this problem, and in what sense are we doing a depth-first 

search of it? The tree is shown in Figure 7.14. Each vertex (other than the root) is labeled 

by a position on the chessboard. For | <7 < 8, the vertices at level i are labeled with board 

positions in row /. The children of a vertex, v, at level i are all board positions in row i + 1 

that would not be under attack if there were queens in all board positions along the path 

from the root to v; in other words, the children are all the safe squares in the next row. In 

terms of the tree, the problem is to find a path from the root to a leaf of length eight. As an 

exercise, you might write a recursive program for the queens problem such that the order in 

which the recursive calls are executed corresponds to a depth-first search. If there actually 
is a solution, only part of the tree in Figure 7.14 is traversed. (Depth-first search, when used 

in a problem like this one, is also called backtrack search.) = 

7.4.2 Finding Connected Components with 
Depth-First Search 

This section develops in detail an algorithm for identifying connected components of a 
graph—or strongly connected components of a symmetric (directed) graph. Along the 
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Figure 7.14 The eight-queens problem 

way, we work out a number of implementation details that carry over to all applications 

of depth-first search. Connected components are associated with undirected graphs, but the 

representation for an undirected graph is the same as the representation for a symmetric 

digraph, and the components are the same in both cases. However, the depth-first search 

algorithm is somewhat simpler on directed graphs. 

Let G =(V, E) be an undirected graph with n = |V| and m = |E|. The corresponding 

symmetric digraph has 2m directed edges. We will use G for this graph, too, since their 

representations are identical. Recall that a connected component of G is a maximal con- 

nected subgraph, that is, a connected subgraph that is not contained in any larger connected 

subgraph (Definition 7.8). The graph in Figure 7.7, for example, has three connected com- 

ponents. The problem of finding the connected components of a graph can be solved by 

using depth-first search with very littke embellishment. We may start with an arbitrary ver- 

tex, do a depth-first search to find all other vertices (and edges) in the same component, 

and then, if there are some vertices remaining, choose one and repeat. 

We use the outline of depth-first search (dfs) given in Section 7.3.1. Various parts of 

the algorithm could require a lot of work if we choose a poor implementation. The loop 

needs to find all ws that are adjacent to v (in the edges’ forward directions). Certainly, we 

should use adjacency lists to represent the graph so that we can traverse the list for v and 
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only look at ws for which there actually are edges from v; if we used the adjacency matrix 

we would have to scan through every w in the graph in this loop. Throughout the algorithm, 

each adjacency list is traversed only once. A local variable is used to keep track of our place 

in an adjacency list. (This means there is a variable saved on the frame stack to keep track 

of our place in each adjacency list that has been partly, but not completely, traversed at any 

time, as explained in Section 3.2.1.) 

As an algorithm, depth-first search operates at two levels. The top level, or wrapper 

(dfsSweep), finds undiscovered vertices and initiates a depth-first search at each undiscov- 

ered vertex that is found. The lower level, called dfs, recursively carries out the actions of 

a depth-first search. 

The problem of finding an undiscovered vertex in dfsSweep from which to start a new 

depth-first search can be handled analogously to the way dfs finds a new undiscovered 

vertex. Instead of checking through the array of vertices from the beginning each time a 

depth-first search is completed, we start wherever we left off the previous time. 

It is crucial to record when a vertex changes its status from “undiscovered” to “discov- 

ered,” to prevent repeated work, and even a nonterminating search. In some applications it 

is important also to record when a vertex has been completely processed, that is, “finished.” 

This is also very useful for analysis. Thus we adopt a three-color system for recording ver- 

tex status. 

Definition 7.11 Three-color code for search status of vertices 

The color white denotes that a vertex 1s undiscovered. The color gray denotes that a vertex 

is discovered, but its processing is incomplete. The color black denotes that a vertex is 

discovered, and its processing 1s complete. 

Now let’s turn our attention to the particular needs of the connected components 

problem. If the partition of the graph into connected components is to be recorded in the 

data structure for later use, it can be done by marking each vertex and/or edge with the 

number of the component to which it belongs. A more complex alternative is to make a 

separate linked list of the vertices and/or edges in each component. The particular method 

chosen would depend on how the information ts to be used later. 

The connected component algorithm is presented next, using a depth-first search 

procedure that makes the implementation explicit. The procedure connectedComponents 

in this algorithm corresponds to the generic dfsSweep mentioned above, and outlined in 

Section 7.3.1. We will treat the graph as a symmetric digraph, rather than an undirected 

graph, in the sense that we do a directed depth-first search. Depth-first search on an 

undirected graph entails some additional complications that are unnecessary for finding 

connected components; these details are addressed in Section 7.6. 

Algorithm 7.2© Connected Components 

Input: Array adjVertices of adjacency lists that represent a symmetric digraph G = 
(V, £), as described in Section 7.2.3, and n, the number of vertices. The array is defined 
for indexes I, ...,. G can also be interpreted as an undirected graph. 
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Output: Array cc in which each vertex is numbered to indicate which component it is 

in. The identifier for each connected component is the number of some vertex within that 

component (other identification systems are possible). (The caller allocates and passes in 

cc and this procedure fills it.) 

Remarks: Color meanings are white = undiscovered, gray = active, black = finished. Note 

that the third and fourth parameters of ccDFS are both v in the top-level call, but have 

different meanings. The third parameter designates the current vertex to visit, and changes 

in every recursive call. The fourth parameter designates the identifier of the connected 

component and remains unchanged through recursive calls. 

void connectedComponents(IntList[] adjVertices, int n, int[] cc) 

int{] color = new int[n+1]; 

int v; 

Initialize color array to white for all vertices. 

for (v= 1; v <n: v ++) 
if (color[v] == white) 

ccDFS(adjVertices, color, v, v, cc); 

return; 

void ccDFS(IntList[] adjVertices, int[{] color, int v, int ccNum, int{] cc) 

int Ww; 

IntList remAdj:; 

color[v] = gray; 

cc[v] = ccNum; 

remAdj = adjVertices[v]; 

while (remAdj + nil) 

w = first(remAd)); 

if (color[w] == white) 

ccDFS(adjVertices, color, w, ccNum, Cc); 

remAdj = rest(remAd)); 

color[v] = black; 

return: 

Analysis of Connected Components 

The number of operations done by connectedComponents, excluding the calls to ccDFS 

is clearly linear inn. In ccDFS(..., v, .. .), the number of instructions executed 1s propor- 

tional to the number of elements in adjVertices[v], the adjacency list that was traversed, 

since the instruction “remAdj = rest(remAdj)” is executed once each time through the 

while loop. Since the adjacency lists are traversed only once, the complexity of the depth- 

first search. and hence the connected component algorithm, is in O(n + m). (Usually 

itt.) 

The space used by the adjacency-list structure is in O(n + m), but this is part of the 

input to the algorithm. Extra space 1s used for the color array (n + | entries) and recursion 
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might cause the activation frame stack to grow to size n, so the amount of extra space used 

isin O(n). 

Remarks on Connected Components 

The output of the algorithm is simply an array cc containing an identifier (the term leader 

is often used) of the connected component for each vertex. One pass through the cc array 1s 

sufficient to assemble a set of linked lists in which each linked list contains just the vertices 

of one connected component. Similarly one pass through adjVertices, with references to 

cc is sufficient to assemble a set of linked lists in which each linked list contains just the 

edges of one connected component. These possible postprocessing steps do not increase 

the overall complexity, so there is little point in complicating the basic algorithm to tailor 

it to specific output formats. 

The ccDFS procedure did not do any postorder vertex processing (which would consist 

of code placed just before the statement “color[v] = black”). This is a strong hint that 

breadth-first search will also solve this problem easily. 

7.4.3 Depth-First Search Trees 
Depth-first search trees and the depth-first search forest, defined below, provide important 

insights into the structure of depth-first search, which has many subtleties. Algorithm 7.4 

will show how to construct depth-first search trees. Most problems do not require that they 

be constructed, but they are still useful for analysis. The definitions given here apply to 

directed graphs. Although many of them apply in a similar form to undirected graphs, there 

are often differences in the details, so the definitions for undirected graphs are deferred until 

Section 7.6. 

Definition 7.12 Depth-first search tree, depth-first search forest 

The edges that lead to undiscovered, that 1s, white, vertices during a depth-first search of 

a digraph G form a rooted tree called a depth-first search tree (sometimes called depth- 

first spanning tree, abbreviated to DFS tree in both cases). If not all of the vertices can be 

reached from the starting vertex (the root), then a complete traversal of G partitions the 

vertices into several trees, the entire collection being called the depth-first search forest 

(sometimes called depth-first spanning forest, abbreviated to DFS forest in both cases). 

e 

Definition 7.13 

We say that a vertex v is an ancestor of a vertex w ina tree if v is on the path from the 

root to w; v is a proper ancestor of w if v is an ancestor of w and v 4 w. The closest 

proper ancestor to v is the parent of v. If v is a (proper) ancestor of w, then w is a (proper) 

descendant of v. & 

Definition 7.14 

The edges of a directed graph G are classified according to how they are explored (traversed 
in their forward direction). 
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I. If w is undiscovered at the time vw is explored, then vw is called a tree edge, and v 
becomes the parent of w. 

2. If w is an ancestor of v, then vw is called a back edge. (This includes vv.) 

3. If w is a descendant of v, but w has been discovered earlier than the time vw is 
explored, then vw is called a descendant edge (other names are forward edge and 
frond). 

4. If w has no ancestor/descendant relationship to v, then vw is called a cross edge. ™ 

Example 7.11 Depth-first search trees 

Let’s see how edges are classified by the depth-first search conducted by Terry the tourist 

in Example 7.6. Terry started at A (so A is the root of the first depth-first search tree), and 

explored to B, then C, then backtracked to B, and explored to D. So edges AB, BC, and 

BD are tree edges. Now Terry is at D and encounters the first nontree edges. 

Double lines denote tree edges that have not yet been backtracked over, heavy solid lines 

denote tree edges that have been backtracked over, thin lines are unexplored edges, and 

dashed lines are nontree edges. In the left diagram above, A 1s a tree-ancestor of D, so DA 

is a back edge. However, C is neither an ancestor nor a descendant of D in the tree, so DC 

is across edge. 

The middle diagram shows the situation after Terry has backtracked from D to B and 

from B to A. Vertex C is already a descendant of A in the tree at the time that edge AC 

is explored; C has been discovered by another route. Therefore AC is a descendant edge 

(also called forward edge or frond). A descendant edge is always a shortcut for a longer 

tree path. 

The rightmost diagram shows the situation after the first depth-first tree has been com- 

pleted. Although Terry has nowhere to go, the depth-first search of the graph is incomplete. 

To complete the depth-first search of the graph a new search is started at E. The 

edge EC goes to a vertex that is finished (black) and is in a DFS tree that is already 

completed. It is very important that C is not revisited as part of the new DFS tree. The 

edge EC is classified as a cross edge: vertices in different trees obviously do not have an 

ancestor/descendant relationship. The edge EG is considered next, and it does go to an 

undiscovered (white) vertex, so it is a tree edge. Again the edge GD goes to a finished 

(black) vertex in a different DFS tree, so it is a cross edge. Edge GE 1s a back edge 

because it goes to an ancestor of G in the current DFS tree. Thus the second DFS tree, 

which completes the DFS forest, has two vertices and one edge. (It is also possible to 

have a tree with one vertex and no edge: suppose the first depth-first search of the graph 

343 



344 Chapter 7 Graphs and Graph Traversals 

TOD RG KD, 
85 

iS 
ToC. cfoss Zo 

Figure 7.15 Heavy edges show the depth-first search forest for the graph of Examples Teo 

and 7.11. Dashed lines are nontree edges, as labeled. 

happened to start at vertex C.) The final DFS forest is shown in Figure 7.15, along with the 

classifications of all nontree edges. & 

Edge classifications can vary depending on the order of vertices within an adjacency 

list (see Exercise 7.4). Note that the head and tail of a cross edge may be in two different 

trees. The distinctions among the various types of edges are important in some applications 

of depth-first search—in particular, in the algorithms studied in Sections 7.5 and 7.7. 

7.4.4 A Generalized Depth-First Search Skeleton 

Depth-first search provides the structure for many elegant and efficient algorithms. As we 

have seen in several examples, a depth-first search encounters each vertex several times: 

when the vertex is first discovered and becomes part of the depth-first search tree, then 

several more times when the search backtracks fo it and attempts to branch out in a different 

direction, and finally, after the last of these encounters, when the search backtracks from 

the vertex and does not pass through it again. Depending on the problem to be solved, an 

algorithm will process the vertices differently when they are encountered at various stages 

of the traversal. Many algorithms will also do some computation for the edges—perhaps 

for each edge, or perhaps only for edges in the depth-first search tree, or perhaps different 

kinds of computation for the different kinds of edges. The following skeleton algorithm 

shows exactly where the processing would be done for each kind of edge and for each kind 

of encounter with the vertices. 

Algorithm 7.3 © Directed Depth-First Search Skeleton (DFS Skeleton) 

Input: Array adjVertices of adjacency lists that represent a directed graph G = (V, E), as 

described in Section 7.2.3, and n, the number of vertices. The array is defined for indexes 

1, ...,m. Other parameters are as needed by the application. 

Output: Return value depends on the application. Return type can vary; int is just an 

example. 

Remarks: This skeleton is also adequate for some undirected graph problems that ignore 

nontree edges, but see Algorithm 7.8. Color meanings are white = undiscovered, gray = 

active, black = finished. 
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int dfsSweep(IntList[] adjVertices, int n, .. .) 

int ans: 

Allocate color array and initialize to white. 
For each vertex v of G, in some order: 

if(color[v] == white) 

int vAns = dfs(adjVertices, color, v, .. .): 

(Process vAns) 

// Continue loop. 

return ans: 

int dfs(IntList[{] adjVertices, int[] color, int v, .. .) 

int w; 

IntList remAdj; 

int ans; 

1. color[v] = gray; 

2. Preorder processing of vertex v 

3. remAdj = adjVertices[v]; 

4. while (remAdj + nil) 

5: W = first(remAdj): 

6 if (color[w] == white) 

ie Exploratory processing for tree edge vw 

8. int wAns = dfs(adjVertices, color, w, ...); 

oy Backtrack processing for tree edge vw, using wAns (like inorder) 

10. else 

i: Checking (.e., processing) for nontree edge vw 

Ie remAdj = rest(remAdj) 

13. Postorder processing of vertex v, including final computation of ans 

14. color[v] = black; 

15. return ans; 

For some applications, the problem may be solved by a partial search. This condition 

would be detected at line 9 of the skeleton, or possibly line 11. A break statement is rec- 

ommended for making an early exit of the while loop, so postorder processing, including 

setting the color to black, will still be done. 

Example 7.12 Use of DFS skeleton for connected components 

To illustrate the versatility of the skeleton, let’s use it to re-solve the connected components 

problem. 

Ie 

tO 

Pass an array cc as an additional parameter to dfsSweep. This array is to be filled with 

connected component numbers by the algorithm. 

Add a fourth parameter, ccNum, and a fifth, cc, to dfs. In dfsSweep, when calling 

dfs, set the fourth parameter to v, which ts also the third parameter, and set the fifth 

parameter to CC. 
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3. In the recursive call of dfs, use the same ccNum and cc that were passed in. 

4. For preorder processing (line 2 of the skeleton), insert the statement “cc[v] = ccNum.” 

With these few changes, one new line of code and a few extra parameters passed, we have 

specialized the general-purpose skeleton to solve the connected components problem. We 

will see more examples of using the skeleton in the rest of this chapter, and in the exercises. 

| 

7.4.5 Structure of Depth-First Search 
In some applications of depth-first search, we may need to know which vertices are on 

the path from the root of the DFS tree to the current vertex, say v, which 1s being visited. 

They are exactly the gray vertices and are the v-parameters of calls further down in the 

frame stack (1.e., closer to the root of the activation frame tree). For some algorithms we 

need to know the order in which vertices are encountered for the first time or last time, or 

relationships between the two. A simple and useful way to keep track of these relationships 

is to maintain two arrays, discoverTime and finishTime. One global integer time variable 

is initialized to zero and is incremented whenever a vertex color changes. 

Definition 7.15 | Depth-first search terminology 

While the color of v is white, we say it 1s undiscovered. When color[v] becomes gray, the 

current time is recorded in discoverTime[v] (at line 2 of the skeleton); now v is active. 

When color[v] becomes black, the current time is recorded in finishTimel[v] (at line 13 of 

the skeleton), and now v is finished. The active interval for vertex v, denoted as active(v), 

is defined as the integer interval 

active(v) = discoverTime|v]..... finishTime|[v] 

including both endpoints, so v is gray precisely during its active interval. The final value 

of time will be 2n if the whole graph is searched. 

We can insert code into the DFS skeleton to compute discovery and finishing times 

and “construct” the depth-first search forest. We call this algorithm Depth-First Search 

Trace. Even if an algorithm that uses the DFS skeleton does not include this code, for 

analysis purposes we can use the values that would have been computed if the code had 

been inserted. 

Algorithm 7.4 Depth-First Search Trace (DFS Trace) 

Input: The same input as for the DFS skeleton (Algorithm 7.3) plus global arrays dis— 

coverTime, finishTime, and parent; also a global counter, time. 

Output: The global arrays mentioned above are filled by the algorithm. Return types for 
this algorithm can be changed to void. The parent array stores the depth-first search forest 
as an in-tree. The other arrays have the meanings of Definition 7.15. 

Strategy: Modify the DFS skeleton of Algorithm 7.3 as follows: 

1. In dfsSweep initialize time to 0. 
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2. In dfsSweep before calling dfs (after the “if”) insert “parent[v] = -1.” 

3. In dfs before the recursive call to dfs (after the “if”) insert “parent[w] = v.” 

4. At preorder processing (line 2) of the skeleton, insert 

time ++; discoverTime[v] = time 

(This is the time at which v becomes active.) 

5. At postorder processing (line 13) of the skeleton, insert 

time ++; finishTime[v] = time 

(This is the time at which v becomes inactive.) 

Figure 7.16 shows an example of Algorithm 7.4. The intervals during which vertices 

are active, according to Definition 7.15, are shown as d/f pairs, where d is the discovery 

time and f is the finishing time for the vertex. These intervals have an interesting and 

important relationship to each other, and to the relative positions of the vertices in the 

depth-first search forest (Definition 7.12). 

Example 7.13 Nesting of active intervals 

For the depth-first search forest shown in Figure 7.16, the active intervals are shown in 

Figure 7.17. Vertex A is the root of one depth-first search tree, and E 1s the root of the other. 

Their active intervals are disjoint. Notice that all cross edges proceed from late intervals to 

nonoverlapping earlier intervals. Also, where there is a descendant edge AC, there is a 

vertex B whose interval contains the interval of C and is contained in the interval of A. 

a 

We summarize the relationships illustrated by the prior example. 

Theorem 7.1 Let active(v) be as defined in Definition 7.15, let edge classifications be 

as defined in Definition 7.14, and suppose a DFS Trace has been carried out on a directed 

staph G =(V, £). Then foranyv<€ V and we V, 

1. wisadescendant of v in the DFS forest if and only if active(w) C active(v). If w 4 v 

the inclusion is proper. 

2. Ifvand w have no ancestor/descendant relationship in the DFS forest, then their active 

intervals are disjoint. 

3. Ifedge vw € E, then: 

a. vw is across edge if and only if active(w) entirely precedes active(v). 

vw is a descendant edge if and only if there is some third vertex x such that 

active(w) C active(x) C active(v). 

c. vw isa tree edge if and only if active(w) C active(v), and there is no third vertex 

x such that active(w) C active(x) C dctive(v). 

d. vw is aback edge if and only if active(v) C active(w). 
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8/9 L1/ 3/4 

8/9 3/4 1 1/ 8/9 3/4 11/14 

Figure 7.16 Progress of DFS Trace on the graph of Example 7.6. Double lines are tree edges 

that have not yet been backtracked over, so they go to gray vertices. Heavy lines are tree edges 

that have been backtracked over, so they go to black vertices. The d/f pairs designate discovery 

and finishing times for the vertices. Two depth-first search trees are constructed. A different 

vertex order can produce a different trace. 
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Figure 7.17 The active intervals for the depth-first search forest of Figure 7.16 

Proof Break up item | into item I(if) and item I(only-if), where item I (if) is the state- 

ment, “if w is a descendant of v in the DFS forest, then active(w) C active(v),” and item 

I(only-if) is the converse. Define a partial order on V by the rule that w < v if and only 

if w is a proper descendant of v in its DFS tree. First we prove item I(if) by induction on 

this partial order. The base cases are vertices v that are minimal in the partial order, that is, 

vertices with no proper descendants. Since v is a descendant of itself, item I (if) is true. 

For v not a minimal vertex, assume item I(if) holds for all x < v. If w is any proper 

descendant of v in the DFS tree, there is some x such that vx € E is a tree edge on the tree 

path to w, so w 1s a descendant of x. By inspection of dfsTrace we see that active(x) C 

active(v). By the inductive hypothesis, active(w) C active(x). So active(w) C active(v). 

This proves item I (if). 

Next we consider item 2. This is clearly true if v and w are in different DFS trees, 

because all the vertices in one tree are processed before any of the vertices in the later tree. 

Suppose v and w are in the same DFS tree (but have no ancestor/descendant relationship). 

Then there is some third vertex c, called their least common ancestor, such that there are 

tree paths from c to v and from c to w, and these paths have no edges in common (see 

Exercise 7.14). Suppose the first edge on the path from c to v is cy and the first edge on 

the path from c to w is cz. By inspection of dfsTrace we see that active(y) and active(z) 

are disjoint intervals. But by item I (if), acfive(v) is contained in active(y) and active(w) 

is contained in active(z), So active(v) and active(w) are also disjoint intervals, completing 

the proof of item 2. 

Now let us return to item I(only-if). If w is not a descendant of v, then either w is 

a proper ancestor of v or there is no ancestor/descendant relationship. If w is a proper 

ancestor, then 1(if) showed that active(w) D active(v), so active(w) £ active(v), so item 

l(only-if) holds for this case. If there is no ancestor/descendant relationship, then item 2 

implies item | (only-if). 

The proof of item 3 1s left as an exercise. 0 

Corollary 7.2 The vertices that are discovered while v is active are exactly the descen- 

dants of v in its depth-first search tree. 0 

We have seen by example that a depth-first search discovers all vertices that are 

reachable by a path of undiscovered vertices. Exercise 7.13 asks for an example in which 

some vertices are reachable from v and are undiscovered when the depth-first search of v 
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begins, yet they will not be discovered or visited while v is active. The following theorem 

characterizes exactly which vertices will be discovered while v 1s active. 

Theorem 7.3 (White Path Theorem) In any depth-first search of a graph G, a vertex w 

is a descendant of a vertex v in a depth-first search tree if-and only if, at the time vertex 

v is discovered (just before coloring it gray), there is a path in G from v to w consisting 

entirely of white vertices. 

Proof (Only if) If w is a descendant of v, by Theorem 7.1, the path of tree edges from v 

to w is a white path. 

(If) The proof is by induction on k, the length of a white path from v to w. The base 

case is k = 0; then v = w and the theorem holds. 

Ror fe Sh We? Sans hile a oo he xz), Where x, = w, be a white path of length k from v 

to w. Now let x; be the vertex other than v on this path that is discovered earliest during 

the active interval of v. In the diagram below, wavy lines are paths, possibly empty paths. 

We claim that x; must exist, because x; is white and has a direct edge from v, so at 

least x; is discovered during the active interval of v. Divide path P into P; from v to x;, 

and P from x; to w (possibly x; = w). But P2 has fewer than k edges, and at the time x; 

is discovered, P is a white path. Therefore, by the inductive hypothesis, w 1s a descendant 

of x;. But 

discoverTime[v] < discoverTime|[.x; | < finishTime[v] 

so by Theorem 7.1, x; is a descendant of v. By transitivity, w is a descendant of v. O 

7.4.6 Directed Acyclic Graphs 

Directed acyclic graphs (DAGs for short) are an important special case of general directed 

graphs. As the name implies, a DAG is any directed graph that has no cycles. Directed 

acyclic graphs are important for two primary reasons: 

1. Many problems are naturally phrased in terms of a DAG, such as scheduling problems. 

In scheduling problems it is often required that certain tasks be completed before other 

tasks may begin. A cycle in task dependencies would mean a deadlock: no task in the 

cycle can ever be ready to begin. 

i) Many problems on general directed graphs are easier—that is, more efficient—to solve 

on DAGs. The difference can be as great as exponential time vs. linear time. We will 

mention these problems as they come up in their general versions. 
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Figure 7.18 Two directed graphs. Which one is acyclic? 

Also, we will see in Section 7.5 that every general directed graph is associated with a 

certain directed acyclic graph, called its condensation graph. 

A directed acyclic graph corresponds mathematically to a partial order on its vertices. 

Wherever there is an edge vw, we can interpret it as the relationship v < w between the 

vertices. If there is any directed path from v to w, we also interpret this as v < w by 

transitivity. (All edges in a graph might be interpreted as v > w, instead. We just have to be 

consistent within the graph.) An order (or partial order) relation is not allowed to contain 

cycles. We will see that the order interpretation is useful in scheduling problems. 

In this section we will study two applications of DAGs: topological order and critical 

paths. 

Topological Order 

When thinking about some problem on directed graphs, you might ask yourself, “If I could 

draw this graph so that all the edges were pointing generally left to right, would this help 

me to solve the problem?” Of course, if the graph has a cycle, this is clearly impossible. But 

if the directed graph has no cycles—is a DAG—then we will see that such an arrangement 

of vertices is possible. Finding such an arrangement is the problem of topological ordering. 

Definition 7.16 Topological order 

Let G=(V, E) be a directed graph with n vertices. A topological order for G is an 

assignment of distinct integers 1, ..., to the vertices of V, called their topological 

numbers, such that, for every edge vw € E, the topological number of v is less than the 

topological number of w. A reverse topological order is similar except that for every edge 

uw € E the topological number of v is greater than the topological number of w.  ™ 

Figure 7.18 shows two graphs, only one of which is acyclic. Readers are invited to 

try to determine by trial and error which graph is acyclic, and for that graph to try to find 

a topological order. A little experimentation should convince you that trying to do this 

haphazardly on a graph of 50 to 100 vertices would be out of the question. We will see that 

this problem is solvable very efficiently, using the depth-first search skeleton as a basis. 

(Another efficient solution is mentioned in the exercises. ) 
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Note that a topological order is equivalent to a permutation of the vertices. The def- 

inition does not specify that G needs to be acyclic. But the following lemma is easy to 

prove. 

Lemma 7.4 [fa directed graph G has a cycle, then G has no topological order. 

In a sense, topological ordering is the fundamental problem on DAGs. We will see 

that every DAG has at least one topological order, providing the converse of Lemma 7.4. 

After a topological order for the vertices has been found, many other problems become 

straightforward. The concept of topological order alone may be enough to suggest an 

efficient solution without explicitly assigning the topological numbers. 

Example 7.14 Scheduling with task dependencies 

Consider the problem of scheduling a project consisting of a set of interdependent tasks to 

be done by one person. Certain tasks depend on others; that is, they cannot begin until all 

the tasks they depend on are completed. The most natural way to organize the information 

for such a problem is an array of tasks, each with a list of tasks that it depends on directly. 

Here is an example for the “project” of getting out of the house in the morning. Tasks are 

numbered in alphabetical order. 

Task and Number Depends on 

choose clothes | 9 

in) oo dress 

ioe) n SN ) eat breakfast 

leave 

make coffee 

make toast 

pour juice 

shower 

wake up 

If we choose the convention that vw means w depends directly on v, that is, edges go 
“forward in time,” then we see that the above table gives us lists of incoming edges 
for each vertex. One of the graphs in Figure 7.18 corresponds to this set of tasks and 
dependencies with edges pointing “forward in time.” On the other hand, if we interpret 
the lists of dependencies in the table as adjacency lists for the graph, we get the transpose 
of the “forward in time” graph. It is quite typical for scheduling problems to use this 
transpose graph, also called the dependency graph or precedence graph, in which edges 
point “backward in time.” 

There are numerous topological orders for the set of tasks in this table. We will find 
one after we give the algorithm for topological order. — 
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The algorithms for topological order and reverse topological order are simple modifi- 
cations of the DFS skeleton. We give the version for reverse topological order because it 
comes up more often. 

Algorithm 7.5 Reverse Topological Ordering 

Input: The same input as for the DFS skeleton (Algorithm 7.3) plus global array topo and 
a global counter, topoNum. 

Output: The global array topo is filled by the algorithm with a set of reverse topological 
numbers. Return types for this algorithm can be changed to void. 

Remark: To compute “forward” topological order, initialize topoNum at n + | and count 
backwards. 

Strategy: Modify the DFS skeleton of Algorithm 7.3 as follows: 

1. In dfsSweep initialize topoNum to 0. 

2. At postorder processing (line 13) of the skeleton, insert 

topoNum ++; topo[v]=topoNum gm 

Comparing Algorithm 7.4 and Algorithm 7.5 it is clear that ordering vertices by their 

finishing times in the depth-first search gives the same ordering as Algorithm 7.5; the last 

vertex to finish has the largest number. 

By its connection with the DFS skeleton it is clear that Algorithm 7.5 runs in time 

©(n +m) ona graph of n vertices and m edges. The correctness is proved in the following 

theorem. 

Theorem 7.5 If G is a DAG with n vertices, then Algorithm 7.5 computes a reverse 

topological order for G in the array topo. Therefore every DAG has a reverse topological 

order and a topological order. 

Proof Since depth-first search visits each vertex exactly once, the code inserted at line 13 

gets executed exactly n times, so the numbers in the array topo are distinct integers in the 

range 1, ...,. Itremains only to verify that for any edge vw, topo[v] > topo[w]. Consider 

the possible classifications of vw, according to Definition 7.14. If vw were a back edge, 

then it would complete a cycle and G would not be a DAG. For the other edge types, at the 

time topo[v] is assigned a value vertex w is finished (colored black), so topo[w] has been 

assigned a value earlier. Since topoNum only increases, topo[v] > topo[w]. 0 

Example 7.15 Reverse topological order for dependency graph 

There are many reverse topological orders for the dependency graph of Example 7.14. The 

one found by Algorithm 7.5 using the vertex numbers and edge lists in that example is the 

following: 
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2 | 8 a 5 6 2 3 4 

wake choose shower dress make make — pour eat leave 

up clothes coffee toast juice breakfast 

The results of dfsTrace on this graph are shown in Figure 7.19. Notice that this graph 

is the transpose graph of one of the graphs in Figure 7.18. 

Critical Path Analysis 

Critical path analysis is related to finding a topological order, but it is an optimization 

problem, in the sense that the longest path in the DAG is to be discovered. As with the 

scheduling example in Example 7.14, a project consists of a set of tasks, and the tasks have 

dependencies. But now, we assume that we are also given the time required to complete 

each task, once it 1s started. Furthermore, we assume that all tasks that are ready to be 

worked on can be worked on simultaneously; that is, there are enough workers to assign 

a different worker to each task. Certainly, the last assumption is questionable in many 

practical situations, but to get started we make this simplifying assumption. 

We can define the earliest finish time for a task, assuming the project starts at time 0, 

as follows. 

Definition 7.17 Earliest start and finish times, critical path 

Let a project consist of a set of tasks, numbered 1, .. ., n, for each task a list of its depen- 

dencies, which are tasks upon which it depends directly, and for each task a nonnegative 

real number denoting its duration. The earliest start time (est) for a task v is: 

1. If v has no dependencies, then est is 0. 

2. Ifv has dependencies, then est is the maximum of the earliest finish time (see below) 

of its dependencies. 

The earliest finish time (eft) for any task is its earliest start time plus its duration. 

14/15 6/7 

Figure 7.19 Results of dfsTrace on the dependency graph in Example 7.14. Heavy lines are 
tree edges, and d/f pairs designate discovery and finishing times for the vertices. Notice that 
there are four depth-first search trees. (Where is the fourth?) 
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A critical path in a project is a sequence of tasks up, vj... . , vz Such that 

1. uo has no dependencies; 

i) for each subsequent task, v; (1 <i <k), vj is a dependency of v; such that est of v; 

equals eft of v;_); and 

3. eft of vg is maximum for all tasks in the project. 

A critical path has no “slack.” That is, there is no pause between the completion of 

one task on the path and the start of the next. In other words, if v; follows v;_; on a critical 

path, the eft of v;_; must have been maximum among all the dependencies of v;. Therefore 

vj—1 18 a critical dependency of v;, in the sense that any delay in v;—; will force a delay in 

u;. Taking a different point of view, suppose we are seeking a way to speed up completion 

of the entire set of tasks by finding a faster way to perform one of them. It is clear that 

reducing the time for one task doesn’t help to reduce the total time required if the task is 

not on a critical path. The practical interest in critical paths is based on these properties. 

To keep our problem simple, we have assumed that each task has a fixed duration. In 

many real situations, the duration can be shortened by allocating more resources to the task, 

perhaps withdrawing some resources from a task that is not on a critical path. 

Example 7.16 Critical path 

Let’s keep the tasks and dependencies from Example 7.14 and add durations (in minutes): 

9 | 8 2 5 6 7 3 4 

wake choose shower dress make make — pour eat leave 

up clothes coffee toast juice breakfast 

0.0 a0) 8.5 6.5 4.5 2.0 0.5 6.0 1.0 

Thus doing the tasks in sequence takes 32.0 minutes. Suppose we can do them all 

simultaneously, restricted only by the requirement to complete the dependencies before 

starting a task. The critical path goes from waking up to showering to getting dressed to 

leaving: only 16 minutes! To accomplish this, we need to overlap pouring juice and eating 

breakfast with getting dressed (not too far fetched), but we also need to choose clothes and 

make toast and coffee while showering (a bit trickier), 

We have given the natural definitions in terms of tasks and durations. It takes a little 

manipulation to relate these terms to longest paths, because we haven't defined how long 

edges are. Furthermore, the number of edges in a path is one less than the number of tasks, 

so how would the duration of al/ tasks on the path be taken into account by a path length? 

We can solidify the connection with a few technical revisions: 

1. Add a special task to the project, called done, with duration 0; it can be task number 

ieee 

Every regular task that is not a dependency of any task (i.e., is a potential final task) 1S 
NO 

made a dependency of done. 

30D 
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3. The project DAG has a weighted edge vw whenever v depends on w, and the weight 

of this edge is the duration of w. 

Notice that we have chosen to make edges point from the task to its dependent task, to agree 

with the way dependency information is usually organized; this is “backwards in time.” If 

it is More convenient to make the edges point “forward in time,” this can be done instead. 

Now we can see that a longest path in the project DAG corresponds to a critical path 

as originally defined; it just has the done vertex as an extra vertex at the beginning. The 

distance from the done task to any task v on this path is the difference between the earliest 

start times of done and v. This distance is maximized when the earliest start time of v is 0. 

Thus an algorithm to compute longest paths in a DAG can be used to find critical paths. 

Example 7.17 — Critical path as longest path 

The weighted graph with the done vertex for the critical path problem of Example 7.16 is 

shown, with heavy lines identifying the critical path and critical subpaths. 

3 

0, choose clothes a dress 

ZL shower ae 
0 

wake u = make coffee <5 p 0 Make CC — . 

Se make toast AG eat breakfast 
Os 

pour juice er 

A critical subpath is a longest path leaving a vertex, not necessarily the done vertex. 

For example, we can’t starting eating breakfast until the coffee is made; other preparations 

will finish earlier. 

leave <— done 

ee as 

Like the algorithm for reverse topological order, an algorithm for critical paths is 

strongly based on the DFS skeleton. 

Algorithm 7.6 Critical Path 

Input: The same input as for the DFS skeleton (Algorithm 7.3) plus global arrays dura— 
tion, critDep, and eft. A precondition is that G is a DAG. Edges of G point from tasks to 
their dependencies (backwards in time). 

Output: The global arrays critDep and eft are filled by the algorithm; eft[v] is the earliest 
finishing time for v and critDep[v] is a critical dependency of v. A critical path can be 
found by tracing back from a vertex with a maximum value of eft and following critDep 
values as links. Return types for this algorithm can be changed to void. 

Remark: The algorithm works with minor adjustments if the edges point “forward in 
time.” 

Strategy: In the recursive dfs procedure, a local variable est will store the earliest start 
time, which is the maximum of the eft values of the current task’s dependencies. Modify 
the DFS skeleton of Algorithm 7.3 as follows: 
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1. At preorder processing (line 2) of the skeleton, insert 

est = 0; critDep[v] = -1: 

bo At backtrack time for both tree edges (line 9) and nontree edges (line 11) of the 
skeleton, insert 

if (eft{[w] > est) 

est = eft[w]; 

critDep[v] = w; 

It is important here that the nontree edge cannot be a back edge, because then eft[w] 
would be uninitialized. 

Ww At postorder processing (line 13) of the skeleton, insert 

eft[v] = est + duration[v]; 

Again it is immediate that the algorithm runs in time @(n + m) for n vertices and m 

edges. By the nature of depth-first search, each entry in the eft array is assigned a value 

exactly once, for indexes | through n. Therefore the inserted code simply implements the 

definitions of eft and est, provided that the accessed values eft[w] are defined at the time 

they are accessed. But this follows by the same argument as in the proof of Theorem 7.5 

that w is finished (colored black) at these times. 

Summary of Directed Acyclic Graphs 

We have seen that directed acyclic graphs arise in connection with scheduling problems 

and that the topological order problem and critical path problem can be solved with a few 

insertions of code into the DFS skeleton. DAGS have many other applications, and we have 

just scratched the surface of this topic. Some additional problems appear in the exercises. In 

the next section we will learn that every directed graph has a certain DAG associated with 

it, called its condensation graph. Thus applications on DAGs may extend into applications 

on graphs with cycles in some cases. 

Strongly Connected Components of a Directed Graph 

An undirected graph is connected if and only if there is a path between each pair of 

vertices. Connectivity for directed graphs can be defined in either of two ways, depending 

on whether or not we require that edges be traversed only from tail to head. Recall from 

Definition 7.6 that a directed graph (digraph) G = (V, E) is strongly connected if, for each 

pair of vertices v and w, there is a path from v to w (and hence by interchanging the roles 

of v and w in the definition, there is a path from w to v as well). That is, edges must 

be followed in the direction of their “arrows.” G is weakly connected if, after making all 

edges undirected and consolidating any duplicate edges, the resulting undirected graph is 

connected. We will focus on strong connectivity. 
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(a) The digraph (b) Its strong components (c) Its condensation graph 

Figure 7.20 The strong components and condensation graph of the digraph used in Figure 7.1 6 

and several examples 

Definition 7.18 Strongly connected component 

A strongly connected component (hereinafter called a strong component) of a digraph G is 

a maximal strongly connected subgraph of G. (The meaning of “maximal” was discussed 

following Definition 7.8.) & 

We may give an alternative definition in terms of an equivalence relation, S, on the 

vertices. For v and w in V, let uSw if and only if there is a path from v to w and a path from 

w to v. (Recall that vSw is an alternative notation for (v, w) € S, where §S C V x V. Here, 

(v, w) is any ordered pair of vertices, not necessarily an edge of G. Equivalence relations 

were defined in Section 1.3.1.) Then a strong component consists of one equivalence class, 

C, along with all edges uw such that v and w are in C. See the example in Figure 7.20. We 

sometimes use the term strong component to refer only to the vertex set C; the meaning 

should be clear from the context. 

The strong components of a digraph can each be collapsed to a single vertex yielding 

a new digraph that has no cycles. 

Definition 7.19 Condensation graph 

et Sy. So.9% as S, be the strong components of G. The condensation graph of G (con- 

densation of G for short), denoted as GJ, is the digraph G| = (V’, E’), where V’ has p 

elements, s},82,...,5,, and s;s; isin E’ if and only if i 4 7 and there is an edge in E from 

some vertex in 5; to some vertex in S;. In other words, all vertices in S; are condensed into 

a single vertex s;. 

See Figure 7.20 for an example. In small examples we use the convention that the name 

of a condensed vertex is simply the concatenation of the names of all vertices in the strong 

component. Notice that the original edges AC, BC, DC, and FC have collapsed into one 

edge. 

Solutions to some problems on digraphs can be simplified by treating the strong 

components and the condensation separately, taking advantage of the special properties 

of each—the former are strongly connected and the latter acyclic. (For example, consider 
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the relationship of the strong components and the condensation of a program flowchart to 
the loop structure of the program.) 

7.5.1 Properties of Strongly Connected Components 
Strong components have several interesting properties, which we discuss next. The algo- 
rithm for finding strong components is presented in Section 7.5.2, and its mechanics can 
be understood without reading this subsection. However, this material is important for un- 
derstanding why it works. 

We recall from Definition 7.10 that G’, the transpose graph of G, results from re- 
versing the direction of each edge in G. It is immediate from the definition that the strong 
components of G! are identical, in terms of vertices, to the strong components of G. The 
edges are also identical, except for direction. Also, (GJ)! = (G")J; that is, the condensa- 

tion of G is the same as the condensation of G/, except that the direction of each edge is 

reversed. 

Now let’s consider the relationship between depth-first search trees and strong com- 

ponents. We will see that /eaders, defined next, essentially represent their entire strong 

components for structural purposes. 

Definition 7.20 Leader of a strong component 

Given a digraph G with strong components $;,i = 1,..., p, and a depth-first search of G, 

the first vertex in S; to be discovered in the search is called the /eader of S; and is denoted 

by v;. & 

Suppose G is entirely undiscovered. If a depth-first search begins at vj, (1.e., v; is the 

root of a depth-first search tree and v, is the leader of the strong component S$), then by the 

White Path Theorem (Theorem 7.3) all vertices in S; will be descendants of v; in the depth- 

first search tree. Moreover, if any vertex of another strong component, say Sj, is reachable, 

then the first such vertex to be discovered is v;, and applying the White Path Theorem at 

the time that v; is discovered, we see that all of S; is discovered in this tree. The same 

applies for subsequent depth-first search trees. This proves the following lemma. 

Lemma 7.6 Each depth-first search tree in a depth-first search forest of a digraph G 

contains one or more complete strong components of G. There are no “partial” strong 

components in any depth-first search tree. 0 

Corollary 7.7. The leader v; is the last vertex to finish (i.e., reach postorder processing 

and be colored black) among all vertices of Sj. O 

Is there some way to arrange the search order so that a tree contains exactly one strong 

component? For a clue, let’s look again at Figure 7.20(c). From the condensation graph, it Is 

clear that if we start our first depth-first search anywhere in a strong component that has no 

arrows coming out of it, then this search must discover exactly one strong component. The 

C subgraph qualifies. But how can this help in practice? We don’t know the condensation 
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graph until we find the strong components! The secret is revealed in the next subsection, 

but its correctness depends on some further properties of leaders. 

Although we don’t know the strong components or the leaders, we can still draw some 

conclusions. Suppose an edge emerges from a strong component 5; and enters another, Sj. 

This means there is a path from vu; to v; in G. Of course, it is possible that v; isa cen 

of v; in the depth-first search tree that contains v;. In this case active(u;) C active(v;). What 

are the other possibilities? Clearly v; cannot be an ancestor of vu; or they would be in the 

same strong component. For noneral vertices, the active interval of v; might be entirely 

before that of v; or entirely after (as well as contained in). We will ae that, for leaders 

with a path from one to the other, one of these possibilities can be ruled out. You are invited 

to try to work out which before continuing. 

Lemma 7.8 At the time a leader v; is discovered in a depth-first search (just before it is 

colored gray), there is no path from v; to any gray vertex, say x. 

Proof At this time, every gray vertex is a proper ancestor of v; and has been discovered 

before v;, so must be in a different strong component. Since there is a path from x to v; 

there must not be a path from v; to x. 

Lemma 7.9 If vu is the leader of its strong component S, and x is in a different strong 

component, and there is a path from v to x in G, then at the time v is discovered, either x 

is black, or there is a white path from v to x (and x is white). In either case, v finishes later 

than x. 

Proof Consider any path from v to x, and consider the last vertex, say z, on that path that 

is not white. If z does not exist, the path is all white and we are done. Suppose z exists. By 

Lemma 7.8, z must be black. If zg = x the proof is done. Assume z 4 x. But now consider 

the (earlier) time at which z was discovered. The path from z¢ to x was white at that time, 

so by the White Path Theorem x is a descendant of z and is now also black. =O 

So, if there is an edge from S; to S;, we have ruled out the possibility that the active 

interval of v;, the leader of Sj, is entirely after that of v;, the leader of S;. You should 

construct ae to prove that the lemma would not hold (and active(v;) might be 

entirely after active(v;)) if we did not require v; to be the leader of its strong component. 

Pxercise 7, Ss related. 

7.5.2 A Strong Component Algorithm 

We will study an algorithm for finding strong components that exploits most of the prop- 

erties discussed in the previous section. The first linear-time strong components algorithm 

is due to R. E. Tarjan, and is based on depth-first search. The algorithm we present is due 

to M. Sharir, is also based on depth-first search. It is elegant for its simplicity and subtlety. 

The algorithm has two main phases: 
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|. A standard depth-first search on G is performed, and the vertices are put in a stack at 
their finishing times. 

tO A depth-first search is performed on G’, the transpose graph. However, an unusual 
method is used to find white vertices from which to start a search (i.e., a new tree): 
Vertices are popped off the stack-that was built during Phase 1, rather than being 
accessed in numerical order by a for loop (as in dfsSweep in Algorithm 7.3, which 
was used in Phase 1). During this search, the algorithm stores the leader of each vertex 
uv’s strong component in scc[v]. 

Each depth-first search tree generated in Phase 2 will be exactly one strong component. 
Because the strong components are found in Phase 2, we are really finding strong compo- 

nents of G’. However, as we have noted, the strong components of G! and G are identical 

in terms their vertices, and their edges agree except for a reversal of direction. 

Algorithm 7.7 Strongly Connected Components 

Input: Array adjVertices of adjacency lists that represent a directed graph G = (V, E), as 

described in Section 7.2.3, and n, the number of vertices. The array is defined for indexes 

1,..., 1; the Oth entry is unused. 

Output: Array scc in which each vertex is numbered to indicate which strong component 

it is in. The identifier for each strong component is the number of some vertex within 

that strong component (other identification systems are possible). (The caller allocates and 

passes in scc and this procedure fills it.) 

Remark: The transpose graph G! may be an input, rather than being computed in the 

procedure. Note that the third and fourth parameters of dfsT are both v in the top-level 

call, but have different meanings. The third parameter designates the current vertex to 

visit, and changes in every recursive call. The fourth parameter designates the identifier 

of the strong component and remains unchanged through recursive calls. The Stack ADT 

operations described in Section 2.4.1 are used; the class-name qualifiers are omitted for 

readability. 

void strongComponents(IntList[] adjVertices, int n, int{] scc) 

// Phase 1 

1. IntStack finishStack = create(n); 

2. Perform a depth-first search on G, using the DFS skeleton of Algorithm 7.3. 

At postorder processing for vertex v (line 13 in the skeleton), insert the 

statement: push(finishStack, v); 

J// Phase 2 

3. Compute G’, the transpose graph, represented as the array adjTrans of 

adjacency lists. 

4. dfsTsweep(adjTrans, n, finishStack, scc); 

return; 
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void dfsTsweep(IntList[] adjTrans, int n, IntStack finishStack, int[] scc) 

// dfsSweep on transpose graph 

Allocate color array and initialize to white. 

while (finishStack is not empty) 

int v = top(finishStack); 

pop(finishStack); 

if(color[v] == white) 

dfsT(adjTrans, color, v, v, Scc); 

// Continue loop. 

return: 

void dfsT(IntList[] adjTrans, int[] color, int v, int leader, int[] scc) 

Use the standard depth-first search skeleton of Algorithm 7.3. At preorder 

processing for vertex v (line 2 of the skeleton) insert the statement: 

scc[v] = leader; 

Pass leader and scc into recursive calls. 

The stack finishStack can be implemented very simply as an array of n entries, since 

only n pushes will occur in the course of the algorithm. 

Example 7.18 Strong components 

To see the algorithm in action, let’s look at the graph in Figure 7.20(a). The Phase | DFS 

was worked out in detail in Figure 7.16. 

With the push operation that is inserted at postorder time, finishStack develops as 

shown Figure 7.21(a). Before continuing, let’s check the relative positions of the leaders of 

the strong components. (Even though the algorithm does not know them, we do by peeking 

at Figure 7.20 and checking discovery times in Figure 7.16.) The leaders are A, C, and E. 

There is a path from E to the rest and E finished last. There 1s a path from A to C, and A is 

higher in the stack than C, hence finished later. Therefore Lemma 7.9 is confirmed. 

Now strongComponents continues to lines 3 and 4, calling dfsTsweep. The transpose 

graph is shown in Figure 7.21(b). In the first pass through dfsTsweep’s while loop, a dfsT 

begins at E, the current top of finishStack. Notice that E is passed in the fourth parameter 

as the leader and in the third parameter as the vertex to visit. 

In the transpose graph, edges DG and CE are oriented toward G and E, respectively. 

This dfsT is “trapped” in the single strong component, S¢ = {E, G}, and those vertices 

comprise the first depth-first spanning tree of Phase 2, in G’. (The algorithm does not 

actually build the tree; this is done only in our analysis.) According to the description of 

dfsT, E is passed in to recursive calls as the leader, and is stored in the scc array whenever 

a vertex is discovered and visited. This brings us to Figure 7.21(c). 

Control backtracks into dfs Tsweep, where the search for another white vertex resumes 

by popping finishStack. Vertex G is popped and bypassed because it is black at this point. 

Then A is popped, and it becomes the root of a new tree. We will prove later that every 

white vertex that is popped is a leader, as A is. Again, we note that the edges are from C 

to A, B, D, and F, so this search cannot “leak” off into C’s strong component. But there 
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Figure 7.21 Phase 2 of the Strong Components Algorithm: (a) finishStack at the beginning 

of Phase 2. (b) The transpose graph. (c) The first DFS tree identifies one strong component. 

Heavy-lined edges are tree edges; dashed edges are processed nontree edges; thin-lined edges 

have not been processed yet. (d) The second DFS tree identifies another strong component. Note 

that DG is a cross edge to a different DFS tree. Also note that C will be the last DFS tree and 

will have no edges. 

is an edge now from D to G, which does lead out of the strong component of A. However, 

it is not a coincidence that G has already been discovered before this second search began, 

and is currently a black vertex. Therefore this last attempt to “escape” from the strong 

component of A is also thwarted. This brings us to Figure 7.21(d). 

Finally the tree with C at the root, and no edges, is finished. This completes the work 

of dfsTsweep and the overall algorithm. Again, we remind readers that the algorithm does 

not actually build the trees; this 1s done only in our analysis. 

At first it seems like an amazing coincidence that whenever a depth-first search in the 

transpose graph might stray out of the strong component of its root, the “stray” vertex has 

been discovered in an earlier tree. However, after trying various vertex orders (for Phase 1) 

in Figure 7.20, and trying other graphs, you will discover that it always seems to work out. 

The next lemmas prove why. 

Lemma 7.10 In Phase 2, each time a white vertex is popped from finishStack, that vertex 

is the Phase | leader of a strong component. 

Proof Popping is in reverse order of finishing time in Phase I. By Corollary 7.7, the 

leader is the first vertex of a strong component to get popped. Suppose vertex x is popped 

and is not a leader. That would imply that some other vertex in the strong component of x 

is the first to have been visited within that strong component. By Lemma 7.6 and the White 

Path Theorem, x is already in a completed tree, so x is not white. 0 

Theorem 7.11 In Phase 2, each depth-first search tree contains exactly one strong com- 

ponent of vertices. 

Proof Lemma 7.6 shows that each depth-first search tree contains one or more complete 

strong components. So we must show there is only one. Let v; be the Phase 1 leader of 
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5;. Assume v; is popped from finishStack and is white. Then v; is the root of a depth-first 

search tree in Phase 2. If no other strong component is reachable from v;, by a path in Ge 

then there is no problem. 

Suppose some other strong component, say S;, with leader vj, is reachable from v;, by 

a path in G’. Then there is a path in G from v; to v;. By Lemma 7.9, v; finished later than 

v; in Phase |, and so has been popped from finishStack, and all vertices in S; are black at 

the time v; is popped. Therefore the current depth-first search tree cannot “escape” from Sj. 

Oo 

Theorem 7.12 The algorithm strongComponents correctly identifies the strong compo- 

nents of G’, which are the same, in terms of vertices, as the strong components of G. 

Proof By Theorem 7.11, each depth-first search tree contains exactly one strong com- 

ponent (of G/), and by properties of depth-first search, every vertex of G" is in some 

depth-first search tree. 0 

7.5.3 Analysis 
Much of the analysis of Algorithm 7.2, Connected Components, carries over to the strong 

component algorithm with small changes. It performs two depth-first searches, each of 

which is in time ©(n + m). The computation of G’, if necessary, is also in O(n + m) (see 

Exercise 7.8). The extra space used for various arrays is in ©(7). The recursion stack also 

uses ©(n) space in the worst case. So, including the adjacency lists for G', the space used 

isin O(n +m). 

Depth-First Search on Undirected Graphs 

Depth-first search on an undirected graph has the same theme as on a directed graph: 

explore further whenever possible, and backtrack when necessary. Many of the aspects 

of the DFS skeleton carry over without change. We can use the same system for vertex 

colors, discovery times, finishing times, and DFS trees. However, depth-first search on an 

undirected graph is complicated by the fact that edges should be explored in one direction 

only, but they are represented twice in the data structure. 

For some problems it doesn’t matter if an edge is processed twice, as we saw in the 

connected components problem, so the graph can be treated as a symmetric digraph. This 

section deals with the situations where this simplification would not work. As a rule of 

thumb, problems involving cyc/es in undirected graphs must process each edge only once. 

We will study one such problem in detail in Section 7.7. 

For an undirected graph, the depth-first search provides an orientation for each of its 

edges; they are oriented in the direction in which they are first encountered, (explored, in 

the sense introduced at the beginning of Section 7.3.1). Even if the edge does not go to an 

undiscovered vertex, it is oriented away from the vertex that first encounters it during the 

search; this vertex is said to check the edge, as with directed depth-first search. Processing 

of nontree edges occurs when they are checked. Tree edges are also oriented away from the 
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vertex that first encounters them; they are explored and later backtracked over, just as with 
directed depth-first search. 

When a vertex encounters an edge in the data structure (adjacency list or adjacency 
matrix) that has been oriented toward it, it bypasses that edge as though it did not exist. 
The DFS skeleton for undirected graphs is modified to recognize these situations. We 
can find out how these situations arise by studying nontree edges in symmetric digraphs 

(Definition 7.3). With a little study we realize the following: 

1. A cross edge simply cannot occur in a symmetric digraph. 

2. A back edge from a vertex v to p, its parent in the DFS tree, would be the second 

encounter of the undirected edge between these two vertices, the first being as the tree 

edge pv, so up needs to be bypassed. Other back edges are first encounters. 

3. A forward edge in a symmetric digraph is always the second encounter of the undi- 

rected edge. Say a forward edge from v to w is found. Then w was discovered earlier 

and wu was processed in this orientation as a back edge. Since cross edges can’t occur, 

any edge to a black vertex must be a forward edge in the symmetric digraph and needs 

to be bypassed in the undirected graph. 

This analysis suggests the following modifications to the DFS skeleton of Algorithm 7.3. 

First, pass the DFS parent p as an additional parameter to dfs. This allows item 2 above to 

be implemented. Second, in processing edge uw, if w is not white, then test whether w 1s 

gray and is different from p, the parent of v (as passed in). If so, it is a “real” back edge; if 

not, bypass it for the reasons described in items 2 and 3 above. This test is incorporated in 

line 10 of the undirected depth-first search skeleton, given next. Exercise 7.28 asks you to 

prove that undirected depth-first search classifies every edge as a tree edge or a back edge. 

The dfsSweep routine for undirected graphs is modified from Algorithm 7.3 only in 

that the call to dfs has the value —1 for the parent parameter. This indicates that the current 

vertex is the root of its depth-first search tree. Compare also with Algorithm 7.4. 

Algorithm 7.8 Undirected Depth-First Search Skeleton 

Input: Array adjVertices of adjacency lists that represent an undirected graph G = (V, E), 

as described in Section 7.2.3, and n, the number of vertices. The array is defined for indexes 

1,...,n. Also the array color recording search status, vertex v for next visit, and vertex p, 

the parent of v. Other parameters are as needed by the application. 

Output: (Does a depth-first search beginning at the vertex v.) Parameters and return value 

ans are as needed by the application. Return type int is just an example. Array color is also 

updated so that all vertices discovered during this dfs are black; all others are unchanged. 

Remarks: The wrapper dfsSweep is like Algorithm 7.3, except that it calls dfs with the 

fourth parameter (p) set to —1. Color meanings are white = undiscovered, gray = active, 

black = finished. 
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int dfs(IntList[] adjVertices, int[{] color, int v, int p,.. .) 

int w; 

IntList remAdj; 

int ans; 

1. color[v] = gray; 

2. Preorder processing of vertex v 

3. remAdj = adjVertices[v]; 

4. while (remAdj ¥ nil) 

Sy w = first(remAdj); 

6 if (color[w] == white) 

Hs Exploratory processing for tree edge vw 

8. int wAns = dfs(adjVertices, color, w, Vv, .. .); 

Sh Backtrack processing for tree edge vw), using wAns (like inorder) 

10. else if (color[w] == gray && w ¥ p) 

Hal Checking (1.e., processing) back edge vw 

// else wv was traversed, so ignore vw. 

(2 remAdj = rest(remAd)) 

13. Postorder processing of vertex uv, including final computation of ans 

14. color[v] = black; 

15. return ans; 

Analysis 

The running time and space requirements are the same as for Algorithm 7.3: time is in 

©(n + m) and extra space for the color array is in ©(7). The application might add code 

that increases the asymptotic order, but if each inserted statement runs in constant time, the 

time remains linear. 

Undirected Breadth-First Search 

As with depth-first search, the question of reprocessing an undirected edge arises for 

breadth-first search on an undirected graph. One simple solution is to treat the undirected 

graph as a symmetric digraph. We do not know of any applications of breadth-first search 

where this treatment would be wrong. Each edge is processed once in the “forward” 

direction, so for an undirected edge, whichever direction is encountered first is considered 

“forward” for the duration of the search. When the edge is encountered in the other 

direction, it goes to an already discovered vertex, and is normally ignored. However, see 

exercise). 

Biconnected Components of an Undirected Graph 

In Section 7.2 we raised these questions: 

|. If one city’s airport is closed by bad weather, can you still fly between every other pair 

of cities? 
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9) E ~ a E 2. If one computer in a network goes down, can messages be sent between every other 
pair of computers in the network? 

In this section we consider undirected graphs only. As a graph problem, the question is: 

Problem 7.1 

If any one vertex (and the edges incident upon it) are removed from a connected graph, 1s 
the remaining subgraph still connected? = 

This question is important in graphs that represent all kinds of communication or trans- 

portation networks. It is also important to find those vertices, if any, whose removal can 

disconnect the graph. The purpose of this section is to present an efficient algorithm for 

answering these questions. This algorithm was discovered by R. E. Tarjan, and was one of 

the early algorithms that demonstrated the tremendous power of depth-first search. 

7.7.1 Articulation Points and Biconnected Components 

We begin by establishing some terminology and basic properties. 

Definition 7.21 Biconnected component 

A connected undirected graph G 1s said to be biconnected if it remains connected after 

removal of any one vertex and the edges that are incident upon that vertex. 

A biconnected component (bicomponent for short) of an undirected graph is a max- 

imal biconnected subgraph, that is, a biconnected subgraph not contained in any larger 

biconnected subgraph. & 

Definition 7.22 = Articulation point 

A vertex v is an articulation point (also called a cut point) for an undirected graph G if 

there are distinct vertices w and x (distinct from vu also) such that v is in every path from 

wtox. 

Clearly, the removal of an articulation point would leave an unconnected graph, so 

a connected graph is biconnected if and only if it has no articulation points. Figure 7.22 

gives an illustration of biconnected components. Observe that, although the biconnected 

components partition the edges into disjoint sets, they do not partition the vertices; some 

vertices are in more than one component. (Which vertices are these?) 

There is an alternative characterization of biconnected components, in terms of an 

equivalence relation on the edges, that is sometimes useful. Two edges e; and e@9 are 

equivalent if e; = e2 or if there is a simple cycle containing both e; and e2. Then each 

subgraph consisting of the edges in one equivalence class and the incident vertices Is a 

biconnected component. (Verifying that the relation described is indeed an equivalence 

relation and verifying that it characterizes the biconnected components are left as an 

exercise; see Exercise 7.34.) 

The applications that motivate the study of biconnectivity should suggest a dual prob- 

lem: how to determine if there is an edge whose removal would disconnect a graph, and 
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H 

(a) (b) 

Figure 7.22 (a) An undirected graph. (b) Its biconnected components. 

how to find such an edge if there is one. For example, if a railroad track is damaged, can 

trains still travel between any pair of stations? Relationships between the two problems are 

examined in Exercise 7.41. 

The algorithm we will study for finding biconnected components uses the depth-first 

search skeleton of Algorithm 7.8 and the idea of a depth-first search tree from Section 7.4.3. 

During the search, information will be computed and saved so that the edges (and, im- 

plicitly, the incident vertices) can be divided into biconnected components as the search 

progresses. What information must be saved? How is it used to determine the biconnected 

components? Several wrong answers to these questions seem reasonable until they are ex- 

amined carefully. Two edges are in the same biconnected component if they are in a simple 

cycle, and every cycle must include at least one back edge. You should work on Exer- 

cise 7.35 before proceeding; it requires looking at a number of examples to determine 

relationships between back edges and biconnected components. 

From now on we will use the shorter term bicomponent in place of biconnected 
component, 

7.7.2 The Bicomponent Algorithm 
Processing of vertices in depth-first search may be done when a vertex is discovered 
(preorder time, line 2 in the skeleton of Algorithm 7.8), when the search backtracks to 

it (inorder time, line 9 in the skeleton), and just before it is finished (postorder time, line 13 
in the skeleton). The bicomponent algorithm tests to see if a vertex in the depth-first search 
tree is an articulation point each time the search backtracks to it. All references to trees in 
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Figure 7.23 An articulation point in a depth-first search tree 

this discussion mean the depth-first search tree. Recall that, in a depth-first search of an 

undirected graph, every edge is either a tree edge or a back edge. 

Suppose the search is backing up to v from w. If there is no back edge from any vertex 

in the subtree rooted at uw to a proper ancestor of v, then v must be on every path in G 

from the root of the DFS tree to w and is therefore an articulation point. See Figure 7.23 

for illustration. (Note that this argument 1s not valid if v is the root.) The subtree rooted at 

w, along with all back edges leading from it and along with the edge vw, can be separated 

from the rest of the graph at v, but it 1s not necessarily one bicomponent; it may be a 

union of several. We ensure that bicomponents are properly separated by removing each 

one as soon as it is detected. Vertices at the outer extremities of the tree are tested for 

articulation points before vertices closer to the root, ensuring that when an articulation 

point is found, the subtree in question (along with the additional edges mentioned above) 

forms one bicomponent. 

This discussion suggests that the algorithm must keep track of how far back in the 

tree one can get from each vertex by following tree edges (implicitly directed away from 

the root) and certain back edges. This information will be stored in a local variable, back. 

(There is a separate copy of back for each active vertex.) When a vertex finishes its search, 

it returns its final value of back to the caller. The depth-first search procedure will compute 

discoverTime and finishTime as described in Definition 7.15. Values of back will be these 

discoverTimes. For a vertex v, back may be assigned (or modified) when: 
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1. vis first discovered and visited (preorder time), to initialize back; 

i) the search is trying to explore, but a back edge from v is encountered (as in Fig- 

ure 7.24(b) with v = F, in Figure 7.24(c) with v = C, and in Figure 7.24(e) with 

Ve) 

3. the search backtracks to v (as in Figure 7.24(d) with v = B and in Figure 7.24(f) with 

v =G), since any vertex that can be reached from a child of v can also be reached 

from v. 

Determining which of two vertices is farther back in the tree 1s easy: If v is a proper ancestor 

of w, then discoverTime[v] < discoverTime[w]. Thus we can formulate the following rules 

for setting back: 

|. At preorder time, back = discoverTime[v] (but see Exercise 7.38). 

2. When trying to explore from v and a back edge uw is detected, back = min(back, 

discoverTime[w]). 

Go When backtracking from w to v, say that the value returned from the visit of w 1s 

wBack. Then for v, back = min(back, wBack). 

The condition tested to detect a bicomponent when backing up from w to v Is 

wBack > discoverTime|[v]. 

(This condition is tested but not satisfied in Figures 7.24(d) and 7.24(f); it 1s satisfied 

in Figures 7.24(g) and 7.24(h).) When the test is satisfied, v is an articulation point (except 

perhaps if v is the root of the tree); a complete bicomponent has been found and may be 

removed from further consideration. 

The problem of exactly when and how to test for bicomponents is subtle but critical 

to the correctness of an algorithm. (See Exercise 7.40.) The essence of the correctness 

argument is contained in the following theorem. 

Theorem 7.13 Ina depth-first search tree, a vertex v, other than the root, is an articulation 

point if and only if v is not a leaf and some subtree of v has no back edge incident with a 

proper ancestor of v. 

Proof (Only if) Suppose that v, a vertex other than the root, is an articulation point. Then 

there are vertices x and y such that v, x, and y are distinct and v is on every path from x to 

y. At least one of x and y must be a proper descendant of v, since otherwise there would 

be a path between them using (undirected) edges in the tree without going through v. Thus 

v is not a leaf. Now suppose every subtree of v has a back edge to a proper ancestor of v; 
we claim that this contradicts the assumption that v is an articulation point. There are two 

cases: when only one of x and y is a descendant of v, and when both are descendants of v. 

For the first case, paths between x and y that do not use v are illustrated in Figure 7.25. We 
leave the latter case as an exercise. The “if” part of the proof is also left as an exercise. 

Theorem 7.13 does not tell us under what conditions the root is an articulation point. 
See Exercise 7:37. 
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Figure 7.24 The action of the bicomponent algorithm on the graph in Figure 7.22 (detecting 

the first two bicomponents): Part (a) shows discovery and finishing times. Vertex labels for parts 

(b) through (h) are discoverTime/back. 
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Figure 7.25 Examples for the proof of Theorem 7.13. Wavy lines denote paths. 

We can now outline the work to be done in the depth-first search. Note that code will be 

inserted into the undirected depth-first search skeleton of Algorithm 7.8. However, before 

developing the complete algorithm, we want to outline it at a high level. 

int bicompDFS(v) // OUTLINE 

color[v] = gray; 

time ++; discoverTime[v] = time; 

back = discoverTime|[v]; 

while (there is an untraversed edge vw) 

If vw is a tree edge: 

wBack = bicompDFS(w): 

// Now backtracking to v 

if (wBack > discoverTime|[v]) 

Output a new bicomponent consisting of the subtree rooted at w 

and incident edges, but excluding edges in bicomponents that were 

output earlier. 

back = min(back, wBack); 

else if vw is a back edge: 

back = min(discoverTime[w], back): 

// Continue while loop. 

return back; 
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The algorithm must keep track of the edges traversed during the search so that those 
in one bicomponent can easily be identified and removed from further consideration at 

the appropriate time. As the example in Figure 7.24 illustrates, when a bicomponent is 

detected, its edges are the edges most recently processed. Thus edges are stacked on 

edgeStack as they are encountered. When a bicomponent is detected when backtracking 

from, say, w to v, the edges in that bicomponent are the edges from the top of edgeStack 

down to (and including) uw. These edges may then be popped. 

Incorporating the outline into the skeleton of Algorithm 7.8, with some top-level 

control code, gives the final algorithm. (Computing finishTime is done for consistency 

with DFS Trace, Algorithm 7.4, but may be omitted.) 

Algorithm 7.9 Biconnected Components 

Input: Array adjVertices of adjacency lists for an undirected graph G = (V, E); n, the 

number of vertices. Global arrays discoverTime and finishTime, and global variable time 

are also used. All arrays should be defined for indexes |, .. ., 2; the Oth entry is unused. 

Output: Sets (e.g., lists) of the edges in each biconnected component of G. 

Remarks: The Stack ADT operations described in Section 2.4.1 are used. Color meanings 

are white = undiscovered, gray = active, black = finished. 

Procedure: See Figure 7.26. @ 

Since edgeStack might grow to the number of edges in G, a flexible implementation 

is Suggested, perhaps built upon the List ADT. 

7.7.3 Analysis 
As usual, n = |V| and m = |E|. The initialization in bicomponents includes ©(7) oper- 

ations. bicompDFS is the undirected depth-first search skeleton with appropriate process- 

ing of vertices and edges added. The undirected depth-first search skeleton takes time in 

©(n +m). The amount of space used is O(n + m). 

Thus if the amount of processing for each vertex and edge is bounded by a constant, 

the complexity of bicomponents is in O(n + m). It is easy to see that this is the case. The 

only place where the needed observation is nontrivial is when the search backs up from 

w to v. Sometimes the output loop popping edges from edgeStack is executed, sometimes 

not, and the number of edges popped each time varies. But each edge 1s stacked and popped 

exactly once. So, overall, the amount of work done is in ©(m). 

7.7.4 Generalizations 

The prefix bi means “two.” Informally speaking, a biconnected graph has two vertex- 

disjoint paths between any pair of vertices (see Exercise 7.33). We can define triconnec- 

tivity (and, in general, k-connectivity) to denote the property of having three (in general, 

k) vertex-disjoint paths between any pair of vertices. An efficient algorithm that uses depth- 

first search to find the triconnected components of a graph has been developed (see Notes 

and References at the end of the chapter), but it is much more complicated than the algo- 

rithm for bicomponents. 
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void bicomponents(IntList[] adjVertices, n) 

int v; 

IntStack edgeStack; 

int[] color = new int[n+1]; 

Initialize color array to white for all vertices. 

time = 0; 

edgeStack = create(); 

for (V=1;v <n; v ++) 

if (color[v] == white) 

bicompDFS(adjVertices, color, v, —1); 

return; 

int bicompDFS(IntList[{] adjVertices, int[] color, int v, p) 

int w; 

IntList remAdj; 

int back; 

1. color[v] = gray; 

a. time ++; discoverTime[v] = time; 

b. back = discoverTime|[v]: 

3. remAdj = adjVertices[v]: 

4. while (remAdj + nil) 

5 w = first(remAd)j); 

N bw 

6 if (color[w] == white) 

We push(edgeStack, vw); 

8. int wBack = bicompDFS(adjVertices, color, w, v); 

9a. // Backtrack processing of tree edge vw 

Ob. if (wBack > discoverTime[v]) 

9c. Initialize for new bicomponent. 

9d. Pop and output edgeStack down through vw. 

9e. back = min(back, wBack); 

10. else if (color[w] == gray && w $ p) 

Ila. // Process back edge vw. 

Tip: push(edgeStack, vw); 

Hike; back = min(discoverTime[w], back); 

// else wv was traversed, so ignore vw. 

(22: remAdj = rest(remAd)j); 

13. time ++; finishTime[v] = time; 

14. color[v] = black; 

15. return back; 

Figure 7.26 Procedure for Algorithm 7.9 
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Exercises 

Section 7.2 Definitions and Representations 

7.1 Make a connected undirected graph (whose edges may represent two-way Streets) 
such that every vertex is in some undirected cycle, yet no matter how the edges are oriented 
(i.e., made into directed edges, or one-way streets), the graph is not strongly connected. 

7.2 This exercise is about Euler paths. 

a. A popular game among grade-school children is to draw the following figure without 

picking up your pencil and without retracing a line. Try it. 

Figure 7.27 provides a similar but slightly harder problem. It shows a river with two 

islands in it connected to each other and to the banks by seven bridges. The problem 

is to determine if there is a way to take a walk starting on either bank of the river or on 

either island and crossing each bridge exactly once. (No swimming allowed.) Try it. 

The problems in parts (a) and (b) may be studied abstractly by examining the following 

graphs. G2 is obtained by representing each bank and island as a vertex and each bridge 

as an edge. (Some pairs of vertices are connected by two edges, but this departure from 

the definition of a graph will not cause trouble here.) The general problem is: Given 

a graph (with multiple edges between pairs of vertices permitted), find a path through 

the graph that traverses each edge exactly once. Such a path is called an Euler path. 

This problem 1s solvable for G; but not for G2. That is, there is no way to walk across 

Figure 7.27 The Koénigsberg bridges 

SAS, 
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each bridge exactly once. Find a necessary and sufficient condition for a graph to have 

an Euler path. 

Gy Go 

7.3 Suppose that a digraph G represents a binary relation R. Describe a condition on G 

that holds if and only if FR 1s transitive. 

Section 7.3 Traversing Graphs 

7.4 Find the depth-first search tree for the graph used in Example 7.6 (see Figure 7.28) 

with G as the starting vertex under two assumptions about the adjacency-list order: 

a. Each adjacency list is in alphabetical order. 

b. Each adjacency list is in reverse alphabetical order. 

7.5 Find the breadth-first search tree and breadth-first distances for the graph used in 

Example 7.7 (see Figure 7.28) with G as the starting vertex under two assumptions about 

the adjacency list order. 

a. Each adjacency list is in alphabetical order. 

b. Each adjacency list is in reverse alphabetical order. 

7.6 Let G be a connected graph, and let s be a vertex in G. Let Tp be a depth-first 

search tree formed by doing a depth-first search of G starting at s. Let 7, be a breadth-first 

spanning tree formed by doing a breadth-first search of G starting at s. Is it always true that 

height(Tp) > height(7’z)? Does 1t matter whether the graph is directed or undirected? Give 

a clear argument or a counterexample. 

7.7 Prove that when a breadth-first search is done on an undirected graph every edge in 

the graph is either a tree edge or a cross edge. (A cross edge for breadth-first search is an 

Figure 7.28 Digraph from Examples 7.6 and 7.7, used for various exercises 
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edge between two vertices such that neither is a descendant of the other in the breadth-first 
spanning tree.) 

Section 7.4 Depth-First Search on Directed Graphs 

7.8 Outline an algorithm to compute the transpose graph, given the original graph in the 

form of an array of adjacency lists. Your algorithm should run in linear time. 

a. Give pseudocode for the procedure and any subroutines. 

b. Show how your algorithm works on Figure 7.28, assuming the adjacency lists of the 

original graph are in alphabetical order. Be specific about the order of vertices in the 

adjacency lists of the transpose graph. (Remember, you are not going to sort them; that 

might be expensive.) 

7.9 Classify the edges of the graph used in Example 7.6 (see Figure 7.28) according 

to Definition 7.14, assuming that the depth-first search begins at vertex G, and adjacent 

vertices are processed in alphabetical order. 

7.10 Incase 2 of Definition 7.14 (back edge), what color(s) can w have when edge vw is 

checked? 

7.11 Carry out DFS Trace (Algorithm 7.4) on the digraph in Figure 7.29, and classify all 

the edges. 

a. Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list is in alphabetical order. 

b. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list is in alphabetical order. 

c. Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list is in reverse alphabetical order. 

d. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list is in reverse alphabetical order. 

o— 

Figure 7.29 Digraph for Exercises 7.11 and 7.23 

OMe, 
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Figure 7.30 Digraph for Exercises 7.12 and 7.24 

7.12 Carry out DFS Trace (Algorithm 7.4) on the digraph in Figure 7.30, and classify all 

the edges. 

a. Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list is in alphabetical order. 

b. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list is in alphabetical order. 

c. Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list is in reverse alphabetical order. 

d. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list is in reverse alphabetical order. 

7.13 Give an example of a graph in which a depth-first search backs up from a vertex 

before all the vertices that can be reached from it via one or more edges are discovered. 

7.14 Suppose v and w are distinct vertices in the same directed tree, but have no an- 

cestor/descendant relationship. Show that there 1s some third vertex c, called their least 

common ancestor, such that there are tree paths from c to v and from c to w, and these 

paths have no edges in common. Hint: Use the fact that every vertex in a tree has exactly 

one path from the root to it. 

7.15 Prove item 3 of Theorem 7.1. 

7.16 Describe how to modify the DFS skeleton to produce an algorithm for a digraph 

whose output is a list of the edges in the depth-first search tree. 
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a. Write an algorithm to determine if a digraph has a cycle. 

b. If you used depth-first search for the preceding algorithm, try to write an algorithm 

for the same problem using breadth-first search, and vice versa. Do you see any strong 

reasons to prefer either of the search strategies for this problem? 

7.18 Show the result of Algorithm 7.4 and indicate what topological numbers are as- 

signed by Algorithm 7.5 if the dependency graph defined in Example 7.14 is processed in 

reverse order. That is, assume the for loop in dfsSweep goes from 9 to 1, and adjacency 

lists are in reverse order also. 

7.19 For each graph in Figure 7.18 manually run Algorithm 7.5 with the modification that 

causes it to compute a topological order instead of a reverse topological order. Assume that 

vertices in adjacency lists are in numerical order. Also check as you are running it whether 

the graph has a cycle (what condition should you look for during dfs?). Stop as soon as a 

cycle is detected, and explain how it was detected, or find the complete topological order 

if there is no cycle. Compare your topological order with the reverse topological order of 

Example 7.15 (which used the transpose graph). Are they the same? 

7.20 A DAG is called a lattice if there is one vertex that can reach every vertex and one 

vertex that can be reached by every vertex. 

a. Outline an algorithm to determine if a DAG 1s a lattice. 

b. What is the asymptotic order of its running time? 

c. Show the operation of your algorithm on the graph in Example 7.15. Is it a lattice? 

7.21. Another strategy for topological sorting is to keep track of “source” vertices. Ini- 

tially, each vertex has an indegree that is the number of directed edges entering the vertex. 

A source is a vertex with indegree 0. The idea is to give topological numbers in ascending 

sequence to source vertices. Each time a vertex v is numbered, each vertex with an incom- 

ing edge from v should have its indegree reduced. This is as though v were taken out of the 

graph after being numbered. As other indegrees reduce to 0, other vertices become sources. 

Write an algorithm to implement this strategy. Specify what data structures you need for 

bookkeeping. What is the asymptotic order of your algorithm on a DAG with n vertices 

and m edges? 

Section 7.5 Strongly Connected Components of a Digraph 

7.22. Prove that the condensation of a digraph 1s acyclic. 

7.23 Find the strong components of the digraph in Figure 7.29 by carefully following the 

steps of the algorithm. (It is helpful to calculate the discoverTime and finishTime of the 

vertices, although the algorithm does not require it.) 

a. Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list is in alphabetical order. 

3) 
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b. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list is in alphabetical order. 

Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list 1s in reverse alphabetical order. 

io) 

d. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list 1s in reverse alphabetical order. 

7.24 Find the strong components of the digraph in Figure 7.30 by carefully following the 

steps of the algorithm. (It is helpful to calculate the discoverTime and finishTime of the 

vertices, although the algorithm does not require it.) 

a. Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list is in alphabetical order. 

b. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list is in alphabetical order. 

c. Assume the vertices are indexed in alphabetical order in the adjVertices array and that 

each adjacency list is in reverse alphabetical order. 

d. Assume the vertices are indexed in reverse alphabetical order in the adjVertices array 

and that each adjacency list is in reverse alphabetical order. 

7.25. Extend or modify the strong component algorithm so that it outputs a list of all the 

edges, as well as the vertices, in each strong component. Try to minimize the amount of 

extra time used to do so. 

7.26 Can either depth-first search in the strong components algorithm be (easily) replaced 

by a breadth-first search? Explain why or why not. 

Section 7.6 Depth-First Search on Undirected Graphs 

7.27 Write a depth-first search algorithm for an undirected graph such that the output is 

a list of the edges encountered, with each edge appearing once. 

7.28 Prove that if G is a connected undirected graph, each of its edges either is in the 
depth-first search tree or is a back edge. 

a. Write an algorithm to determine if an undirected graph has a cycle. 

b. If you used depth-first search for the preceding algorithm, try to write an algorithm 
for the same problem using breadth-first search, and vice versa. Do you see any strong 
reasons to prefer either of the search strategies for this problem? 

¢. How, if at all, do these algorithms differ from the ones for Exercise 7.17? 
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7.30 Describe an algorithm to determine if an undirected graph G = (V, E), withn = |V| 

andm = |£|, is a tree. Would you use the same algorithm if you could assume that the graph 

is connected? If not, describe one that uses that assumption as well. 

* 7.31 Consider the problem of finding the length of a shortest cycle in an undirected graph. 

Here is a proposed solution that is not correct. Show why it does not always work. 

When a back edge, say vw, is encountered during a depth-first search, it forms a cycle 

with the tree edges from w to v. The length of the cycle is depth[v] — depth[w] + 1, 

where depth is the depth in the DFS tree. So, do a depth-first search, keeping track 

of the depth of each vertex. Each time a back edge is encountered, compute the cycle 

length and save it if it is smaller than the shortest one previously seen. 

Look for a fundamental flaw in the strategy, not a detail. 

Section 7.7 Biconnected Components of an Undirected Graph 

7.32 List the articulation points in the graph with the depth-first search tree shown in 

Figure 7.31. 

7.33 Is the following property on a graph G = (V, E) necessary and sufficient for G to 

be biconnected? Prove your answer. 

For each pair of distinct vertices v and w in V, there are two distinct paths from v to 

w that have no vertices in common except v and w. 
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Figure 7.31 Depth-first search tree for Exercise 7.32 
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7.34 For an undirected graph G = (V, E), consider the following relation, R, on the 

edges E: e; Rep if and only if e; = e or there is a simple cycle in G containing e; and é2. 

a. Show that R is an equivalence relation. 

b. How many equivalence classes are there in the following graph? 

c. Show that a subgraph consisting of the edges in one equivalence class of the relation 

R and the incident vertices is a maximal biconnected subgraph of G. 

7.35 The following two definitions of functions on the vertices in a depth-first search tree 

of an undirected graph are attempts to provide necessary and/or sufficient conditions for 

two vertices to be in the same biconnected component of the graph. Show by exhibiting 

counterexamples that these attempts fail. 

a. Define ol/d|(x) = the “oldest’—that is, closest to the root—ancestor of x that can be 

reached by following tree edges (away from the root) and back edges; or old|(x) = x 

itself if no such path leads to an ancestor of x. Show that old; (v) = old; (w) is neither 

necessary nor sufficient for v and w to be in the same bicomponent. 

b. Define old2(x) = the oldest ancestor of x that can be reached by following directed 

tree edges (away from the root) and one back edge; or o/d2(x) = x itself if no such 

path leads to an ancestor of x. Show that old2(v) = oldz(w) is neither necessary nor 

sufficient for v and w to be in the same bicomponent. 

7.36 Complete the proof of Theorem 7.13. 

7.37 Find a necessary and sufficient condition for the root of a depth-first search tree for 

a connected graph to be an articulation point. Prove it. 

7.38 Would the bicomponent algorithm work properly if back were initialized to oo (or 

2(n + 1)) instead of discoverTime[v]? Explain your answer. 

7.39 Give an example of a graph that shows that the bicomponent algorithm may produce 

incorrect answers if no attempt is made to avoid stacking an edge the second time it is 

encountered in the adjacency-list structure. This amounts to treating G as a symmetric 

digraph instead of an undirected graph. The test in line 10 of Algorithm 7.9 would be 
omitted and that line would be a simple else. 
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7.40 Would the bicomponent algorithm work properly if the test for a bicomponent were 
changed to back > discoverTime[v]? If so, explain why; if not, give an example in which 
it does not work. 

7.41 A connected graph is edge biconnected if there is no edge whose removal discon- 
nects the graph. Which, if either, of the following statements is true? Give a proof or 
counterexample for each. 

a. A biconnected graph is edge biconnected. 

b. An edge biconnected graph is biconnected. 

7.42 Suppose G is a connected graph. An edge e whose removal disconnects the graph 

is called a bridge. For example, the edge E F in Figure 7.22 is a bridge. Give an algorithm 

for finding the bridges in a graph. What is the worst-case complexity of your algorithm? 

Additional Problems 

7.43 We mentioned in Section 7.2 that, if a graph is represented by an adjacency matrix, 

then almost any algorithm that operates on the graph will have worst-case complexity in 

Q(n7), where n is the number of vertices. There are, however, some problems that can be 

solved quickly, even when the adjacency matrix is used. Here is one. 

a. Let G=(V, E) be a digraph with n vertices. Let’s call a vertex s a hypersink if, for 

every vu in V such that s ¥ v, there is an edge vs and there is no edge of the form sv. 

Give an algorithm to determine whether or not G has a hypersink, assuming that G is 

given by its n x n adjacency matrix. 

b. How many matrix entries are examined by your algorithm in the worst case? It is easy 

to give an algorithm that looks at ©(n7) entries, but there is a linear solution. 

7.44 Find the best lower bound you can for the number of adjacency matrix entries that 

must be examined to solve the problem described in Exercise 7.43. Prove that it is a lower 

bound. Hint: You should easily be able to give a clear argument for 2n — 2. An adversary 

argument similar to the one in Section 5.3.3 can be used to get a stronger lower bound. 

7.45 Design an efficient algorithm to find a path in a connected undirected graph that 

goes through each edge exactly once in each direction. 

7.46 An Euler circuit in an undirected graph is a circuit (1.e., a cycle that may go through 

some vertices more than once) that includes every edge exactly once. Give an algorithm 

that finds an Euler circuit in a graph, or tells that the graph doesn’t have one. 

7.47 Consider the following question: 

Problem 7.2 

Is there a vertex v in G such that every other vertex in G can be reached by a path from v? 

a 

383 
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(ane AwtiKee wikis) (b) Subtrees that remain when v is removed 

Figure 7.32 Example for Exercise 7.49 

If G is an undirected graph, the question can be answered easily by a simple depth-first (or 

breadth-first) search and a check to see if every vertex was visited. Write an algorithm to 

solve the problem for a directed graph. What is the complexity of your algorithm? 

7.48 A bipartite graph is a graph whose vertices may be partitioned into two subsets such 

that there is no edge between any two vertices in the same subset. Write an algorithm to 

determine if an undirected graph is bipartite. What is the worst-case complexity of your 

algorithm? 

7.49 When a vertex and its incident edges are removed from a tree, a collection of 

subtrees remains. Write an algorithm that, given a graph that is a tree with n vertices, finds 

a vertex v whose removal leaves no subtree with more than n/2 vertices. See Figure 7.32 

for an example. What is the worst-case complexity of your algorithm? (You should be able 

to get a linear solution.) 

Programs 

Each of the following program assignments requires a graph-loading procedure that reads 

in a description of a graph from a file and sets up the adjacency lists. Appendix A contains 

sample Java code to serve as a starter. Assume the input contains the number of vertices on 

the first line, followed by a sequence of lines, with each line containing a pair of vertices 

representing one edge. Write this procedure so that, with small changes, it could be used 

for any of the problems. 

For a fancier user interface, arrange for the graph to be loaded from a named file so that 

“queries” that direct the main program (not the graph-loading procedure above) to solve a 

particular problem or produce a particular output can be entered at the terminal by the user 

after the loading is completed. In this case, don’t forget to have a “query” that exits the 

program. 



Notes and References 

Test data should be chosen so that all aspects of a program are tested. Include some of 
the examples in the text. 

1. A depth-first search algorithm to determine if an undirected graph has a cycle. 

to A breadth-first search algorithm to determine if a directed graph has a cycle. 

3. The strong component algorithm described in Algorithm 7.7. 

4. The bicomponent algorithm, Algorithm 7.9. 

Notes and References 

The adjacency-list structure used in this chapter was suggested by Tarjan and is described, 

along with the algorithms for biconnected components, topological sorting, and many 

more, in Tarjan (1972) and Hopcroft and Tarjan (1973b). Hopcroft and Tarjan (1973a) 

presents an algorithm for finding the triconnected components of a graph. See Hopcroft and 

Tarjan (1974) for a very efficient algorithm to test graphs for planarity—another important 

problem for graphs. The strong component algorithm in Algorithm 7.7 is due to Sharir 

(1981). Using three vertex colors for “housekeeping” in depth-first search, as well as using 

a single time counter for discoverTime and finishTime, is due to Cormen, Leiserson, and 

Rivest (1990). 

See King and Smith-Thomas (1982) for optimal solutions to Exercises 7.43 and 7.44. 

Knuth (1998) has Exercise 7.21. 

Gibbons (1985) is a book on graph theory and algorithms; it covers topics in this 

chapter and many others. See also Even (1973) and Even (1979); Aho, Hopcroft, and 

Ullman (1974); Deo (1974); Reingold, Nievergelt, and Deo (1977); and Sedgewick (1988). 
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Chapter 8 Graph Optimization Problems and Greedy Algorithms 

Introduction 

In this chapter we will study several graph optimization problems that can be solved exactly 

by greedy algorithms. Typically, in optimization problems the algorithm needs to make a 

series of choices whose overall effect is to minimize the total cost, or maximize the total 

benefit, of some system. The greedy method consists of making the choices in sequence 

such that each individual choice is best according to some limited “short-term” criterion 

that is not too expensive to evaluate. Once a choice is made, it can’t be undone, even if 

it becomes evident later that it was a poor choice. For this reason, greedy methods don’t 

necessarily find the exact optimum solution to many problems. However, for the problems 

studied in this chapter we are able to prove that the appropriate greedy strategy produces 

optimum solutions. In Chapter 13 we will see problems for which very similar greedy 

strategies fail. In Chapter 10 we will see other problems for which greedy strategies fail. 

This chapter presents an algorithm for finding a minimum spanning tree in an undi- 

rected graph, due to R. C. Prim, a closely related algorithm for finding shortest paths in 

directed and undirected graphs, due to E. W. Dijkstra, and a second algorithm for finding a 

minimum spanning tree, due to J. B. Kruskal. All three algorithms use a priority queue to 

select the best current choice from a set of candidate choices. 

Prim’s Minimum Spanning Tree Algorithm 

The first problem we will study is the problem of finding a minimum spanning tree for a 

connected, weighted, undirected graph. For unconnected graphs the natural extension of 

the problem is to find a minimum spanning tree for each connected component We saw 

that connected components can be found in linear time (Section 7.4.2). 

Minimum spanning trees are meaningful only for undirected graphs, with edge 

weights, so all references to “graph” in this section mean “undirected graph,” and weights 

are always edge weights. Recall that the notation G = (V, E, W) means that W is a func- 

tion that assigns a weight to each edge in E. This is just the mathematical description. In 

the implementation, there normally is no “function”; the weight of each edge is simply 

stored in the data structure for that edge. 

8.2.1 Definition and Examples of Minimum Spanning Trees 
Definition 8.1. Minimum spanning tree 

A spanning tree tor a connected, undirected graph, G = (V, E), is a subgraph of G that is 
an undirected tree and contains all the vertices of G. In a weighted graph G = (V, E, W), 
the weight of a subgraph is the sum of the weights of the edges in the subgraph. A minimum 
spanning tree (MST tor short) for a weighted graph is a spanning tree with minimum 
weight. 

There are many situations in which minimum spanning trees must be found. Whenever 
one wants to find the cheapest way to connect a set of terminals, be they cities, electrical 
terminals, computers, or factories, by using, say, roads, wires, or telephone lines, a solution 
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(a) (b) 

Figure 8.1 A graph and some spanning trees: Two of these are minimum spanning trees. 

is a minimum spanning tree for the graph with an edge for each possible connection 

weighted by the cost of that connection. Finding minimum spanning trees is also an 

important subproblem in various routing algorithms, that is, algorithms for finding efficient 

paths through a graph that visit every vertex (or every edge). 

As the simple example in Figure 8.1 shows, a weighted graph may have more than one 

minimum spanning tree. In fact, the method of transforming one minimum spanning tree 

into another in this example is an illustration of a general property of minimum spanning 

trees, which is discussed in Section 8.2.3. 

8.2.2 An Overview of the Algorithm 

Since an undirected tree is connected, and any vertex can be thought of as the root, a natural 

approach to finding a minimum spanning tree 1s to “grow” it one edge at a time from some 

starting vertex. We should first try using our standard traversal methods, depth-first search 

and breadth-first search. If we can annotate one of these skeletons to solve the problem, 

then we have a linear-time solution, which is surely optimal. You should take some time 

out to try some ideas using these search methods, and construct example graphs where they 

fail to find the minimum (see Exercise 8.1). 

Having convinced ourselves that a simple traversal seems to be inadequate, and consid- 

ering that this is an optimization problem, the next natural idea to try is the greedy method. 

The theme of the greedy method is to make progress by choosing an action that incurs the 

minimum short-term cost, 1n the hope that a lot of small short-term costs add up to a small 

overall cost. (The possible drawback is that actions with a small short-term cost may lead 

to a situation where further large costs are unavoidable.) We have a very natural way to 

minimize the short-term cost of adding an edge to the tree we are growing: Simply add an 

edge that is attached to the tree at exactly one end and has minimum weight among all such 

edges. Prim’s algorithm takes this greedy approach. 

Having come up with an idea to solve the problem, we should ask ourselves the usual 

two questions. Does it work correctly? How fast does it run? As we have mentioned, a 

series of small short-term costs might lead into an unfavorable situation, so even though 

we are sure that we get a spanning tree, we still need to consider whether its weight is 

minimum among all spanning trees. Also, since we need to choose among many edges at 

each step, and the set of candidates changes after each choice, we will want to consider 

what data structures can make these operations efficient. We will return to these questions 

after fleshing out the general idea. 
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Prim’s algorithm begins by selecting an arbitrary starting vertex, and then “branches 

out” from the part of the tree constructed so far by choosing a new vertex and edge at each 

iteration. The new edge connects the new vertex to the previous tree. During the course of 

the algorithm, the vertices may be thought of as divided into three (disjoint) categories as 

follows: 

1. tree vertices: in the tree constructed so far, 

2. fringe vertices: not in the tree, but adjacent to some vertex in the tree, 

ws) unseen vertices: all others. 

The key step in the algorithm is the selection of a vertex from the fringe and an incident 

edge. Actually, since the weights are on the edges, the focus of the choice is on the edge, 

not on the vertex. Prim’s algorithm always chooses an edge of minimum weight from a 

tree vertex to a fringe vertex. The general structure of the algorithm may be described as 

follows: 

primMST(G, n) // OUTLINE 

Initialize all vertices as unseen. 

Select an arbitrary vertex s to start the tree; reclassify it as tree. 

Reclassify all vertices adjacent to s as fringe. 

While there are fringe vertices: 

Select an edge of minimum weight between a tree vertex f anda 

fringe vertex v; 

Reclassify v as tree; add edge rv to the tree; 

Reclassify all unseen vertices adjacent to v as fringe. 

Example 8.1 Prim’s algorithm, one iteration 

Figure 8.2(a) shows a weighted graph. Assume A is the starting vertex. The steps before 

the loop lead to Figure 8.2(b). In the first iteration of the loop, the minimum-weight edge 

to a fringe vertex is found to be AB. Thus B is added to the tree, and the unseen vertices 

adjacent to B enter the fringe, leading to Figure 8.2(c). = 

Can we be sure that this strategy will yield a minimum spanning tree? Is being greedy 

in the short term a good long-term strategy? In this case, yes. The next two subsections 

discuss a general property shared by all minimum spanning trees, and use the property to 

show that the tree built at each stage of Prim’s algorithm is a minimum spanning tree on the 

subgraph spanned by this tree. We return to implementation considerations in Section 8.2.5. 

8.2.3. Properties of Minimum Spanning Trees 

Figure 8.1 demonstrated that a weighted graph may have more than one minimum spanning 

tree. In fact, minimum spanning trees have a general property that gives us a way to 

transform any minimum spanning tree into any other in a step-by-step manner. Examining 

this property also helps us to become more familiar with undirected trees, generally. 
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The tree 
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vertices vertices 

(a) A weighted graph (b) The tree and fringe (c) After selecting an edge 

after the starting vertex and vertex: BG is not shown 

is selected because AG 1s a better choice 

(has lower weight) to reach G. 

Figure 8.2 One iteration of the loop for Prim’s algorithm: Solid lines are tree edges and dashed 

lines are edges to fringe vertices. 

Definition 8.2. Minimum spanning tree property 

Let a connected, weighted graph G = (V, E, W) be given, and let T be any spanning tree 

of G. Suppose that for every edge wv of G that is not in T, if wv is added to T it creates 

a cycle such that wv is a maximum-weight edge on that cycle. Then the tree 7 has the 

minimum spanning tree property (MST property for short). @ 

First, let us see what the definition means. Then we will prove that the name is well 

chosen; just calling it “minimum spanning tree property” does not mean that it has anything 

to do with minimum spanning trees! 

Example 8.2) Minimum spanning tree property 

By definition an undirected tree connects any two vertices in the tree, and has no cycles. 

Let’s look at Figure 8.1, which shows a simple graph, which we'll call G, and three 

spanning trees. First let 7 be the tree in part (b). Suppose we add an edge of G that isn’t in T 

to T, making a new subgraph G, (we'll add the one of weight 2). This creates a cycle (and 

only one cycle) in the subgraph G,. (Why?) All the other edges in the cycle have weight at 

most 2, which is the new edge’s weight. Alternatively, if we add the edge of weight 4, all 

the other edges in the cycle that it forms have weight at most 4 (at most 3, in fact). There 

are no other missing edges to try, so 7 has the minimum spanning tree property. The tree 

in part (c) is similar. 

However, now consider letting 7 be the tree in part (d), and add the missing edge 

of weight |. This time some other edge in the cycle it formed has weight greater than 1. 

Therefore this 7 does not have the minimum spanning tree property. Notice that we can 

pluck any edge out of this cycle making a new subgraph G2, and G2 must again be a tree, in 

fact, a spanning tree. These facts are proved in Exercise 8.2, and are used to prove the next 

lemma and theorem. Since there is an edge of weight greater than 1, we choose to pluck 
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one such edge. That means G2 has lower weight than 7, so T could not be a minimum 

spanning tree. 

Lemma 8.1 In a connected, weighted graph G = (V, E, W), if 7) and 7 are two span- 

ning trees that have the MST property, then they have the same total weight. 

Proof The proof is by induction on k, the number of edges that are in 7) and not in 7). 

(There are likewise exactly & edges in T> that are not in 7;.) The base case is k = 0; in this 

case, 7, and 7) are identical, so they have the same weight. 

For k > 0 assume the lemma holds for trees that differ by 7 edges, where 0 < j <k. 

Let uv be a minimum-weight edge that is in one of the trees 7; or 7> but not in both. Assume 

uv € T>; the case when wv € T; is symmetrical. Consider the (unique) path from uw to v in 

IEE WB); WOE ao eo Wp. Where wo =u, Wp, = v, and p = 2. This path must contain some edge 

that is not in 7>. (Why?) Let w;w,;+, be such an edge. By the MST property of 7), wjwj+1 

cannot have a weight grearer than the weight of uv. By the fact that wu was chosen to be 

of minimum weight among all differing edges, w;w +) cannot have a weight /ess than the 

weight of wv. Therefore W(w,;wj+,) = W(uv). Add wv to 7), creating a cycle, then remove 

ww; +1, breaking that cycle, and leaving a new spanning tree 7,, with the same total weight 

as T;. But T/ and 7> differ on only k — 1 edges, so by the inductive hypothesis, they have 

the same total weight. Therefore 7; and 7> have the same total weight. Oo 

The proof of this lemma also shows us the step-by-step method to transform any 

minimum spanning tree, 7), into any other, 73. Choose a lightest edge in 7> that is not 

in 7); call it wv. Look at the path from w to v in 7). Somewhere on that path is an edge with 

the same weight as wv that is not in 73; say this edge 1s vy (see Exercise 8.3). Remove xy 

and add wv. This brings us one step closer to 73. Repeat this step until the trees agree. 

Theorem 8.2 In a connected, weighted graph G = (V, E, W), a tree T is a minimum 

spanning tree if and only if 7 has the MST property. 

Proof (Only if) Assume 7 is a minimum spanning tree for G. Suppose there is some 

edge wv that is not in 7 such that adding wv creates a cycle in which some other edge 

xy has weight W(vy) > W(uv). Then removing vy creates a new spanning tree with total 

weight less than 7’, contradicting the assumption that T was of minimum weight. 

(If) Assume 7 has the MST property. Let 7,,;, be any minimum spanning tree of G. 

By the first half of the theorem, 7;,,;,, has the MST property. By Lemma 8.1, T has the same 

total weight as Tj,j,. 0 

8.2.4 Correctness of Prim’s MST Algorithm 
We now use the MST property to show that Prim’s algorithm constructs a minimum 
spanning tree. This proof takes a form that occurs frequently when using induction: The 
statement to be proved by induction is somewhat more detailed than the theorem we are 
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interested in. So first we prove this more detailed statement as a Jemma. Then the theorem 
simply extracts the interesting part of the lemma. In this sense, the theorem is very much 
like the “wrapper” for a recursive procedure, as discussed in Section 3.2.2. 

Lemma 8.3 Let G =(V, E, W) be aconnected, weighted graph with n = |V|; let 7; be 

the tree with & vertices constructed by Prim’s algorithm, fork = 1,..., n;, and let G; be 

the subgraph of G induced by the vertices of T, (i.e., wv is an edge in Gy, if it is an edge in 

G and both wu and v are in 7;). Then 7; has the MST property in Gx. 

Proof The proof is by induction on k. The base case is k = |. In this case, G; and 7, 

contain the start vertex s and no edges, so 7; has the MST property in G1. 

For k > | assume that 7; has the MST property in G; for | < 7 <k. Assume that the 

Ath vertex to be added to the tree by Prim’s algorithm is v and that the edges between v and 

VentiGeS im i= ipale mus ee uqgv. For definiteness, assume w;v is the edge of minimum 

weight among these that is chosen by the algorithm. We need to verify that 7, has the 

MST property. That is, if xy is any edge in Gx, that is not in 7%, we need to show that 

xy has maximum weight in the cycle that would be created by adding xy to Tj. If x #v 

and y # v, then xy was also in Gy_1, but not in 7,_;, so by the inductive hypothesis, it 

is Maximum in the cycle created by adding it to 7,_;. But this is the same cycle in 7;, so 

7, has the MST property in this case. It remains to show that the property holds when xy 

is one of the edges uw2v,..., uqv (since w;v 1s in 7;). If d < 2 we are done, so assume 

not. 

It may be helpful to refer to Figure 8.3 throughout the rest of the proof. Consider the 

path from v to u; in 7, for any i, 2 <i <d. Suppose some edge on this path has a weight 

greater than the weight of uj;v, which in turn is at least the weight of w;v. (If not, the 

MST property is satisfied.) Specifically, let the path be v, w),..., Wp, Where w) =u; and 

w= u;. Then wy, .<+, Wp, is a path in Ty). Let wawa+1 be the first edge on this path 

with weight greater than W(u;v) and let w,—; wp» be the /ast edge on this path with weight 

greater than W(u;v) (possibly a + | = b; see Figure 8.3). We claim that w, and w», cannot 

exist in 7, _, if it was constructed by Prim’s algorithm. Suppose w, was added to the tree 

before wy». Then all edges on the path from w) (which is uw) to w, would be added before 

either wW,We+| OF Wp—| Wy, because they all have lower weights, and w;}v would also have 

been added before either of them. Similarly, if w, was added to the tree before w,, then 

u;v would have been added before either w,wq4) Or Wp—;wp. But neither uwjv nor ujv 1s 

in 7,1, so no edge on the path w),..., wp has weight greater than W(u;v), and the MST 

property is established for T,. 0 

Theorem 8.4 Prim’s algorithm outputs a minimum spanning tree. 

Proof inthe terminology of Lemma 8.3, G,, = G and 7, is the output of the algorithm, so 

it follows that 7,, has the MST property in G. By Theorem 8.2, 7, is a minimum spanning 

tree of G. 
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Edge added in 7; 

Vertex added in 7; 

Figure 8.3 Illustration for Lemma 8.3. Weights shown are examples. Wiggly lines are paths in 

T;,_,. The dashed edge would create a cycle, as shown. Edges on the path between uw; (= w)) and 

Wa, and edges on the path between w, and u; (= w,) all have weights not exceeding W(ujv), 

which is 11] in this example. Possibly wp, = wa+) and wp_) = We. 

8.2.5 Managing the Fringe Efficiently with a Priority Queue 

After each iteration of the algorithm’s loop, there may be new fringe vertices, and the set 

of edges from which the next selection is made will change. Figure 8.2(c) suggests that we 

need not consider all edges between tree vertices and fringe vertices. After AB was chosen, 

BG became a potential edge choice, but it is discarded because AG has lower weight and 

would be a better choice for reaching G. If BG had lower weight than AG, then AG could 

be discarded. For each fringe vertex, we need keep track of only one edge to it from the 

tree: the one with lowest weight. We call such edges candidate edges. 

The priority queue ADT (Section 2.5.1) has just the operations we need for implement- 

into the priority queue. The getMin operation can be used to choose the fringe vertex that 

can be attached to the current tree while incurring minimal cost. The deleteMin operation 

transfers that vertex out of the fringe. The decreaseKey operation records a more favorable 

cost for attaching a fringe vertex when a better candidate edge is discovered. The minimum 

known cost of attaching any fringe vertex is called the fringeWgt of that vertex. This value 

serves as the priority of the vertex, and is returned by the getPriority access function. 

Using the priority queue ADT operations, the high-level algorithm is as follows. 

A subroutine updateFringe has been introduced to process the vertices adjacent to the 

selected vertex v. Figure 8.4 contains an example of the action of the algorithm. 
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primMST(G, n) // OUTLINE 

Initialize the priority queue pq as empty. 

Select an arbitrary vertex s to start the tree; 
Set its candidate edge to (—1, s, 0) and call insert(pq, s, 0). 

While pq is not empty: 

V = getMin(pq); deleteMin(pq): 

Add the candidate edge of v to the tree. 

updateFringe(pq, G, v); 

updateFringe(pq, G, v) // OUTLINE 

For all vertices w adjacent to v, letting newWgt = W(v, w): 

If w is unseen: 

Set its candidate edge to (v, w, newWgt). 

insert(pq, w, newWgt); 

Else if newWot < fringeWet of w: 

Revise its candidate edge to (v, w, newWgt). 

decreaseKey(pq, w, newWgt): 

Preliminary Analysis 

What can we say about the running time of this algorithm without knowing how the priority 

queue ADT is implemented? The first step is to estimate how many times each ADT 

operation is performed. Then we can write an expression in which the costs of the ADT 

operations are parameters. Let us assume, as usual, that the graph has n vertices and m 

edges. Then we easily see that the algorithm does insert, getMin, and deleteMin about 

n times, while it does decreaseKey at most m times. (There are 2m iterations of the for 

loop that does decreaseKey because each edge is processed from both directions, but we 

will see later that the condition in the second if statement is satisfied at most once for each 

edge.) With a little work we can construct examples where virtually every edge triggers 

a decreaseKey. We can reasonably assume that insert is less expensive than deleteMin. 

Thus we have the expression, where the 7’’s on the right denote the average time for the 

indicated operation over the course of one run of the algorithm: 

T (n,m) = O(n T(getMin) + n T (deleteMin) + m T(decreaseKey)). (8.1) 

For general graphs m may be much larger than n, so clearly we want an implementation 

that concentrates on the efficiency of decreaseKey. 

Here we realize the advantage of designing with abstract data types. We have already 

reasoned that our algorithm is correct, no matter how the priority queue ADT is imple- 

mented, provided the implementation meets the logical specifications of the ADT. We are 

now free to customize the implementation to minimize, or at least reduce, the right side of 

Equation (8.1). 

We have already seen that a heap provides an efficient implementation of a priority 

queue (Section 4.8.1). How does it fare in Equation (8.1)? This question is the subject of 
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Figure 8.4 An example for Prim’s minimum spanning tree algorithm. 

Exercise 8.9, where we discover that the worst case is worse than @(n). Can we do any 

better? 

If we are to improve upon the heap time in general, clearly we need to consider 

implementations for which decreaseKey runs faster than © (log 7). However, we can afford 

to make getMin and deleteMin slower than © (log 7) in the trade-off. Can we think of an 

implementation for which decreaseKey is O(1) and the others are no worse than O(n)? 

Then Equation (8.1) would evaluate to ©(n* + m) = ©(n°). Readers are invited to consider 

alternatives before continuing. 

The answer is so simple, we are likely to overlook it. Simply store the information in one 

or more arrays, indexed by vertex number. That is, we can use a separate array for each 

field, or we can collect fields in an organizer class and have one array whose entries are 

objects in this class. We will proceed with separate arrays because it simplifies the syntax 
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slightly. The decreaseKey operation is O(1) because we simply index to the vertex and 

update two or three fields. The getMin operation is accomplished by scanning all n entries 

in the arrays; deleteMin can either use the result of the preceding getMin or do its own 

scan if the previous result is obsolete. One of the arrays should be the status flag to indicate 

whether each vertex is in the fringe; only these vertices are eligible for selection as the 

minimum. Another array contains the vertex priority. For our algorithm, the vertex priority 

should always correspond to fringeWgt, the weight of the candidate edge for that vertex. 

Similarly, the candidate edges can be maintained as an array named parent, as was done 

in breadth-first and depth-first searches. That is, (v, parent[v]) is the candidate edge for v. 

With this implementation we have arrived essentially at the classic Prim algorithm. 

Although the encapsulation theme of ADT design suggests that the priority queue data 

structures should be hidden, we will “un-abstract” them so all parts of the algorithm have 

simple access. However, we still use the ADT operations to update these data structures. 

Prim’s algorithm was published before priority queues were invented, and before pro- 

gramming languages supported modern data structures, so its implementation was based 

simply on arrays. Since that time, there has been substantial research on the efficiency 

of priority queues. After presenting the most straightforward implementation of Prim’s 

algorithm, we will show in Section 8.2.8 how to adapt the pairing forest data structure 

(Section 6.7.2) for this algorithm. This can serve as a guide for using other advanced 1m- 

plementations of the priority queue, such as the Fibonacci heap, which 1s beyond the scope 

of this book. (See Notes and References at the end of the chapter.) 

8.2.6 Implementation 
The main data structures for the algorithm (besides those for the graph itself) are three 

arrays, status, fringeWgt, and parent, indexed by vertex number. The classification of 

vertices is given by the status array and we assume that we have constants defined with the 

names unseen, fringe, and tree. These are strongly correlated to the colors white, gray, and 

black used by breadth-first search (Algorithm 7.1). Sometimes, search based on the priority 

queue instead of the FIFO queue is called best-first search. 

The three main arrays status, parent, and fringeWgt are collected in the pq object 

for convenience in passing them to subroutines. Also, we customize the insert and de- 

creaseKey operations slightly to record the parent, as well as the priority, of the vertex that 

is being inserted or updated. When pq is first constructed, all elements have the unseen 

status. 

When insert is called for a vertex, its parent and fringeWgt acquire values, and its 

status changes to fringe. Note that insert is called on the start vertex to create the first 

fringe vertex; its parent is not a real vertex. 

When deleteMin is called, the status of the currently minimum vertex is switched 

to tree, thereby removing it from the priority queue, in effect. This also has the effect of 

freezing its fringeWgt and parent fields. 

In the main loop of the primMST algorithm, as each currently minimum vertex (v) 1S 

retrieved, its adjacency list is processed (by the subroutine updateFringe), to see if any of 

these edges (v, w), provide a lower-cost connection to the adjacent vertex w. The adjacency 
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A B E D E F. G H I 

fringeWgt (0) 2 4 7 3 3 | 

parent —| A B A A G G 

status tree tree fringe unseen unseen fringe tree fringe fringe 

Figure 8.5 Minimum spanning tree data structure for the situation in Figure 8.4(d): Adjacency 

lists are not shown. Vertices are assumed to be in alphabetical order within each list. 

lists are assumed to contain elements in the organizer class Edgeinfo, with two fields, to 

and weight as described in Section 7.2.3 and illustrated in Figure 7.11. 

Figure 8.5 shows the data structure at an intermediate point in the execution of the 

algorithm on the example in Figure 8.4 (specifically at the point illustrated in Figure 8.4d). 

To make it a little easier to read, we show the vertex names as letters, as in Figure 8.4. 

When the algorithm terminates, the tree edges are implied by the parent array. That 

is, for each vertex v other than the start vertex (root), (v, parent[v]) is an edge in the MST 

and fringeWgt[v] is its weight. 

The counter numPQ keeps track of how many vertices have status = fringe, so 

that isEmpty(pq) can execute in constant time. If the input graph is not connected, then 

parent[v] and fringeWgt[v] will be undefined for v that are not connected to the start vertex 

when the algorithm terminates. This condition should never occur because a precondition 

of the algorithm is that the graph is connected. 

Algorithm 8.1 (Prim) Minimum Spanning Tree 

Input: Array adjlnfo of adjacency lists that represent a weighted, connected, undirected 
graph G = (V, E, W), as described in Section 7.2.3; n, the number of vertices; and s, the 
desired start vertex. All arrays should be defined for indexes 1, ..., 2; the Oth entry is 
unused. The entries of adjlnfo are lists in the EdgeList ADT, described below. 

Output: A minimum spanning tree, stored in the parent array as an in-tree, and the array 
fringeWgt containing, for each vertex v, the weight of the edge between parent[v] and v. 
(The root's parent is —1.) The caller allocates and passes in the arrays, and the algorithm 
fills them. 

Remarks: The array status[1], ..., status[n] denotes the current search status of all 
vertices. Undiscovered vertices are unseen; those that are discovered but not yet processed 
(in the priority queue) are fringe: those that are processed are tree. The adjacency lists are 
type EdgeList and have the standard List ADT operations (Section 2.3.2). The elements are 
in the organizer class Edgelnfo, with two fields, to and weight. . 
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void primMST(EdgeList[] adjinfo, int n, int s, int{] parent, float[] fringeWgt) 
int[] status = new int[n+1]: 

MinPQ pq =create(n, status, parent, fringeWgt): 

insert(pq, s, -1, 0); 

while (isEmpty(pq) == false) 

int v = getMin(pq): 

deleteMin(pq): 

updateFringe(pq, adjlnfo[v], v): 

return: 

/ «x See if a better connection is found to any vertex in 

* the list adjInfoOfV, and decreaseKey if so. 

* For a new connection, insert the vertex. +/ 

void updateFringe(MinPQ pq, EdgeList adjlnfoOfy, int v) 

EdgeList remAdj: 

remAdj = adjlnfoOfV; 

while (remAdj = nil) 

Edgelnfo winfo = first(remAdj); 

int w = wlnfo.to: 

float newWgt = winfo.weight; 

if (pq.status[w] == unseen) 

insert(pq, w, v, newWgt): 

else if (pq.status[w] == fringe) 

if (newWgt < getPriority(pq, w)) 

decreaseKey(pq, w, v, newWgt); 

remAdj = rest(remAd)j); 

return: 

The priority queue implementation is shown in Figures 8.6 through 8.8. 

8.2.7. Analysis (Time and Space) 

We now complete the analysis of Algorithm 8.1 running on G = (V, E, W). We pick up 

from Equation (8.1). The main procedure 1s primMST, which calls the subroutine update- 

Fringe, and both call the MinPQ ADT operations. Let n = |V| and m = |E|. The number 

of initialization operations (create) is linear in. The body of the while loop 1s executed n 

times, because each pass does a deleteMin. We need to estimate the time required for the 

procedure calls in this loop: isEmpty, getMin, deleteMin, and updateFringe. 

A parameter of updateFringe is the list adjVerts, and the body of its while loop is 

executed once for each element of this list (the call could be omitted for the last vertex 

to be deleted from the priority queue). Over the course of the algorithm the adjacency list 

of each vertex is processed by updateFringe once, so the total number of passes through 
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class MinPQ 

// Instance fields 

int numVertices, numMPQ; 

int minVertex; 

float 00; 

int[] status: 

int{] parent; 

float[] fringeWgt; 

/«* Construct pg onn vertices, all "unseen". «/ 

MinPQ create(int n, int[] status, int[] parent, float(] fringeWgt) 

MinPQ pq = new MinPQ(); 

pq.parent = parent; 

pq.fringeWgt = fringeWgt; 

pq.status = status; 

Initialize status[1],..., status[n] to unseen. 

pq.numVertices =n; pq.numPQ = 0; 

pq.minVertex = —-1; 

pq.oo = Float.POSITIVE_INFINITY; 

return pq: 

Figure 8.6 A priority queue implementation for Prim’s minimum spanning tree algorithm, part 

|: data structures and ADT constructor. Arrays have one element per graph vertex: the element 

with index 0 is unused. 

the body of the while loop is about 2. One pass through that loop calls first, rest, and 

getPriority, which we assume are in ©(1), and it also calls insert or decreaseKey. For 

the implementation given in Figure 8.7, insert and decreaseKey are also in ©(1), but we 

should keep in mind that other implementations might not achieve this—it 1s a critical 

choice: decreaseKey might be called for almost all edges of G, a total of about m — n 

calls. For our chosen implementation, the total time for all invocations of updateFringe is 

in Om). 

So far it looks as though the running time of the algorithm may be linear in m (G is 

connected, som can’t be much smaller than 7, but could be much larger). However, getMin 

is called about 7 times from primMST and it must call the subroutine findMin for each 

of these calls. The subroutine findMin does a weight comparison for each vertex “in” the 

priority queue, to find the minimum candidate edge. In the worst case there are no “unseen” 

vertices after the first updateFringe call. Then the average number of vertices requiring a 

weight comparison is about 7/2, since one 1s deleted after each getMin call. (We focus on 

weight comparisons because they are unavoidable; some other implementation might avoid 

checking status.) This is a total of (roughly) n?/2 comparisons, even if the number of edges 

is smaller. Again, we emphasize that the time for findMin is implementation-dependent, 
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/** Record newPar, newW as parent, priority of v 
* and make Status|[v] = fringe. «/ 

void insert(MinPQ pq, int v, int newPar, float newW) 

pq.parent[v] = newPar: 

pq.fringeWgt[v] = newW; 

pq.status[v] = fringe; 

pq.minVertex = -1: 

pq.numPQ ++: 

return 

/** Record newPar, newW as parent, priority of v. «/ 
void decreaseKey(MinPQ pq, int v, int newPar, float newW) 

pq.parent[v] = newPar: 

pq.fringeWgt[v] = newW; 

pq.minVertex = -1; 

return 

/*x* Delete fringe vertex with min wgt from pq. «/ 

void deleteMin(MinPQ pq) 

int oldMin = getMin(pq); 

pq.status[oldMin] = tree: 

pq.minVertex = -1: 

pq.numPQ --: 

return 

Figure 8.7 A priority queue implementation for Prim’s minimum spanning tree algorithm, 

part 2: manipulation procedures. 

and is a critical choice for the overall efficiency of primMST. Observe that deleteMin 

is also called about n times, but requires only O(1) per call; a different implementation 

might shift the work from getMin to deleteMin. The pair of calls usually must be analyzed 

together. 

Thus the worst-case running time, as well as the worst-case number of comparisons 

done, is in O(m +n?) = O(n’). (We encourage you to investigate ways to reduce the work 

performed to find the minimum candidates, but see Exercises 8.7 through 8.9.) 

The data structure in Figure 8.5 uses 37 cells in addition to those in the adjacency-list 

representation of the graph. This is more extra space than is used by any of the algorithms 

we have studied so far, and 1t may seem like quite a lot. However, it allows a time-efficient 

implementation of the algorithm. (It would be worse if the extra space requirement were in 

©(m) since for many graphs ©(m) = @Q(n?)). 
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boolean isEmpty(MinPQ pq) 

return (numPQ == 0): 

float getPriority(MinPQ pq, int v) 

return pq.fringeWgtlv]: 

/«* Return fringe vertex with min wat. 

+x Return —1 if no fringe vertex remains. 

+f 

int getMin(MinPQ pq) 

if (oq.minVertex == —1) 

findMin(pq); 

return pq.minVertex; 

// This subroutine does most of the work! 

void findMin(MinPQ pq) 

int v; 

float minWgt; 

minWgt = pq.oo; 

for (v= 1; v < pq.numVertices; v++) 

if (oq.status[v] == fringe) 

if (oq.fringeWgt[v] < minWgt) 

pq.minVertex = v; 

minWgt = pq.fringeWgt[v]; 

// Continue loop 

return: 

Figure 8.8 A priority queue implementation for Prim’s minimum spanning tree algorithm, 

part 3: access functions and the findMin subroutine of getMin. 

8.2.8 The Pairing Forest Interface 

The general pairing forest data structure and the implementations of the priority queue 

operations were described in Section 6.7.2. Minor adaptations allow it to be used in Prim’s 

algorithm. 

First, the general pairing forest structure assumes that a tree node contains fields for 

both the element id and the priority. But the id (vertex number) is sufficient in this case 

because the priority of v can be accessed as fringeWat[v]. So the steps in Section 6.7.2 that 

say “create newNode ...” should be modified to say “store the priority in fringeWgt[v] 

and create newNode with id = v.” The xref array is an additional array like status that is 

maintained by the priority queue ADT operations. (With some special artificial values of 

type Tree to represent the unseen and tree statuses, the xref array can replace the status 

array, as a space optimization.) What is gained by using the pairing forest? The insert 
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and decreaseKey operations continue to run in constant time. The possible savings are in 

the getMin operation. In the straightforward implementation, getMin must scan the whole 

status array and possibly a large part of the fringeWgt array for each operation. The pairing 

forest has the property that only the roots of the trees in the forest are candidates for the 

minimum. Although it is difficult to analyze how many trees there might be at various times 

during the algorithm, it is clear that there will normally be multiple nodes per tree, so not 

all vertices need to be checked. 

The precise worst-case asymptotic order is not known, in general. However, a partial 

optimality result has been found for a variant of the pairing forest ADT, called nvo-pass 

pairing heaps. For the class of graphs in which m grows as Q(n!*°) for some constant 

c > 0, the amortized cost of getMin is in O(log n), and the amortized cost of insert and 

decreaseKey are in ©(1). These bounds imply that Prim’s algorithm with two-pass pairing 

heaps runs in ©(m +n logn) = Om) on this class of graphs. 

It is also known that Prim’s algorithm with Fibonacci heaps runs in ©(m +n log n) 

on all graphs, which is asymptotically optimal. However, the constant factors for Fibonacci 

heaps have been reported to be rather large, and the operations themselves are quite com- 

plicated and difficult to implement. For these reasons the pairing heap or pairing forest is 

seen as a practical alternative. The subject is discussed in Notes and References at the end 

of the chapter. 

8.2.9 Lower Bound 

How much work is essential for finding a minimum spanning tree? We claim that any 

minimum spanning tree algorithm requires time that is in &2(77) in the worst case because 

it must examine, or process in some way, every edge in the graph. To see this, let G be a 

connected, weighted graph where each edge has weight at least 2, and suppose there were 

an algorithm that did nothing at all to an edge, xy, in G. Then xy is not in the output 

tree, 7, of the algorithm. Change the weight of xy to 1. This could not change the action 

of the algorithm because it never examined vy. But now 7 fails the MST property and 

so, by Theorem 8.2, it is not a minimum spanning tree. In fact, to produce a lighter tree, 

simply add xy to T creating a cycle, and remove any other edge in that cycle. Therefore an 

algorithm that does not examine xy Is not correct. 

Single-Source Shortest Paths 

In Section 7.2 we briefly considered the problem of finding the best route between two 

cities on a map of airline routes, such as Figure 7.8. Using as our criterion the price of the 

plane tickets, we observed that the best—that is, cheapest—way to get from San Diego to 

Sacramento was to make one stop in Los Angeles. This is one instance, or application, of a 

very common problem on a weighted graph: finding a minimum-weight path between two 

specified vertices. 

It turns out that, in the worst case, it is no easier to find a minimum-weight path 

between a specified pair of nodes s and 1 than it is to find minimum-weight paths between 
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s and every vertex reachable from s. The latter problem is called the single-source shortest 

path problem. The same algorithm is used for both problems. 

This section considers the problem of finding the minimum-weight path from a spec- 

ified source vertex to every other vertex in a weighted directed or undirected graph. The 

weight (length, or cost) of a path is the sum of the weights on the edges in that path. When 

weight is interpreted as distance, a minimum-weight path is called a shortest path, and this 

is the name most often used. (It is, alas, conventional to mix the terminology of weight, 

cost, and length.) 

How did we determine the shortest path from SD to SAC in Figure 7.8? In fact, for 

this small example we used a very unalgorithmic method, full of assumptions, such as 

that the fares are proportional to the distance between the cities and that the map is drawn 

approximately to scale. Then, we picked a route that “looked” short, and totaled up its 

cost. Finally, we checked some other paths (Somewhat haphazardly) and did not notice any 

improvements, so we declared the problem solved. This is hardly an algorithm we would 

expect to program for a computer. We mention it to answer the above question honestly; 

people generally use very unrigorous ways to solve problems, especially on very small sets 

of data. 

In practice, the problem of finding shortest paths in a graph arises in applications in 

which V may contain hundreds, thousands, or even millions of vertices. An algorithm the- 

oretically could consider all possible paths and compare their weights, but in practice that 

could take a very long time, possibly centuries. To try to find a better approach, it is helpful 

to look at some general properties of shortest paths, and see if they suggest a more effi- 

cient approach. The algorithm we present is due to E. W. Dijkstra. This algorithm requires 

that edge weights be nonnegative. Other algorithms that don’t impose this requirement are 

mentioned in Notes and References at the end of the chapter. 

8.3.1 Properties of Shortest Paths 

In general, when trying to solve a large problem, we want to break it down into smaller 

problems. What can we say about shortest paths between distant nodes, in terms of shortest 

paths between less distant nodes? Can we use some sort of divide-and-conquer approach? 

Suppose path P is a shortest path from x to y and Q is a shortest path from y to z. Does 

this mean that P followed by Q is a shortest path from x to z? It does not take long to work 

out an example where this is not true. However, there is a subtle variation on this theme 
that does hold true. The proof of this lemma is left as an exercise. 

Lemma 8.5 (Shortest path property) In a weighted graph G, suppose that a shortest path 
from x to z consists of path P from x to y followed by path Q from y to z. Then P is a 
shortest path from x to y, and Q is a shortest path from y toz. Oo 

Suppose we are trying to find a shortest path from x to z. Possibly a direct edge xz 
exists and provides the shortest route. However, if the shortest path involves two or more 
edges, then the lemma tells us that it can be broken down into two paths, each with fewer 
edges than the whole path, and each being a shortest path in its own right. To develop an 
algorithm, we need to establish some organized scheme for breaking down paths. 
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Example 8.3 A busload of tourists 

Another useful insight can be gained by thinking of a physical process in connection with 
shortest paths from a source vertex s. Think of the graph as a collection of islands connected 
by one-way bridges, as in Example 7.7, but now the bridges are of various lengths. The 
length of the bridge for edge wv is W(wv). 

Imagine a busload of tourists all departing from a source vertex s at time zero, as in 
that example. They spread out from s and walk at a uniform rate, say one meter per second 
(about 2.5 miles per hour, but using 2.5 requires more arithmetic). When they arrive at any 
new island (vertex) there are a lot of them, and they divide up, with some taking each bridge 

(edge) leaving that island. Clearly, the first tourists to arrive at any island have followed a 

shortest path. In this example “shortest” can refer to time or distance. 

Consider the situation when tourists are first arriving at vertex z. Suppose they are 

traversing an edge yz. Then a shortest path from s to z goes through y, and by Lemma 8.5, 

consists of a shortest path from s to y, followed by the edge yz. 

Simulating the Busload of Tourists 

Now suppose we want to predict when tourists will first arrive at z, and assume we have an 

array, arrive, to store when tourists first arrive at each vertex. Let the vertices with an edge 

to z be yj, yo, ..., yx. The shortest path must use one of these vertices, so we consider 

them all. As soon as tourists arrive at y;, say at time arrive[y;], we can predict that the 

first tourists to arrive at z will arrive no later than arrive[y;] + W(y;z). Thus arrive[z] will 

be the minimum of these predictions. Because we have disallowed negative weights (no 

backwards time travel for these tourists), we don’t need to worry about any y;’s where the 

tourists arrive later than arrive[Z]. 

Can we use depth-first search to organize this computation? Since we need to look at 

vertices with edges to z, instead of edges leaving z, we want to search in G’, the transpose 

graph (see Definition 7.10). The general idea is that the search from z would traverse to 

each y;, and when backtracking from y; to z, we would compute arrive[y;] + W(;z), and 

compare it with the value previously stored in arrive[z]. Whenever a smaller value is found, 

it is saved as arrive[z]. This idea is pursued in Exercise 8.21, where it is shown that it works 

on an important class of graphs, but not all graphs. 

Another natural idea for organizing the computation is the greedy approach, since we 

have observed that arrive[z] can be calculated when we know the values of arrive[y;] that 

are smaller than arrive(z]. The greedy heuristic in this case is to find the vertex where the 

tourists will arrive soonest, given that they have already arrived at certain vertices. 

8.3.2 Dijkstra’s Shortest-Path Algorithm 

In this section we study Dijkstra’s shortest-path algorithm; it is very similar in approach 

and timing to Prim’s minimum spanning tree algorithm in the previous section, 

Definition 8.3 

Let P be a nonempty path in a weighted graph G = (V, E, W) consisting of k edges «v1, 

V}U2, ..-. Ue—1y (possibly vj = y). The weight of P, denoted as W(P) is the sum of the 

405 



406 Chapter 8 Graph Optimization Problems and Greedy Algorithms 

weights, W(xv1), W(v, 02), ..., W(vg_1y). If x = y, the empty path is considered to be a 

path from x to y. The weight of the empty path is zero. 

If no path between x and y has weight less than W(P), then P is called a shortest 

path, or minimum-weight path. ™ 

The preceding definition was carefully phrased to permit the possibility of negative 

weights. However, in this section we assume that weights are nonnegative. Under these 

circumstances, shortest paths can be restricted to simple paths. 

Problem 8.1 Single-source shortest paths 

We are given a weighted graph G = (V, E, W) and a source vertex s. The problem is to 

find a shortest path from s to each vertex v. 

Before proceeding, we should consider whether we need a new algorithm at all. 

Suppose we use the minimum spanning tree algorithm, starting at s. Will the path to v 

in the tree constructed by the algorithm always be a shortest path from s to v? Consider the 

path from A to C in the minimum spanning tree in Figure 8.4. It is nor a shortest path; the 

path A, B, C is shorter. 

Dijkstra’s shortest-path algorithm will find shortest paths from s to the other vertices 

in order of increasing distance from s. The algorithm, like Prim’s MST algorithm in 

Section 8.2, starts at one vertex (s) and “branches out” by selecting certain edges that lead 

to new vertices. The tree built by this algorithm is called a shortest-path tree. (Naming it 

that does not make it true; it must be proved that the paths in the tree really are shortest 

paths.) 

Also like Prim’s MST algorithm, Dijkstra’s algorithm is greedy; it always chooses 

an edge to a vertex that appears to be “closest”; but in this case the sense of “closest” is 

“closest to s,” not “closest to the tree.” The vertices are again divided into three (disjoint) 

categories as follows: 

|. tree vertices: in the tree constructed so far, 

. fringe vertices: not in the tree, but adjacent to some vertex in the tree, Nw 

3. unseen vertices: all others. 

Also, as in Prim’s algorithm, we keep track of only one candidate edge (the best found so 

far) for each fringe vertex. For each fringe vertex z, there is at least one tree vertex v such 

that vz is an edge of G. For each such v there is a (unique) path in the tree from s to v 

(possibly s = v); d(s, v) denotes the weight of that path. Adding the edge vz to this path 

gives a path from s to ¢, and its weight is d(s,v) + W(vz). The candidate edge for z is 

the edge vz such that d(s, v) + W(vz) 1s minimized over all choices of vertex v in the tree 

built so far. 

Example 8.4 Growing a shortest-path tree 

Look at the graph in Figure 8.9(a). Each undirected edge is treated as a pair of directed 

edges in opposite directions. Assume the source vertex is A. Let us trace the steps of 
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d(A, B) + W(BC) =6 

d(A, A) + WAG) = 5 

d(A, A) + WAF) =9 
Select AG next. 

(b) An intermediate step 

Fringe 
d(A, C)+ W(CD) =8 
d(A, A) + W(AF) =9 
d(A, G) + WGI) =7 

d(A, G) + W(GH) = 10 
Select G/ next. 

(c) An intermediate step: CH was considered, 

but not chosen, to replace GH as a candidate. 

3 7 

Unseen - 

Fringe Fringe 

(d) G/ is selected. (e) AF’ was replaced by /F as a candidate. 

Figure 8.9 Anexample for Dijkstra’s shortest-path algorithm: The problem is to find a shortest 

path from A to H. 
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growing the tree. Initially, it has only the vertex A, and d(A, A) = 0. The tourists get off 

the tour bus at A at time 0, and start walking over the bridges AB, AG, and AF. As in 

Example 7.7, the first tourists to reach an island snap up the bargains. Once any group of 

tourists arrives late, they will not be the first to arrive at any future island because the earlier 

group split up and explored all bridges leaving the island. The algorithm will not keep track 

of these groups. 

In part (b) of the figure, edge AB has been added because B is closest to the source 

A, and d(A, B) =2. A group of tourists has arrived at B at time 2, and they split up 

into subgroups that start walking across the bridges BA, BC, and BG. The other groups 

continue across AG and AF. 

All vertices that can be reached by an edge from either A or B are now in the fringe, 

unless they are already in the tree, of course. For each fringe vertex, the candidate edge 

is shown as a dashed line; observe that BG is not a candidate edge. We know tourists will 

arrive at G no later than time 5 (from A), so those on the BG bridge will not be the earliest, 

and we can stop tracking them. 

Based on tree edges and candidate edges, G is the fringe vertex that is closest to A, 

so AG is the next edge to be added to the tree, and d(A, G) = 5. That is, tourists arrive 

at G at time 5, and split up into groups exploring GA, GB, GH, and G/. The algorithm 

only tracks those heading for H (predicted arrival at 10) and / (predicted arrival at 7). 

However, the tourists on bridge BC arrive at C at time 6, so edge BC will be added next, 

and d(A, C) =6. Tourists depart from C at time 6 on the bridges CB, CD, and CH. We can 

ignore those on CB because B has been visited, and we can ignore those on CH because 

they will arrive at H at ime 11, which is later than the “competing” tourists on GH. This 

leads to part (c) of the figure. 

Given the situation in Figure 8.9(c), the next step is to select a candidate edge and 

fringe vertex. We choose a candidate edge yz for which d(s, vy) + W(yz) is minimum. 

This is the weight of the path obtained by adjoining yz to the known (hopefully shortest) 

path from s to y. Vertex z is selected from D, F, 7, and H, the current fringe vertices. In 

this case, G/ is the selected edge, andd(A,/)=7. @ 

The general structure of Dijkstra’s algorithm may be described as follows: 

dijkstraSSSP(G, n) // OUTLINE 

Initialize all vertices as unseen. 

Start the tree with the specified source vertex 5; reclassify it as tree; 

define d(s,s) =0. 

Reclassify all vertices adjacent to s as fringe. 

While there are fringe vertices: 

Select an edge between a tree vertex ¢ and a fringe vertex v such that 

(d(s,t) + W(tv)) is minimum; 

Reclassify v as tree; add edge rv to the tree; 

define d(s, v) = (d(s,t) + W(tv)). 

Reclassify all wiseen vertices adjacent to v as fringe. 
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Since the quantity d(s, y) + W(yz) for a candidate edge yz may be used repeatedly, 
it can be computed once and saved. To compute it efficiently when yz first becomes a 
candidate, we also save d(s, y) for each y in the tree. Thus we could use an array dist as 
follows: 

dist[y] = d(s, y) for y in the tree; 

dist{<] =d(s, y) + W(yz) _ for z on the fringe, where yz is the candidate edge to z. 

As in Prim’s algorithm, after a vertex and the corresponding candidate edge are selected, 

the information in the data structure must be updated for some fringe and previously unseen 

vertices. 

Example 8.5 Updating distance information 

In Figure 8.9(d) the vertex / and edge G/ have just been selected. The candidate edge for 

F was AF (with dist[F] = 9), but now AF must be replaced by / F because / F yields 

a shorter path to F. We must also recompute dist[F]. On the other hand, /H does not 

yield a shorter path to H because dist{H] = 10, currently, so this edge is discarded from 

further consideration. The vertex E, which was unseen, is now on the fringe because it is 

adjacent to /, now in the tree. The edge / E becomes a candidate. These changes lead to 

Figure 8.9(e). Values of dist for new fringe vertices must be computed. # 

Does this method work? The crucial step is the selection of the next fringe vertex 

and candidate edge. For an arbitrary candidate yz, d(s, y) + W(yz) is not necessarily the 

shortest distance from s to z because shortest paths to z might not pass through y. (In 

Figure 8.9, for example, the shortest path to H does not go through G, although GH is 

a candidate in parts c, d, and e.) We claim that, if d(s, y) is the shortest distance for each 

tree vertex y, and yz is chosen by minimizing d(s, y) + W(yz) over all candidates, then 

yz does give a shortest path. This claim is proved in the following theorem. 

Theorem 8.6 Let G =(V, E, W) bea weighted graph with nonnegative weights. Let V’ 

be a subset of V and let s be a member of V’. Assume that d(s, y) is the shortest distance 

in G from s to y, for each y € V’. If edge yz is chosen to minimize d(s, y) + W(yz) over 

all edges with one vertex y in V’ and one vertex z in V — V’, then the path consisting of a 

shortest path from s to y followed by the edge yz is a shortest path from s to z. 

Proof Look at Figure 8.10. Suppose e = yz is chosen as indicated, and let s,x).....4y.¥ 

be a shortest path from s to y (possibly y=s). Let P=s,xj,...,- Kees VOU) = 

d(s, y) + W(yz). Let s,z),...,Za,.--,z be any shortest path from s to z; call it P’. Vertex 

z, is chosen to be the first vertex in P’ that is not in V’ (possibly zz = z). We must show that 

W(P) < W(P’). (In the algorithm, z,—|Zq would be a candidate edge; if a = 1, 79 =.) By 

the choice of e, 

W(P) =d(s, y) + Wee) < d(s, Za-1) + W(Za—12a)- (8.2) 

By Lemma 8.5, s, Z1,..., Za—1 18 a shortest path from s to zq—1, So the weight of this path 
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AS, Zq-1) a > 

Figure 8.10 For the proof of Theorem 8.6 

is d(s, Zg—1). Since S, Z},...s Zq—1s Za iS part of the path P’ and any remaining edges must 

have nonnegative weights, 

a(s, Zo_y) BW ZeiZa) = WP’). (8.3) 

Combining Equations (8.2) and (8.3), W(P) < W(P’). 

Theorem 8.7 Given a directed weighted graph G with nonnegative weights and a source 

vertex s, Dijkstra’s algorithm computes the shortest distance (weight of a minimum-weight 

path) from s to each vertex of G that is reachable from s. 

Proof The proof is by induction on the sequence in which vertices are added to the 

shortest-path tree. The details are left for Exercise 8.16. 0 

8.3.3. Implementation 

The shortest-path algorithm can use exactly the same Priority Queue ADT as Prim’s 

algorithm; see Figures 8.6 through 8.8. When the algorithm terminates, the shortest-path 

tree edges are implied by the parent array. That is, for each vertex uv other than the source 

vertex, (v, parent[v]) is an edge in the shortest-path tree and fringeWgt[v] is the distance 

from s to v. If not all vertices are reachable from the given source s, then parent[v] and 

fringeWat[v] will be undefined for v that are unreachable from s. It is easy to adjust the 

algorithm to give these entries some special values, such as n + | and oo. 

Algorithm 8.2) (Dijkstra) Single-Source Shortest Paths 

Input: Array adjlnfo of adjacency lists that represent a weighted directed or undirected 

graph G = (V, E, W), as described in Section 7.2.3; n, the number of vertices; and s, the 

desired start vertex. All arrays should be defined for indexes 1, ..., 1; the Oth entry is 

unused. The entries of adjlnfo are lists in the EdgeList ADT, described below. 



8.3 Single-Source Shortest Paths 411 

Output: A shortest-path tree, stored in the parent array as an in-tree, and the array 

fringeWgt containing, for each vertex v, the shortest distance from s to v. (The root’s 

parent is —1.) The caller allocates and passes in the arrays, and the algorithm fills them. 

Remarks: The array status[1], ..., status{n] denotes the current search status of all 

vertices. Undiscovered vertices are unseen; those that are discovered but not yet processed 

(in the priority queue) are fringe; those that are processed are tree. The adjacency lists are 

type EdgeList and have the standard List ADT operations (Section 2.3.2). The elements are 

in the organizer class Edgelnfo, with two fields, to and weight. 

void shortestPaths(EdgeList[] adjinfo, int n, ints, int{] parent, float{] fringeWgt) 

int{] status = new int[n+1]; 

MinPQ pq =create(n, status, parent, fringeWgt); 

insert(pq, s, -l, 0); 

while (isEmpty(pq) == false) 

int v = getMin(pq); 

deleteMin(pq); 

updateFringe(pq, adjlnfo[v], v); 

return: 

/x« See if a better connection is found to any vertex in 

x the list adjInfoOfV, and decreaseKey if so. 

» For a new connection, insert the vertex. +/ 

void updateFringe(MinPQ pq, EdgeList adjlnfoOfV, int v) 

float myDist = pq.fringeWgt[v]; 

EdgeList remAdj; 

remAdj = adjlnfoOfV; 

while (remAdj + nil) 

Edgelnfo winfo = first(remAd)j); 

int w = winfo.to; 

float newDist = myDist + winfo.weight; 

if (pq.status[w] == unseen) 

insert(pq, w, v, newDist); 

else if (pq.status([w] == fringe) 

if (newDist < getPriority(pq, w)) 

decreaseKey(pq, w, v, newDist); 

remAdj = rest(remAd)j); 

return; 

Analysis 

The analysis in Section 8.2.7 of Prim’s minimum spanning tree algorithm, Algorithm 8.1, 

carries over to Dijkstra’s shortest path algorithm, Algorithm 8.2, without change. Dijkstra’s 

algorithm also runs in @(n2) time in the worst case. The same lower bound of 82(m) and 

space requirements of ©() carry Over, as well. 
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If a significant number of vertices are expected to be unreachable, it might be more 

efficient to test for reachability as a preprocessing step, eliminate unreachable vertices, and 

renumber the remaining vertices as 1, . . ., 2,. The total cost would be in ©(m + n-), rather 

than ©(77). 

The pairing forest (Section 6.7.2), pairing heap, or Fibonacci heap may be used to 

implement the priority queue in Dijkstra’s algorithm in the same manner as described in 

Section 8.2.8 for Prim’s algorithm. The asymptotic bounds are the same: Using a Fibonacci 

heap gives the optimum asymptotic order of O(m +n log), but poses practical difficul- 

lies. 

Kruskal’s Minimum Spanning Tree Algorithm 

Let G =(V, E, W) be a weighted undirected graph. In Section 8.2 we studied Prim’s 

algorithm to find a minimum spanning tree for G (with the condition that G be connected). 

The algorithm started at an arbitrary vertex and then branched out from it by “greedily” 

choosing edges with low weight. At any time, the edges chosen formed a tree. Here we 

examine an algorithm that uses a greedier strategy. Throughout this section all graphs are 

undirected graphs. 

8.4.1. The Algorithm 

The general outline of Kruskal’s algorithm is as follows. At each step it chooses the lowest- 

weighted remaining edge from anywhere in the graph, but discards any edge that would 

form a cycle with those already chosen. At any time the edges chosen so far will form a 

forest but not necessarily one tree. It terminates when all edges have been processed. 

kruskalMST(G, n) // OUTLINE 

R=E; //R is remaining edges. 

F =); //F is forest edges. 

while (RX is not empty) 

Remove the lightest (shortest) edge, vw, from R; 

if (vw does not make a cycle in F) 

Add vw to F; 

return F; 

Before even thinking about how to implement this idea, we should ask whether it works. 

Since the graph may not be connected, we first need a definition. 

Definition 8.4 Spanning tree collection 

Let G=(V, E, W) be a weighted undirected graph. A spanning tree collection for G is 
a set of trees, one for each connected component of G, such that each tree is a spanning 
tree for its connected component. A minimum spanning tree collection is a spanning tree 
collection whose edges have minimum total weight, that is, a collection of minimum 
spanning trees. @ 
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First, is every vertex of G represented in some tree (there may be multiple trees if the 
graph is not connected)? Let v be an arbitrary vertex of G. If at least one edge is incident 
upon v, then the first edge withdrawn from S that is incident upon v will be taken into F. 
But if v is an isolated vertex (no incident edges), then it will not be represented in F, and 
it needs to be considered separately if it is not to be overlooked. 

The next question is whether a spanning tree collection is created by the algorithm, 
assuming that G has no isolated vertices. That is, is there exactly one tree in F for each 

connected component of G? The following lemma provides some insight into this question. 

The proof is easy and is left as an exercise. 

Lemma 8.8 Let F be a forest; that is, any undirected acyclic graph. Let e = vw be an 

edge that is notin F. There is a cycle consisting of e and edges in F if and only if v and w 

are in the same connected component of FF. O 

Now suppose some connected component of G corresponds to two or more trees in 

the forest F that is computed by Kruskal’s algorithm. There must be some edge in G that 

goes between two of these trees, call it vw; that is, v and w are in different connected 

components of F. Therefore, when the algorithm processed vw, it must have formed a 

cycle in the forest at that time, say F’, because vw was not added to F’. By Lemma 8.8, v 

and w) were in the same connected component of F at that time. But then it is impossible 

that v and w are in different connected components of F when the algorithm terminates. 

Therefore F can contain only one tree for each connected component of G. 

Having determined that the algorithm computes some spanning tree collection, the 

last question of correctness is whether the trees are of minimum weight. This question 1s 

answered by the following theorem, the proof of which is left as an exercise. 

Theorem 8.9 Let G=(V, E, W) be a weighted undirected graph. Let F C E. If F is 

contained in a minimum spanning tree collection for G and if e is an edge of minimum 

weight in E — F such that F U {e} has no cycles, then F U {e} is contained in a minimum 

spanning tree collection forG. 0 

The algorithm starts with F = / and continues adding edges to F until all edges have 

been processed. The theorem guarantees that F is always contained within some minimum 

spanning tree collection, and we have already realized that the final value of F rs a spanning 

tree collection for G, except for trivial trees, each consisting of an isolated node and no 

edges. 

We are now ready to consider implementation methods. To access the edges in order 

of increasing weight, a minimizing priority queue is used (Section 2.5.1), such as a heap 

(Section 4.8.1). The edges of F can be stored in a list, stack, or other convenient data 

structure. 

One problem to be resolved is how to determine whether an edge will form a cycle 

with others already in F. Lemma 8.8 provides the criterion: If v and w are in the same 

connected component of F’, then (and only in this case) adding edge vw to F’ will create 

a cycle. Therefore we would like to keep track of the connected components of F as it is 
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Figure 8.11 The darkened edges are in the subgraph F. The equivalence classes are 

{1 225, 7, VO) 11, V7 6,-8.9). 113, 1415, 16), 43), 4), ane (12). 

built. In particular, given two vertices v and w, we want to be able to determine efficiently 

whether they are in the same connected component of F. The methodology of dynamic 

equivalence relations that was developed in Section 6.6 can be applied. 

We define a relation, “=”, on the vertices ina subgraph F by v = w if and only if v and 

w are in the same connected component of F. It is easy to check that = is an equivalence 

relation. (See Figure 8.11 for an example.) Thus, by Lemma 8.8, an edge vw is chosen by 

Kruskal’s algorithm if and only if uv # w. Initially, each vertex of G is in the = relation as 

a separate equivalence class, and F is a graph consisting of all vertices in G, but no edges 

(this also takes care of isolated vertices). Each time an edge is chosen, the subgraph F and 

the equivalence relation = change; each new edge causes two connected components, or 

two equivalence classes, to be merged into one. 

Maintaining and querying the = relation are accomplished through the Union-Find 

ADT. Recall that find(v) returns the unique identifier of the equivalence class of vertex 

v and if s and ¢ are identifiers for distinct equivalence classes, then union(s, t) merges 

them. 

Algorithm 8.3 (Kruskal) Minimum Spanning Tree 

Input: G=(V, E, W), a weighted graph, with |V| =n, |E| =m. 

Output: Fa subset of E which forms a minimum spanning tree for G, or a minimum 

spanning tree collection if G is not connected. 

Remarks: The structure sets defined in the algorithm corresponds to the equivalence 

relation = in the discussion. The class-name qualifiers are omitted from the operations 

of the Union-Find ADT and the priority-queue ADT for easier readability. 
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kruskalMST(G, n, F) // OUTLINE 

int count: 

Build a minimizing priority queue, pq, of edges of G, prioritized by weight. 
Initialize a Union-Find structure, sets, in which each vertex of G is in its 
OWN Set. 

FIV): 

while (isEmpty(pq) == false) 

vwEdge = getMin(pq): 

deleteMin(pq); 

int vSet = find(sets, vwEdge.from): 

int wSet = find(sets, vwEdge.to): 

if (vSet + wSet) 

Add vwEdge to F: 

union(sets, vSet, wSet); 

return; 

8.4.2 Analysis 

The priority queue of edges can be implemented efficiently as a heap, since the de- 

creaseKey operation is not used in this algorithm. It can be built in time O(m). Deleting 

all the edges requires O(m log m) time in the worst case, but might be ©(n log m), which 

is the same as ©(n login), if only O(7) lightest edges need to be processed to construct the 

spanning tree collection. 

As an additional optimization, if the number of connected components in G is known 

to be ncc, then the number of edges in the spanning tree collection is known to be n — nec, 

and the algorithm can terminate as soon as this many edges have been added to F’, which 

is now the minimum spanning tree collection, without processing the remaining edges. 

Finding the number of connected components can be done in linear time. This would make 

it possible to take advantage of the favorable case mentioned in the previous paragraph. 

For the Union-Find operations, find might be called about 2m times, while union 

is called at most » — | times. Thus the total number of Union-Find operations done is 

bounded by (2m +n). Assume m > n, as it normally is, to simplify the expressions. With 

the weighted-union, path-compression implementation of Section 6.6, the total time for 

these operations is in O(m lg*(m)), where lg* is the very slowly growing function of 

Definition 6.9. 

Thus the worst-case running time of Kruskal’s MST algorithm is in ©(m log m). 

Prim’s algorithm, Algorithm 8.1, is in @(n-) in the worst case. Which is better depends 

on the relative sizes of n and m. For dense graphs, the Prim algorithm is better. For 

sparse graphs, Kruskal’s is faster than Algorithm 8.1. However, consider the alternative 

of Exercise 8.9 and the fact that Prim’s algorithm can use the data structures discussed in 

Section 8.2.8. 

If the edges of G were already sorted, then a trivial priority queue could be used, and 

each edge could be deleted in O(1) time, in which case Kruskal’s algorithm would run in 

O(m |g*(m)) time, which is quite good. 
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Exercises 

Section 8.2. Prim’s Minimum Spanning Tree Algorithm 

8.1 Give a connected, weighted, undirected graph and a start vertex such that neither the 

depth-first search tree nor the breadth-first search tree is an MST, regardless of how the 

adjacency lists are ordered. 

8.2 Let T be any spanning tree of an undirected graph G. Suppose that wv is any edge 

in G that is not in T. The following proofs are easy by using the definitions of undirected 

tree, spanning tree, and cycle. 

a. Let G, be the subgraph that results from adding uv to 7. Show that G, has a cycle 

involving uv, say (wW1, W2,..., Wp, W1), Where p > 3, u = w; andv = wp. 

b. Suppose any one edge, w;w;+1, is removed from the cycle created in part (a), creating 

a subgraph G2 (which depends on /). Show that G2 is a spanning tree for G. 

8.3. Suppose 7) and 7> are distinct minimum spanning trees for graph G. Let uv be the 

lightest edge that is in 7> and is not in 7). Let xy be any edge that 1s in 7) and is not in 7. 

Show that W(xy) > W(uv). 

8.4 Prove that if the weights on the edges of a connected, undirected graph are distinct, 

then there is a unique minimum spanning tree. 

8.5 

a. Describe a family of connected, weighted, undirected graphs G,, for n > 1, such 

that G,, has n vertices and the number of weight comparisons done by Prim’s MST 

algorithm (Algorithm 8.1) for G,, is linear in n. 

b. Describe a family of connected, weighted, undirected graphs G, such that G, has n 

vertices and Prim’s MST algorithm does no comparisons among weights when G,, is 

the input. A comparison of a weight with oo (pq.oo) does not count for this purpose 

(because the findMin procedure can check whether minVertex is —1 to avoid it). (The 

algorithm will require time at least proportional to n because it must succeed in finding 

a minimum spanning tree.) 

8.6 Execute Prim’s minimum spanning tree algorithm by hand on the graph in Fig- 

ure 8.4(a), showing how the data structures evolve. Clearly indicate which edges become 

part of the minimum spanning tree and in what order. 

a. Start at vertex G. 

b. Start at vertex H. 

c. Start at vertex /. 

$7. Let G=(V Be W yowhere Vo So ten ek Vals = te Sy ee and for 

i=2,...,n, W(v,v;) = 1. With this G as input and vj as the start vertex, how many com- 
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parisons of edge weights will be done by Prim’s MST algorithm, in total, to find minimum 
candidate edges? (Working through this problem may suggest to you that saving informa- 
tion about the ordering of the weights of candidate edges could decrease the number of 
comparisons. The next two exercises suggest that it may not be easy.) 

8.8 

a. How many comparisons of edge weights will be done by the MST algorithm, in total, 

if the input is a complete undirected graph with n vertices and v, is the start vertex? 

b. Suppose the vertices are v),..., U,,.and Wow )=nt l=? for lat) sm 

How many of the edges are candidate edges at some time during the execution of the 

algorithm? 

8.9 Consider storing candidate edges in a min-heap (a heap where each node is smaller 

than its children, see Section 4.8.1). In this exercise we evaluate Prim’s MST algorithm 

under this assumption, for graphs in general, and for certain restricted classes of graphs. 

sei | =7r andy|/2 |) — rn: 

a. Find the asymptotic order of the number of comparisons of edge weights that will be 

done by Prim’s MST algorithm, based on Equation (8.1) in the worst case. Remember 

to consider the work that is necessary for the decreaseKey operation, when a candidate 

edge is replaced by another. 

b. A bounded-degree family of graphs is any family for which there is a constant k such 

that all vertices of any graph in the family have degree at most &. Find the asymptotic 

order, as a function of n, of the number of comparisons of edge weights that would be 

done by Prim’s MST algorithm on a bounded-degree family. 

c. A planar graph is a connected graph that can somehow be drawn in a plane without 

any crisscrossing edges. For this class, Euler’s theorem states that |V| —|E| + |F| =2, 

where |F| is the number of faces (regions surrounded by edges, plus one region from 

the outer edges to infinity) formed when the graph is drawn. For example, if the graph 

is asimple triangle, it has two faces—one inside the triangle and one outside. The outer 

face extends to infinity in all directions. Find the asymptotic order, as a function of n, 

of the number of comparisons of edge weights that would be done by Prim’s MST 

algorithm on a planar graph. Hint: Note that all edges are in two faces. 

8.10 The use of the priority queue can be simplified by initially entering all vertices with 

a fringeWgt of “oo” and a status of fringe. The value “oo” merely needs to be bigger 

than the cost of any edge that is actually in the graph; it doesn’t have to really represent 

“infinity.” Then decreaseKey will lower the cost of a vertex below “oo” when the first 

connection for a vertex is found, and insert will not be needed. Show the modifications 

of Algorithm 8.1 and the priority queue operations that implement this strategy. Does it 

improve the asymptotic order? 
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Figure 8.12 Graph for Exercise 8.13 

8.11 Suppose we want to use Prim’s algorithm on a weighted, undirected graph that is not 

known to be connected. Show how to modify Prim’s algorithm to find a minimum spanning 

tree collection (Definition 8.4) without first finding the connected components. Try not to 

increase the asymptotic order of the algorithm. 

Section 8.3 Single-Source Shortest Paths 

8.12 Give a weighted directed graph and a source vertex such that neither the depth-first 

search tree nor the breadth-first search tree 1s a shortest-path tree, regardless of how the 

adjacency lists are ordered. 

8.13 For the graph in Figure 8.12, indicate which edges would be in the minimum 

spanning tree constructed by Prim’s MST algorithm (Algorithm 8.1), and which would 

be in the tree constructed by Dijkstra’s shortest-path algorithm (Algorithm 8.2) using v; as 

the source. 

8.14 Will Dijkstra’s shortest-path algorithm (Algorithm 8.2) work correctly if weights 

may be negative? Justify your answer by an argument or a counterexample. 

8.15 Here are the adjacency lists (with edge weights in parentheses) for a digraph. For 

convenience, the digraph 1s also shown in Figure 8.13. 

A: B(4.0), F(2.0) 

B: A(1.0), C(3.0), D(4.0) 

C: A(6.0), BGO), D7.0) 

D: A(6.0), E(2.0) 

E> DG0) 

FF: DQZQ)7EO.0) 

a. This digraph has three shortest paths from C to E (i.e., all with the same total weight). 
Find them. (List the sequence of vertices in each path.) 

b. Which of these paths is the one that would be found by Dijkstra’s shortest-path al- 
gorithm, with s = C? (Give a convincing explanation or show the main steps of the 
algorithm.) 
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Figure 8.13 Digraph for Exercise 8.15 

¢. Execute Dijkstra’s shortest-path algorithm by hand on this graph, showing how the 
data structures evolve, with s = A. Clearly indicate which edges become part of the 

shortest-path tree and in what order. 

d. Repeat part (c) with s = B. 

e. Repeat part (c) with s = F. 

8.16 Complete the proof of Theorem 8.7. 

8.17 Explain how to find an actual shortest path from s to a specified vertex z using the 

parent array that is filled by Dijkstra’s shortest-path algorithm. 

8.18 Let G=(V, E) be a graph, and let s and z be distinct vertices. As Exercise 8.15 

Suggests, there can be more than one shortest path from s to z. Explain how to modify 

Dijkstra’s shortest-path algorithm to determine the number of distinct shortest paths from 

SONG 

8.19 Consider the problem of finding just the distance, but not a shortest path, from s to 

a specified vertex z in a weighted graph. Outline a modified version of Dijkstra’s shortest- 

path algorithm to do this with the aim of eliminating as much work and extra space usage 

as possible. Indicate what changes, if any, you would make in the data structure used by 

the algorithm, and indicate what work or space you would eliminate. 

8.20 Some graph algorithms are written with the assumption that the input is always a 

complete graph (where an edge has weight oo or O to indicate its absence from the graph 

for which the user really wants to solve the problem). Such algorithms are usually shorter 

and “cleaner” because there are fewer cases to consider. In the algorithms in Sections 8.2 

and 8.3, for example, there would be no unseen vertices since all vertices would be adjacent 

to vertices in the tree constructed so far. 

a. With the aim of simplifying as much as possible, rewrite Dijkstra’s shortest-path 

algorithm with the assumption that G = (V, E, W) is a complete graph and W (wv) 

may be oo. Describe any changes you would make in the data structures used. 
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b. Compare your algorithm and data structures with those in the text, using the criteria of 

simplicity, time (worst case and other cases), and space usage (for graphs with many 

edges that have weight oo and for graphs with few). 

* 8.21 Consider this general approach to computing shortest paths from vertex s in a 

weighted graph G = (V, E, W). Form G', the transpose graph (see Definition 7.10). 

Define an array named arrive with indexes 1,..., n, and all entries initialized to oo. 

Perform a complete depth-first search of G’, and compute values for arrive[v] according 

to this scheme: 

1. arrive[s] = 

2. When backtracking from w to v, compute arrive[w] + W(wv) and compare it with the 

value previously stored in arrive[v]. Whenever a smaller value is found, it is saved as 

arrive[v]. 

The intention is that arrive[v] will be the shortest-path distance from s to v when the DFS 

is finished. 

a. Complete the above sketch by inserting statements into the depth-first search skeleton 

for directed graphs, Algorithm 7.3. 

b. Does the algorithm find shortest paths in all cases? Prove it does or find a counter- 

example. 

c. On what (well-known) class of graphs does the algorithm find shortest paths in all 

cases? Prove your answer. Hint: What constraint on the graph would permit the proof 

in part (b) to be completed successfully? 

Section 8.4 Kruskal’s Minimum Spanning Tree Algorithm 

8.22 Prove Lemma 8.8. 

8.23. Prove Theorem 8.9. Hint: Use the MST property (Definition 8.2). 

8.24 Find the minimum spanning tree for the graph in Figure 8.14 that would be output 

by Kruskal’s algorithm (Algorithm 8.3), assuming the edges are sorted as shown. 

Additional Problems 

8.25 In this exercise you will develop a best-first search skeleton, analogous to the 

breadth-first search skeleton in Chapter 7. 

a. Consider whether to use the strategy of Exercise 8.20 (no inserts, create the priority 
queue with all elements present and infinite weights where needed) or the MinPQ ADT 
given in Figures 8.6 through 8.8 as the basis for your skeleton. Which offers the most 

generality? Which is likely to be more efficient? Are both about a ty 

b. Write the skeleton with whichever strategy you chose. 

Show how to annotate your skeleton (insert a few statements at specified points) to 
produce Prim’s algorithm, and how to produce Dijkstra’s algorithm. 
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Figure 8.14 Sorted edges: AB, ER EK, FK, GH, GL, GM, HL, BC, CM, DJ, FG, JM, LM, AH, 

CD, CJ, HM, Al, AM, BI, DE, DM, IM, KM, BM, EM, FM. 

d. Discuss the interface of pairing forests with your skeleton. Is the interface independent 

of the applications your skeleton might be used for, or does it need to be modified 

depending on each application? 

8.26 Suppose we want to find a shortest path from s to w ina graph G where the length of 

a path is simply the number of edges in the path (e.g., to plan an airline trip with the fewest 

stops). Which of the algorithms or traversal strategies from this chapter or Chapter 7 could 

you use? Which one would you use, and why? 

8.27 Suppose you need to determine if a large graph is connected. It has n vertices, 

Ve hr n}, and m edges, where m is quite a bit larger than n. The input will consist 

of the integers n and m and a sequence of edges (pairs of vertices). You don’t have enough 

space to store the whole graph: you can use cn units of space, where c is a small constant, 

but you can’t use space proportional to m. Thus you can process each edge when you read 

it, but you can’t save edges or reread them. Describe an algorithm to solve the problem. 

How much time does your algorithm take in the worst case? 

Programs 

Each of the following program assignments requires a procedure that reads in a description 

of an edge-weighted graph and sets up the adjacency lists. A minor modification of the 

graph-loading procedure in Chapter 7 is sufficient. Assume the input contains the number 

of vertices followed by a sequence of lines, with each line containing a pair of nodes 
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representing one edge and a third number representing its weight. Write this procedure 

so that, with small changes, it could be used for any of the problems. 

Test data should be chosen so that all aspects of a program are tested. Include some of 

the examples in the text. 

1. Prim’s minimum spanning tree algorithm, Algorithm 8.1. The program should com- 

plete the algorithm, building a data structure to record the minimum spanning tree 

found. Output should be from a separate procedure and should include the graph, the 

set of edges in the tree, along with their weights, and the total weight of the tree. 

tO Kruskal’s minimum spanning tree algorithm, Algorithm 8.3. The program should 

complete the algorithm, building a data structure to record the minimum spanning tree 

found. Output should be from a separate procedure and should include the graph, the 

set of edges in the tree, along with their weights, and the total weight of the tree. 

19S) Diykstra’s shortest-path algorithm, Algorithm 8.2. The program should complete the 

algorithm, building a data structure to record the shortest paths found. Output should 

be from a separate procedure and should include the graph (or digraph), the source 

vertex, each vertex reachable from the source, along with the edges in the shortest 

path found to that vertex, their weights, and the total weight of the path. 

4. After writing Program | or Program 3, modify it to use pairing forests for the priority 

queue. Run timing tests on some large graphs and compare the timings before and after 

the modifications. 

Notes and References 

The first minimum spanning tree algorithm is from Prim (1957). The single-source short- 

est-path algorithm is from Dijkstra (1959), but that paper does not discuss implementation. 

Dijkstra (1959) also describes a minimum spanning tree algorithm like Prim’s. The ter- 

minology for categorizing vertices in Sections 8.2 and 8.3 (e.g., fringe vertex) is from 

Sedgewick (1988). Alternatives for implementing priority queues, such as pairing forests, 

pairing heaps, and Fibonacci heaps are discussed in Notes and References for Chapter 6. 

The upper bound for Prim’s and Dijkstra’s algorithms, using pairing heaps, on graphs for 

which m = @(n!*°) is from Fredman (1999). 

In some applications it is necessary to find a spanning tree with minimum weight 

among those that satisfy other criteria required by the problem, so it is useful to have an 

algorithm that generates spanning trees in order by weight so that each can be tested for 
the other criteria. Gabow (1977) presents algorithms that do this. 

Kruskal’s strategy for finding minimum spanning trees is from Kruskal (1956). The 
implementation using equivalence programs was apparently folklore; it is mentioned in 
Hopcroft and Ullman (1973), who report that M. D. McIlroy and R. Morris carried out 
such an implementation. Much of the material in this section, plus additional applications 
and extensions, appear in Aho, Hopcroft, and Ullman (1974). Additional shortest-path 
algorithms, including some that do not require nonnegative edge weights, can be found 
in Cormen, Leiserson, and Rivest (1990). 



Notes and References 

In Section 7.2 we listed several questions that might be asked about graphs and di- 

graphs. One of the questions that we did not answer in this book is: How much of a 

commodity can flow from one vertex to another given capacities of the edges? This is the 

network flow problem; it has a rich variety of solutions and applications. Interested read- 

ers may consult Even (1979), Ford and Fulkerson (1962), Tarjan (1983), Wilf (1986), and 

Cormen, Leiserson, and Rivest (1990). 
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Chapter 9 Transitive Closure, All-Pairs Shortest Paths 

Introduction 

This chapter studies two related problems that can be informally described as answering 

the following questions about a// pairs of vertices in a graph: 

1. Is there a path from u to v? 

2. What is the shortest path from u to v? 

In Chapters 7 and 8 we saw algorithms for these problems for the cases where the first 

vertex is special, and only the second vertex ranges over the whole graph. In this chapter, 

we investigate the more global problem. 

The main algorithmic idea presented in this chapter has very broad application. It 

was discovered independently, and for different applications, by Kleene (for synthesis of 

a regular language, not covered in this book), by Warshall (for transitive closure), and by 

Floyd (for all-pairs shortest paths). Consequently, it is sometimes called the Kleene-Floyd- 

Warshall algorithm. It is applicable to a whole class of problems called semi-ring closure 

problems, which are beyond the scope of this book. See Notes and References at the end 

of the chapter for further reading. 

The Transitive Closure of a Binary Relation 

In this section we define transitive closure in terms of binary relations, and look at its 

relationship to paths in directed graphs. We also introduce some notation that is used 

throughout the chapter. We then examine a few straightforward approaches to computing 

the transitive closure. Later sections will present more sophisticated algorithms. 

9.2.1 Definitions and Background 

Let S be a set with elements 5), s2,.... Recall from Section 1.3.1 that a binary relation on 

S is a subset, say A, of S x S. If (s;,5;) € A, we say that s; is A-related to s; and use the 

notation s; As;. 

Suppose S has 1 elements. The relation A can be represented by ann x n Boolean 

matrix with entries 

ue A SAS; 
aij, = ‘ : 
a false otherwise. 

We will start with this representation, but later we will also consider representations using 
bits | and O for true and false; also, diagrams show | and 0. For Boolean matrices, the term 
cero matrix, denoted as 0, means the matrix in which all entries are false, and the identity 
matrix, denoted as /, means the matrix in which all entries are false except for those on the 

main diagonal (a;;), which are true. 

The adjacency relation on the set of vertices of a graph, used extensively in Chapter 7, 
is an important example of a relation. Other common examples of relations are equivalence 
relations and partial orders. Conversely, any binary relation A on set S can be interpreted 
as the directed graph 



9.2 The Transitive Closure of a Binary Relation 

(=(5,Al) Cont) 

that is, interpret elements of S as the vertices, and ordered pairs in A as the edges. 

We will use the same (capital) letter to denote a relation and its matrix representation 

(which assumes a particular ordering on the elements of the underlying set), and the 

corresponding lowercase letters for the matrix entries. Unless otherwise stated, we assume 

the SEU im qUesHON IS,S (hp. -.a-4i Saye 

Boolean Operator Notation 

In the pseudocode we will use the mathematical symbols “A”, “Vv”, and “—” for the 

logical operators and, or, and not, respectively. Sometimes, “V” is called the Boolean sum, 

following the custom in electrical engineering of using the symbols “+” for binary or and 

~ for multi-way or; we will use this notation in certain cases. This notation should not be 

confused with the exclusive or operator (also denoted as “+” sometimes); this chapter does 

not use exclusive or. For Boolean matrices, A V B means that each entry is computed as 

(a;; V b;;). (The definitions for the other logical operators are similar, but we will not have 

occasion to use them.) 

Transitive Closure 

Recall from Definition 1.2 that a relation A on S is transitive if and only if for all s;, s;, 

and sy in S: s;As; and s;As, implies s; Asx. Equivalence relations and partial orders are 

transitive relations. Usually, the adjacency relation for a graph is not transitive. 

Definition 9.1 Transitive closure 

Let S be a set and let A be a binary relation on S. Let G = (S, A), as in Equation (9.1). The 

reflexive transitive closure of A (called the transitive closure of A for short) is the binary 

relation R defined by: s; Rs; if and only if there is a path from 5; to s; in G. The transitive 

closure of the adjacency relation for a graph is also called the reachability relation. 

Note that the (reflexive) transitive closure of A is reflexive because there is a path 

from each vertex to itself of length zero. The irreflexive transitive closure of A is defined 

similarly except that the path from s; tos; must be nonempty. # 

The transitive closure of a transitive and reflexive relation A is the relation A itself. 

More generally, it can be shown that the transitive closure of any relation A is the minimum 

relation R such that A C R and R is transitive and reflexive. 

Example 9.1 Transitive closure of a relation 

For the relation A below, the transitive closure 1s R. 

OF te 20) 1 eat he 

O20 OD Oe el Ao 

we eO. eon. OO! ls R=)O to 1 ft 0 

0 oO - ) 0 0 Ch rd 

OO Ore O CP a ll 
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We can verify that R is transitive by inspection. For example, s | Rs5 and s5 R53, so it should 

be the case that s;Rs3, and itis. 

In Sections 9.2, 9.3, 9.5, and 9.6 we study a variety of methods for finding the transitive 

closure of a relation. The application to graphs is a useful one. The form in which the input 

is given will depend on how the problem arises in a particular application. We assume 

throughout that |$| =n and |A| =m. 

9.2.2 Finding the Reachability Matrix by Depth-First Search 

A fairly obvious way to construct R, the reachability matrix for a digraph G = (S, A), is 

to do a depth-first search (see Section 7.3) from each vertex to find all other vertices that 

can be reached from it. Initially R would be the zero matrix. Visiting, or processing, a 

vertex s; encountered in the depth-first search from s; would consist of assigning true to 

r;;. Thus each depth-first search fills one row of R. This may seem overly simpleminded 

and inefficient since during a depth-first search from, say, s;, entries may be made in rows 

other than the ith row; specifically, when a vertex sj is encountered, rz; may be assigned 

true for all k such that s, is on the path from s; to s;. These vertices s; are gray and may be 

found on the stack. How significant is this modification? Does it eliminate the need to do a 

depth-first search from s;? How does it affect the amount of work done in the worst case? 

Since depth-first search was illustrated by many examples in Chapter 7, we will not 

work out the details of an algorithm here, but just make a few comments about the amount 

of work done. If the adjacency list structure described in Chapter 7 is used for G and a 

depth-first search is done for each vertex, the worst-case running time will be in ©(nm). 

Inserting frue’s in more than one row of R during each depth-first search, as just suggested, 

can improve the algorithm’s behavior for many graphs, but the worst case will still be in 

@(nm). (See Exercise 9.2.) 

In Chapter 7 we defined the condensation of a digraph. Informally, the condensation 

is the digraph obtained by collapsing each strongly connected component to a single 

point; it is acyclic. We mentioned that some problems may be simplified by working with 

the condensation instead of the original digraph. The reachability relation for a digraph 

G =(S, A) can be computed as follows: 

|. Find the strong components of G (in ©(n + m) time). Let G| be the condensation of 

G. 

Find the reachability relation for GJ. (Any of the methods presented in this chapter 

can be used.) 

to 

eS) Expand the reachability relation for GJ by replacing each vertex of GJ by all the 

vertices in G that were collapsed to it (O(n) time). 

The amount of work done at step 2 and hence by this method as a whole depends on the 
particular digraph G. If G has several large strong components, reduction to G | may save 
a lot of time. 
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Efficient depth-first search uses adjacency lists. In the next section we present a fairly 
ae 3 : : : : Rens ; j : ; 
simple ©(n°) algorithm for finding the reachability matrix using the adjacency matrix as 

the digraph representation. 

9.2.3 Transitive Closure by Shortcuts 

If we interpret a binary relation A on a finite set § as a digraph, then finding elements of 

R, the transitive closure of the relation, corresponds to inserting edges in the digraph. In 

particular, for any pair of edges s;s, and sys; inserted so far, we add the edge s;s;. That is, 

we can conclude that s; Rs; if we already know that, for some k, 5; Rs, and s, Rs ;. We can 

think of s; Rs; as a “shortcut” in the corresponding digraph that allows us to get from 5; to 

s; 1n one step instead of two. Relation R is transitive if there are no more shortcuts that can 

be added. Thus we can easily convince ourselves that the following algorithm computes R. 

Algorithm 9.1 Transitive Closure by Shortcuts 

Input: A andn, where A is ann x n boolean matrix that represents a binary relation. 

Output: R, the boolean matrix for the transitive closure of A. 

void simpleTransitiveClosure(boolean{][] A, int n, boolean[][] R) 

int i, j, k; 

Copy A into R. 

Set all main diagonal entries, r;;, to true. 

while (any entry of R changed during one complete pass) 

for (i =1;i < ni i ++) 

FOR (aa anes) 

for (k = 1; k <n; k ++) 

rij =Vij V Vik ATR) 

Example 9.2 Transitive closure by shortcuts 

Consider the relation A from Example 9.1. The corresponding digraph is shown in Fig- 

ure 9.1(a). Self-edges are added by Algorithm 9.1 before its while loop begins, but are not 

shown in the figure. After one pass through the while loop of Algorithm 9.1, the edges 

shown as dashed lines in Figure 9.1(b) have been added. Notice that (5, 2) was able to be 

added even though the path from 5 to 2 is length 3, because (4, 2) was added earlier. How- 

ever, (1. 3) cannot be added during this pass. During the second pass (1, 3) has been added, 

as shown in Figure 9.1(c). No edges are added on the third pass. 

Figure 9.1 illustrates that the while loop cannot be omitted. When a particular s; and 

s; are first considered, there may be no s, that joins them. Later in the processing, because 

of the insertion of other edges, we may be able to insert s;s;; hence we must reconsider 

it. The complexity of Algorithm 9.1 is proportional to n> times the number of repetitions 

of the triple for loop. Investigating this number is left to Exercise 9.4, since we will revise 

the algorithm to reduce the amount of work done in Section 9.3, Later, in Section 9.5, 
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(a) 

Figure 9.1 (a) A digraph representing a relation A. (b) Dashed lines show shortcuts added 

after one pass. (c) Dotted line shows another shortcut added in the second pass. Self-edges are 

omitted from the pictures. 

we will return to the idea of Algorithm 9.1 and reinterpret it in terms of Boolean matrix 

multiplication. 

We refer to the work done in the statement “rj; = rij V (rik A rej)” aS processing the 

triple (i,k, j). In Figure 9.1, if the triples were processed in reverse order, so that (5, 4, 3) 

is processed early, then no triples would have to be considered twice. Is there some order 

that always eliminates the need for processing any triple more than once? Or, no matter 

what order we try, can we find an example in which repetition is required? We suggest that 

you try to answer these questions before proceeding. 

Warshall’s Algorithm for Transitive Closure 

Warshall’s algorithm is simply an algorithm that processes the triples mentioned in Sec- 

tion 9.2.3 in the correct order, specifically, with & varying in the outermost loop. First, we 

describe the basic algorithm, using Boolean matrices. A proof of correctness follows the 

algorithm. Then we describe an optimization using bit strings. 

9.3.1 The Basic Algorithm 
Algorithm 9.2) (Warshall) Transitive Closure 

Input: A andn, where A is ann x n matrix that represents a binary relation. 

Output: R, the n x n matrix for the transitive closure of A. 

void transitiveClosure(boolean|[][] A, int n, boolean{][] R) 

int i, j, k; 

Copy A into R. 

Set all main diagonal entries, r;;, to true. 

for (k=1;k <n: k +4) 

for (i= 1° i =n: i++) 

for G = 1; j <n; j ++) 

Lip Vie ne hey 



9.3 Warshall’s Algorithm for Transitive Closure 

Clearly the total number of triples processed is n°. Initializing R takes @(n) time so 
the number of matrix entries examined and/or changed for any input is in @(7°). 

The correctness of the algorithm hinges on the following definition, and the lemma 
that follows. 

Definition 9.2. Highest-numbered intermediate vertex 

Let G be a digraph whose vertices are indexed by the integers 1,2,..., n, and denoted as 

(S|, 82... +. 8»); that is, they are considered to be an ordered sequence, not just a set. For any 

nonempty path in G the highest-numbered intermediate vertex of that path is a vertex that 

is neither the initial nor final vertex of the path, and has the highest index among all such 

vertices in the path. If the path consists of a single edge, the highest-numbered intermediate 

vertex is considered to be 0. 

: 1) ~ : CEC . 5 
Lemma 9.1 In Algorithm 9.2, let ce be the value of rj; after the initializations, and for 

each Kini bows. n, let i ' be the value of r;; after the body of the “for (k ...)” loop is 

executed for the kth time. If there is any simple path from s; to s; (i 4 /) for which the 
: ; : , (k) 

highest-numbered intermediate vertex 1s s;, then rj; = true. 

Proof The proof is by induction on k&, the number of times the “for (k ...)” loop has 

been executed. The base case is k = 0, that is, when the for loop has not yet been executed 

but the initializations are completed. Then De a 

an edge s;s;. In this case the highest-numbered intermediate vertex 1s 0. 

For k > 0, assume the lemma holds for 0 < h < k. The simple path, call it Pj;, from s; 

to s; with highest-numbered intermediate vertex s, can be split into two nonempty paths, 

P;, from s; to sg, and Px; from sx to s;, as shown in Figure 9.2. 

The highest-numbered intermediate vertices on P;, and Py; have indexes strictly 

) Hp * : 
= jj, 80 r;, = true if and only if there is 

; ? ; : : : () > 
less than k, because P;; is a simple path. By the inductive hypothesis r;,° = true for 

some fh < k. But once r;z becomes true, due to the “Vv” operator, it remains true, so 

ee 
ae om | 

~5 > 

Highest intermediate Highest intermediate 

vertex 1s less than sy. vertex 1s less than sx. 

Figure 9.2 A path from s; to s; with highest-numbered intermediate vertex s;. (Vertical 

positions of vertices reflect their vertex numbers.) 
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k=] 
Pik 

Cr. P 2 , ” Ae ee (k) ei = 
rig =Vij V (ik ATK) makes true. Oa 

eh : a : Re : 
’ = prue. A similar argument holds for re ’ Therefore the execution of the statement 

The key to the proof of Warshall’s algorithm is the shape of the path in Figure 9.2, 

which is easy to remember, because it looks like a W in this example. The important part 

of this shape is the middle peak; other aspects may vary considerably. 

Theorem 9.2) When Algorithm 9.2 terminates, & is the matrix representing the transitive 

closure of A. 

Proof Note that a path exists from s; to s; if and only if a simple path exists from s; to 

s;. By initialization, each rj; is true. By Lemma 9.1, r;; 1s true for all pairs such that there 
: ; : . : > + (nh) (k) ; 
is anonempty simple path from ys; to s; (since the final value of rj; is r;;°, and once r; |" is 

: (n) _. F Fomos eine 
true it ensures that rie will be true). For any s; # sj, since rj; 1s initialized to false unless 

there is an edge (s;, 8), and r;; can only be set to true inside the loop when a simple path 

is found, it follows that r;; is false if there is no path trom s; tos;. O 

9.3.2. Warshall’s Algorithm for Bit Matrices 

If the matrices A and R are stored with one entry per bit, then Warshall’s algorithm 

has the following fast implementation using the bitwise or (or Boolean sum, or union) 

instruction available on most large general-purpose computers. In Java, C, and C++ bitwise 

or on integers is implemented as the “|” operator. In our pseudocode we continue to 

use y”’. 

ee 

Definition 9.3 Bit string, bit matrix, bitwiseOR 

A bit string of length n is a sequence of 7 bits occupying contiguous storage, beginning on 

a computer-word boundary, and being padded out to a computer-word boundary at the end, 

if needed. That is, if a computer word holds c bits, then a bit string of 7 bits is stored in an 

array of [n/c] computer words, 

A bit matrix is an array of bit strings, with each bit string representing one row of the 

matrix. If A is a bit matrix, then A[/] denotes the ith row of A and is a bit string. Also, Oi; 

denotes the jth bit of A[/]. 

The procedure bitwiseOR(a, b, n), where a and b are bit strings and n is an integer, is 

defined to compute a Vv b bitwise for n bits and leave the resultina. 

Algorithm 9.3 0 (Warshall) Transitive Closure for Bit Matrices 

Input: A and n as in Algorithm 9.2 but A is a bit matrix. (We assume for the pseudocode 

that the class BitMatrix has been defined.) 

Output: R, the transitive closure of A, also as a bit matrix. 
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void warshallBitMatrices(BitMatrix A, int n, BitMatrix R) 

Inv lak 

Copy A into R. 

Seta; tole 

for (k = 1; k < n; k +4) 

for (i = 1; i < n; i +4) 

ing. =— |) 

bitwiseOR(R[i], R[k], n); 

At most n7 bitwise or’s are done on rows of R. However, a row may not fit in one 

memory word and more than one or instruction may be needed to implement bitwiseOR. 

(On some computers one machine instruction will compute the Boolean or of two long 

bit strings, say, up to 256 bytes—that is, 2048 bits—though the time required to execute 

the instruction depends on the length of the operands.) The number of or’s required for 

each row is [n/c], where c is the word size (or the size of the operand of the Boolean or 

instruction), so Algorithm 9.3 does [n3/c] Boolean or instructions in the worst case. The 

complexity is in (n>), but the constant multiple of n* is small. 

All-Pairs Shortest Paths in Graphs 

In Chapter 8 we studied Dijkstra’s algorithm (Algorithm 8.2), which finds a shortest path 

and the distance between a specified source vertex and all other vertices in a weighted 

graph. The algorithm uses the adjacency list structure and runs in @(n7) time in the 

worst case. (It requires that there be no negative weights.) Now we consider the following 

problem: 

Problem 9.1 All-pairs shortest paths 

Given a weighted graph G=(V, E, W) with V = {u),..., un}, represented by the 

weight matrix with entries 

W (u;v;) lt WDE Es 

By hte if pups Bandi 7, (9.2) 

Mii) min(O, W(vj;v;)) if yo; € E, ss 

6) ite OUR Ys Ved, 

compute the n x n matrix D defined by d;; = the shortest-path distance from v; to v;. (The 

distance is the weight of a minimum-weight path.) ™ 

See Figure 9.3 for an example. The problem may be extended to require a routing table 

from which shortest paths can be extracted. If negative-weight cycles exist, some pairs of 

vertices will not have a shortest path defined—paths can be made shorter by running around 

this cycle arbitrarily many times. 

One approach to computing D (if G has no negative weights) would be to use Algo- 

rithm 8.2 repeatedly, starting over at each vertex. However, we can use an extension of 
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Figure 9.3. The weight matrix and distance matrix for a digraph 

Warshall’s algorithm, due to R. W. Floyd, to get a more streamlined algorithm (eliminating 

the data structures used in Algorithm 8.2). 

How do we compute D[i][/]? A shortest path may go through any of the other vertices 

in any order. As in Warshall’s algorithm, we classify paths according to their highest- 

numbered intermediate vertex (see Definition 9.2). 

Recall the shortest path property from Lemma 8.5: If a shortest path from v; to vj; 

goes through intermediate vertex vx, then the segments of that path from v; to vg and 

from vz to v; are themselves shortest paths. If we choose & to have the highest index 

of any intermediate vertex on the path from vu; to v; (assuming the path has more than 

one edge), then each of the segments mentioned has a highest-numbered intermediate 

vertex whose index is strictly less than k. (See Figure 9.2, which shows the same idea for 

Warshall’s algorithm.) This suggests computing a distance matrix D in rounds, according 

to the following recurrence equation. 

DT = wy 
oe ‘ae a (9.3) 

DOT) j) = min (D' AL, DY Pali) + DE RAL) 

where w;; was defined in Equation (9.2). By the above observations about the shortest path 

property and the same argument as was used in Lemma 9.1, the following lemma can be 

proved (the proof is left as an exercise). 

k ; ; : 
Lemma 9.3. Foreachk in0Q,..., n, let di. ’ be the weight of a shortest simple path from 

uj to v; with highest-numbered intermediate vertex vz, and let Dil] be defined by 

Equation (9.3). Then, D [i ][j] < a - O 

Example 9.35 Computation of distance matrix 

The computation of D'’[4][3] for the digraph in Figure 9.3 illustrates the case in which 

D® [4][3] < a D [4][3] = 13 (because the best path from 4 to 3 using only {1,..., 5} 
is the path 4.1.2.3, which has weight 13). Now allowing the use of vertex 6 does not give 
a better path. We have D")[4][6] = 8 (by the path 4,1,6), and D©)[6][3] = 15 (by the path 
6,4,1,2,3), so d\?) = 23. 
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Computing D‘°)[1][5] illustrates a case for which vertex 6 does help. D© {1 ][5] = 10 

(because the best path from | to 5 using only {1,...,5} is the path 1, 2, 4, 5, which has 
weight 10). Allowing the use of vertex 6 gives a shorter path: 1, 6, 5, with weight 5. We get 

this by adding D™[1][6] = 2 and D™ [6][5]=3. 

Equation (9.3) computes a sequence of matrices: D!, D,.. ., D"”. Since the com- 

putation of D'*) uses only D‘*~") we don’t have to save the earlier matrices. It appears we 

need only two n x n matrices. In fact, we need only one; the computation can all be done 

in the matrix D. Since matrix entries can only decrease, if D~ [i ][k] is supposed to be 

used, but D[i][k] is accessed instead, we have D“[i][k] < D&~[i][k] < ries and 
the computation may find an even better path. 

Algorithm 9.4 (Floyd) All-Pairs Shortest Paths 

Input: W, the weight matrix for a graph with vertices vj,..., Un; and n, 

Output: D, ann x n matrix such that D[i][j] is the shortest-path distance from v; to v;, 

provided that the graph has no negative-weight cycles. (If negative-weight cycles exist, 

some pairs of vertices will not have a shortest path defined—paths can be made shorter by 

running around this cycle arbitrarily many times.) Matrix D 1s passed in; the algorithm fills 

it. 

void allPairsShortestPaths(float[][] W, int n, float[][] D) 

inte We 

Copy W into D. 

fone knees) 

for (i= 1; i <n; i++) 

for ( = 1;j <n; j ++) 

D[i]§}] = min(D[i], Ol[k]+ DIK]U); 

Clearly Algorithm 9.4 does @(n*) operations. 

The algorithm can be modified to construct a routing table trom which shortest paths 

can be extracted, as well as computing the shortest-path distance. A matrix go is a routing 

table if, whenever go{i][j] =, then there is a shortest path from v; to v; whose first edge is 

(v;, vg). After arriving at k, one consults go[k][j] to find the next step. (See Exercise 9.10.) 

The all-pairs shortest paths problem is more general than the problem of finding R, 

the reachability matrix, and Algorithm 9.4 is a generalization of Warshall’s algorithm, 

Algorithm 9.2. R can be obtained from D simply by changing all entries less than oo to 

true’s and all 00’s to false’s. For D, processing the triple (/, k, j) means computing 

D[iJUj) = min(D[i)G), DL[k] + D[k]U)). 

Here too, the order in which triples are processed is critical to getting the correct result 

without repeated processing. 
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Computing Transitive Closure by Matrix Operations 

Suppose A is the matrix for a binary relation on S = AiSifisets eins s,} and we interpret A as 

the adjacency relation on the digraph G = (S, A). Then aj; = true if and only if there is a 

path of length one from s; to s; since a path of length one is an edge. Suppose we define 

matrices A”? by 

(P) true if there is a path of length p from 5; to 5; 
—— : 

ty false otherwise. 

Then A) = /, the identity matrix, and A“! = A, How can we compute A‘)? By definition, 

ae = rrue if and only if there is a path of length two from s; to s;, hence if and only if there 

is a vertex s, such that aj, = true and ax; = true. Thus 

a : (Pays = : : i 9) 
The formula for aj; As the formula for an entry in the Boolean matrix product, AA, or A-. 

Definition 9.4 Boolean matrix operations 

The Boolean matrix product C = AB of n x n Boolean matrices A and B is the Boolean 

matrix with entries 

I 

C= \V (ais A bxj) POG Steg ssurte 

he—I| 

Powers of a boolean matrix are defined as usual: for integer p > 0, A” is the product 

AA---A (p factors). 

The Boolean matrix sum D = A + B is defined by 

di; = ajy V bi; WCW MN Sy ff Sie 

Notice that the definitions are just like arithmetic matrix product and sum, with addition 

replaced by “Vv” (or) and multiplication replaced by “A” (and). 

. . . cy 5) . . . . . 

With this notation we see that A?) = A’. That is, A’ indicates which vertices are 

connected by paths of length 2. It is easy to generalize and prove the following lemma 

by induction on p. The proof is left as an exercise (see Exercise 9.13). 

Lemma 9.4 Let A be the Boolean adjacency matrix for a digraph with vertices {s),..., 

Sn}. Denote elements of A”, for p > 0, by A’ [i][j]. Then A?[i][j] = true if and only if 
(Ga) ) : oe 
”" as defined at the beginning there is a path of length p from s; to s;. Thatis, A? [i][j] = aj: 

of the section. oO 



9.5 Computing Transitive Closure by Matrix Operations 

The entries of R, the transitive closure of A, are defined by rij = true if and only if 
there is a path of any length from s; to s;. However, the next lemma allows us to restrict 
our attention to certain paths; its proof is also left as an exercise. 

Lemma 9.5__ Ina digraph with n vertices, if there is a path from vertex v to vertex w, then 
there is a simple path from v to w, which necessarily is of length at mostn — 1. O 

Therefore we only need to identify paths of lengths through n — | to obtain the 

transitive closure. Observe that for any p and q, the (i, /)-th entry of the matrix A? + A 

is true if and only if there is a path of length p or a path of length g from s; to s;. Thus 

R= » AP. (9.4) 

The straightforward computation of this formula would do n — 2 Boolean matrix multi- 

plications, to obtain A*, A>, ..., A"~!. Each multiplication takes time in @(n>) (by the 

straightforward method), so the total time is in @(n*). However, we can do much better 

than this straightforward method. 

First, we observe that it is harmless to replace the upper limit of (7 — 1) in Equa- 

tion (9.4) by some value s > n — |. The additional terms denote paths of length n or longer, 

so they are not simple paths, and they do not connect any pairs of nodes that are not already 

identified in R. But how can raising the upper limit help? Doesn’t that just mean more work 

to do? 

One key idea is that exponents that are powers of 2 can be computed by repeated 

squaring, rather than going up one power at a time. Thus we could compute A*? with five 

multiplications, by computing A’, then At, then A*, and so on. But A*! would require 

quite a few more than five. So we can obtain certain high powers quickly, but we need all 

powers through n — |. 

The second key idea involves some algebraic manipulations on the formula in Equa- 

tion (9.4) to put it in a form that suggests a more efficient computation. Some of the 

following properties of Boolean matrix operations will be useful. Assume that A, 6, and 

C aren x n Boolean matrices. 

Absorption of +: A a= A. 

Commutativity of +: A-- B= B+ A. 

Associativity of + and x: A+(B+C)=(A+8B)+C, A(BC)=(AB)C. 

Distributivity of + over x: A(B+C)=(AB)+(AC), (B+ C)A =(BA) + (CA). 

Multiplicative identity: a A 

Now, let s be the least power of 2 such that s > n — |. Then the following equation for R 

also holds. 

RA Ase Ae oh oe AY 
p=0 
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The second key idea is to replace the sum of many powers by a power of a single matrix. 

Intuitively, suppose we have a Boolean matrix that tells us about all paths of lengths 

0-k. Then multiplying it by itself tells us about any path that can be made by combining 

one path of any length 0-& with another path of any length O-k. This gives us all paths 

of lengths 0-2k. To get started, (7 + A) tells us about all paths of lengths 0-1. Then we 

keeping squaring the matrix until we have covered paths of lengths through n — I, at least. 

(We can look back and see that this is almost what Algorithm 9.1 is doing inside its while 

loop.) Adding / to A is what keeps us from losing the shorter paths as the powers increase. 

The following lemma and theorem formalize this intuition. 

Lemma9.6 [+A+A2+---+A* =( +A)’, where A is a Boolean matrix and s > 0. 

Proof The proof is by induction on s. The base case is s = 0, in which case both sides are 

equal to /; Fors = 0, assume that J ++ A+ - «4 A’-! = (J + A)‘, that is, the lemma 

equality holds for s — |. Then 

(+ AP a+ alU+a=C4 Ar 17 +0 +A A. 

Using the inductive hypothesis, 

CRA ace a ee 

C4) ae ee 

But A! + A! = A! by the absorption property, so the conclusion of the lemma follows. O 

Theorem 9.7 Let A be ann x n Boolean matrix representing a binary relation. Then R, 

the matrix for the transitive closure of A, is (J + A)* foranys>n—1. O 

Although the theorem holds for many s, as we mentioned, we choose s to be the least 

power of 2 such that s > — 1. How much work is needed to compute R using the formula 

of Theorem 9.7? Computing / + A requires copying A and inserting frve’s in the diagonal 

of A, for @(n7) operations. Then (J + A)* can be computed by doing lg s = [lg(n — 1)] 

Boolean matrix multiplications. 

A Boolean matrix product can be computed as indicated by the definition in © (n°) 

time. However, in Section 12.3.4 we will see that it 1s possible to perform an integer matrix 

multiplication in o(7*) time (for example, using Strassen’s algorithm); the asymptotic 

order is about @(n**!), (The actual exponent is lg 7 and 2.81 is its approximate value.) 

Another alternative for Boolean matrix multiplication is to convert to an integer matrix 

by substituting 1 for true and 0 for false. Then use an 0(n*) integer matrix multiplication 

algorithm, and finally convert back to a Boolean matrix by substituting true for all positive 

entries and false for 0. Thus R can be computed in about ©(n7*! log n) time. Therefore R 

can be computed (asymptotically) faster than Q(n3). 

None of the algorithms we have examined for transitive closure are of the same 

asymptotic order as the (asymptotically) fastest matrix multiplication algorithms. However, 

a transitive closure algorithm is known, due to I. Munro, that is about 32 times as expensive 

as a Boolean matrix multiplication of the same size, but is of the same asymptotic order. It 
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9.6 Multiplying Bit Matrices—Kronrod’s Algorithm 

is an involved use of the divide-and-conquer method. (See Notes and References at the end 
of the chapter.) 

Multiplying Boolean matrices is a more specialized problem than multiplying matrices 
with real entries, and it is worth seeking specialized algorithms. In the next section, we 
develop a fast Boolean matrix multiplication algorithm for bit matrices. 

Multiplying Bit Matrices—Kronrod’s Algorithm 

We use the terminology of Definition 9.3 throughout this section. Let A and B be n x n 
Boolean matrices stored with one entry per bit. Recall that A[i] denotes the ith row of A 
and is a bit string. Using the bitwise or instruction, the product C = AB can be computed 
as follows, where C[i] and B[k] are the ith row of C and kth row of B. respectively. 

Initialize C to the zero matrix (all entries false). 

FOR —s) eso tee) 

for (k = 1; k <n k ++) 
if (Qip == tre) 

bitwiseOR(C[i], B[k], n); 

(Compare this to Algorithm 9.3, where bitwiseOR was defined; notice how similar the 

procedures are, although they compute different things.) We may think of the bitwise or 

operation as performing a union of sets. That is, if we view Ali] as the set {k | ajx = true} 

(a subset of {1, 2,...,}), and similarly for rows of B and C, then 

Cli] = Urea BIA]. 

The algorithm above does at most n* row unions (each of which may require several 

bitwise or machine instructions). We will derive an algorithm that does fewer row unions. 

The algorithm presented below is sometimes referred to as the Four Russians’ Algorithm, 

though it is apparently the work of M. A. Kronrod, one of the four. 

9.6.1 Kronrod’s Algorithm 

Certain groups of rows of B may appear in the unions for several different rows of C. For 

example, suppose A is as shown in Figure 9.4. Then B[1] U B[3] U B[4] is contained in 

rows |, 3, and 7 of the product, and nine unions are done where three would suffice. How 

can some or all of the duplicated work be reduced? The approach that suggests itself is to 

first compute a lot of unions of small numbers of rows of B (like B[1] U B[3] U B[4]), and 

then to combine these unions appropriately to get the rows of the product. Several questions 

come to mind immediately: 

1. How many and which rows of B should be combined in the first step? 

2. How can these unions be stored so that they can be accessed efficiently during the 

second step? 

3. How much additional storage 1s needed? 

4, Will any time really be saved in the worst case? If so, how much? 

The answers to most of the questions depend on the answer to the first. 
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Figure 9.4 A bit matrix 

We adopt a straightforward strategy: Divide up the rows of B into several groups 

of t rows each and compute all possible unions within each group. We will ignore all 

implementation details until we see if, with an appropriate choice for r, this strategy can 

produce an algorithm that does fewer than n> row unions. 

Let g = [n/t], the number of groups we will use. The rows of B are grouped as 

follows: 

Group i BTU. Bt] 

Gooup 2: «Bir dls. B[2t] 

Group 2, -Bi(¢— Tr 1h. B[n]. 

Example 9.4 Groups of bits 

Suppose that the matrix A in Figure 9.4 is to multiply a 12 x 12 matrix B and let t = 4. 

Unions of all combinations of rows B[1], B[2], B[3], and B[4] would be computed once. If 

done in the right order (first all combinations of two rows, then three, and finally all four), 

all the unions can be obtained by doing 11 row union operations. The same would be done 

for the groups B[5],..., B[8] and B[9], ..., B[12]. Then, to get the first row of AB, only 

two more row union operations would be needed: They would compute 

(B[1] U B[3] U B[4]) U (B[6] U B[8]) U (B[12)). 

The value of B[1] U B[3] U B[4] 1s used again in the third and seventh rows and B[6] U 

B[8] is used again in the sixth row of the product. 

We make a rough estimate of the total number of unions done as a function of tf, and 

then see if we can choose a value for ¢ that gives a total lower than n7. For each group 

of rows (except perhaps the last), there are 2' sets of rows to be combined. No unions 

are needed to compute the empty set or the sets consisting of just one row (eliminating 
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t+ | unions). Since each union of rows within a group can be computed by combining 
sets already computed with one more row, a total of 2! — (tf + 1) union operations are done 
for each group. There are g groups, so roughly ¢(2' — (t + 1)) unions are done in the first 
phase of the proposed algorithm. Now any desired union of rows from B can be obtained 
by computing the union of at most one combination from each of the groups. Therefore 
computing each row of the product matrix requires at most g — | additional unions, or at 
most n(g — 1) additional unions for all n rows. The total number of unions done by this 

method is at most g(2' — (t + 1)) + n(g — 1). To simplify our work, we approximate, and 

consider only the high-order terms: 

n2' pn? 
g(2' —(t+ 1))+n(g —1) sais (9.5) 

If ¢ = | ort =n, this expression is in @(n7) or ©(2"), respectively. Suppose that we try to 

minimize the right-hand side of Equation (9.5) under the assumption that the first term is of 

higher order than the second. We would want to make f as small as possible but if ¢ < Ign, 

the first term would no longer dominate. Similarly, if we assume that the second term is of 

higher order, we would want ¢ to be as large as possible, but it can’t be larger than lg 7. 

This by no means rigorous argument suggests that we try ¢ © lgn. The number of unions 

done for ¢ © lg n is roughly 2n7/ Ign, which is of lower order than n*. Thus this approach 

is worth pursuing with t ~ lgn. Since 2! is the fastest growing term, we use f = [lg nj. 

We will now work out some of the implementation details and determine how much extra 

space is needed. 

For each group of rows of B there are 2', or 2llz"J. sets to be stored. First we will 

store the sets for all groups in a two-dimensional array of bit strings for simplicity. Later, 

we will see how to store only the sets for the current group, thereby saving some space. Sets 

for all groups are stored in the array allUnions according to the following scheme, where 

allUnions|[j][i] stores set 7 for group /. The rows of B in group j have indexes (j — 1)t + | 

through jf. Interpret the second index for allUnions as a f-bit binary number bj) - - - b;. 

The bits of an index 7 indicate which rows of B within group / are included in the union 

stored in allUnions[j][i]; in particular, B[j—1)t+k] is included if and only if bit b; ini is one. 

Thus group | of unions is stored as follows: 

l Contents of allUnions[1][i] 

00... 00 /) 

00% 2501 Bit] 

ON <2. 10 B(t — 1] 

OO rl B([t —1] U Blt] 

lees a, Il BLU Bi2) = AD Bile] 

Exactly 2! cells (each the size of one row of B) are used to store the unions for each 

group of rows. We may suppose for now that the unions for the other groups are stored in 
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2 ve i ell ot i ee AG aon if 

Aj bitSeg(ALi], 1, t) pisoniae,) | =. 10010. =) abo 
| 

bitSeg(A[i], j, t) 

Figure 9.5 The jth segment of ¢ bits in row i of bit matrix A 

blocks of cells whose first index is their group number. Later we will show how to make 

do with only 2! (roughly 7) cells, instead of using 2'g, or roughly n7/ Ign. 

This storage setup was devised to make it easy to find the unions needed for a given 

row of the product. Recall that the th row of the product is Uge4);;B[k]. Suppose we break 

up each row of A into segments of f entries each, with the following notation: 

Definition 9.5 Segments of ¢ bits within a bit string 

Let b be a bit string. The subroutine bitSeg(b, j, t) returns the jth segment of f bits, starting 

with index 1. That is, bits (j — 1)f + 1 through jr are returned as a f-bit integer, with bit 

jt of b becoming the least significant bit of the integer (see Figure 9.5). 

Interpreted as a binary number, bitSeg(A[i], j, t) is the correct second index in the array 

allUnions for the union of rows of B from the jth group. For example, with the matrix of 

Figure 9.4, bitSeg(A[7], 1, 4) is 11 in decimal, or 1011 in binary. 

So far, the algorithm we have developed looks like this: 

t= ie 7G =, (m/ 7; 
Compute and store in allUnions unions of all combinations of rows of B 

within each group of f successive rows. 

// i indexes rows of A and C. 

// j indexes groups of rows of B. 

for (i= 1; i < n; i ++) 
Initialize C[i] to 0. 

for j = 1; j < g;j ++) 

Cli] = C{i] U allUnions{][bitSeg(Ali], j, 0]; 

The amount of space used to store the unions can be cut down merely by changing the 
order in which the work is done. In its present form the algorithm computes one complete 
row of C before going on to the next, so all groups of unions must be available. If instead 
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it works with one group at a time, selecting the union needed from that group for each row 

of C, succeeding groups of unions could use the same memory locations. 

The last two details to work out are an efficient scheme for computing the unions 

within each group and a way of handling the case when the last group has fewer than f 

rows. We leave the latter problem as an exercise. The former is easily taken care of in the 

final form of the algorithm, now using a one-dimensional array unions with 2! entries. 

Algorithm 9.5 (Kronrod) Bit Matrix Multiplication 

Input: A, B,andn, where A and B aren x n bit matrices. (We assume for the pseudocode 

that the class BitMatrix has been defined. Its entries begin with index 0, although some bit 

matrices may leave that row unused.) 

Output: C, the Boolean matrix product. The matrix is passed in and the algorithm fills it. 

Remarks: A{i] and C[i] are the 7th rows of A and C. As written, the algorithm assumes 

nis an exact multiple of r. The subroutine bitwiseOR was defined in Definition 9.3, and 

implements “row union”. The subroutine bitSeg was defined in Definition 9.5. 

void kronrod(BitMatrix A, BitMatrix B, int n, BitMatrix C) 

inte Ghia k 

t= |len|} go = (n/t); 

BitMatrix unions = new BitMatrix(); 

Initialize C to the zero matrix. 

fon (= le Sos +s) 

// Compute all unions within j-th group of rows of B. 

unions[0O] = 0 

for (k =0;k <t-— 1; k ++) 

for =0 (22° = bia) 

Copy unions[i] into unions[i + 2*). 

bitwiseOR(unions|[i + 2*), B[jxt-k], n); 

// Select the appropriate union for each row of C. 

fot (=e hese ltt) 

bitwiseOR (C[i], unions[bitSeg(Al[i], j, t)], ); 

// Continue loop on J. 

Analysis 

Note that 2 — | union operations are done to get all unions within a group (in the for k, 

for i loop). Algorithm 9.5 does a total of (n/t)(2' — 1 +n) row unions, which is less than 

2n?/1g(n) for n > 8. (See Exercise 9.17 for a possible improvement in the choice of f, 

lowering the leading coefficient to 1.) The number of row unions 3s in ©(n~ ?/ log n) in any 

case. In Section 9.6.2 we will derive a lower bound of the same asymptotic order for a class 

of algorithms that do bit-matrix multiplication by row unions. 
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Row unions are implemented with the bitwiseOR subroutine. This subroutine requires 

[n/w] bitwise or instructions (where w is the word size, or the size of the operand of the 

bitwise or instruction), so the running time is in Q@(n7/ log n), but is a fairly small multiple 

of n°/ 1g n. The running time does not depend on the particular input; the same operations 

are done for all inputs of size n. The extra space required for the unions array is in Q(n7) 

bits. 

The formula derived in Section 9.5 for the matrix of the transitive closure of a rela- 

tion (Theorem 9.7) uses approximately Ig Boolean matrix multiplications. Thus using 

Kronrod’s algorithm, the transitive closure can be computed with only ©(n*) row unions. 

Note that both Warshall’s algorithm for transitive closure (Section 9.3) and Kronrod’s 

Boolean matrix algorithm save time or space by doing their computations in a particular 

order. In both cases the natural, or more usual, order in which one would think of doing the 

work is less efficient. 

9.6.2 A Lower Bound for Bit Matrix Multiplication 

Is Kronrod’s algorithm optimal? If we consider the time it takes to do the row unions, 

then it is not; it takes @(n7/ log n) time, and n>! (the order of Strassen’s algorithm) 

is of a lower asymptotic order. The various algorithms for Boolean matrix multiplication 

assume different representations for the matrices (bit matrices versus one entry per word) 

and do different kinds of operations (for example, Boolean operations on words, arithmetic 

operations if Strassen’s method is used, or row unions as in Kronrod’s algorithm). If we 

restrict our attention to the class of algorithms that compute rows of the bit matrix product 

by forming unions of rows of the second factor matrix, then we can show that, within this 

class, Kronrod’s algorithm is of optimal asymptotic order: number of unions done by an 

optimal algorithm would also be in @(n7/ log n). 

One of the reasons for including the proof of the theorem is that it illustrates a “count- 

ing argument,’ a useful approach for establishing lower bounds that involves counting all 

possible algorithms (ignoring differences not relevant to the sequence of basic operations— 

in this case, row unions done by the algorithms). 

To derive the lower bound we use an abstracted model of algorithms (as we did with 

decision trees for sorting). Let A be an algorithm that computes C = AB by forming unions 

of rows of B (and possibly copying rows) and can do no other operations on B. For a 

particular input, A and B, we can make an indexed list of the union operations done by A, 

denoting such an operation by union(r, s), where r and s may be a row of B or the result 

of a previous union specified by its index in the list. 

The sequence of unions done is not sufficient to describe the result produced by 

the algorithm; we must know which unions computed in the sequence are to be rows of 

the product, and which rows in the product they are. Suppose that A and B are n x n, 

and let steps be the number of steps in the list of union operations. Then the additional 

information needed can be provided by an n-vector V = (j),..., Jn), where —n < j; < 

steps and J; describes the ith row of the product matrix C, as follows: If j; > 0, the ith 

row is the result of the j;-th union operation; if j; = 0, the ith row is all zeros (the empty 

set); and if j; <0, the 7th row is the | /;|-th row of B. 
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Example 9.5 Row unions and the vector V 

If 

bi Oe 
tO 1 1 A= 
any lara 
Or 5070 wal 

an algorithm might carry out the following sequence of union and copy operations: 

1. tmp] = union(B[1], B[4]): 

2. C[1] = union(tmp1, B[2]); 

3. ‘Ci2] = union(tmp1, Bi3]); 

a, C3) = union(Giy G2): 

5. C[4] = B[4]; 

The vector V for this example is (2, 3,4, —4). @ 

Theorem 9.8 For sufficiently large n, in particular, n > 1024, any algorithm that does 

Boolean matrix multiplication using row unions must do at least n7/5 lg(n) union opera- 

tions to multiply n x nm matrices in the worst case. 

Proof Let A be an algorithm that computes C = AB, and suppose A does at most 

2n°/1gn row unions for n > 1024. Let F (7) be the number of unions done by A to multiply 

an arbitrary n « n matrix A and the identity matrix /, in the worst case. The number of 

unions done by A in the worst case for all inputs is at least F(n), and any lower bound 

derived for F(n) is a lower bound for any algorithm in the class under consideration. We 

will show that F(n) > n*/5 lg n, for sufficiently large n. (The details of showing that 1024 

is large enough are omitted, but are easily filled in by direct calculations.) 

Let S,, be the set of all valid sequences of F(m) union operations. (A sequence is valid 

if, for each 7, the ‘th operation refers to rows of B between | and n and/or to the results of 

operations with indexes between | andi — 1.) Let V,, be the set of all n vectors with integer 

entries between —n and F(n). The operations done by A and A’s output for a given input A 

are described by an element of S, x V,. If A does fewer than F(n) unions for a particular 

A, S, contains a sequence that does the work of A and is then padded out to length F(n) 

with repetitions of, say, union(1, 1). We will derive an upper bound and a lower bound on 

|S, x V,| and use the resulting inequality to get a lower bound for F'(72). 

Since each union has two operands, each of which is a row of B or an index between 

1 and F(n), there are (n + F(n))* choices for each union operation. Therefore |S,,| < 

(n + F(n))2?™, VikeiGrsael Frm) solsn x Vals (aa 1 + F(n))2h tn, 

To get a lower bound on |S, x V,,|, observe that S, x V, contains a distinct element 

for each n x n matrix A since A,/, 4 Aol, if Ay # Az. Thus |S, x V,,| => 2” , since there 

are 2” n x n Boolean matrices. So 
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2F(n)+n 2" < |S, x Val s(n +1+ FO) 

or 

n> < (2F(n) +n) lg(n + 1 + F(n)) for allie: (9.6) 

We observe that Fir) > n> ? for sufficiently large n, because if not, Equation (9.6) would 

imply that 7 is in O(n> > log n), and this is not true. Since F(n) > n/? 2F(n) +n < 

2.1 F(n) tor sufficiently large 7. 

Also, F(n) < 2n7/1gn (by choice of A), son + 1+ F(n) < 2n° for sufficiently large 

n. Substituting these inequalities in Equation (9.6) gives 

+ + 

a 2 (ae) lg(2n7) =2.1 F(n)(U +2 Ign) for sufficiently large n. 

5 

We also have 1 + 21g < 2.1 Ign for sufficiently large n, so 

a 

2.1-F(n)lgn for sufficiently large n. J 
ns 

But 2.17 <5,son- <5 F(n) lgn.or F(n) > n-/5 lg(n), for sufficiently largen. 0 

Exercises 

Section 9.2. The Transitive Closure of a Binary Relation 

9.1 Let G=(V.E£) be an undirected graph and let R be a relation on V defined by vRw 

if and only if there exists a path from v to w. (Recall there is a path of length zero from any 

vertex to itself.) 

a. Show that R is an equivalence relation. 

b. What are the equivalence classes of this relation? 

ec. Show that the reachability matrix R for an undirected graph with n vertices can be 

constructed in O(n-) time. 

a. Try to write an algorithm using depth-first search to construct R, the reachability 

matrix for a directed graph, given A, the adjacency matrix. The algorithm should use 

the suggestion in Section 9.2.2 that entries of R in several rows be computed during 

one depth-first search. Use whatever other tricks you can think of to design an efficient 

algorithm. 

b. What is the asymptotic order of the worst-case running time of your algorithm? 

¢. Test your algorithm on the digraph in Figure 9.6. If it does not work correctly, modify 

it so that it does and redo part (b). 
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Figure 9.6 Digraph for Exercise 9.2 

Section 9.3. Warshall’s Algorithm for Transitive Closure 

9.3 Use Algorithm 9.2 to compute the transitive closure of the relation A given in Exam- 

ple 9.1. Show the matrix after each pass of the outermost for loop. 

9.4 Construct the worst example you can for Algorithm 9.1, that is, an example for which 

the triple for loop is repeated many times. How many times will the loop be repeated on 

your example? 

9.5 Use Algorithm 9.3 to compute the transitive closure of the relation A given in Exam- 

ple 9.1. Specify which bitwiseOR operations are performed, and show their results. Also 

show the matrix after each pass of the outermost for loop. 

Section 9.4 All-Pairs Shortest Paths in Graphs 

9.6 Construct an example of a weighted digraph on which Algorithm 9.4 would not work 

correctly if k were varied in the innermost loop instead of the outermost. 

9.7 Use Algorithm 9.4 to compute the distance matrix for the digraph whose adjacency 

matrix 1S 

OW) Be a 2) 

3 0) ca 3 

> of Ws 

co Aan) 

9.8 

a. Use Algorithm 9.4 to compute the distance matrix for the digraph whose adjacency 

matrix 1s 

447 



448 Chapter 9 Transitive Closure, All-Pairs Shortest Paths 

b. Explain why this algorithm will work correctly even if some of the weights are nega- 

tive, so long as there are no negative cycles. (A negative cycle is a cycle for which the 

sum of the weights of its edges 1s negative.) 

9.9 Prove Lemma 9.3. 

9.10 Show how to modify Algorithm 9.4 to construct a routing table, as described in the 

text after the algorithm. Call the matrix for the routing table go. Hint: If D[i]§j] is being 

updated because a shorter path was found, and that path goes through intermediate vertex 

k, what would be the first step of that path? 

9.11 Compute the routing table go for the weighted graph in Exercise 9.7. Note that this 

is easiest to do simultaneously with computing the distance matrix. 

9.12 Give an algorithm to find the length of a shortest cycle in a directed graph. Does 

your algorithm also work for undirected graphs? Explain why or why not. 

Section 9.5 Computing Transitive Closure by Matrix Operations 

9.13. Prove Lemma 9.4. 

9.14 Prove Lemma 9.5. 

9.15 Show that A*, the irreflexive transitive closure of the Boolean matrix A, can be 

computed with one matrix multiplication if the (reflexive) transitive closure, A*, is known. 

Section 9.6 Multiplying Bit Matrices—Kronrod’s Algorithm 

9.16 Prove that if A and B are n x n Boolean matrices with rows interpreted as subsets 

Orn 2 res, n} as described at the beginning of Section 9.6, and if C = AB, then the ith 

row of C is Use agi) BIA]. 

9.17 Analyze a variation of Algorithm 9.5 in which the group size is t = [lg(/ Ig(n))| = 
[lg(7) — lg lg(7) |. How many row unions are done in this variation, as opposed to the value 
of t used in the algorithm? 

Additional Problems 

9.18 A triangle in a graph is a cycle of length 3. Outline an algorithm that uses the 
adjacency matrix of a graph to determine if it has a triangle. How many operations on 
matrix entries are done by your algorithm? 



Notes and References 

Programs 

|. Write a program to multiply two bit matrices using Kronrod’s algorithm (Algo- 

rithm 9.5). Allow for n to be larger than the number of bits per word. How much 

Space is used? 

Notes and References 

Algorithms 9.2 and 9.3 are from Warshall (1962). Proofs of the correctness of Algo- 

rithm 9.2 (Theorem 9.2) and Algorithm 9.3 can be found there and in Wegner (1974). 

Algorithm 9.4, for finding distances in graphs, is from Floyd (1962). Semi-ring closure is 

a generalization of both problems, and is discussed in Aho, Hopcroft, and Ullman (1974) 

and in Cormen, Leiserson, and Rivest (1990). The earliest algorithm in this genre may be 

found in Kleene (1956), and applies to finite automata. The proof that computing the re- 

flexive transitive closure can be done in the same order as Boolean matrix multiplication is 

from Munro (1971) and also appears in Aho, Hopcroft, and Ullman (1974). 

Kronrod’s algorithm (Algorithm 9.5) is from Arlazarov, Dinic, Kronrod, and Faradzev 

(1970) (where it appears without any discussion of implementation). The proof of Theo- 

rem 9.8, the lower bound on Boolean matrix multiplication by row unions, is based on 

Angluin (1976). This result and generalizations of Kronrod’s algorithm appear in Savage 

(1974). 
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Chapter 10 Dynamic Programming 

Introduction 

Those who cannot remember the past are condemned to repeat tt. 

—George Santayana, The Life of Reason; or, 

The Phases of Human Progress (1905) 

Dynamic programming has evolved into a major paradigm of algorithm design in com- 

puter science. However, its name is something of a mystery to many people. The name was 

coined in 1957 by Richard Bellman to describe a type of optimum control problem. Actu- 

ally, the name originally described the problem more than the technique of solution. The 

‘a series of choices,” like the programming of a ‘ 
sense in which programming is meant 1s 

radio station. The word dynamic conveys the idea that choices may depend on the current 

state, rather than being decided ahead of time. So in this original sense, a radio show in 

which listeners call in requests might be said to be “dynamically programmed” to contrast 

it with the more usual format where the selections are decided before the show begins. 

Bellman described a method of solution for “dynamic programming” problems, which has 

become the inspiration for many computer algorithms. The main feature of his method was 

that it replaced an exponential-time computation by a polynomial-time computation, That 

continues to be a common feature of dynamic programming algorithms. 

This chapter differs from most of the others in that we usually focus on one problem 

or application area and consider a variety of algorithms for it; in this chapter, however, 

we focus on a technique, developing dynamic programming solutions for problems from 

different application areas. 

Top-down algorithm design 1s natural and powerful. We think and plan in a general 

way first, then add more detail. We solve a high-level, complex problem by breaking it 

down to subproblems. Using recursion, we solve a large problem by breaking it down 

to smaller instances of the same problem. Divide and Conquer, a recursive algorithm 

design technique, proved especially useful for getting fast sorting algorithms. But, as good 

as recursion is, if not controlled properly, it can become very inefficient. The Fibonacci 

numbers provide a simple and dramatic example. 

Example 10.1) = Recursive Fibonacci function 

Recall from Equation (1.13) that the Fibonacci numbers are defined by the recurrence 

Py = Fy—-1 + Fy—2 for n = 2, with boundary values Fo = 0 and F; = 1. They are defined 

recursively, and it is natural to compute them with a recursive function, fib(n), as given 

in Example 3.1. However, as Figure 7.13 illustrates, the natural recursive computation 

is terribly inefficient because a lot of work is repeated. That figure essentially shows the 

activation tree for fib(6). In general, the activation tree for fib(n) is a full binary tree down 

to depth n/2 (the rightmost path being the shortest), and has more nodes at lower depths, 

so the running time is af least in Q(2"/*). The exact asymptotic order is the subject of 

Exercise 10.1. But F,, can be computed with ©(7) simple statements by computing and 

remembering n smaller values, each of which can be computed with a constant number 

of operations if the smaller values are accessible. (Recall from Section 3.2.1 that a simple 
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statement is one that involves no function calls, and is assumed to require constant time.) 
Assuming a large enough array f has been allocated, the following procedure does the job: 

f[OJ=0; f[1]=1; 
TO (=2alesahentte) 

f[iJ=fli-1]+f[i-2]: 

Exercise 10.2 dispenses with the array. 

A dynamic programming algorithm stores the results, or solutions, for small sub- 

problems, and later looks them up, rather than recomputing them, when it needs them to 
solve larger subproblems. Thus dynamic programming is especially well suited to problems 

Where a recursive algorithm would solve many of the subproblems repeatedly. 

We will introduce a characterization of dynamic programming algorithms that pro- 

vides a unified framework for a wide variety of published algorithms that might seem quite 

different on the surface. This framework permits a recursive solution to be converted into 

a dynamic programming algorithm, and provides a way to analyze the complexity of the 

dynamic programming algorithm. 

10.2 Subproblem Graphs and Their Traversal 

As stated earlier, problems are often solved by decomposing the main problem into smaller 

problems of the same kind, solving the smaller problems recursively, then combining the 

solutions. Suppose we have such a solution method in mind. We can define a directed graph 

based on the relationships between problems and their relevant subproblems. 

Definition 10.1 > Subproblem graph 

Suppose a recursive algorithm A is known for a problem. The subproblem graph for A is 

the directed graph whose vertices are the instances, or inputs, for this problem and whose 

directed edges are / — J for all pairs such that when algorithm A is invoked on problem 

instance / it makes a recursive call (directly) on instance J. (Here we use the notation 

“7 —> J” rather than “//” to emphasize that edges are directed.) Unlike most of the graphs 

we have considered so far, which were explicitly represented by a data structure, this graph 

is abstract and is not explicitly represented. 

Let P be a problem instance for algorithm A; that is, we assume A(P) is not a recursive 

call. Then the subproblem graph for A(P) is the portion of the subproblem graph for A that 

is reachable from vertex PP. @ 

Example 10.2 © Subproblem graph for Fibonacci function 

For the recursive Fibonacci function, fib(n), the problem instances are just the nonnegative 

integers, so these are the vertices of the subproblem graph for F. The directed edges are 

{fi >i-—1|i>2}U {i >i —2|i = 2}. Although the graph is infinite, for any particular 
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O02 OO 
Figure 10.1. The subproblem graph for fib(6) 

n the portion that is relevant to the computation of fib(n) (1.e., reachable from vertex 1) has 

only n + | vertices and about 2n edges. Figure 10.1 shows anexample. 

If algorithm A always terminates, then its subproblem graph must be acyclic. Directed 

acyclic graphs (DAGs) were studied in Section 7.4.6, and we will soon get a chance to use 

some of those results. By looking at the tree of activation frames (Section 3.2.1) generated 

by a particular top-level call, say A(P), itis apparent that each path in the tree corresponds 

to a path in the subproblem graph for A(P) beginning at vertex P and terminating at a 

base-case vertex, which has no outgoing edges. Keep in mind that vertices are problem 

instances in this abstract graph. Directed edges correspond to recursive calls that would be 

invoked during the execution of A(P). 

Consider a graph traversal procedure that is like the depth-first search skeleton (AlI- 

gorithm 7.3), but does not color the vertices to record which ones have been discovered or 

finished. We call this a memoryless graph traversal. A memoryless graph traversal traverses 

every path in an acyclic graph (and may not terminate in a graph with cycles). A natural re- 

cursive computation, which simply makes recursive calls as needed, is like a memoryless 

traversal of the subproblem graph for A(P). As long as the subproblem graph is acyclic 

the procedure eventually terminates. However, an acyclic graph can have an exponential 

number of paths. 

To summarize where we stand, if we have a recursive strategy to solve a problem, and 

P is the problem instance we wish to solve, then we need to solve it for all vertices in the 

subproblem graph that are reachable from P. If there are multiple paths to a subproblem, 

the natural recursive procedure will solve it multiple times. 

If / is any subproblem that must be solved, and / has edges to J), Jo, .. .. Jy, then it 

is necessary to solve those subproblems before solving /. In other words, the subproblem 

graph can also be viewed as a dependency graph, as in Example 7.14. If we find an order to 

schedule the solutions of the subproblems, and remember the solutions for later use, each 

subproblem needs to be solved only once. 

As we learned in Section 7.4.6, any reverse topological order produces an acceptable 

schedule for a dependency graph. The essence of dynamic programming is to find a reverse 

topological order for the subproblem graph, to schedule the subproblems according to the 
reverse topological order, and to record the subproblem solutions for later use by other 
subproblems. 

In many cases, a reverse topological order can be determined by knowledge of the 
problem. For the Fibonacci numbers, it is simply ascending order. For some of the problems 
we will study in later sections, it is more subtle, but one can still be worked out by 
knowledge of the problem. However, in Section 7.4.6 we developed a general tool for 
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finding a reverse topological numbering of any DAG, Algorithm 7.5. This algorithm simply 
executes the DFS skeleton and assigns the reverse topological number at postorder time. So 
if we don’t see an easy way to define a reverse topological order for a certain problem, we 
could turn the job over to this algorithm. Next, we will see that we don’t need to do this as a 
separate step. Readers might wish to review the depth-first search skeleton of Algorithm 7.3 
before proceeding. 

The DFS skeleton is just a recursive procedure itself. When applied to the subproblem 
graph, it just mimics the recursive algorithm, say A, for the problem we wish to solve: 
remember that the subproblem graph is based on the pattern of recursive calls that are made 

by A. That is, exploring each edge in the DFS skeleton corresponds to a recursive call in 

A, and at postorder time all the information that A needs to complete the solution has 

been accumulated. However, A explores every edge in the sense of making the recursive 

call, while the DFS skeleton only explores edges to undiscovered vertices, and it checks 

the other edges. In a nutshell, the DFS skeleton remembers where it has been by coloring 

the vertices it has visited. This observation leads us to the characterization of dynamic 

programming algorithms. 

Definition 10.2 © Dynamic programming version of a recursive algorithm 

A dynamic programming version of a given recursive algorithm A, denoted as ‘D‘P(A), is a 

procedure that, given a top-level problem to solve, say P, performs a depth-first search 

on the subproblem graph for A(P). As solutions are found for subproblems, they are 

recorded in a dictionary, say soln. That is, soln is an object of a Dict abstract data type. The 

process of recording solutions of subproblems is often called memo-ization. Recall that the 

operations of the Dict ADT are create, member, retrieve, and store (Section 2.5.3). 

In general, the procedure of A is converted into ‘D‘P(A) by inserting a few statements, 

according to this scheme. Assume P is the current problem. 

1. Before any recursive call, say on subproblem Q, check the dictionary soln to see if a 

solution for Q has been stored. 

a. If no solution has been stored, go ahead with the recursive call, thereby treating 

Q as a white vertex and treating P — Q as atree edge. 

b. Ifa solution has been stored for Q, retrieve the stored solution, and do not make 

the recursive call, thereby treating Q as a black vertex. 

2. Just before returning the solution for P, store it in the dictionary soln; this has the 

effect of coloring vertex P black. 

In this scheme, it is essential that the subproblem graph be acyclic, because vertices are not 

colored gray, which is normally done to prevent traversing around cycles, 

As with depth-first search, D‘P(A) requires a “wrapper” to prepare for execution of 

the recursive procedure. At a minimum, this wrapper creates soln as an empty dictionary, 

which has the effect of making all reachable vertices of the subproblem graph white. This 

dictionary depends on the top-level problem, say P, because it must be able to store a 

solution for each subproblem reachable from P in the subproblem graph. 
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In many cases the original recursive algorithm A required a wrapper, usually to ini- 

tialize certain global structures that depend on the top-level problem. In these cases the 

dynamic programming wrapper must include the processing done by the original wrapper, 

as well as creating the empty dictionary. & 

We will see that the number of reachable subproblems, hence the size of the dictionary, 

is a critical factor in the design and analysis of efficient dynamic programming algorithms. 

Example 10.3 ‘D‘P(fib) 

The dynamic programming version of the Fibonacci function fib would be something like 

this. 

fibDPwrap(n) 

Dict soln = create(n); 

return fibDP(soln, n); 

fibDP(soln, k) 

int fib: til, t2: 

if (k < 2) 

fib =k; 

else 

if (member(soln, k-1) == false) 

fl = fibDP(soln, k-1): 

else 

fl = retrieve(soln, k-1); 

if (member(soln, k-2) == false) 

f2 = fibDP(soln, k—2): 

else 

f2 = retrieve(soln, k-2): 

fib = fl + f2; 

store(soln, k, fib): 

return fib: 

Of course, for this simple example, many simplifications are easy to find, resulting in an 
algorithm like the one in Exercise 10.1. Its purpose is to illustrate the general nature of the 
transformation from A to DP(A). Notice that, just as depth-first search requires a wrapper 
around its recursive procedure, so does ‘D‘P(A). Thus fibDPwrap initializes a dictionary 
suitable for the top-level problem (7 in this case), then calls fibDP(soln, n). 

Even when we can find a reverse topological order by inspection, the DFS point of 
view can be valuable for analyzing the complexity. We know that DFS processes each 
vertex once and each edge once; usually there are more edges than vertices. If we can 
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allocate all the work of the algorithm to various vertices and edges, that may help to get a 
good estimate of the running time. 

Multiplying a Sequence of Matrices 

In this section we present the matrix multiplication order problem, which is one of the 
classical examples of dynamic programming. In the next section we will study a problem 

that originates from a quite different application, but has a very similar solution. Together 

they should serve as a good introduction to dynamic programming. 

The purpose of this section is not to demonstrate how to solve the matrix multiplication 

order problem, but rather how to apply the principles of developing a dynamic program- 

ming algorithm, step by step. We hope these principles help readers to solve new problems, 

and to develop a sense of when dynamic programming is a likely strategy. However, the 

treatment of the matrix multiplication order problem is more involved than would be nec- 

essary if the only purpose were to exhibit and explain the solution of this one problem. 

10.3.1. The Matrix Multiplication Order Problem 

Suppose we want to determine the best order in which to carry out matrix multiplications 

when a string of more than two matrices are to be multiplied together. We use the ordinary 

matrix multiplication algorithm (Algorithm |.2) each time we multiply two matrices. Thus 

to multiply a p x g matrix and aq x r matrix, we do pgr element-wise multiplications. 

There are two important observations to be made. One, we get the same result no matter 

in which order the multiplications are done. That is, matrix multiplication is associative: 

A(BC) =(AB)C. Second, the order can make a big difference in the amount of work done. 

Consider the following example. 

Example 10.4 Various multiplication orders 

We want to multiply arrays with the sizes shown: 

A| x A2 x A3 x A4 

30 x | | x 40 40 x 10 10x 25 

The following computations show how many multiplications are done for several order- 

Ings. 

((A,;A2)A3)Aq 30-1-40 + 30-40-10 + 30-10-25 = 20,700 

A;(A2(A3A4)) 40-10-25 + 1-40-25 + 30-1-25 = M750 

(A,A2)(A3A4) 30-1-40 + 40-10-25 + 30-40-25 = 41,200 

A\((A2A3)A4) 1-40-10 + 1-10-25 + 30-1-25 = 1.400 @ 

For the general problem, suppose we are given matrices Aj, A2,.... A,,, where the 

dimensions of A; are d;_, x d; (for | <i <n). How should we compute 

A x A2 x BD x An 

do x d\ d| x d> ole x Gh 
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and what is the minimum cost of doing so? Our cost is the number of element-wise 

multiplications. (Some other cost function might be used, also.) For now we will focus on 

the problem of finding the minimum cost; later, we make the algorithm “remember” how 

the minimum is achieved. We denote the multiplication operator between A, and A, +) as 

the kth multiplication. 

10.3.2 A Greedy Attempt 
Any sequence of the n — | multiplications is legal, and the algorithm needs to determine 

which sequence has the minimum total cost. The greedy approach is a plausible one. First 

choose the multiplication with minimum cost. Determine the dimensions of the matrices 

in the modified matrix chain after this multiplication. Again choose the multiplication with 

minimum cost, and continue in this vein. This strategy works on Example 10.4. However, it 

fails to be optimal for some sequences of three matrices (only two matrix multiplications). 

Another greedy strategy is explored in Exercise 10.6. Typically, dynamic programming 

algorithms are more expensive than greedy algorithms, so they are used only when no 

greedy strategy can be found that delivers the optimal solution. 

10.3.3. Toward a Dynamic Programming Solution 

We next attempt to develop a recursive algorithm. Suppose, after choosing a first multi- 

plication, say at position 7 in the sequence, we recursively solve the remaining problem 

optimally. We do this for each 7 that represents a valid first choice, and finally select the 

i that gives the lowest combined cost. This is called a backtracking algorithm because af- 

ter trying one complete choice sequence, the algorithm backtracks to the point before the 

most recent choice and tries an alternative; when alternatives are exhausted at this point, 

it backtracks to an earlier point and tries alternatives there, and continues until all alter- 

natives are exhausted. We saw an example of this idea in the eight-queens problem (see 

Figure 7.14). 

Suppose the dimensions do, .... dy are in an array dim. We can leave the array 

intact and just identify a subproblem by a sequence of integers, giving the indexes of the 

dimensions of the remaining matrices. The initial index sequence is 0,..., n. Notice that 

all indexes of the sequence, except the first and last, specify multiplication operators, as 

well. 

After making a first choice of multiplication 7, the index sequence for the remain- 

ing problem is O,..., eS) Oi al Oe ae n. That is, the chosen first multiplication multi- 

plies A; x Aj;41, for which the dimensions are dj_;, dj, and dj,,. Let B = A; x Aj41; 

then the dimensions of B are d;—; by dj). The remaining subproblem is to multiply 

A PAID) OBS Aj_| x B x Aj42 Se Sc oO Ay 

dy x dy d;_2 x ai haan x dj+| di+| x dix Bho x a 

Assume the index sequence itself is stored in a zero-based array seq, and len is the length 

of seq. The outline of the method is 
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mmTryl(dim, len, seq) // OUTLINE 

if (len < 3) 

bestCost = 0; // base case, one array or none. 

else 

bestCost = oo; 

for (i = 1; i < len-1; i ++) 

¢ = cost of multiplication at position seq[i]. 

newSeq = seq with ith element deleted. 

b = mmtTryl(dim, len—1, newSeq): 

bestCost = min(bestCost, b + c); 

return bestCost; 

The recurrence equation for this algorithm is 

T(n)=@—1)T@— 1) +n. 

The solution is in ©((7 — 1)!), but our ambition is to improve the performance of the 

recursive algorithm by converting it into a dynamic programming algorithm. 

To design a dynamic programming version, we first need to analyze the subproblem 

graph. How many subproblems are reachable from the initial problem, which is described 

by the index sequence 0,..., n? Here we encounter a serious difficulty. Although subse- 

quences start out as a few continuous subranges, they get more and more fragmented as the 

subproblem depth increases. For example, with n = 10 after choosing multiplication oper- 

ators |, 4, 6, 9, the subsequence of remaining indexes becomes 0, 2, 3, 5, 7, 8, 10. There 

is no concise way to specify these subsequences. Essentially, every subsequence (with at 

least three elements) of the initial sequence (0,...,) is areachable subproblem. There are 

about 2” such subsequences (see Exercise 10.3), hence exponentially many subproblems. 

This graph is simply too large to be searched efficiently. 

This illustrates one of the most important principles of designing a dynamic pro- 

gramming algorithm. The subproblems should have a concise identifier. This limits the 

maximum size of the subproblem graph (in terms of vertices—there may be more edges) 

and the dictionary to the number of possible identifiers (within the ranges that need to be 

solved). Recall that the identifier, or id, of an element uniquely identifies it in the dictio- 

nary (Section 2.5.3). There cannot be more elements in the dictionary than there are distinct 

identifiers. Therefore, if we focus on making the maximum dictionary size a polynomial 

function of the input size, and as small as possible, we will ensure that the depth-first search 

of the subproblem graph can be carried out in polynomial time. 

Based on these considerations, we realize that we need a different idea for how to 

decompose the problem into subproblems. Looking at the subproblem created after the 

first matrix multiplication did not work. How about the subproblem created by choosing 

the /ast matrix multiplication? Suppose the /ast matrix multiplication is at position 7? This 

actually creates two subproblems: 

459 



460 Chapter 10 Dynamic Programming 

1. Multiply Aj,..., A; with dimension indexes 0,..., i; that is, 

Ay x A? yey JAN -_ B 

dy x dy d, x do di-\xdj dyxd; 

Ze MinltiplyeAyeete es A, with dimension indexes 1,..., n. 

Aj+l x Aj+2 NCS An ee: 
dj x di+| Aa) x dis? Ghaey x dy dj x dy 

The last step is to multiply B, Bz and the cost for that is based on (do, dj, dy). 

It is not immediately obvious that this is any better than our first approach. However, 

we note that each subproblem can be identified (so far) by a pair of integers, (0,7) and 

(i,n). That is, the sequence of indexes for the first subproblem is (0, 1... . i), but since 

the elements are contiguous, it is only necessary to list the endpoints. (A pair (j — 1, J) 

represents A; alone and has cost 0.) As before, the array of dimensions, do, . . . . d,,, 1S not 

modified and might be a global array. 

Upon checking further we see that whenever a choice for index of the last multiphi- 

cation is made on a subproblem, each new subproblem that it creates is also describable 

by a single pair of integers. For example, if the choice in subproblem (i, 7) is k, the new 

subproblems are (i, A) and (k,n). Thus we see that this method of problem decomposition 

creates only ©(n7) distinct subproblems in the subproblem graph. 

As before, we don’t know which choice for the last multiplication will produce the 

least overall cost, so we need to evaluate all choices. The objective of mmTry2(dim, 

low, high) is to find the optimum cost for the subproblem specified by (low, high), where 

low < high. The outline is similar to mmTry1: 

mmtTry2(dim, low, high) // OUTLINE 

1. if (high - low == 1) 

De bestCost = 0; // Base case: only one matrix. 

3. else 

4. bestCost = oo; 

5. for (k = low+1; k < high-1; k ++) 

6. a= mmtTry2(dim, low, k): 

Te b = mmtTry2(dim, k, high); 

8 c = cost of matrix multiplication at position k, with 

dimensions dim[low], dim[k], dim[high]. 

9. bestCost = min(bestCost, a+ b +c): 

10. return bestCost; 

Like mmTry1, this is a backtracking algorithm. The exact recurrence equation for this 

algorithm is complicated but we can get a simplified version that shows that the time is 

greater than 2" (see Exercise 10.4). We expected this, because backtracking algorithms 

are typically exponential, but we hope that we can improve the performance of the natural 

recursive algorithm by converting it into a dynamic programming algorithm. 

Again, let’s consider the subproblem graph, where the initial problem is described by 
the pair (0, 2). The vertices (subproblems) are identified by a pair of integers, say (i, /), 
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inthe range 0)... n, with i < j, so there are about n°/2 of them. For the subproblem 

identified by the pair (7, j) there are two subproblems to be solved by recursive calls for 

each k between + | and j — 1, so this is less than 2n edges leaving the vertex (i, /). In 

all, the whole subproblem graph has fewer than n° edges, so depth-first search can traverse 

it in time O(n*). This looks tractable so we can carry out the conversion of mmTry2 to a 

dynamic programming algorithm mmTry2DP by inserting tests to look up solutions, rather 

than recompute them, and to store solutions as they are found. 

In the next procedure outline, the dictionary is named cost, and the identifier for an 

element is a pair of integers. To use a generic ADT, we would have to package the identifier 

into an organizer class, but instead we will assume that we have customized this dictionary 

interface to take the two integers, low and high, as separate parameters. We continue 

to use the dictionary operations create, member, retrieve, and store. The line numbers 

correspond to mmTry2. 

mmtTry2DP(dim, low, high, cost) // OUTLINE 

1. if (high - low == 1) 

2 bestCost = 0; // Base case: only one matrix. 

3. else 

4, bestCost = co; 

5. for (k = low+1; k < high-1; k ++) 

/0a. if (member(low, k) == false) 

/ob. a= mmtTry2DP(dim, low, k, cost); 

foc. else 

6d. a = retrieve(cost, low, k); 

f ja. if (member(k, high) == false) 

fib: b = mmtTry2DP(dim, k, high, cost); 

Pee else 

Hl b = retrieve(cost, k, high): 

8. = cost of matrix multiplication at position k, with 

dimensions dim[low], dim[k], dim[high]. 

9 bestCost = min(bestCost, a + b + c); 

10a. store(cost, low, high, bestCost); 

10b. return bestCost; 

Since subproblems are identified by a pair of integers in the range 0,.. . , n, the 

dictionary can be implemented with an (n + 1) x (n + 1) array. In mmTry2DP we stored 

and retrieved the optimum cost for the subproblems. In the complete algorithm below, the 

cost array is supplemented by the last array, which will contain the opumum choice of 

multiplication index for the subproblem. An entry with a cost of co denotes an unsolved 

subproblem. We “un-abstract” the dictionary and access the arrays directly. 

We have already seen that mmTry2 can be converted into mmTry2DP with a few me- 

chanical changes, which implement memo-ization. The result looks very much like the DFS 

skeleton: lines 6 and 7 test for unsolved subproblems (undiscovered, or white vertices) in a 
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loop that goes through all needed subproblems (all edges to adjacent vertices). The solved 

subproblems (black vertices) are just looked up. At line 10 (postorder time) the current 

subproblem becomes solved (the current vertex is colored black). Since mmTry2DP corre- 

sponds to the recursive part of the skeleton (that is, dfs), to complete the implementation 

we need a “wrapper,” analogous to dfsSweep, to initialize the cost array to 00 and to make 

the top-level call of mmTry2DP. 

An alternative, starting from mmTry2, is to determine a convenient reverse topological 

order by inspection. If we can do this, then we simply solve problems in this order, and as 

each subproblem comes up for solution, all the subproblems that are its dependencies will 

have been solved (see Section 7.4.6 and Example 7.14). We see that the subproblem (low, 

high) depends on (has dependency edges to) (low, k) and (k, high) for low < k < high. 

Can we arrive at a simple order that causes all the edges to point from a higher topological 

number to a lower one? Readers are invited to try to come up with such an order before 

reading on. 

From the edges mentioned in the previous paragraph we see that decreasing the sec- 

ond index and keeping the first index the same should lead to a lower topological number. 

Turning this around, increasing the second index and keeping the first index the same 

should lead to a higher topological number. Similarly, decreasing the first index and keep- 

ing the second index the same should lead to a higher topological number. There are several 

schemes that work. Let’s decide to make a double for loop that ranges over the needed sub- 

problems and to vary the first index in the outer loop. Then it needs to decrease as the loop 

proceeds. Similarly the second index, varying in the inner loop, needs to increase as the 

loop proceeds. Here is an outline of that strategy: 

matrixOrder(n, cost, last) // OUTLINE 

for (low = n-1; low > 1; low --) 

for (high = low+1; high < n; high ++) 

Compute solution of subproblem (low, high) and store it in 

cost(low][high] and last[low][high]. 

return cost[O][n]: 

The procedure to compute the solution of subproblem (low, high) is similar to mmTry2DP, 

except that we know the tests on lines 6a and 7a will always be false, so only lines 6d and 

7d are needed from those compound statements. 

The final algorithm computes the optimum choices and costs and stores them in last 

and cost, then calls another subroutine, extractOrderWrap (Algorithm 10.2), to extract the 

actual optimum multiplication sequence from last. 

Algorithm 10.1) Optimal Matrix Multiplication Order 

Input; An array dim containing do, . . ., d,, the dimensions of the matrices; 1, the number 

of matrices to be multiplied. 
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Output: An array multOrder in which the ith entry, for | <i <n — 1, contains the in- 

dex of the 7th multiplication in an optimum sequence. The array is passed in and the 

algorithm fills it. The algorithm also returns the total cost of the best multiplication 

order. 

Remarks: The subproblem identified by the pair (low, high) is the problem of optimizing 

the computation of Ajoy41) X +++ X Ahign. Thus the top-level problem is specified as (0, 7). 

This algorithm uses two-dimensional arrays cost and last, where last represents the index 

of the last multiplication to be done for the subproblem. The cost 1s computed by the sub- 

routine multCost, which is implemented to return the number of multiplications needed, 

but could be coded to compute any desired cost function. 

float matrixOrder(int[] dim, int n, int{] multOrder) 

int{][] last = new int[n+1][{n+1]- 

float[][] cost = new float[n+1 ][n+1]; 

int low, high, k, bestLast; 
4 float bestCost: o° 

for (low = n-1; low => 1; low --) 

for (high = low+1; high < n; high ++) 

// Compute solution of subproblem (low, high) and 

// store it in cost[low][high] and last[low][high]. g 

if (high — low == 1) 

bestCost = 0; 

bestLast = -1; 

else 

bestCost = co; 

for (k = low+1; k < high-1; k ++) 

float a = cost[low][k]: 

float b = cost[k][high]: 

float c = multCost(dim[low], dim[k], dim[high]); 

if (a+ b+ c < bestCost) 

bestCost=a+b+c; 

bestLast = k; 

// Continue for (k) 

cost[low][high] = bestCost; 

last[low][high] = bestLast; 

extractOrderWrap(n, last, multOrder); 

return cost(O][n]; 

float multCost(float leftD, float midD, float rightD) 

return leftD « midD * rightD; 

463 



464 Chapter 10 Dynamic Programming 

(354) 

(le) (eSy) 

Figure 10.2. The arithmetic-expression tree corresponding to the solution in Example 10.5. 

Each node is identified with a subproblem and represents either a matrix or a multiplication to 

be performed. 

Example 10.5 Matrices for cost and last 

For the sequence of matrices in Example 10.4, do = 30, dj = 1, d2 = 40, d3 = 10, and 

d4 = 25. Algorithm matrixOrder would produce the following cost and last tables. Entries 

of *.” were not computed. Entries in which last is —1 and cost is zero are subproblems 

consisting of a single matrix. 

0 1200 700 — 1400 a=] | | | 

0 400 650 rel 2 5 

Cost = |.) Ss: 0 10000 last =| 8 3 

0 =! 

The cost of the best way of multiplying the matrices is cost{O][4], which is 1400. Later, we 

will see how to extract the best multiplication order from the table. ™ 

Observe that choosing the /ast multiplication to perform is equivalent to choosing the 

root of an arithmetic-expression tree for the multiplications: each internal node denotes a 

matrix multiplication and the leaves are the matrices. Figure 10.2 shows an example for 

the solution in Example 10.5. In mmTry2DP the first subproblem recursively decides upon 

the best left subtree and the second subproblem recursively decides upon the best right 

subtree; the order of matrixOrder doesn’t make this so clear. A postorder tree traversal 

lists the multiplications in the order that standard expression evaluation performs them. 

This is done in Algorithm 10.2. 

Analysis of mmTry2DP and matrixOrder 

We have not looked at the extractOrder subroutine yet, but its cost will be minor, compared 

to the main algorithm. We have two versions, mmTry2DP and matrixOrder, that do about 

the same work, but in different orders. For mmTry2DP, we simply observe that it is essen- 

tially a depth-first search on a graph of @(n7) vertices and @(n3) edges, with a constant 

amount of processing per edge and vertex. For matrixOrder, the body of the innermost for 

loop requires constant time and it is executed ©(n*) times. So either implementation runs 

in ©(74) time. This is far better than doing an exponential number of steps. 
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The extra space required for the two-dimensional arrays cost and last is in O(n). 
This is quadratic in the size of the input and output, both of which are in ©(7). A recursive 
solution would use only ©(71) space (for the activation frame stack). The investment of the 

extra space to produce the much faster algorithm is worthwhile. 

There is a (n°) algorithm for determining the best multiplication order for a sequence 

of matrices. However, it is specialized to the cost function given by multCost in Algo- 

rithm 10.1, whereas Algorithm 10.1 does not depend on any particular cost function. See 

Notes and References at the end of the chapter. 

10.3.4 Extracting the Optimal Order 

The following recursive procedure, extractOrder, extracts an optimal order for multiplying 

the matrices from the last table that was computed by matrixOrder. It is called from 

its wrapper, extractOrderWrap, which is called from matrixOrder as the last step of its 

computation. 

First, extractOrderWrap initializes a global variable, multOrderNext, which is the 

index for filling the output array multOrder. Then it calls extractOrder to do the work. 

The objective of extractOrder(low, high, last, multOrder) is to fill in the multOrder array 

with the optimal multiplication order for the subproblem specified by (low, high). 

The algorithm may be recognized as a postorder traversal of a binary tree that 1s 1m- 

plicitly defined in last as follows. Let k = last[low][high] (when high — low > 1). Tree 

node (low, high) has as its left and right children the nodes (low, k) and (k, high), respec- 

tively. When high — low = 1, the node 1s a leaf. Note that extractOrder is recursive. Why 

is recursion, rather than dynamic programming, appropriate here? 

Algorithm 10.2 Extracting Optimal Multiplication Order 

Input: The number of matrices, 1; the matrix last, which was computed by matrixOrder 

in Algorithm 10.1. 

Output: Array multOrder as described in Algorithm 10.1. The array is passed in and this 

procedure fills positions | through n — I. 

int multOrderNext; 

extractOrderWrap(n, last, multOrder); 

multOrderNext = 0: 

extractOrder(0, n, last, multOrder): 

extractOrder(low, high, last, multOrder) 

int k; 

if (high — low > 1) 

k = last{low][high]; 

extractOrder(low, k, last, multOrder); 

extractOrder(k, high, last, multOrder); 

multOrder[multOrderNext] = k; 

multOrderNext ++; 
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Example 10.6 Extracting multiplication order 

For the last table in Example 10.5, the implicit tree traversed by extractOrder is shown in 

Figure 10.2. The postorder of the nodes is (0, 1), (1, 2), (2, 3), C1, 3), G, 4), Cla), COMM). 

Only the internal nodes cause an entry to be written in the multOrder array; these are (1, 3), 

(1,4), and (0, 4). Thus 

multOrderl 1] = lasts) =2 

multOrder[2] = last{1][4] = 3 

multOrder[3] =last({O][4] = | 

That is, the optimal order found by the algorithm is 2, 3, 1. It corresponds to the optimal 

factoring Aj((A2A3)Aq) shown in Exercise 10.4. 

Analysis of extractOrder 

Each invocation of extractOrder (Algorithm 10.2) visits a new node in the expression 

tree, which has 2n — | nodes, so there are 2” — | invocations, and extractOrder takes 

©(n) time. The tree might have depth that is in ©(7), so the activation frame stack would 

require ©() space. However, since the data structure being processed uses ©(n7) space, 

this algorithm’s space requirement is probably negligible. 

Constructing Optimal Binary Search Trees 

In this section we consider the problem of how best to arrange a set of keys (from some 

linearly ordered set) in a binary search tree to minimize the average search time if we know 

that some keys are looked up more often than others. In a binary search tree the keys at the 

nodes satisfy the binary search tree property given in Definition 6.3. Recall that an in- 

order traversal of a binary search tree visits the nodes in increasing order of their keys. See 

Figure 10.3 for an example. Readers may wish to review Algorithm 6.1 for Binary Search 

Tree retrieval before proceeding. 

We use as our measure of work the number of key comparisons done, or the number of 

nodes of the tree that are examined, while searching for a key. We assume, as in Section 6.4, 

ring 

a ne 
has thing 

oe vo 
cabbage of talk walrus 

Oe ee ee 
and come — king pig said the time wing 

Figure 10.3 A binary search tree 
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that three-way comparisons are available, so the number of comparisons done to find a key 
in the tree is one plus the depth of the node containing the key. 

Now, let’s assume the keys are Kj, Ko,..., K,, and the probability of each key being 
sought is pj, p2,..., Pn. respectively. The probabilities would usually come from past 
experience or other knowledge about the application. Frequencies (which need not sum to 
1) may be used instead of probabilities. 

Suppose we have arranged the keys in a binary search tree 7. Let c; be the number of 
comparisons done by Algorithm 6.1 to locate K; (that is, the depth of K; plus one). The 

average number of nodes examined for T is 

nN 

AT) = >) ie, (10.1) 
i=! 

If all keys are equally likely to be sought (p; = 1/n for all 7), it is best to keep the tree as 

balanced as possible; the average number of comparisons is roughly lg n (Exercise 10.8), 

which is about the same as the worst case, for a balanced tree. However, if some keys are 

much more likely to be retrieved than others, an unbalanced structure may have a lower 

average number of comparisons. 

Example 10.7 Computing average search time 

Table 10.1 shows a list of keys and data on the number of times each key was looked up ina 

(hypothetical) test. The probability for each key 1s computed from the data. (The data were 

chosen to make the computation easy; they are not particularly realistic.) Now, suppose a 

Key Number of searches — Probability (~;) 

and 30 leaky) 

cabbage 5 1025 

come 10 O50 

has 3) 025 

king 10 O50 

of PES) wis 

pig e) 025 

ring 15 O75 

said 1S 075 

talk 10 O50 

the 30 EO) 

thing 15 (075 

time 10 OSO 

walrus ey 025 

wing 10 O50 

Total = 200 Total = 1.000 

Table 10.1 Data on the keys 
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Key Probability (p;) = Comparisons (c;) pi Ci 

and Als 4 600 

cabbage 1025 3 O75 

come O50, 4 200 

has 025 2 O50 

king 050 4 200 
of a5 3 BTS 

pig 025 a LOO 

ring O7S | O75 

said O75 4 300 

talk O50 3 150 

the 150 = 600, 

thing O75 By 150 

time O50 2 100 

walrus .025 3 (Oy 

wing O50 A 200 

Total = 3.250 

Table 10.2. Computation of average search time 

binary search tree has been constructed as in Figure 10.3. Table 10.2 shows the computation 

of the average search time. 

The average search time is 3.25. It should seem pretty clear that this tree is not 

optimal. The two keys sought most often, and and the, are at the bottom level, hence 

require the maximum search time. Putting and at the root might not improve the average 

because, to maintain the binary search tree property, all the other keys would be in the right 

subtree. The prospects look better for putting fhe at the root. But let’s tackle the problem 

systematically. 

We want to find a binary search tree for the keys K,, Ko,..., K,, with search prob- 

abilities pi, po,..., Pn that has minimum average search time. Assume that the keys are 

in sorted order. If we choose Kx, as the root for the tree, then Ky,..., Kx—, must go in 

the left subtree, and K,4,..., K,, must go in the right subtree, and we now need optimal 

arrangements for the two subtrees. See Figure 10.4. Since we don’t know which is the best 

choice for the root, we minimize over all choices. 

The above plan looks very much like the way the matrix multiplication order problem 

was decomposed. This suggests that we identify each subproblem by the pair, (low, high), 

the low and high indexes of the subrange of keys represented by that subproblem. Thus sub- 

problem (low, high) is to find the binary search tree with minimum weighted retrieval cost 

for keys Kjows.. +; Kaigh and weights pipy,.< - Phigh. We are switching our terminology 

from probabilities to weights because, in the subproblems, the p’s do not sum to 1. 
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For each key searched, one 
FO Bare . . 

ee additional comparison is 

done at the root. 

/ 

. va 

Average search time Average search time 
in this subtree is in this subtree is 
cost[{1]][k-1]. ; cost[k+l][n]. 

Figure 10.4 Choosing K;, as the root 

Definition 10.3 

We adopt the following notation: 

1. Define A(low, high, r) to be the minimum weighted cost for subproblem (low, high) 

when K,, is chosen as the root of its binary search tree. 

2. Define A(low, high) to be the minimum weighted cost for subproblem (low, high) over 

all choices of root key. 

3. Define p(low, high) = piow +--+ + Phiens that is, the probability that the key being 

searched for is some key in the range Kj, through Kjjg;. We will call this the weight 

of the subproblem (low, high). 

If the weighted retrieval cost for a particular tree containing Kigw,..., Kpigh is W 

(assuming it is the whole tree, so its root is at depth zero), then if the root of the subtree 

is at depth |, the weighted retrieval cost is (W + p(low, high)). That is, every search that 

goes into this subtree involves one more comparison than if it is the whole tree, and the 

probability that the search that goes into this subtree is just p(low, high). (See Figure 10.4.) 

This relationship allows us to combine recursive solutions of subproblems to obtain the 

solution of the larger problem. 

A(low, high, r) = p, + p(low,r — 1) + A(low, r — 1) 

prs 1, nigh) 4- At + J-high) 

p(low, high) + A(low, r — 1) + A(r + 1, high), (0:2) 

A(low, high) = min {A(low, high, r) | low <r < high} . (10.3) 

I| 

We can write a recursive procedure to compute A(low, high), based on Equations (10.2) 

and (10.3). However, as with the matrix multiplication order problem studied in Sec- 

tion 10.3, we would observe that a lot of repeated work 1s done by a recursive solution. The 

running time of the algorithm would be exponential. Again, to avoid the repeated work, we 
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high 

i | 0 | Py cost[low][high] 
5 0 |B | low 

0 P3 

0 ie 

on 
0 p, 

n+] ° 

i 2 an ‘ 

Figure 10.5 Computation of cost[low][high] 

define a dictionary, implemented as two two-dimensional arrays of size (n + 2) x (n + 1), 

named cost and root. 

As in the matrix multiplication order problem, the subproblems that cost[low][high] 

depends upon are in a higher numbered row (first index) or a lower numbered column 

(second index). See Figure 10.5. Rather than follow the order that would be taken by the 

recursive procedure, we can compute them in a double loop that works backwards on the 

first index and forwards on the second, as we did in Algorithm 10.1. 

Algorithm 10.3 Optimal Binary Search Tree 

Input: An array prob containing the probabilities pj, ..., py» for each key; n, the number 

of keys. 

Output: Two-dimensional arrays cost and root, allocated for size (n + 2) x (n + 1), O- 

based. The arrays are passed in; the algorithm fills them. First index 0 is not used. For 

the subrange of Keys Kyoy,<... Khign. Where | < low < high <n, cost[low][high] gives 

the minimum weighted search cost and root[low][high] gives the best choice of root for the 

binary search tree on this subrange of keys. The optimal cost for whole tree is in cost[1][n]. 

Remarks: A pair (i, — 1) represents an empty tree, which has cost zero. Array cost has 

an extra row (index n + 1) to simplify the boundary conditions. The extra row is only used 

to store the empty tree (7 + 1, n). Note that p@, J) = p; ++--+ pj, as-in the text, and 

pti,i —1)=0. 
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optimalBST(prob, n, cost, root) // OUTLINE 

for (low =n +1: low > 1; low —-) 

for (high = low-1; high < n; high ++) 

bestChoice(prob, cost, root, low, high); 

return cost; 

/** Compute solution of subproblem (low, high) «/ 
bestChoice(prob, cost, root, low, high) // OUTLINE 

if (high < low) 

bestCost = 0; // empty tree 

bestRoot = -1; 

else 

bestCost = oo: 

for (r = low; r < high; r ++) 

rCost = p(low, high) + cost{low][r—1] + cost[r+1 ][high]; 

if (rCost < bestCost) 

bestCost = rCost:; 

bestRoot =r: 

// Continue loop 

cost[low][high] = bestCost: 

root[low][high] = bestRoot; 

return; 

A recursive function to construct (and return) the optimal binary search tree, using the 

BinTree ADT of Section 2.3.3, is similar to Algorithm 10.2 (see Exercise 10.10). 

Analysis 

Much of the analysis is similar to that of Algorithm 10.1. The function p(i, j) = pp 4: +++ 

pj need not be computed “from scratch” each time. We leave it as an exercise to devise 

an efficient way of computing these sums (Exercise 10.11). Also, if integer computation 

is faster or more convenient for any reason, data on past searches for the keys (as in the 

second column in Table 10.1) could be used directly, instead of probabilities, as weights 

for the keys. In any case, the amount of work done by Algorithm 10.3 is clearly in @(n?), 

Separating Sequences of Words into Lines 

This section addresses the problem of separating a sequence of words into a series of lines 

that comprise a paragraph. The objective 1s to avoid a lot of extra spaces on any line. This is 

an important problem in computerized typesetting. Because extra spaces on the last line of 

the paragraph are not objectionable, the paragraph 1s a natural unit to optimize. Of course, 

the order of the words must be maintained as they are placed in lines. Optimization of line- 

breaking, as this problem is often called, was introduced in the 7£X (pronounced “tech”) 
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typesetting system developed by Don Knuth and his students at Stanford University. The 

version we will study is greatly simplified: We assume all letters and spaces are the same 

width. 

The input to the line-breaking problem is a sequence of n word lengths, w),..., Wh; 

representing the lengths of words that make up a paragraph, and a line width W. To simplify 

the arithmetic, we will assume that each w; includes one space at the end of the word in its 

count (i.e., for “the,” w would be 4), and that W includes one extra space at the end of the 

line (that is, for an actual line width of 80, specify W = 81). 

The basic constraint on word placement is that, if words 7 through / are placed on a 

single line, then w; +--+ + w; < W. In this case the number of extra spaces 1s 

XSW Cia a a ay, 

The penalty for extra spaces is assumed to be some function of X. For our discussion, the 

line penalty is specified as X°, but the method of solution should work on a variety of 

penalty functions. (A more realistic penalty might also depend on the number of words on 

the line, because extra space can be distributed among the words.) There is no penalty for 

extra spaces on the last line of the paragraph. The penalty for the paragraph is the sum of 

the penalties for individual lines, and is to be minimized. 

There is a simple greedy algorithm for this problem: Simply pack as many words 

as possible into the first line, then into the second line, and so on, until the paragraph 

is completed. Even though this does not guarantee an optimal line-breaking (you should 

make up a counterexample), in practice it works “pretty well” most of the time, and is the 

method used in many software packages. 

Example 10.8 Line-breaking 

Consider the quotation at the beginning of the chapter, which we take to be the whole 

paragraph: 

i | 2 3 4 5 6 7 8 S 10 1] 

Those who cannot remember the past are condemned to repeat — it. 

Ww; 6 4 i 9 4 > 4 10 3 7 4 

Suppose W = 17. The greedy strategy groups words into lines as follows: 

words (1, 2,3) (425). (6.7) (8.9) “ChO0 1) 

Xx 0 4 8 4 0 

penalty 0) 64 S12 64 0 

Is this optimal? 

Let's approach the problem by decomposing it into subproblems, as we did for the 
problems of earlier sections of this chapter. Suppose we break words 1, ...,k into lines 
and then break words k + 1,..., n into lines, independently. If we solve each subproblem 
optimally, is their combination optimal? Not necessarily, because k might be a bad place 
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for a line break. However, if we backtrack over all choices of k, then one of them will 
be optimal. This looks similar to the approaches of the matrix multiplication order and 

optimal binary search tree problems. A subproblem is identified as a pair of indexes (/, /). 

The objective of the subproblem is to break words 7 through / into lines with minimum 
penalty. 

Does the above plan give a correct recursive solution? We have to be careful, because 

the penalty on the last line of the paragraph is zero, but the penalty on the last line of all 

subproblems that do nor end the paragraph is computed as usual. So we really have two 

kinds of subproblem. With this proviso we may try to prove that, for some choice of k, 

the combination of the optimal solutions for the subranges (1, k) and (k + 1,7) gives an 

optimal solution for (1, 7). 

Before going into a proof, let’s consider the size of the dictionary and the subproblem 

graph. There are about n7/2 subproblems (vertices), and each subproblem (/, /) has an 

edge to about j — i other subproblems. There will be ©(n*) edges altogether. Certainly, 

a simple backtracking recursive procedure will run in exponential time, and the dynamic 

programming version will be in polynomial time, just as we saw in the earlier problems 

of this chapter. But is this the best bound we can achieve? If we can come up with a more 

concise way to identify subproblems than a pair of integers, then the dictionary will be 

smaller, and the subproblem graph will be smaller. Readers are encouraged to try to find 

a different strategy for problem decomposition that leads to more concise identifiers and a 

smaller dictionary, before reading on. 

There is a clue to the solution in the observation we made that there were two kinds of 

subproblem in the proposed strategy: One kind includes the last line of the paragraph; the 

other kind does not. But the first kind is really identified by a sing/e integer, the beginning 

of its subrange. If it concludes the paragraph, the end of its subrange must be n. That is, the 

identifier must be of the form (k,n), where | < k <n, but n is part of the input and is fixed 

throughout the problem. Therefore is not a necessary part of the dictionary identifier for 

these subproblems. In fact,we only have about 7 subproblems of the form (k, 71). 

Do we really need the subproblems of the form (/, 7) where j #7? Let’s apply 

Method 99 (Section 3.2.2). Assume we already have a subroutine that can find optimal line- 

breaking solutions for problems of 99 words or less—call it lineBreak99—and it assumes 

the end of the problem is the end of the paragraph. How can we exploit this to solve the 

line-breaking problem for n = 100 words or less, that is, to write lineBreak100” After a 

little thought we see that we can iterate over the choices of how many words to place on the 

first line. Letting this number be k, the remaining problem is how to optimally place words 

NS ces n on the remaining lines. But we can use lineBreak99 for this! We choose the 

k that minimizes the combined penalty for the first line and the remaining lines. Now we 

drop the suffixes “100” and “99” to get a recursive procedure. 

This is still a backtracking algorithm, because we don’t know the best choice of k, so 

we must backtrack over all the choices. But we only need choices that fit all the chosen 

words on one line, so there are at most W/2 choices for k. (Recall W is the line width, 
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and there is at least one space after each word.) The outline of the backtracking procedure 

follows. Its correctness is easy to prove by induction. 

lineBreak(w, W, i, n, L) // OUTLINE 

if (w; +---+w, < W) 

Put all words on line L and set penalty to 0. 

else 

Set penalty to the minimum of kPenalty over all k > O such that 

1 we = WwW, where X = W = (wpe <= + Wag), and 

kPenalty = lineCost(X) + lineBreak(w, W, i+k, n, L+1); 

Let Ajj, be the k that produced the minimum penalty. 

Put words 7 through 7 + Amin — | on line L. 

return penalty; 

The identifier for the dictionary to go with lineBreak is a single integer in the range 

1,...,n. Therefore the dictionary can be a simple array. The conversion of lineBreak into 

lineBreakDP follows the method described in Definition 10.2: 

|. Before making a recursive call, see if the solution is already in the dictionary, 

2. Before returning from the procedure, store the solution just computed. 

Analysis 

The subproblem graph has about 1 vertices (Subproblems) and has at most W/2 edges at 

any vertex, so the running time is in ©@(Wn). The extra storage space used for the dictionary 

is O(n). Normally, W is regarded as a constant, so the running time is in ©(7). By reducing 

the size of the dictionary from n* to n we saved nvo degrees in the polynomial for the 

running time: from ©(17) to Q(n). 

Developing a Dynamic Programming Algorithm 

The essence of dynamic programming algorithms is that they trade space for speed by stor- 

ing solutions to subproblems rather than recomputing them. From the examples we have 

seen, we can make some general comments about how to develop a dynamic programming 

solution to a problem. 

|. It is usually useful to tackle the problem “top-down” as if we were going to develop 

a recursive algorithm; we figure out how to solve a large problem assuming we know 

solutions for smaller problems. 

to If it appears that saving results from smaller problems can avoid repeated computation, 

define an appropriate dictionary for saving results, and make a clear statement to 

characterize the entries in the dictionary. Try to make the identifier for dictionary 

entries as concise as possible; this keeps the dictionary and the number of subproblems 

small. For example, in Section 10.5 we saw that one problem-decomposition strategy 

required two integers to specify a subproblem and led to a @(1°) algorithm, while a 

different strategy required only one integer to specify a subproblem and led to a @(n) 
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algorithm. Carry out the conversion described in Definition 10.2. The appropriate 
initialization can be determined at this point. 

Based on the number of subproblems (maximum size of the dictionary is an upper 
bound) and the number of edges in the subproblem graph, the complexity of the 
dynamic programming procedure can be analyzed by its relationship to depth-first 
search on the subproblem graph. 

Decide on an appropriate data structure for the dictionary. Often it is a one- or two- 

dimensional array. In these simple cases, the “abstraction” can be simplified out. If a 

more involved dictionary is needed (e.g., because the identifiers are too sparse for a 

simple array to be practical), it is probably best to stay with the division of tasks that 

the ADT methodology imposes. 

If possible, analyze the structure of the subproblem graph, and figure out a simpler 

order in which the dictionary entries can be computed. The requirement is that they be 

computed in some reverse topological order. Then ali the subproblems that the current 

subproblem depends on have been computed earlier. 

Determine how to get the solution to the problem from the data in the dictionary. 

For problems such as those in Sections 10.3, 10.4, and 10.5, the optimum cost is in 

a particular place in the dictionary. The dictionary may serve as input for another 

algorithm to extract the choices that produced the optimum cost. We saw examples to 

extract the optimal matrix multiplication order or construct the optimal binary search 

tree. Since the dictionary has data for all subproblems in the subproblem graph, usually 

only a small subset of the data is related to the final optimum solution. 

Experience with dynamic programming (and recursion) helps provide good intuition about 

what will work best for various problems. Some problems that have appeared earlier in the 

text can also be solved within the dynamic programming framework, such as maximum 

independent set in a tree (Exercise 3.13) and maximum subsequence sum (Exercise 4.59), 

Others will appear in Chapters |] and 13. 

Exercises 

Section 10.1 Introduction 

* 10.1 Define A,, to be the number of activation frames created in the computation of F;,, 

the nth Fibonacci number, using the natural recursive function fib(n), given in Example 3.1. 

Note that Ag = 1, Aj = 1. and A> = 3. By counting nodes in Figure 7.13, we find that 

AG = 2a: 

* a. 

b. 

Leto= 1(./5 + 1) © 1.618. This is called the Golden Ratio. Show that F;, is in O("). 

Show that A, = 2 F,41; — 1 for n => 1. Combined with part (a), this establishes the 

asymptotic order of the procedure fib(n). Interestingly, the time complexity of fib(n) is 

©(F,,), and F,, is the value it computes. 
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10.2. Modify the procedure of Example 10.1, which computes Fibonacci numbers, to use 

only a constant number of integers for work space and still compute F;, in O(n) time. 

Section 10.3 Multiplying a Sequence of Matrices 

10.3. This exercise counts subsequences of the sequence (0, 1,...,). (A subsequence is 

any subset of the sequence elements in the same order; they need not be contiguous in the 

original sequence. ) 

a. Show that there are 2”*! distinct subsequences, including the empty subsequence. 

b. Show that there are fewer than n*/4 subsequences of length three or less. 

Conclude that there are at least 2” distinct subsequences of length four of more, for 

fie Sk 

10.4 The recursive backtracking procedure mmTry2 in Section 10.3 computes the opti- 

mal cost for multiplying a sequence of matrices. Show that the number of recursive calls 

made during the execution of mmTry2 1s bounded from below by an exponential function 

of n. (A similar argument would show that the corresponding recursive solution for the 

optimal binary search tree problem in Section 10.4 is also exponential.) 

Hint: The exact recurrence equation for mmTry2 is complicated but we can get a 

simplified version by ignoring all but the two largest subproblems, which are of size n — | 

when the overall problem is of size n. Derive the inequality: 

T(n) >2T(n—1)+n 

and find a lower bound on its solution. 

10.5 Suppose the dimensions of the matrices A, B, C, and D are 20 x 2,2 x 15, 15 x 40, 

and 40 x 4, respectively, and we want to know how best to compute A x B x C x D. Show 

the arrays cost, last, and multOrder computed by Algorithms 10.1 and 10.2. 

LOG VEet-AG An be matrices where the dimensions of A; are d;_; x d;, for i = 

Ie eee n. Here is a proposal for a greedy algorithm to determine the best order in which to 

perform the matrix multiplications to compute Ay x A> x... x Ap. 

greedyOrder(dim, n) // OUTLINE 

At each step, choose the largest remaining dimension (among dim[1],..., 

dim[n—1]), and multiply two adjacent matrices that share that dimension. 

Observe that this strategy produces the optimal order of multiplications for the matrices in 

Example 10.4. 

a. What is the order of the running time of this algorithm (only to determine the order in 
which to multiply the matrices, not including the actual multiplications)? 

b. Either give a convincing argument that this strategy will always minimize the number 
of multiplications, or give an example where it does not do so. 
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10.7 Construct an example with only three or four matrices where the worst multiplica- 
tion order does at least 100 times as many element-wise multiplications as the best order. 

Section 10.4 Constructing Optimal Binary Search Trees 

10.8 Suppose all keys are equally likely to be searched for in a binary search tree that is 
completely balanced, with n = 2‘ — | nodes. Find an expression for the average number of 
comparisons for a retrieval, assuming three-way comparisons are available. (Note that the 
worst case is kK = Ig(n + 1).) 

10.9 

a. Compute the values in the matrices cost and root in the dynamic programming al- 

gorithm for finding the optimal binary search tree (Algorithm 10.3) for the following 

keys. (The probabilities are given in parentheses for each key.) 

ALC20),. ~B (24). GiG16), D0 C28)5 4B C04), -F G08) 

b. Draw the optimal tree. 

10.10 Suppose Algorithm 10.3 has been run for the keys Kj,..., K,, with probabilities 

Pinte srs Py. Write an algorithm that uses the root array computed by Algorithm 10.3 to 

construct the optimal binary search tree. Use the BinTree ADT of Section 2.3.3 to construct 

the result. What is the asymptotic order of the running time of your algorithm? (It should 

be in O(n).) Hint: Look at Algorithm 10.2. 

10.11. Show how p(i, /), as used in Algorithm 10.3, can be calculated in ©(1) per call, 

after O(n) preprocessing. 

10.12 Describe a straightforward greedy algorithm for the problem of constructing opti- 

mal binary search trees. Does it always produce the optimal tree? Justify your answer with 

an argument or a counterexample. 

Section 10.5 Separating Sequences of Words into Lines 

10.13 Show that the greedy algorithm for line breaking that was mentioned in Sec- 

tion 10.5 does not produce the minimum penalty in all cases. 

10.14 

a. Find an optimal line breaking for Example 10.8 by using the ‘DP(lineBreak). 

b. How many subproblems need to be evaluated? 

How many subproblems would be evaluated using lineBreak in its natural recursive 

form? Hint: Use dynamic programming to count how many calls the natural recur- 

sive form makes. 

10.15 Complete the sketch of the line-breaking algorithm in Section 10.5. The output of 

the overall algorithm should be an array lastWord with the meaning (after the algorithm 
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terminates) that lastWord[L] is the index of the last word to be placed on line L. (When 

lastWord[L] is n, the paragraph is completed on line L.) 

Additional Problems 

10.16 The binomial coefficients can be defined by the recurrence equation: 

C(n,k) =C(n-—1,k —1)+CM —1,k) forn > Oandk > 0 

Gig) 1 forn > 0 

CO 0 for k > 0. 

C(n, k) is also called “n choose k” and denoted ‘tale It is the number of ways to choose k 

distinct objects from a set of n objects. (See Equation (1.1) and Exercise 1.2.) Consider the 

following four ways to compute C(n, k) forn > k. 

1. A recursive function as suggested by the recurrence relation given for C(n, k). 

2. A dynamic programming algorithm. 

n(n—1)---(n—k+1) 

k! 
3. The formula Cin, k) = 

n! 

Kin = bt 

Evaluate these methods as follows. 

4. The formula C(n, k) = 

a. Write out an outline of each method to make it clear you understand what work is to 

be done for each. 

b. Compare the amount of work done by each method. Indicate what operations you are 

counting. Compare the amount of space used by each method. 

c. Are there any other strong advantages or disadvantages of any of the four methods? 

(For example, is one of them more likely to cause an arithmetic overflow error? What 

about truncations caused by integer division?) 

10.17 Let E be an array of n distinct integers. Give an algorithm to find the length of 

a longest increasing subsequence of entries in E. The subsequence 1s not required to be 

contiguous in the original sequence. For example, if the entries are 11, 17, 5, 8, 6, 4, 7, 12, 

3, a longest increasing subsequence is 5, 6, 7, 12. Analyze the worst-case running time and 

space requirements of your algorithm. 

10.18 Two character strings may have many common substrings. Substrings are required 

to be contiguous in the original string. For example, photograph and tomography have 

several common substrings of length one (1.e., single letters), and common substrings ph, 

to, and ograph (as well as all the substrings of ograph). The maximum common substring 

length is 6. 

Let X = x;x2--+-x, and Y = y)y2--- y» be two character strings. Give an algorithm to 

find the maximum common substring length for X and Y. Analyze the worst-case running 

time and space requirements of your algorithm as functions of n and m. Note: There 
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Is a O(nm) dynamic programming solution, and there are other ©(2m) non—dynamic- 
programming solutions. Try to find two solutions. 

10.19 Let A and B be arrays of n integers each. A common subsequence of A and B is 
a sequence that is a subsequence of A and is a subsequence of B. The subsequence is not 
required to be contiguous in A or B. For example, if the entries of A are 5, 8, 6, 4, 7, 1, 3, 
and the entries of B are 4, 5, 6, 9, 7, 3, 2, a longest common subsequence is 5, 6, 7, 3. Give 
an algorithm to find a longest common subsequence of A and B. Analyze the worst-case 
running time and space requirements of your algorithm. 

10.20 Suppose we are given three strings of characters: X = x,x2-++xm,Y =yiy2-°- Yn; 

and Z = Z122--:Zm4n. Z iS said to be a shuffle of X and Y if Z can be formed by 

interspersing the characters from X and Y in a way that maintains the left-to-right ordering 

of the characters from each string. For example, cchocohilaptes is a shuffle of chocolate 

and chips, but chocochilatspe is not. Devise a dynamic programming algorithm that takes 

as input X, ¥, Z, m, and n, and determines whether or not Z is a shuffle of X and Y. 

Analyze the worst-case running time and space requirements of your algorithm. Hint: The 

values in your dictionary should be Boolean, not numeric. 

10.21. The partition problem is, given a sequence of n nonnegative integers as input, to 

find a way to partition this sequence into two disjoint subsequences so that the sums of 

the integers in each of the two subsequences are equal. More formally, given nonnegative 

IMTESCTS Sy 22.2 40 S, that summtons. dindvasubset 7 oft ly 2.3.6.7} suchithat 

y=) H= se 
iel ig 

or determine that there is no such subset. Give a dynamic programming algorithm for the 

partition problem. Analyze the worst-case running time and space requirements of your 

algorithm as functions of n and S. 

10.22 Suppose you have n dollars to invest in any of m enterprises. Assume that 7 is an 

integer, and all investments must be in integer amounts. The input table invReturn describes 

the expected returns for individual investments. Specifically, invReturn[d][j] is the expected 

return for an investment of d dollars in enterprise /. 

a. Write an algorithm to determine the maximum possible expected return for investing 

n dollars. (You may assume that the columns of invReturn are nondecreasing; that 

is, investing more money in one enterprise won't decrease your return from that 

enterprise. ) 

b. Analyze the worst-case running time and space requirements of your algorithm as 

functions of n and m. 

ce. Expand your algorithm to determine the optimal investment plan. (Do whatever 1s 

needed to tell how much to invest in each enterprise.) Analyze the worst-case running 

time and space requirements. 

479 



480 Chapter 10 Dynamic Programming 

d. Suppose you can’t make the assumption made in part (a)? In other words, suppose 

investing additional dollars in one enterprise can reduce your overall return from that 

enterprise. Either prove that your algorithm already works correctly in such cases, or 

give an example where it does not compute the maximum possible return, and then 

show how to modify it so that it works correctly in general. 

10.23, Suppose the denominations of the coins in a country are c) > C2 >... > Cn (€.8.. 

50, 25, 10, 5, | for the United States). The coin changing problem is, given a sequence of 

coin denominations and an amount, a cents, as input, to determine the minimum number of 

coins needed to make a cents in change. (You may assume that c, = 1, so that it is always 

possible to make change for any amount a.) 

a. Describe a greedy algorithm for this problem. Explain how it would work to make 

change for $1.43 (U.S.). 

b. Prove that your greedy algorithm works for U.S. coins; that is, it will make the change 

using the minimum possible number of coins. 

c. Make up an example of denominations for a fictitious country’s coin system where 

your greedy algorithm won’t give the minimum number of coins. 

d. Give a dynamic programming algorithm to solve the problem. Analyze the worst-case 

running time and space requirements of your algorithm as functions of n and a. 

10.24 Give an algorithm to determine how many distinct ways there are to give a cents 

in change using any coins from among pennies, nickels, dimes, quarters, and half-dollars. 

For example, there are six ways to give 17 cents change: a dime, a nickel, and two pennies; 

a dime and seven pennies; three nickels and two pennies; two nickels and seven pennies; 

one nickel and 12 pennies; and 17 pennies. 

10.25 An n-sided polygon is an undirected graph with n vertices and n edges that form 

a simple cycle, vo, Vj, ..., U,—{, vo. (It is conventional to index polygon vertices from 

0.) A chord of a polygon is an edge (undirected) between any two nonadjacent vertices of 

the polygon. Two distinct chords, say wx and yz, are nonintersecting if there is a path of 

polygon edges from w to x that does not contain either y or ¢ as an intermediate vertex. If 

two chords share exactly one vertex, they are nonintersecting. A triangulation of a polygon 

is a maximal set of mutually nonintersecting chords. A triangulated polygon is the graph 

consisting of the original polygon and a set of chords that comprise a triangulation of it. 

The definitions are motivated by thinking of the vertices of the polygon as being 

positioned in counterclockwise sequence around a circle; however, this positioning is not 

required by the definitions. The figure below shows a polygon with its vertices on a circle, 

an example of intersecting chords, then two possible triangulations. 

V4 nee V4 oe V4 : V4 
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Suppose real weights are associated with all the possible chords. For example, if the 
polygon vertices are points in space, the weight of a chord might be the distance between its 
two vertices, but other weighting schemes are possible, also. The problem for this exercise 
is, given a polygon and a set of weights for its chords as input, to find a minimum-weight 
triangulation, that is, one whose sum of chord weights is minimized. 

a. Show that each polygon edge is in exactly one triangle of a triangulated polygon. 

b, Design a dynamic programming algorithm to solve the minimum-weight polygon 

triangulation problem in general. Analyze its worst-case running time and the space 

requirements as functions of n. 

c. Now suppose the polygon vertices are at given positions on the rim of a circle and the 

weight of a chord v;u; is the amount of circular arc between v; and v;, in degrees. For 

example, if a chord cuts off a quarter of the circle, its weight is 90. Thus each weight 

iS positive and is at most 180. Can you design an algorithm for this special case that 

runs faster than the one in part (b)? Analyze its worst-case running time and the space 

requirements as functions of n. 

10.26 Suppose you have inherited the rights to 500 previously unreleased songs recorded 

by the popular group Raucous Rockers. You plan to release a set of five compact disks 

(numbered | through 5) with a selection of these songs. Each disk can hold a maximum 

of 60 minutes of music, and a song can’t overlap from one disk to the next. Since you are 

a classical music fan and have no way of judging the artistic merits of these songs, you 

decide on the following criteria for making the selection: 

|. The songs will be recorded on the set of disks in order by the date they were written. 

2. The number of songs included will be maximized. 

Suppose you have a list of the lengths of the songs, /;, /,. . . ,/s99, 1n order by the date they 

were written. (Each song is less than 60 minutes long.) 

Give an algorithm to determine the maximum number of songs that can be included in 

the set satisfying the given criteria. Hint: Let T[i]Jj] be the minimum amount of time needed 

for any i songs selected from among the first j songs. T should be interpreted to include 

the blank time, if any, at the end of a completed disk. In other words, if a selection of songs 

uses one disk plus the first 15 minutes of a second disk, count the time for that selection as 

75 minutes even if there are a few blank minutes at the end of the first disk. 

Programs 

|. Write a program to construct an optimal binary search tree using Algorithm 10.3 and 

your solution to Exercise 10.10. 

i) Write a program to perform line breaking on a sequence of words that makes up a 

paragraph. Implement several strategies, including the simple greedy strategy and the 

minimum-penalty dynamic programming solution. Try some variants for the lineCost 

function, such as X? as in the text, and (X/k)*, where X is the number of extra spaces 
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and k is the number of words on the line. For the total penalty, try taking the minimum 

of lineCost over all lines in the paragraph, instead of the sum. 

Notes and References 

Bellman (1957) and Bellman and Dreyfus (1962) are standard references for dynamic 

programming from the control theoretical point of view. 

For a much more extensive discussion of optimal binary search trees, see Knuth 

(1998). Yao (1982) describes techniques for speeding up dynamic programming solutions, 

and contains O(n) algorithms for the matrix multiplication order and binary search tree 

problems covered in Sections 10.3 and 10.4. 

Exercise 10.26 was contributed by J. Frankle. 

Thompson (1986) describes the use of dynamic programming to solve chess endgames 

with a specific set of pieces on the board by working backwards from all possible check- 

mate positions. The work is also summarized in Bentley (1986). Later results appear in 

Thompson (1990, 1991, and 1996). 
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Chapter 11. String Matching 

Introduction 

In this chapter we study the problem of detecting the occurrence of a particular substring, 

called a pattern, in another string, called the text. The problem is usually presented in the 

context of character strings and arises often in text processing, and we will assume this 

context in our discussion and examples. However, the solutions presented are applicable to 

other contexts, such as matching a string of bytes containing graphical data, machine code, 

or other data, and matching a sublist of a linked list. The first three algorithms described in 

this chapter look for an exact match of the pattern. The problem of approximate matching 

is addressed in Section 11.5. We use the following nomenclature throughout the chapter. 

Definition 11.1 Notation for patterns and text 

This chapter uses the following notational conventions. 

P The pattern being searched for 

Es The text in which P is sought 

m The length of P 

n The length of 7, not known to the algorithm, used for analysis only 

pi. t; The ith characters in P and T are denoted with lowercase letters and 

subscripts. The initial index of both P and 7 is assumed to be |. 

Current position within 7 

k Current position within P 

We assume a boolean function is given that tells us when we are beyond the last character 

of the text: endText(7, /) returns true if / is greater than the index of the last character of 

T, and returns false otherwise. @ 

For the pseudocode in this chapter we assume that both P and 7 are arrays of charac- 

ters. This is a reasonable assumption for P because it is assumed to be of relatively short 

length, and available for preprocessing by the string-matching algorithms. However, 7 may 

well be a different type, may be extremely long, and may not be available all at once in 

memory. However, we will see that the algorithms perform only limited operations on 7, 

and do not use the full flexibility of array access, so they can be adapted easily for appli- 

cations in which T is not an array. Some of these issues are addressed in the exercises. We 

will assume that n is fairly large relative to m. Through the use of endText, algorithms do 

not need to know n. However, 7 appears in the analysis. 

Java sidelight: Java provides a built-in class named String, which is not the same as 

an array of characters. In the interest of language independence we do not use this built-in 

class. 

You should think about the string-matching problem and write out, or at least outline, 

an algorithm to solve it before proceeding. Your algorithm will probably be very similar to 

the first one we present here, which is fairly straightforward. 
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Figure 11.1 The general picture for Algorithm 11.1 

11.2 A Straightforward Solution 

Let us first examine a very straightforward procedure for string matching. Starting at the 

beginning of each string, we compare characters, one after the other, until either the pattern 

is exhausted or a mismatch is found. In the former case we are done; a copy of the pattern 

has been found in the text. In the latter case we start over again, comparing the first 

pattern character with the second text character. In general, when a mismatch is found, 

we (figuratively) slide the pattern one more place forward over the text and start again 

comparing the first pattern character with the next text character. 

Example 11.1 Straightforward string matching 

Comparisons are done (in left-to-right order) on the pairs of characters indicated by 

arrows. When a mismatch occurs, the pattern is moved one position forward with respect 

to the text, and the comparisons start again at the left end of the pattern. 

Ps ABABC ABABC ABABC 
{iLid + tiiid 

T: ABABABCCA ABABABCCA ABABABCCA 
jl 

Successful match 

Observe that moving the pattern all the way past the point where the first mismatch 

occurred could fail to detect an occurrence of the pattern. ™ 

Algorithm 11.1 Simple String Matching 

Input: P and T, the pattern and text strings; m, the length of P. The pattern is assumed to 

be nonempty. 

Output: The return value is the index in T where a copy of P begins, or —1 if no match 

for P is found. 

Remarks: The general picture is shown in Figure 11.1. The index variable 1 is not really 

needed in the algorithm since it can be computed from j and k (that is, 7 = j — k + 1). The 

function endText is as defined in Definition 11.1. 
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int simpleScan(char[] P, char[] T, int m) 

int match; // value to return 

int; jek; 

// i is the current guess at where P begins in T; 

// j is the index of the current character in T; 

// k is the index of the current character in P. 

match = —1; 

Jaalak =e 

=4; 
while (endText(T, j) == false) 

if (k > m) 

match =i; // Match found 

break; 

if (tj == Pk) 

jt; k +4; 

else 

// Back up over matched characters. 

int backup =k - 1; 

j =j - backup; k = k —- backup; 

// Slide pattern forward, start over. 

ee 

i=); 
// Continue loop. 

return match; 

Analysis 

We will count the character comparisons done by our string-matching algorithms. This 

is certainly reasonable for Algorithm 11.1, given its simple loop structure. There are a 

few easy cases. If the pattern appears at the beginning of the text, m comparisons are 

done. If p; is not in 7 at all, m comparisons are done. What is the worst case? The 

number of comparisons would be maximized if for each value of i—that is, each possible 

starting place for P in T—all but the last character of P matched the corresponding text 

characters. Thus the number of character comparisons in the worst case 1s at most mn, and 

the complexity of the algorithm is in O(mz). 

For some algorithms, inputs that require a lot of work at one step may require very 

little work at another step. Thus adding up the maximum possible work at each step gives 

an upper bound but not necessarily an exact value for the work done in the worst case. 

To show that the worst case requires (roughly) mn comparisons (1.e., to show that the 

worst-case complexity is in ©(mn)), we must show that the situation described can really 

occur, that is, that P and T can be constructed so that all characters in P but the last one 

match corresponding characters beginning anywhere in 7. Let P = ‘AA--- AB’ (m— 1 

A’s followed by a B) and T =‘A--- A’ (n A’s). 
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11.3 The Knuth-Morris-Pratt Algorithm 

This worst-case example is not one that occurs often in natural language text. In fact, 
Algorithm 11.1 works quite well on the average for natural language. In some empirical 
Studies the algorithm did only about |.1 character comparisons for each character in T (up 
to the point where a match was found or to the end of 7 if no match was found). Thus few 

characters in the text had to be examined more than once. 

Algorithm 11.1 has a property that in some applications is undesirable: It may often 

be necessary to back up in the text string (by the amount backup — |, since backup is 

subtracted from j, and | is added to initiate a new match attempt in the while loop). If 

the text is being read from an input source that does not permit backing up, this makes the 

algorithm difficult to use (see Exercise 11.4 for a space-efficient solution). The algorithm 

we present in the next section was devised specifically to eliminate the need to back up in 

the text. It turned out to be faster (in the worst case) as well. 

The Knuth-Morris-Pratt Algorithm 

We first describe briefly, without formal algorithms, an approach to the pattern-matching 

problem that has some important good points but also some drawbacks. The construction 

used by the main algorithm of this section was suggested by the method we describe now 

and salvages some of its advantages while eliminating the disadvantages. 

11.3.1. Pattern Matching with Finite Automata 

Given a pattern P, it is possible to construct a finite automaton that can be used to scan 

the text for a copy of P very quickly. A finite automaton can easily be interpreted as a 

special kind of machine or flowchart, and a knowledge of automata theory is not necessary 

to understand this method. 

Definition 11.2 

Let © be the alphabet, or set of characters, from which the characters in P and T may be 

chosen, and let ~w = |X|. The flowchart, or finite automaton, has two types of nodes: 

1. Some read nodes, which mean “Read the next text character. If there are no further 

characters in the text string, halt; there is no match.” One read node is designated the 

start node. 

to A stop node, which means “Stop; a match was found.” Itis marked with a *. ™ 

The flowchart has @ arrows leading out from each read node. Each arrow 1s labeled 

with a character from ©. The arrow that matches the text character just read is the arrow 

to be followed; that is, it indicates which node to go to next. You should study the example 

in Figure 11.2 to understand why the arrows point where they do. The read nodes serve 

as a sort of memory. For instance, if execution reaches the third read node, the last two 

characters read from the text were A’s. What preceded them is irrelevant. For a successful 

match, they must be followed immediately by a B and a C. If the next character is a B we 

can move on to node 4, which remembers that AAB has appeared. On the other hand, if 
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Figure 11.2. The finite automaton for P = ‘AABC’ 

the next character read at node 3 were a C, we would have to return to node | and wait for 

another A to begin the pattern. 

Once the flowchart for the pattern is constructed, the text can be tested for an occur- 

rence of the pattern by examining each text character only once, hence in O(7) time. This 

is a big improvement over Algorithm 11.1, both in timing and in the fact that, once a text 

character has been examined, it never has to be reconsidered; there is no backing up in 

the text. The difficulty is constructing the finite automaton—that is, deciding where all the 

arrows go. There are well-known algorithms to construct the finite automaton to recognize 

a particular pattern, but in the worst case these algorithms require a lot of time. The diffi- 

culty arises from the fact that there is an arrow for each character in © leading out from 

each read node. It takes time to determine where each arrow should point, and space to 

represent ma arrows. Thus a better algorithm will have to eliminate some of the arrows. 

11.3.2 The Knuth-Morris-Pratt Flowchart 

When constructing the finite automaton for a pattern P, it is easy to put in the arrows that 

correspond to a successful match. For example, when drawing Figure 11.2 for the pattern 

“AABC’, the first step is to draw 

start — (1-4 +2} 4 (3) #§ (4) (+) 

The difficult part is the insertion of the rest of the arrows. The Knuth-Morris-Pratt 

algorithm (which, for brevity, will be called the KMP algorithm) also constructs a sort 

of flowchart to be used to scan the text. The KMP flowchart contains the easy arrows— 

that is, the ones to follow if the desired character is read from the text—but it contains 

only one other arrow from each node, an arrow to be followed if the desired character 

was not read from the text. The arrows are called the success links and the failure links, 
respectively. The KMP flowchart differs from the finite automaton in several details: The 

character labels of the KMP flowchart are on the nodes rather than on the arrows; the 

next character from the text is read only after a success link has been followed: the same 

text character 1s reconsidered if a failure link is followed; there is an extra node that causes 
a new text character to be read. The scan starts at this node. As in the finite automaton, 
if the node labeled with the * is reached, a copy of the pattern has been found; if the end 
of the text is reached elsewhere in the flowchart, the scan terminates unsuccessfully. This 
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Get next 

text 

character 

Figure 11.3. The KMP flowchart for P = ‘ABABCB’ 

Text being scanned 
KMP cell Success (s) 

number Index Character — or Failure (f) 

l | A s 

2, 2 G f 

| » G fs 

0 } Ee get next char. 

| 3 A s 

2 4 B s 

3 5 A S 

4 6 A f 

2 6 A f 

| 6 4 Ss 

2 if B s 

3 8 A s 

4 9 B s 

5 10 A f 

3 10 A s 

4 1] none failure 

Table 11.1. Action of the KMP flowchart in Figure 11.3 for the pattern “A BABCB°’ on the 

text ‘ACABAABABA’ 

informal description of the scanning procedure should enable you to use the KMP flowchart 

in Figure 11.3 to scan a text string. Try ‘ACABAABABA‘’ and refer to Table 11.1 if you 

have difficulty. 

We now need a computer representation of the KMP flowchart, an algorithm to con- 

struct it (to determine how to set the failure links), a formal algorithm for the scan proce- 

dure, and an analysis of the two algorithms. 
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11.3.3. Construction of the KMP Flowchart 

The flowchart representation is quite simple; it uses two arrays, one containing the charac- 

ters of the pattern and one containing the failure links. The success links are implicit in the 

ordering of the array entries. 

Let fail be the array of failure links; fail[k] will be the index of the node pointed to by 

the failure link at the kth node, for | < k < m. The special node that merely forces the next 

text character to be read is considered to be the zero-th node; fail[1] = 0. To see how to set 

the other failure links, we consider an example. 

Example 11.2 Setting fail links for the KMP algorithm 

Let P=*ABABABCB and suppose that the first six characters have matched six consec- 

utive text characters as indicated: 

Pe. ABABAB|CB 
ti tii 

rs 4.5 JABABABLx 

Suppose that the next text character, x, 1s not a “C’. The next possible place where the 

pattern could begin in the text is at the third position shown, that is, as follows: 

er ABAB|ABCB 

rr eS EIB EAU 0s be 

The pattern is moved forward so that the longest initial segment that matches part of the 

text preceding x is lined up with that part of the text. Now x should be tested to see if it is 

an A to match the third A of the pattern. Thus the failure link for the node containing the 

C should point to the node containing the third A. 

The general picture is shown in Figure 11.4. When a mismatch occurs, we want to 

slide P forward, but maintain the longest overlap of a prefix of P with a suffix of the part 

of the text that has matched the pattern so far. Thus the current text character should be 

compared to p, next; that is, fail[k] should be r. But we want to construct the flowchart 

before we ever see 7. How do we determine r without knowing 7? The key observation 

is that when we do scan 7, the part of T just scanned will have matched the part of P just 

scanned, so we just need to find the longest overlap of a prefix of P with a suffix of the part 

of P just scanned. 

Definition 11.3 Fail links 

We define fail[k] as the largest r (with r <k) such that p, --- p-—, matches Dryaeyees 

px—. That is, the (r — |)-character prefix of P is identical to the (r — 1)-character sub- 
string ending at index k — |. Thus the fail links are determined by repetition within P 
itself. 
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P| ca Pk-1 

a tj tj] 

Matched 

(a) Mismatch at px and f; 

P| OWA 

P\ ey Pk-r+1 °°" Pk-1 

a a lj aes Pj—r+l aa Neal 

Next 

comparison 

(b) Slide p to line up the longest prefix that matches a suffix of the scanned characters. 

Figure 11.4 Sliding the pattern for the KMP algorithm 

An occurrence of the pattern could be missed if r were chosen too small. (Consider 

what would happen if in Example 11.2 the failure link for C was set to point to the second 

A, and if x = A and is followed by BC B in the text.) 

Although we have described the correct values for the failure links, we still don’t have 

an algorithm for efficiently computing them. We can define fail recursively. Suppose that 

the first k — | failure links have been computed. Then we have the picture in Figure 1 1.5(a). 

To assign fail{k] we need to match a substring of P ending at &k — |. To simplify the 

notation, we will let s = fail[k — 1]. The easy case is when pz_; = ps. because we already 

know that p; ---+ ps—; matches the (s — 1)-character substring ending at k — 2. Then the 

two matching sequences in Figure 11.5(a) can be extended by one more character, so in 

this case fail{k] is assigned s + 1. 

Example 11.3. Computing KMP fail links—a simple case 

In Figure 11.6, fail[6] = 4 because p;p2p3 matches p3p4ps. Since po = pa, fail[7] is 

assigned 5. This tells us that pj; --- p4 matches the four-character substring ending at 

index 6. 

What if py—| # ps? We must find a prefix of P that matches a substring ending at 

k — 1. In this case the match in Figure 11.5(a) cannot be extended, so we look farther 

back. Let s2 = fail[s]. By the properties of the failure links we have the matches shown in 
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<_— <_—_—_— 

P\ ae Pk—-r+1 mes Pk—2 | Pk=1 Pe FS Pin 

Matched Do these 

match? 

(a) By definition of fail[k-1] (which is s) 

P\ “'*  P fail{s|-1 P faills) ! 
i) 

! 
i 

P\ a Ps-\ 

! 
i) 

By Ae a Prod | Pei} Pe 0 > Pm 

Do these 

match? 

(b) Looking back for a match for px_| 

Figure 11.5 Computing fail links: Index s is equal to fail[k-1]. 

Get next 

EXE 

character 

Figure 11.6 Computing fail links: Dashed edges are discussed in Examples 11.3 and 11.4. 

Figure 11.5(b). If py—1 = ps), we have a prefix (of length s2) to match the substring ending 

at k — | and so fail{k] should be s2 + 1. If py—1 # ps,, we must follow the failure link from 

node s2 and try again. This process continues until we find a failure link s such that s = 0 

or px—| = Py. In either case, fail[k] should be s + I. 

Example 11.4 Computing KMP fail links—the recursive case 

Again look at Figure 11.6. To compute fail[8], s = fail[7] = 5. But p7 # ps, so recompute 

s = fail[5] = 3. But p7 # p3 either, so recompute s = fail[3] = 1. Still p7 ¥ p). Finally, 

s = fail{1] =0 ends the search, and fail[8] is assigneds +1=1. @ 
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Algorithm 11.2.) KMP Flowchart Construction 

Input: P, a string of characters; m, the length of P. 

Output: fail, the array of failure links, defined for indexes 1, ..., m. The array 1S passed 
in and the algorithm fills it. 

void kmpSetup(char[] P, int m, int[] fail) 

int? kes; 

ee rani 10% 

2. *fork=2) k= mre +4) 

Bye s = fail{k—1]. 

4. while (s > 1) 

a) if ——s 9) 

6. break: 

le s = faill[s]; 

8 fail{k] =s +1; 

11.3.4 Analysis of KMP Flowchart Construction 

Let m be the length of the pattern, P. For this discussion we assume m > 2. It is easy to see 

that the complexity of Algorithm 11.2 is in O(m7). The body of the for loop is executed 

m — | times, and each time, the body of the while loop is executed at most m times because 

s starts somewhere in P and “jumps” backward, at worst to zero. But this analysis is not 

careful enough. 

We will count character comparisons, as we did for Algorithm 11.1. Since the char- 

acter Comparison is executed in each pass through the while loop, the running time of the 

algorithm is bounded by a multiple of the number of character comparisons. (Actually, 

since the character comparison is not executed when s = 0, we should also note that the 

condition s = (0 cannot occur more than m — | times.) 

We call a comparison successful if py = pr—1 and unsuccessful otherwise. A success- 

ful comparison breaks out of the while loop so at most m — | successful comparisons are 

done (one for each k from 2 through m). After every unsuccessful comparison s is de- 

creased (since fail[s] <5), so we can bound the number of unsuccessful comparisons by 

determining how many times s can decrease. Observe the following: 

1. sg is initially assigned 0, when k = 2. 

2. s is increased only by executing line 8 on one pass of the for loop, followed by line 3 

on the subsequent pass; these two statements increase s by |. This occurs m — 2 times. 

3. sg iS never negative. 

Therefore s cannot be decreased more than m — 2 times. Thus the number of unsuccessful 

comparisons is at most m — 2 and the total number of character comparisons is at most 

2m — 3. Observe that, to count character comparisons, we actually counted the number 

of times the index s changed. The latter is another good measure of the work done by 

the algorithm. The important conclusion is that the complexity of the construction of the 

flowchart is linear in the length of the pattern. 
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11.3.5 The Knuth-Morris-Pratt Scan Algorithm 
We have already informally described the procedure for using the KMP flowchart to scan 

the text. The algorithm follows. 

Algorithm 11.35) KMP Scan 

Input: P and T, the pattern and text strings; m, the length of P; fail, the array of failure 

links set up in Algorithm 11.2. The length of P would have been found when setting up 

the fail array. The pattern is assumed to be nonempty. 

Output: The return value is the index in T where a copy of P begins, or —1 if no match 

for P is found. 

Remark: The function endText is as defined in Definition 11.1. 

int kmpScan(char[] P, char[] T, int m, int{] fail) 

int match; 

intake 

// j indexes text characters; 

// k indexes the pattern and fail array. 

match = -1; 

li elke—ale 

while (endText(T, j) == false) 

if (k > m) 

match =j-—m; // Match found 

break: 

ih(k=—=70) 

Jase, 

k= 1; // Start pattern over 

else if (t; == px) 

[parse 

k ++; 

else 

// Follow fail arrow. 

k = fail{k]; 

// Continue loop. 

return match; 

The analysis of the scan algorithm uses an argument very similar to that used to 
analyze the algorithm to set up the failure links, and it is left as Exercise 11.8. The number 
of character comparisons done by Algorithm 11.3 is at most 27, where n is the length of 
the text, 7’, Thus the Knuth-Morris-Pratt pattern-matching algorithm, which is comprised 
of Algorithms 11.2 and 11.3, does O(n +m) operations in the worst case, a significant 
improvement over the (mn) worst-case complexity of Algorithm 11.1. Some empirical 
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11.4 The Boyer-Moore Algorithm 

studies have shown that the two algorithms do roughly the same number of character 
comparisons on the average (for natural language text), but the KMP algorithm never has 
to back up in the text. 

The Boyer-Moore Algorithm 

The chief defect of Henry King 

Was chewing little bits of string. 

—Hillaire Belloc, Cautionary Tales (1907) 

For both simpleScan (Algorithm 11.1) and kmpScan (Algorithm 11.3), if the pattern P is 

found beginning at the /th position in the text, then each of the text characters preceding the 

ith position has also been examined (that is, has participated in at least one comparison). 

The key insight of the Boyer-Moore algorithm is that some text characters may be skipped 

over entirely. In fact, our intuition suggests that the longer the pattern, the more information 

the algorithm has about what it has to find, so a good algorithm should be able to jump 

faster past places in the text where the pattern can’t appear. 

11.4.1 The New Idea 

The Boyer-Moore (from now on, BM) algorithm always scans the pattern from right to left. 

It uses two heuristics for deciding how far the pattern may be slid over the text string after 

a mismatch. As usual, let P be a pattern of length m and 7 a text string of length n. The 

first heuristic for sliding P 1s illustrated in the following example. 

Example 11.5 | Boyer-Moore’s first heuristic 

We are searching for the pattern must in a quotation from Oscar Wilde: “If you wish to 

understand others you must intensify your own individualism.” The pattern is positioned 

over the string at each place where a potential match will be checked. The comparisons are 

indicated by arrows. The first four comparisons are as follows: 

TOS ae 

mus t 

mus t 

mus t 

Lh vou wish to {understand others you must 

When the last character in must, the ‘1, is compared to the y in you we observe not only 

that there is no match at this position, but also, since there is no y at all in must, there can 

be no match that overlaps the y. We may slide the pattern four places to the right. Similarly, 

after each of the next two comparisons we slide the pattern four places because there is no 

w or blank in must. At the fourth comparison we have a mismatch, but there is aw in the 

pattern, so we slide the pattern to line up the w’s, as shown for the first comparison in the 
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next diagram, and check for a match. (As always in BM, we start checking at the right end 

of the pattern.) The next several comparisons are as follows: 

NU See 

mus t 

must 

mus t 

MOUS! 

mus t 

sy {|| | 

li you wish ta Understand others you. mus 4 

After the mismatch of the w in must and the r in understand, the pattern slides just far 

enough to pass the 7. Similarly with the s in must and the o in others. The last comparison 

shown 1s a mismatch, but the text character u does appear in the pattern, so the pattern is 

slid over to line up the w’s. Four more comparisons (right to left) will confirm that a match 

has been found. 

In this example only 18 character comparisons are done, but since the match occurs at 

position 38 in 7, the other algorithms would do at least 41 comparisons. However, unlike 

KMP, this algorithm must be able to back up in the text by the length of the pattern. 

The number of positions we can “jump” forward when there is a mismatch depends 

on the text character being read, say r;. We will store these numbers in an array charJump 

indexed by the character set &. 

Java sidelight: Characters (type char) in Java are 16 bits, so an array with an entry 

for each character would have 65,536 cells. Type byte is only 8 bits, requiring an array of 

256 cells. If itis known (or assumed) that the text and pattern contain only 8-bit characters 

(which includes all the characters on most keyboards), the smaller array can be used. 

For controlling the scanning algorithm, it is more convenient to know the amount by 

which the text index j should be incremented to begin the next right-to-left scan of the 

pattern, rather than the amount by which P slides forward. As can be seen in Example 11.5 

and Figure 11.7, this jump in j may be larger than the distance P slides. If t; does not 

appear in P at all, we can jump forward m places. Figure 11.7 illustrates how to calculate 

the jump for the case when r; does occur in P. In fact, tj may occur more than once 

in P. We need to make the smallest possible jump, lining up the rightmost instance of 
t; in Py otherwise we might go past a copy of P. (We never want to slide the pattern 

backwards: when our current position in P is already left of the rightmost instance of r; in 

P, charJump[r;| will not be useful.) 

Algorithm 11.4 Computing Jumps for the Boyer-Moore Algorithm 

Input: Pattern string P;m, the length of P; alphabet size alpha = |Z]. 

Output: Array charjump, defined on indexes 0, . . .. alpha-1. The array is passed in and 
the algorithm fills it. 
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P| lass A ma A es Pm 

Pin 

new | 

<— charJump| ‘A’ ] ——> 

Figure 11.7 Sliding the pattern to line up a matching character 

void computeJumps(char[] P, int m, int alpha, int{] charJump) 

char ch; 

int k; 

for (ch = 0; ch < alpha; ch++) 

charJump[ch] = m; 

fon(k— lok = me k++) 

charJump[p,] = m - k; 

Clearly the amount of time used to compute the jumps is in ©(|©| + m7) where m is 

the length of the pattern, P. 

113422 And the “Old” Idea 

Simply using charJump to skip through the text makes the Boyer-Moore algorithm run 

much faster than the Knuth-Morris-Pratt algorithm for many cases. Combining charJump 

with an idea similar to that of the fail arrows in the KMP algorithm can improve the 

algorithm further. 

Example 11.6 Boyer-Moore’s second heuristic 

Suppose some (rightmost) segment of P has matched part of T before a mismatch occurs. 

pe ba ts amd cla ts 

+44 
| os ats 

The current text character is a ‘d’. Using charJump[‘d’], we would slide the pattern only 

one place right to line up its ‘d’ over the ‘d’ in 7. However, we know that the letters in T to 

the right of the current position are ‘ats’, the same letters that form the suffix of P that was 
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just scanned. If we know that P does not have another instance of ‘ats’, then we can slide 

P all the way past the ‘ats’ in T. If P does have an earlier instance of ‘ats’, we could slide 

P so that earlier ‘ats’ lines up with the matched letters in 7. For the previous example, the 

next position for a potential match is as follows: 

Bs bia t Silaade a ts 

IPs rae Gila tess 
+ 

new J 

In order not to miss a potential match, if P has more than one substring that matches the 

matched suffix, we line up the rightmost one (of course excluding the suffix itself). 

The general picture is shown in Figure 11.8(a); the mismatch occurs at p, and f;. 

Figure 11.8(b) shows the pattern slid to the right to line up a substring with the matched 

suffix. Figure 11.8(c) shows another possibility, where the entire matched suffix does not 

occur elsewhere in the pattern. In this case a prefix that matches some suffix is found, and 

the pattern is slid to the right to line them up. We want matchJump[k] to be the amount to 

increment /, the text position index, to begin the next right-to-left scan of the pattern after 

a mismatch has occurred at px. 

Definition 11.4 =matchJump and slide 

For 1 < k <m, we define 

matchJump[k] = slide[k] + m — k (ieh) 

and define slide[k] as described below. Intuitively, slide[k] is how far we can slide the 

pattern forward after a mismatch on px, and m — k is how many characters were matched 

before the mismatch. Their sum is how far the text index, 7, can jump. 

Let r be the largest index such that py) --- pp» matches p,+1- ++ Pr+m—zK, and Pe # 

p,. (Notice that r < k.) That is, the (m — k)-character suffix of P is identical to the (m — k)- 

character substring beginning at index r + |, the match cannot be extended to the left, and r 

is the largest index for which this is true. Then slide[{k] = k — r. Shifting the pattern forward 
by this amount causes the substring beginning at r + | to line up with the text at the place 
where the substring beginning at k + | used to line up. 

The condition p, # px is included because, if we are going to use matchJump|[k] at 
this point, we already know that px does not match 1;. If p» = pr, then p, will not match 
tj either, so there is no point in lining them up. If k =m, the suffix pyy|--- pm is empty, 
so the matching requirement is satisfied for every choice of r. In this case r is the largest 
index such that p, 4 pr. 

Sometimes there is no substring of P that matches the matched suffix, DESI oo Din: 
Then we line up the longest prefix of P that matches some suffix of P. If this prefix has q 
characters, then slide[k]} =m-q. 
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P\ 
Pm 

t| 
In 

Matched 

(a) A mismatch occurs at px and £;. 

Jeay es Pr Pr+i *** Prtm—k “ial Pm 

P| pa Pk} | Pk+l °°: Pin 

| tj Tit th 

i) i 
old j new j 

<— slide[k] — 

<< matchJump[k] —————> 

(b) Line up the rightmost substring of p that matches the matched suffix (and satisfies p, 4 px). 

ca a LG) nag Pm 

P| Teh ete Pm 

ty tn 

l 
old j new j 

ae eh 
<—_— matchJump[k] ———_> 

(c) If no substring of P matches px4) - ++ Pm, line up a prefix that gives a partial match. 

Figure 11.8 Sliding the pattern to line up a matched substring 

Example 11.7 Computing slide and matchJump 

Let P be ‘wowwow’, for which m = 6. We compute the slide and matchJump values 

beginning at the right end of the pattern. Values for matchJump that are already computed 

are shown below the pattern. The question mark indicates the position we are currently 

working on. At each step we slide the pattern to the right to line up a substring that 
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Ww oO Wi/wlO Ww wo wlw o W 

WwoOWW O|W WO WIW O W 

21 page 
+——> — 

(a) Matched = 1, slide = 2, jump = 3. (c) Matched = 3, slide = 3, jump = 6. 

wlo WwW OW wo w]w 0 W 

wow wlo w w olw w 0 W 

el UO asia 

(b) Matched = 2, slide = 5, jump = 7. Note that (d) Matched = 4, slide = 3, jump = 7. 

the match of the first ‘ow’ and the second ‘ow’ 

was not used because both are preceded by a 

‘w’s if a mismatch occurs at position 4 in the wo w|w 0 W 

pattern, there is no point in lining up another wlo wwow 

‘w’ at that position when scanning the text. eGiGe a aoe 

(e) Matched = 5, slide = 3, jump = 8. 

Pes Ww fa) Ww Ww fe) W 

matchjJump: 8 i ods: 7 3 | 

(f) Final values 

Figure 11.9 Computing matchJump—an example: Matched is the number of characters 

matched before the mismatch, as in Definition | 1.4. 

matches a suffix. The character preceding the substring must be different from the character 

preceding the suffix. For the rightmost pattern position, matchJump is assigned | because 

Ds F Po. 
See Figure 11.9. Note that this example illustrates the values for matchJump, but not 

the actual steps carried out by the algorithm below to compute them. We will return to this 

example after presenting the algorithm. 

Algorithm 11.5 Computing Jumps Based on Partial Matches 

Input: P, the pattern string; m, the length of P. 

Output: Array matchJump, defined on indexes 1, ..., m. The array is passed in and the 

algorithm fills it. 

Remark: The initialization and first two phases actually compute slide[k], as described 

in Definition 11.4, but store it in matchJump[k]. The last phase converts the entries from 

slide to matchJump per Equation (11.1). The array sufx is a right-to-left analog of KMP 
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fail. When sufx[k] = x, this means that the substring py41 +--+ Peim—y Matches the suffix 
Px+1°** Pm. Note that sufx[0] tells what suffix matches a prefix of P. 

void computeMatchJumps(char[] P, int m, int[] matchJump) 
int k, r, s, low, shift: 

int{] sufx = new int[m+1]: 

for(k= 1k = me kay) 

matchJump[k] = m+ 1; ///mpossibly large slide 

// Compute sufx links (like KMP fail links, but right-to-left). 
// Detect if substring equals matched suffix and is 
// preceded by mismatch at s; compute its slide. 
sufx[m] =m +1: 

hOf(kt—s ins ke nO) 

s = sufx[k+1]: 

while (s < m) 

if (pey41 == ps) 
break; // Exit while loop. 

// Mismatch between k+1 and s. 

matchJump[s] = min(matchJump[s], s — (k+1)); 

S=sSUix (si: 

SUK es ails 

// Continue for loop. 

// If no suffix match at k+1, compute slide based on prefix 

// that matches suffix. Prefix length = (m - shift). 

low = 1; shift = sufx[0]; 

while (shift < m) 

for (k = low; k < shift: k +4) 

matchJump[k] = min(matchJump[k], shift); 

low = shift + 1; shift = sufx[shift]; 

// Add number of matched characters to slide amount. 

for (k = 1: k = m: k +4) 

matchJump[k] += (m — k); 

return: 

Example 11.8 Computing slide and matchJump by the algorithm 

Consider the pattern “‘wowwow’ that was discussed in Example | 1.7. In the first phase, sufx 

and matchJump (logically slide, see Definition | 1.4) are given the following values (blanks 

indicate that no value has been computed, so the impossibly large initial value remains). 

jin Ww 0 W WwW O WwW 

sufx Bh) Se TL. ae 8 ie 

®) matchJump 
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In the second phase, since sufx[0] = 3, the value 3 is assigned to positions | through 

3 of matchJump. Then sufx[3] is retrieved and found to be 5. The value 5 is assigned to 

matchJump[4]. However, matchJump[5] already has a value (and this value is necessarily 

less than 5), so it remains unchanged. Similarly, matchJump[6] retains its previous value. 

At this point we have the final slide values (stored in matchJump to save space). 

iP w 0 WwW WwW O WwW 

moeitelni Wine. 2 Si 3) a) 

Finally, the number of matched characters prior to the mismatch at k is added to 

convert slide to matchJump, in accordance with Equation (11.1). 

P WOU WW Ou ay 

matchJlump 8 7 6 7 3h ill 

These agree with the values computed by inspection in Example 11.7. 

The central point for understanding correctness of Algorithm 11.5 is that the sufx array 

is a right-to-left analog of the fail array. Thus sufx[k] > k holds in place of fail[k] < k, 

sufx[m] = m+ | holds in place of fail[1] = 0, and so on. The important property is that 

sufx[k] = x if and only if the substring pei) ++» Pe+m—x matches the suffix py+1-- + Dm- 

The proof that the computation makes this property true follows the lines of that for KMP 

fail links, which was given informally in Section 11.3.3. 

Now consider the sequence of indexes defined by rp = sufx[O], rj.) = sufx[7;]. for 

i> 0 until r;4; =m + 1. These are the values taken on by the shift variable. From the 

above property of the sufx array it follows that each suffix of the pattern beginning at r; + | 

(and ending at m, of course) is also a prefix of P. 

There are still quite a few details involved in showing that the algorithm is correct, but 

the above points cover the main ideas. For additional details, please refer to the sources in 

Notes and References at the end of the chapter. 

Analysis of Computing Match Jumps 

The time for the first phase of computeMatchJumps, in which the sufx array is computed, 

can be analyzed with arguments similar to those used for analyzing the computation of 

KMP fail links, in Section 11.3.4. This is in O(m). It is easy to see that the rest of the 

algorithm is also in O(7). It also uses © (7) extra space for the sufx array. 

11.4.3 The Boyer-Moore Scan Algorithm 

Algorithm 11.6 =Boyer-Moore Scan 

Input: P and T, the pattern and text strings; m, the length of P; charjump and match- 

Jump, the arrays described in Sections 11.4.1 and 11.4.2. The pattern is assumed to be 

nonempty. 

Output: The return value is the index in T where a copy of P begins, or —1 if no match 
for P is found. 
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Remark: The function endText is as defined in Definition | 1.1, 

int boyerMooreScan(char{] P, char[] T, int m, int{] charJump, int{] matchJump) 
int’ match: 

int j, k: 

// j indexes text characters; 

// k indexes the pattern. 

match = -1: 

j=m-k=m; 

while (endText(T, j) == false) 

if (k < 1) 

match = j + 1; // Match found 

break: 

if (; == pr) 

ah, teach 
else 

// slide P forward 

J += max(charJump[r}], matchJump|[k]); 

k =m; 

// Continue loop. 

return match: 

11.4.4 Remarks 

The behavior of the Boyer-Moore algorithm depends on the size of the alphabet and the 

repetition within the strings. In empirical studies using natural language text and m > 5, 

the algorithm did only roughly 0.24 to 0.3 character comparisons per character in the text, 

up to the point of the match or the end of the text. In other words, it examined only roughly 

one-quarter to one-third of the characters. See Figure 11.10 for the results of one such study 

comparing the three algorithms. The experiments used 20 patterns of length m from | to 

14. The text length was 5000. 

For binary strings, BM does not do quite as well (charJump does not help much); in 

another study, roughly 0.7 comparisons were done for each text character. 

In all cases with m > 5, the average number of comparisons is bounded by cn for a 

constant c < |. If the pattern is quite small (m =< 3), then the overhead of preprocessing the 

pattern is not worthwhile; BM does more comparisons than the straightforward approach, 

simpleScan (Algorithm 11.1). 

There are several improvements and modifications to the BM algorithm that make it 

run faster. (See Notes and References at the end of this chapter.) Like Algorithm 11.1, BM 

does some backing up in the text string (because it scans the pattern right-to-left). 

Two extensions to the pattern-matching problem are often useful: Pind a// occurrences 

of the pattern in the text, and find any one of a finite set of patterns in the text. 
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© Straightforward 

Q @ Knuth-Morris-Pratt 

- © Boyer-Moore 
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Pattern length (772) 

Figure 11.10 Comparison of string-matching algorithms. (From G. de V. Smit, “A Com- 

parison of Three String Matching Algorithms,” Software: Practice and Experience, vol. 12, 

Copyright 1982, John Wiley and Sons, Ltd. Reprinted by permission of John Wiley and Sons, 

Ltd.) 

Approximate String Matching 

In Sections 11.2 through 11.4 we studied several algorithms to find a copy of a character 

string called the pattern in another string called the text. Those algorithms searched for an 

exact copy of the pattern. However, in many applications we can’t expect an exact copy. 

A spelling correcter, for example, may search a dictionary for an entry that is similar to a 

given (misspelled) word. In speech recognition, samples may vary. Other applications in 

which close, but not exact, matches are sought range from identifying sequences of amino 
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acids to recognizing bird songs. As in the earlier sections, we use character strings here, but 
the method is clearly applicable to strings in “alphabets” of other kinds of data, as would 
be appropriate, for example, for speech recognition. 

In this section we show a dynamic programming solution to the problem of finding 
an approximate match for a pattern in a string. The dynamic programming paradigm was 
introduced in Chapter 10. Familiarity with dynamic programming will give you a better 
perspective on this problem. 

Let P = p, p2--- pm be the pattern and T = tt - - - tf, be the text. We assume that n 
is large relative to m. The terminology introduced next adopts the point of view that P is 
a “correct” pattern, while 7 may be only approximate. In many applications T may have 
“noise.” However, the algorithm does not depend on this viewpoint. 

Definition 11.5 k-approximate match 

Let k be a nonnegative integer. A k-approximate match is a match of P in T that has at 

most k differences. The differences can be any of the following three types. The name of 

the difference is the operation needed on T to bring it closer to P. 

revise: The corresponding characters in P and T are different. 

delete: T contains a character that is missing from P. 

insert: T 1s missing a character that appears in P. 

Example 11.9 

The match shown below is a 3-approximate match. It has one of each of the permissible 

differences. There are no blanks in P and 7; the spaces are used to show the match more 

clearly. 

Ps Pe Tie “Bases aot by 

is ey dene CSCS Cxees sua) Cavill sy 

The inputs for the problem are P, 7’, m (the length of P), and k (the acceptable number 

of differences). The problem is to find a substring of 7 that provides a k-approximate match 

for P, or determine that no k-approximate match exists. 

In the exact matching problem, when the current text character does not match the 

pattern, there is one action: Shift the pattern. In this problem, there are four choices 

(unless k is exceeded): Either shift the pattern or perform one of the three operations in 

Definition 11.5. There is no obvious way to know which will turn out the best, so the 

straightforward approach is to develop a recursive procedure to evaluate the alternatives. 

In Chapter 10 we encountered several optimization problems that could be solved in the 

following framework: 
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1. For each current choice: 

a. Determine what subproblem(s) would remain if this choice were made. 

b. Recursively find the optimal costs of those subproblems. 

ce. Combine those costs with the cost of the current choice itself to obtain an overall 

cost for this choice. 

2. Select a current choice that produced the minimum overall cost. 

With a little experimentation we can see that this procedure will encounter many repeated 

subproblems. 

Example 11.10 

Suppose two pattern letters are transposed in the text: 

eae ABCDE 

ae Pe a Ee 

Assuming the pattern is scanned left-to-right, these differences can be explained as two 

revisions, or as delete(C) followed by a later insert(C), or as insert(B) followed by a later 

delete(B). In all three cases, the subproblem of matching “DE’ remains to be solved. A 

backtracking search would solve it anew in each branch of the search. This is exactly the 

kind of behavior that indicates that the dynamic programming paradigm may be applicable. 

a 

To prepare for a dynamic programming solution, we need to formalize the recursive 

backtracking solution and decide on identifiers for the subproblems. We might want to 

scan the pattern left-to-right, as in KMP, or right-to-left, as in BM. (We assume the text 1s 

processed generally from left to right in either case, although there might be some backing 

up.) 

For the left-to-right pattern scan, a natural way to identify a subproblem is by a pair 

of integers (7, 7) where 7 denotes the beginning of a suffix of the pattern and / denotes 

the position in the text at which the match should begin. The subproblem (7, 7), then, 

is specified as finding the minimum-difference match of pj; +++ py, to a segment of T 

beginning at ¢;. This might introduce some complications if looking far ahead in the text 

is inconvenient. Notice that on the branches of the backtrack search where delete is the 

chosen operation, (7, 7) depends on (7, 7 + 1), which depends on (i, 7 + 2), and so on. We 

are forced to look ahead in the text without making any progress in the pattern. Let us see 

if the alternative, a right-to-left pattern scan, looks any simpler. 

For the right-to-left pattern scan, a natural way to identify a subproblem is by a pair of 

integers (7, 7) Where 1 denotes the end of a prefix of the pattern, and j denotes the position 

in the text at which the match should terminate. The subproblem (7, /) now is specified as 

finding the minimum-difference match of p, --- pj toa segment of T ending at t;. Now, on 

the branches of the backtrack search where delete is the chosen operation, (7, 7) depends 

on (i, J — 1), which depends on (7, 7 — 2), and so on. But if our strategy for the dynamic 
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programming algorithm is generally to solve the problem in increasing order of /, these 
subproblems will have been encountered and solved earlier. Thus the right-to-left pattern 
scan appears to be the superior foundation upon which to build a dynamic programming 
solution. 

To solve subproblem (i, /) recursively, we need to solve these subproblems: (i, / — 1), 
due to delete; (i — 1, j), due to insert; and (i — 1, J — 1), due to revise or due to matching 
characters. However, if we solve subproblems “bottom-up” in an order such that the latter 
three subproblems are solved before the solution for (i, /) is started, then we can solve 
(1, J) by looking up the earlier solutions. For the dynamic programming solution, we 
define: 

Definition 11.6 Differences table 

D\i|[j] = the minimum number of differences between p; --- p; and a segment of T 
ending atr;. 

There will be a k-approximate match ending at t; for any j such that D[m][j] <k. 

Thus if we want to find the first kK-approximate match, we can stop as soon as we find an 

entry less than or equal to & in the last row of D. The rules for computing entries of D 

consider each of the possible differences that could occur at p; and t;, and, of course, the 

possibility that those two characters might match. D[i][/] is the minimum of the following 

four values: 

matchCost = D[i — 1][{j — 1] NUE eats 

reviseCost = D[i — 1][7 — 1] +1 it Piet) 

insertCost = D[i — IJ[j] +1 

deleteCost = D[i|[j — 1] +1 

Each entry requires only entries above it and to its left in the table (see Figure 11.11), so 

the computation can be done in a forward row-by-row or column-by-column order. Since 

n may be much larger than m, it is more efficient to compute the entries of D column by 

column. To start the computation, we use a row O, with D[Q][/] = 0 for all / (intuitively, 

because a null section of the pattern differs in zero places from the null suffix of f - + - fj), 

Figure 11.11 Computation of D[i][/|: The three shaded entries are used. 
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il By A Xe a eS tO Dane ay. dae yy 

0 0 OO 0 CC WO O OG W OW WC 

h | | | | | | | OY aa | | | 

ye? 2 | 222 | p | | pi ee 

eee a ge eh) OB ea OU Ih sak 
p 4 Fae ee mc Co” ah cP: eh ee es 

y 5 Se Ot a AA ed a a A 

Table 11.2 The table D for Example 11.11 

and a column 0, with D[{i][O] =i (because p, --- p; differs ini places from a null prefix 

Of 1): 

Example 11.11 Computing the table D 

Suppose P = ‘happy’, k = 1, and T is the mistyped sentence “Have a hsppy day.’ Table 

11.2 shows the values of D. The entries are computed column by column, and as soon as 

an entry in the fifth row is found to have the value |, the computation terminates. 

The work done to compute each entry of D is a small constant, so the total work done 

is in O(nm). This is about as fast (within a constant factor) as the first, straightforward, 

algorithm for exact pattern matching (Algorithm 11.1). 

What about space? The space used by a dynamic programming algorithm for its table 

is often a reasonable price to pay for saving time. The table D in this algorithm, though, 

is m by n, and n is very large. Clearly, the whole table does not have to be stored. Only 

entries from the current column and the previous one are needed, so the algorithm can be 

written using roughly 2m cells. 

Writing out the algorithm should be an easy exercise (see Exercise 11.22). For an 

algorithm for k-approximate matching that runs in O(kn) time, see sources in Notes and 

References at the end of the chapter. 

Exercises 

Section 11.2 A Straightforward Solution 

11.1) Rewrite Algorithm 11.1 eliminating the variable 7. 

11.2) Rewrite Algorithm I1.1 to work on inputs that are linked lists. For simplicity, 

assume the element type is int. Use the IntList abstract data type operations of Sec- 

tion 2.3.2, and assume that 7 and P are objects in this class. 

11.3. In this exercise you will design operations for a Text abstract data type that will 

do what simpleScan needs to do with 7, without having to assume that T is an array. 
Try to make them general enough that other string-matching algorithms can probably use 
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them. We have already assumed endText was available. Some other suggested names are 
advanceText, backupText, and getTextChar. 

a. Write the specifications, but do not implement the operations. 

b. Show how to modify simpleScan to use your operations on 7. 

11.4 Suppose the text 7 is too long to store all at once in memory, so it is read in as 

needed. Algorithm 11.1 may need about m previous characters of 7, to the left of t;. That 

is, it may need to back up about m positions. 

In this exercise you will design a modification of the Queue ADT, called OpenQueue, 

which keeps elements (characters in this case) in FIFO order, as does a regular queue, but 

permits access to any element in the queue, not just the front element. 

a. Write the specifications for your new operations. 

b. Show how to implement the needed operations efficiently using an array, using sug- 

gestions from Exercise 2.16. 

c. Outline how to implement the Text ADT of Exercise 11.3 using the OpenQueue ADT. 

The idea is to keep enough characters in the queue to accommodate any backing up 

the algorithm may need to do. Assume the algorithm knows the maximum amount it 

might ever need to back up at the time the OpenQueue object is created. 

Section 11.3 The Knuth-Morris-Pratt Algorithm 

11.5 Draw the finite automaton (flowchart) for the pattern “ABAABA’, where © = 

(As BG}. 

11.6 Give the fail indexes used by the KMP algorithm for the following patterns: 

a. AAAB 

b. AABAACAABABA 

c. ABRACADABRA 

d. ASTRACASTRA 

11.7. Give a pattern beginning with an A and using only letters from {A, B, C} that would 

have the following fail indexes (for the KMP algorithm): 

Ona 2a Bez 

11.8 Show that kmpScan (Algorithm 11.3) does at most 2n character comparisons. 

11.9 How will the KMP algorithms behave if the pattern and/or the text are null (have 

length zero)? Will they “crash”? If not, will their output be meaningful and correct? 

11.10 Recall that the pattern P = ‘A--- AB’ (m — | A’s followed by one B) and the text 

string T =‘A--- A’ (n A’s) are a worst-case input for Algorithm 11.1. 

a. Give the values of the fail indexes for P. Exactly how many character comparisons are 

done by Algorithm 11.2 to compute them? 
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b. Exactly how many character comparisons are done by kmpScan to scan 7 for an 

occurrence of P? 

c. Given an arbitrarily large m, find a pattern Q with m letters such that kmpSetup 

does more character comparisons for Q than it does for the pattern P with m letters 

described above. 

11.11 Prove that Algorithm 11.2 sets the KMP failure links so that fail[k] is the largest r 

(with r < k) such that p; --- p-—; matches py_-i)-° + Pe—-1. 

11.12 The strategy for setting the fail links for the KMP algorithm has a flaw that is 

illustrated by Figure 11.3. If a mismatch occurs at the fourth character, a B, fail[4] points 

us back to another B, which of course will not match the current text character either. 

Modify Algorithm 11.2 so that fail values satisfy the condition stated in Section 11.3.3 

(and repeated in the previous exercise) and also the condition that p, # p,. (Be careful: a 

common first guess does not work.) 

11.13 Rewrite the KMP algorithms to work on inputs that are linked lists. For sim- 

plicity, assume the element type is int. Use the IntList abstract data type operations of 

Section 2.3.2, and assume that T and P are objects in this class. 

11.14. How would you modify kmpScan (Algorithm 11.3) to read the text from input, one 

character at a time, instead of accessing string 7? Assume the function read() returns an 

int, which equals the next input character, unless end of file has been reached, in which case 

it returns —1. Do you need the full capabilities of the Text ADT proposed in Exercise 11.3? 

Explain why or why not. 

Section 11.4 The Boyer-Moore Algorithm 

11.15 List the values in the charJump array for the Boyer-Moore algorithm for the 

following patterns assuming that the alphabet is {A, B,..., “i, 

a. ABRACADABRA 

b. ASTRACASTRA 

11.16 List the values in the sufx and matchJump arrays for the Boyer-Moore algorithm 

for the following patterns. 

a. AAAB 

b. AABAACAABABA 

c. ABRACADABRA 

d. ASTRACASTRA 

11.17 As Example 11.5 showed, just using the charJump values, without using match— 
Jump, can give a very fast scan. However, the statement 

j += max(charJump[t;], matchJump[k]) 
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in Algorithm 11.6 cannot simply be replaced by 

j += charJump[r;]. 

Why not? What other (small) change is needed to make the scan algorithm work? 

11.18 Recall that the pattern P = ‘A --- AB’ (m — | A’s followed by one B) and the text 
string T= *A--- A’ (n A’s) are a worst-case input for Algorithm 11.1. 

a. Give the values of the charJump, sufx, and matchJump arrays for P assuming that 
the alphabet is {A, B,..., zy 

b. Exactly how many character comparisons are done by boyerMooreScan to scan T for 

an occurrence of P? 

11.19 Suppose the text is being read as needed, one character at a time. Give a formula 

relating k, m, and matchJump[k] to the number of new text characters needed when there 

is a mismatch at pz. 

11.20 Suppose P and 7 are bitstrings. 

a. Show the values in the charJump, sufx, and matchJump arrays for the pattern 

1LOTTOLO11. 

b. For bitstrings in general, which array, charJump or matchJump, will yield the longer 

“jumps”? 

Section 11.5 Approximate String Matching 

11.21) An algorithm for finding an exact string match need tell us only where the pattern 

begins in the text or where it ends in the text. We can determine the unspecified end of 

the match in the text because we know the length of the pattern. This is not the case 

with approximate matching because we don’t know how many characters are missing 

from the pattern or the text. Show how to modify or extend the algorithm for detecting 

k-approximate matches so that it tells where the approximate match of the pattern begins 

rh A 

11.22 

a. Write out the algorithm for k-approximate matching. How much space does it require? 

b. Show how to use a version of the OpenQueue ADT, introduced in Exercise 11.4, to 

avoid using an amount of space that depends on n. Hint: Let the elements stored in the 

open queue be arrays of m + | integers, corresponding to the columns of the table D. 

What is the maximum number of columns that needs to be available at any one time? 

Additional Problems 

11.23 Rewrite each of the three scan algorithms (Algorithms 11.1, 11.3, and 11.6) so that 

they find all occurrences of the pattern in the text. 

StL 
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11.24 P is acharacter string (of length m) consisting of letters and at most one asterisk 

(‘x’). The asterisk is a “wild-card” character; it can match any sequence of zero or more 

characters. For example, if P = ‘sun*day’ and T = ‘happysundaemonday’, there is a 

match beginning at the ‘s’ and ending at the last ‘y’; the asterisk “matches” daemon. Give 

an algorithm to find a match of P ina text string T (consisting of n characters), if there is 

one, and give an upper bound on the order of its worst-case time. 

11.25 Let X =x)x2---x, and Y = y;y2--- y, be two character strings. We say that X 

is a cyclic shift of Y if there is some r such that X = y,+1--+ Yny1 -- - Yr. Give an O(”) 

algorithm to determine if X is a cyclic shift of Y. 

11.26 

a. Write an efficient algorithm to determine if a (long) string of text contains 25 consec- 

utive blanks. (Do not just give an exact copy of an algorithm in the text; customize it.) 

b. Construct a worst-case (or near worst-case) example for your algorithm. How many 

character comparisons are done in this case? 

c. Suppose the text string contains ordinary English text where blanks separate words 

and sentences, but there is very rarely more than one blank together. If the text length 

is N, approximately how many character comparisons will your algorithm do? 

11.27 Investigate the problem of finding any one of a finite set of patterns in a text string. 

Can you extend any of the algorithms in this chapter to produce an algorithm that does 

better than scan for each of the patterns separately? 

Programs 

1. Implement all three exact string searching algorithms, including a counter for the 

number of character comparisons done; run a large set of test cases; and compare 

the results. Use the techniques of Exercises 11.3 and 11.4 to manage backing up and 

jumping forward in text, so that you don’t need to store the entire text in memory. 

i) Write a program for the k-approximate matching algorithm, storing at most two col- 

umns at a time. Include the enhancements for Exercise 11.21. 

Notes and References 

Crochemore and Rytter (1994) is a book on text algorithms in general. It includes the 

Knuth-Morris-Pratt and Boyer-Moore algorithms and k-approximate matching. The main 

references for the algorithms presented here are Knuth, Morris, and Pratt (1977) and Boyer 

and Moore (1977). The first phase of Algorithm 11.5 is based on Knuth, Morris, and 

Pratt (1977) and the second phase is based on an idea attributed to K. Mehlhorn by Smit 

(1982). Guibas and Odlyzko (1977), Galil (1979), and Apostolico and Giancarlo (1986) 
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present various worst-case linear versions of the Boyer-Moore algorithm. See also Aho and 

Corasick (1975). Boyer and Moore and Smit give empirical comparisons of the algorithms 

described in this chapter. The graph in Figure 11.10 is from Smit (1982). 

Section 11.5 is based on Wagner and Fischer (1974). Hall and Dowling (1980) is a 

survey of approximate string-matching techniques. An O(kn) algorithm for k-approximate 

string matching is in Landau and Vishkin (1986). 
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Chapter 12 Polynomials and Matrices 

Introduction 

The problems examined in this chapter are polynomial evaluation (with and without pre- 

processing of the coefficients), polynomial multiplication (as an illustration of the discrete 

Fourier transform), and multiplication of matrices and vectors. The operations usually used 

for such tasks are multiplication and addition. On older computers, multiplication took a 

lot more time than addition, and some of the algorithms presented “improve” upon the 

straightforward or most widely known methods by reducing the number of multiplications 

at the expense of some extra additions. Hence their value depends on the relative costs of 

the two operations. Other algorithms presented reduce the number of both operations (for 

large input sizes). 

Several algorithms in this chapter use the divide-and-conquer method: evaluating a 

polynomial with preprocessing of coefficients (Section 12.2.3), Strassen’s matrix multipli- 

cation algorithm (Section 12.3.4), and the Fast Fourier Transform (Section 12.4). 

Many lower-bound results are stated without proof in this chapter. See Notes and 

References at the end of the chapter for further comment and references on these results. 

Evaluating Polynomial Functions 

Consider the polynomial p(x) = a,x" + dy_;x"~! +--+ + a,x + ao with real coefficients 

and n > |. Suppose the coefficients do, aj,..., da, and x are given and that the problem is 

to evaluate p(x). In this section we look at some algorithms and some lower bounds for 

this problem. 

The number of multiplications and additions done may seem a reasonable measure 

of work, but some algorithms may use division and subtraction and do fewer multiplica- 

tions and additions. Thus, particularly when discussing lower bounds, we will consider 

the total number of multiplications and divisions and the total number of additions and 

subtractions. 

12.2.1 Algorithms 

The two types of operations will be denoted */ and +, respectively. 

The obvious way to solve the problem is to compute each term and add it to the sum 
of the others already computed. The following algorithm does this. 

Algorithm 12.1) Polynomial Evaluation—Term by Term 

Input: The coefficients of polynomial p(x) in the array a; n > 0, the degree of p; and x, 
the point at which to evaluate p. 

Output: The value of p(x). 
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float poly(float[] a, int n, float x) 

float p, xpower: 

int i: 

p = a[0]; xpower = 1: 

ele (= We Tl & fe ah 

Xpower = xpower «* x: 

p += ali] « xpower: 

return p: 

Algorithm 12.1 does 2n multiplications and n additions. 

Horner’s method 

Is there a better way? Is there a way to compute ab + ac, given a, b, and c, with fewer 
than two multiplications? Yes, of course, by factoring it as a(b + c). Similarly, the key to 
Horner's method for evaluating p(x) is simply a particular factorization of p: 

PNK = Gye 4- Gy, = 1) a, 9) == a) ag. 

The computation is done in a short loop with only n multiplications and n additions. 

Algorithm 12.2) Polynomial Evaluation—Horner’s Method 

Input: a,n, and x as in Algorithm 12.1. 

Output: The value of p(x). 

float hornerPoly(float{] a, int n, float x) 

float p; 

int i: 

p = aln]; 
for (i =n-1;i > 0;i--) 

p=p* x +alil, 
return p: 

Thus simply by factoring p we have cut the number of multiplications in half without 

increasing the number of additions. Can the number of multiplications be reduced further? 

Can the number of additions be reduced? 

12.2.2 Lower Bounds for Polynomial Evaluation 

Just as we used decision trees as an abstract model for establishing lower bounds for sorting 

(and other problems), we need a model for polynomial evaluation algorithms (and other 

related computation problems). Recall that the algorithms represented by decision trees 

worked for a fixed input size and had no loops. Here we use a model called straight-line 

programs. The programs perform a sequence of arithmetic operations; they do no looping 
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and no branching. The operands may be elements from the set of inputs to the problem, /, 

elements from some set of constants, C, and intermediate results already computed. The 

constants may seem unnecessary—we did not use any in the two polynomial evaluation 

algorithms we examined—but allowing constants simplifies the lower-bound arguments, 

and any lower bound derived in a model that allows constants will be valid for a more 

restricted model that does not. 

Formally, a straight-line program is a finite sequence of steps of the form 

Si =qopr 

where g and r are inputs, constants, or the results of earlier steps, that is, g and r are in 

POG {5 eee i} and op is an arithmetic operator. The last step should compute p(x). 

For the problem of evaluating a polynomial p(x) = a,x" + Bye a ie oe te 

the input set is 7 = {x, ao, a), . . . , dn}. The inputs should be thought of as indeterminates, 

that is, abstract symbols with no assumptions about their values. 

Example 12.1 A straight-line program for Horner’s method with n = 2 

SJ] =d2* xX 

So Sa 

C2 == ye 

S4=53+da) & 

The number of steps in a straight-line program is clearly a reasonable measure of the 

work it does. Most of the theorems count */ and + steps separately. We will illustrate the 

proof techniques by showing that, if divisions are not permitted, a straight-line program to 

evaluate a polynomial of degree n must do at least 7 +’s. It can be shown by a similar but 

more complicated argument that, if divisions are not permitted, at least n multiplications 

are needed. It is also known that, if divisions are permitted, at least n */’s are required. 

Thus Horner’s method uses the optimal number of */’s, and, since division takes at least 

as much time as multiplication, it uses the best mix of these two operators. 

We say that a step 8; = q op r uses an input @ if and only if g =a orr =a@, org = 8; 

for some j <i and s; uses a, or r =sj; for some j <i and s; uses a. In other words, if 

we “expanded” s; by replacing the results from earlier steps until only inputs and constants 

remained, then @ would appear in the expression. In Example 12.1, for example, 53 uses 

a2, ay, and x. 

Lemma 12.1 A straight-line program (using only *, +, and —) to compute ay + +--+ a, 

must have at least 7 + steps. 

Proof The proof is by induction on n. For n = 0, we observe that any program has at 

least zero + steps. For n > 0, suppose P is a program for ag + +--+ a,. The idea of the 

proof is to substitute 0 for a, to produce a program that computes ap + +» + d,—1, then 

use the induction hypothesis. Let 

S;=qopr 
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be the first + step that uses a). (There must be such a step; otherwise the result of the 
computation would be a multiple of a,.) Since no previous + step used dp, q or r must be 
dy itself or a multiple of a,. If we substitute 0 for ad, we would have one of the following 
cases: 

Sp = Ge 

COR 2. ie oe 

Ss = 07 

For cases | and 2, eliminate this step from the program and substitute q or r, respectively 
for s; in all other steps where s; appears. For case 3, replace this step with 

[ee 

In all cases, we have eliminated one + step. Replace a, by 0 in all steps where it appears. 
We now have a program that computes ag + - -- + a,—1. By the induction hypothesis, it 
has at least 1 — | + steps. Therefore the original program P had at least n + steps. © 

Theorem 12.2 A straight-line program using only *, +, and — to evaluate 

| = _ se Bf ls = p(X) = anx" + Gy-\x" > +--+ + a,x + a, 

where do,..., d, and x are arbitrary inputs, must have at least n + steps. 

Proof Let P bea program to compute a,x" + d,—1x"~!+---+ a,x + ao. Replace every 

reference to x with “1.” This does not change the number of + steps. The resulting program 

now computes a, + --- + do, So it must have at least n + steps. 

12.2.3. Preprocessing of Coefficients 

Preprocessing (also called preconditioning) some of the data in a problem means, infor- 

mally, that some of the input is known in advance and a specialized program can be written. 

Suppose that a problem has inputs / and /’ and that we denote an algorithm for the problem 

by A. When we speak of preprocessing /, we mean finding an algorithm A, with input /’ 

which produces the same output as A with inputs / and /’. Thus the preprocessing problem 

has two parts: the algorithm A; which depends on /, and an algorithm that, with / as input, 

produces the algorithm A,;. Rigorously speaking, A and A; solve different problems and, 

as we will see, their complexities may differ. 

In some situations one polynomial has to be evaluated for a large number of different 

arguments. One example is a power series approximation of a function. In such cases, pre- 

processing of the coefficients may reduce the number of */’s required for each evaluation. 

Let pe) =a)" G,—\x" |! ++--»+ a,x +ap, where n = 2* — 1 for some k > 1. 

Thus p has 2‘ terms, some of which may be zero. The procedure for evaluating p(x) 

described here uses a divide-and-conquer method to factor p. We assume that p 1s monic 

(i.e., that a, = 1). Extending the algorithm to the general case is left as an exercise. 
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q(x) 
eer SSS. 

phe es] Ont 9 

Xe + Ak _7X Wate aoa Ao h=1 

| k—-| yk aK _ yk-1 ANS : 

ic +b) ie eae nme OSH EN ae 1 ees ; sips Oe ens t 20) 
I 

k ae ak—t | ak=1\__ 
Ro Gay ok 2 Eo oa oe | +bx- + +++ + bagi! 

a = | 

| gk=I 4 
0 (Grit 4 — 0) 65 +++++ (ag — bay:-1 ) 

| a 

Te) 

Figure 12.1 p(x) divided by x/ +b 

Ifn = 1, then p(x) =x + ao and is evaluated by doing one addition. Suppose n > | 

and p is written as follows for some j and b: 

p(x) = (x! + b)q(x) + r(x), 

where g and r are monic polynomials of degree 2~! — | (i.e., with half as many terms as 

p, counting zero terms, if any). Then p(x) can be evaluated by carrying out the following 

steps: 

1. Evaluate g(x) and r(x). 

2. Compute x/. 

3. Multiply (x/ + b) by g(x) and add r(x). 

Since g and r satisfy the same conditions as p—that is, they are monic and their degree 
is 2" — | for some m—we could use the same scheme recursively to evaluate them. 
How must j and b be chosen to ensure that g and r have the desired properties? Clearly 
j = degree(p) — degree(q) = 2* — | — (24-! — 1) = 24-!. Note that, since J is a power of 
2, x/ can be computed fairly quickly. The correct value for b becomes clear when we divide 
p(x) by x/ +b to obtain g(x), the quotient, and r(x), the remainder. See Figure 12.1. For r 
to be monic, a>x-1_; — b must be 1, so b = ayx-;_, — 1. Thus the preprocessing algorithm 
factors p as follows: 

sk—1 

aes) = (0° + (@5k-1_) — 1)) GCE tra) 

and factors q and r recursively by the same procedure. The factorization is complete when 
g and r have degree |. The following example illustrates the entire procedure. 

Example 12.2 

het pO) =x" 40x 4 5x? ax? Ox? Oe? ge Then k = ope a 
Ayk-1_) — 1 =a3—1=2, and x/ +b=x* +4 2. Figure 12.2(a) shows the computation of 
q(x) and r(x). Thus 

4 
ACh (Gees 2)(x? + 6x? + 5x 44) 4 &? = 10x* = Oy — Wy. 
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q(x) 

ex Sx + 4 

ee 2) x’ +6x°+5x°44x4 1 13,3 Oe ae 

a 6x° 5x) 

0 a 
_—————— 

r(x) 

| 

Ax4 ! + 27° x + NaS 
| 
| 
| 
| 

(a) Computing g(x) and r(x) 

k=2; j=2k-!=2 k=2) j=? 22 

D=@-1-;—-1l=aj—1=4 b=ay-1_, —~1=a,—-1=-—10 

x +6 x —10 

} 3 a) I ‘) y 

see +4) fe Saye 4 aaokeae ve Ne 10) n= 10g Oy ey 
| | 

x4+6x? | +4x424 c= 10x? | 10x 100 
————— Yl eee 

! | 

x —20 x — 107 

(b) Recursively factoring g(x): 

Thus g(x) = @? + 4)(@ +6) + 

C20). 

(c) Recursively factoring r(x): 

Thus 7(x) = (x? — 10)( — 10) + 
(x — 107). 

Figure 12.2 Computational details for Example 12.2 

Now factor g(x) and r(x) in the same way, as shown in Figures 12.2(b) and 12.2(c). Thus 

p(x) = (x7 +2) ee eA ee = 20)) 4 (O° =10G@=10)+@— 107)) ; 

Using this formula, evaluating p(x) requires five multiplications: three that appear ex- 

plicitly in the factorization and two to compute x° and x*. Horner’s method would have 

required seven. Observe, however, that 10 additions (and subtractions) are done instead of 

seven. 

Analysis of Polynomial Evaluation with Preprocessing 
of Coefficients 

We can easily count the number of operations done to evaluate p(x) (after the preprocess- 

ing work has been done) by considering the three steps used to describe the procedure: 

1. Evaluate g(x) and r(x) recursively. 

This suggests the use of a recurrence equation. 
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2. Compute x/. 

The largest j used is 24~! and Gidley uM se ase x? ' can be computed by doing 

k — | multiplications. 

3. Multiply (x/ + b) by q(x) and add r(x). 

One multiplication and two additions. 

Let M(k) be the number of multiplications done to evaluate a monic polynomial of 

degree 2‘ — 1, not counting the powers of x (since they can be computed once and used as 

needed). Let A(k) be the number of additions (and subtractions). Then: 

M(1) =0 

Mk) = 2k — 1) + | fork > | 

and 

A(1)=1 

A(k) =2A(k — 1) +2 fork Sl: 

By expanding M(k) a few times we see that 

k—2 

M(k) =4M(k —2)+2+1=8M(k—-3)+44+24+1=) 2 =2% 7-1, 
7=0 

The total number of multiplications, then, is 2*~' — 1 + k — 1. (The k — | term is for 

computing powers of x.) Since n = 2* — 1, the number of multiplications is n/2 + 

lg(n + 1) — 3/2, or roughly n/2 + Ign. It is easy to show that A(k) = (3n — 1)/2. (You 

should check that these formulas describe the number of operations done in the example.) 

Whether or not eliminating n/2 — Ign multiplications by doing n/2 extra additions 1s a 

time-saver, we have illustrated an important point: Lower bounds that have been obtained 

for a problem without preprocessing, in this case n */’s for evaluating a polynomial of 

degree n, may no longer be valid. The particular operations permitted in the preprocessing 

(for example, division of polynomials, as in this case, or finding roots of polynomials) 

can also affect the number of operations required. A lower bound of [n/2] */’s has been 

established for polynomial evaluation, allowing a variety of preprocessing operations. 

Vector and Matrix Multiplication 

We begin by reviewing the well-known methods for multiplying matrices and vectors, 

noting the number of operations done by these methods, and giving the known lower 

bounds for the number of multiplications and divisions («/’s). Then we will look at some 

more sophisticated strategies. One of these, using a divide-and-conquer approach, is able 

to improve on the asymptotic order of the straightforward matrix multiplication procedure. 

Throughout this section we use capital letters for the names of vectors and matrices and 

the corresponding small letters for their components. The components are real numbers. 
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12.3.1 Review of Standard Algorithms 
Eh a3 6 a Ur earns —\(o eit oeeen oe w,) be two n-vectors, that is, vectors with 
n components in each. The dot product of V and W, denoted V - W, is defined as V- W = 
oy) vj w;. The computation of V - W implied by the definition requires n multiplications 
and n — | additions. It has been shown that, even if one of the vectors is known in advance 
and some preprocessing of its components is permitted, at least 1 */’S are required in the 
worst case. Thus the straightforward computation of dot products is optimal. 

Let A be an m x n matrix and let V be an n-vector. Let W be the product AV. By 
definition, the 7th component of W is the dot product of the ith row of A with V. That is, for 
PS: 6) = ee a;jv;. The computation of AV implied by the definition requires mn 
multiplications. This is known to be optimal. The number of additions done is m(n — 1). 

Let A be an m x n matrix, let B be ann x q matrix, and let C be the product of A 

and B. By definition, c;; is the dot product of the ith row of A and the jth column of B. 

Thatis, for l <2 =9nrand 1 <j <a, Cij = See djb,;. If the entries of C are computed 

by the usual matrix multiplication algorithm, that is, as indicated by this formula, mng 

multiplications and m(n — 1)g additions are done. Much to the surprise of people studying 

the problem, attempts to prove that mngq */’s are required for matrix multiplication were 

unsuccessful, and eventually algorithms that do fewer «/’s were sought and found. Two of 

these are presented here. 

12.3.2 Winograd’s Matrix Multiplication 

Suppose that the dot product of V = (v), v2, v3, v4) and W = (w), w2, w3, w4) is computed 

by the following formula: 

VW = (vy, + w2) (v2 + wy) + (03 + wg) (V4 + WR) — VL V2 — V304 — WW? — Wawa. 

Observe that the last four multiplications involve only components of V or only compo- 

nents of W. There are only two multiplications that involve components of both vectors. 

Also observe that the formula relies on the commutativity of multiplication; for example, it 

uses the fact that w2v2 = v2w>. Hence it would not hold if multiplication of the components 

were not commutative; in particular, it would not hold if the components were matrices. 

Generalizing from the example, when n is even (say, n = 2/=p), 

p p p 

V-W= ) (U9) 21 > Wa)(o; +> W2i—1) — y Va ieee = ) w2j-)w2;. (12.1) 
i=l i=l i=| 

If n is odd, we let p = |n/2| and add the final term v,w, to Equation (12.1). In each 

summation, p, or |n/2], multiplications are done, so in all 3[”/2]| multiplications are 

done. This is worse than the straightforward way of computing the dot product. Even if one 

of the vectors is known in advance and the second or third summation can be considered 

preprocessing, 7 multiplications would still be done. If both vectors are known in advance, 

then the whole computation could be thought of as preprocessing, thus eliminating the 

whole problem! So what has been gained by looking at a more complicated formula for the 

dot product? 
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Suppose we are to multiply the m « nm matrix A with then x g matrix B. Each row of A 

is involved in g dot products, one with each column of B, and each column of B is involved 

in m dot products, one with each row of A. Thus terms like the last two summations in 

Equation (12.1) can be computed once for each row of A and each column of B and used 

many times. 

Algorithm 12.3) Winograd’s Matrix Multiplication 

Input: A, B,m,n,andq, where A and B are m x n andn x q matrices, respectively. 

Output: Matrix C = AB. The m x q matrix C is passed in and the algorithm fills it. 

void winograd(float[][] A, float[][] B, int n, int m, int qg, float[][] C) 

intake 

interme, 

float[] rowTerm = new float[m+1 ]; 

float{] colmTerm = new float[q+1]: 

// These arrays are for the results of the ‘‘preprocessing'' 

// of the rows of A and the columns of B. 

// ‘'Preprocess'' rows of A. 

for (i= 1:1< mi ++) 
Pp ae rowTerm[i] = 2S Ay Nae acre 

// ‘‘Preprocess'' columns of B. 

for (i= 1; i < q; i ++) 
colmTerm[i] = DE i Dap ti Rony, 

// Compute entries of C. 

for (i = 1; i < m;i ++) 

Fong =i iis cy js) 
Cig = Dp (Gi2e—1 + bre, j) * (Gi 2K + box—1,;) 

— rowTermli] — colmTerm{j]; 

// If n is odd, add a final term to each entry of C. 

if (odd(n)) 

for (=) =m ta) 

for G=1;j <q; j ++) 

Cij = Ci; —+ din * Dass 

Analysis 

Assume that 1 is even. (The case of odd n is left as an exercise.) We count multiplications 
first. Processing rows of A does mp, processing columns of B does gp, and computing the 
entries of C does mqp multiplications. The total, since p = n/2, is (mng/2) + (n/2)(q + 
m). If A and B are square matrices, both n x n, then Winograd’s algorithm does (n3/2) + 
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d . . . . ~ . ye . . Wal n~ multiplications instead of the usual n°. (See Algorithm 1.2.) The difference is significant 
even for small n. Unfortunately, Winograd’s algorithm does extra ’s. We count the +’s as 
follows: 

Processing rows of A: m(p — 1) 

Processing columns of B: — g(p— 1) 

Computing elements of C: — For each of the mg entries of C, we do: 

two pluses in each term of the summation: —2:p 

add the terms in the summation: p—1 

subtract rowTerm[i] and colmTerm{j]: D 

Thus to compute the elements of C the algorithm does mg(3p + 1) +’s, and the total, 

again assuming 77 is even, 1s (3/2)(mngq) + (n/2)(m + q) +mgq —m — q. For square n x n 

matrices, where the comparison between algorithms is a little easier to see, Winograd’s 

algorithm does (3/2)n* + 2n° — 2n +’s instead of the usual n> — n?. 

Observe that Winograd’s algorithm contains fewer instructions that require increment- 

ing and testing loop counters than does the usual method. On the other hand, Winograd’s 

algorithm uses more complex subscripting and requires fetching matrix entries more often. 

These differences are explored in the exercises. 

12.3.3 Lower Bounds for Matrix Multiplication 

Winograd’s algorithm shows that m x n andn x g matrices can be multiplied using fewer 

than mng multiplications. How many */’s are necessary? Is it in ©(mnq) or can the cubic 

term be eliminated? The best known lower bound is surprisingly low: mn, or n~ for square 

matrices. We stated earlier that mn */°s are necessary to multiply an m x n matrix by an 

n-vector. We would expect matrix multiplication to be at least as hard, hence to require at 

least as many */’s, and Figure 12.3 illustrates that this is true by showing that an algorithm 

to multiply matrices can be used to obtain a matrix-vector product. (The two problems 

are the same. of course, if g = 1.) No known matrix multiplication algorithm does only 

nx | mx | 

A B G 

men NXg mx q 

Figure 12.3. Lower bound for matrix multiplication 
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mn */’s. However, there are algorithms that, for large matrices, do significantly fewer 

multiplications and +’s than Winograd’s. 

12.3.4 Strassen’s Matrix Multiplication 
For the remainder of this section we assume the matrices to be multiplied are n x n square 

matrices, A and B. Strassen’s algorithm is a divide-and-conquer algorithm. The key to the 

algorithm is a method for multiplying 2 x 2 matrices using seven multiplications instead 

of the usual eight. (Winograd’s algorithm also uses eight.) For n = 2, first compute the 

following seven quantities, each of which requires exactly one multiplication: 

X) = (ay) + a2) * (by, + 522) x5 = (a); + 412) * bx 

Xo = (ao) + ao2) * by] ie = (el eh) ae (by; + bj2) 
(2s) 

x3 =a * (big = b22) a7 = (ajg— aon) * (boy + 099) 

X4 = 22 * (bo; — bj )) 

Let € =AB. The entnes of € are 

Cy = ay by, + ay2b1 C2 = ai 1b 12 + aia 

C2) = 42d); + ag2b2| C22 = a21b\2 + az2b22 

They are computed as follows: 

Cri Sos ae oe — 2 a oy Gio — Ne Ns 
(123) 

C2) =X2 + x4 C72 =X X32 XG 

Thus 2 x 2 matrices can be multiplied using seven multiplications and 18 additions. It 

is critical to Strassen’s algorithm that commutativity of multiplication is not used in the 

formulas in Equations 12.2, so they can be applied to matrices whose components are 

also matrices. Let n be a power of 2. Strassen’s method consists of partitioning A and 

B each into four n/2 * n/2 matrices as shown in Figure 12.4 and multiplying them using 

the formulas in Equations 12.2 and 12.3; the formulas are used recursively to multiply the 

component matrices. Before considering extensions for the case when 7 is not a power of 

2, we compute the number of multiplications and +’s done. 

wis 
I= + = 

rmis 

Figure 12.4 Partitioning for Strassen’s matrix multiplication 
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Suppose n = 2" for some k > 0. Let M(k) be the number of multiplications (of the 

underlying matrix components, i.e., real numbers) done by Strassen’s method for n x n 

matrices. Then, since the formulas of Equation (12.2) do seven multiplications of 24~! x 

2k—! matrices, 

MO} =1 

Mikye IMR — 1) fork > 0. 

This recurrence equation is very easy to solve. M(k) = 7*, and 7k = 7'8" =n!'87 = n2® 

Thus the number of multiplications is in 0(71°). 

Let P(k) be the number of 2's done. Clearly P(0) = 0. There are 18 =’s in the 

formulas of Equations 12.2 and 12.3, so P(1) = 18. Fork > 1, multiplying 2" x 2* matrices 

involves 18 additions of 24~! x 24~! matrices, plus all the +’s done by the seven matrix 

multiplications in Equations 12.2. So 

P(0) =0 

P= 180 SIP a1) York = 0. 

We can expand the recursion tree (see Section 3.7.2) to see what the row-sums look like, 

or expand the recurrence equation to see what the terms look like. 

Pi) =180" 92 IPS 

(6 eerie) ee or — 

S19 7 SF I eT 18 re PP 3) 

= 18 ‘ g2tk—1) EF \ 18 . 22(k—2) 4 72 J 18 .22tk—3) at LC es a, é 18 

A geometric series has developed, with ratio r = 7/4, so the sum is in © of its largest term 

(see Theorem 1.13). The largest term is 18 - J‘! which is in @(7*). As we just saw for 

M(k), this is in © (n'®7). 
For a more accurate value, we can use Equation (1.9). 

k—| k1 

Pia > TRO) = (oe) > ae 
ll 

2.8 2 
~ 6n2*! — 6n?. 

. . p) & + hes Set ; 

Thus for large n this algorithm does about 7 n-’*! arithmetic operations. 

If n is not a power of 2, some extension of Strassen’s algorithm must be used and 

more work will be done. There are two simple approaches, both of which can be very 

Day, 
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The usual = Winograd’s Strassen’s algorithm 

algorithm — algorithm (without enhancements) 

Multiplications nm Ue +n? Tk = n*8!, where n = 2* 

Additions/subtractions 13 — n° $n +n? — In 6-7" — 6.4" on?) = Gn?, where n = 2" 

Total 2n? — n? 2 3s — on Te! = Gres te Gn 

Table 12.1. Comparison of matrix multiplication methods for n x n matrices 

slow. The first possibility is to add extra rows and columns of zeros to make the dimension 

a power of 2. The second is to use Strassen’s formulas as long as the dimension of the 

matrices is even and then use the usual algorithm when the dimension is odd. Another more 

complicated possibility 1s to modify the algorithm so that at each level of the recursion, if 

the matrices to be multiplied have odd dimensions, one extra row and column are added. 

Strassen described a fourth strategy, one that combines the advantages of the first two, 

and also improves performance when n is a power of 2. The matrices are embedded 

in (possibly) larger ones with dimension 24m, where k = [Ign — 4] and m = [n/2*). 

Strassen’s formulas are used recursively until the matrices to be multiplied are m x m;: 

then the usual method is applied. With this enhancement, the total number of arithmetic 

operations done on the matrix entries will be less than 4.7n!27 (see Exercise 12.11). 

Table 12.1 compares the numbers of arithmetic operations done by the three matrix 

multiplication methods for n x n matrices. For large n, Strassen’s algorithm does fewer 

multiplications and fewer +’s than either of the other methods. In practice, however, 

because of its recursive nature, implementing this algorithm requires a lot of bookkeeping 

that might be slow and is complicated. The other, much simpler algorithms are more 

efficient for moderate-size n. 

The primary importance of Strassen’s algorithm is that it broke the ©(n3) barrier 

for matrix multiplication and the ©(n+) barrier for a number of other matrix problems. 
These problems, which include matrix inversion, computing determinants, and solving 
systems of simultaneous linear equations, have well-known © (1°) solutions, but they can 
be reduced to matrix multiplication, so they too can be solved in O(n'®’) time. Strassen’s 
result has been improved upon theoretically several times. There is a matrix multiplication 
algorithm with running time in O(n7?"°). The lower bound of n2 multiplications has not 
been increased; whether matrix multiplication can be done in @(n7) steps is still an open 
question. 

The Fast Fourier Transform and Convolution 

The Fourier transform has widespread applications in engineering, physical sciences, and 
mathematics. Its discrete version is used in interpolation problems, in finding solutions of 
partial differential equations, in circuit design, in crystallography, and, very extensively, 
in signal processing. This was one of the earliest problems for which the divide-and- 
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conquer strategy was used to develop an algorithm of lower asymptotic order than the 
straightforward computation. The improved algorithm is called the fast Fourier transform. 

This algorithm had a widespread impact because many other mathematical compu- 
tations can be expressed in terms of Fourier transforms. In some cases it turns out to be 
faster to convert the natural problem into a Fourier transform problem, and do two Fourier 
transforms, than to compute a solution of the original problem in the straightforward way. 
Convolution is one such example. 

Definition 12.1. Convolution 

Let U and V be n-vectors with components indexed from 0 to n — 1. The convolution 

of U and V, denoted U * V, is, by definition, an n-vector W with components w; = 
n=l : 5 : : 

ye ) Ujvj—j, Where 0 <7 <n — | and the indexes on the right-hand side are taken modulo 

n. & 

For example, for = 5, 

WO) = UQVON + U1 V4 + U2V3 + U3V2 + U4d] 

W] = UQv, + U1 VO + U2V4 + U3U3 + U4VU2 

W4 = UQU4 + U{V3 + U2V2 + U3ZV, + U4VO. 

The problem of computing the convolution of two vectors arises naturally and fre- 

quently in probability problems, engineering, and other areas. Symbolic polynomial mul- 

tiplication, which is examined in this section, is a convolution computation. 

The discrete Fourier transform of an n-vector and the convolution of two n-vectors 

can each be computed in a straightforward way using n7 multiplications and fewer than 

n- additions. We present a divide-and-conquer algorithm to compute the discrete Fourier 

transform using ©(n log n) arithmetic operations. This algorithm (which appears in the 

literature in many variations) is known as the fast Fourier transform, or FFT. We then use 

the FFT to compute convolutions in ©(n log n) time. This time-saving 1s very valuable in 

the applications. 

Throughout this section all matrix, array, and vector indexes begin at 0. The complex 

roots of unity (also called roots of 1) and some of their elementary properties are used in 

the FFT. The basic definitions and required properties are reviewed 1n the appendix for this 

section (Section 12.4.3). Readers who are unfamiliar with complex numbers or nth roots 

of unity should read the appendix before proceeding. 

12.4.1. The Fast Fourier Transform 

The discrete Fourier transform transforms a complex n-vector (1.e., an n-vector with com- 

plex components) into another complex n-vector. To transform a real n-vector, simply treat 

it as a complex -vector in which all imaginary parts are zero. 

5) Dg 
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Definition 12.2 | Discrete Fourier transform and the matrix F;, 

For n > " let w be a primitive nth root of 1, and let F,, be the n x nm matrix with entries 

fij = w'!, where 0 <i, j <n—1. The discrete Fourier transform of the n-vector P = 

(pO; Pis-=-> Pa—1) 18 the product FP. om 

The components of F;,, P are 

0 0 0 
Ww pot w” py Se et Oyo) Din 

0 n—2 n—| 
OI => Ole 29-10) Pa? ow Dye 

j = (n—| O Mere Pi Ge ph eg Ome 

n—1)(n—2) I)(n 0 n—-1l ( 2 (n= —1) 
OQ Poo pl +> a @ Pn—2 + W Deas 

Rewritten in a slightly different form, the 7th component is 

all 2 
Pio) + Pn—2w! i abe ee bt pia! + po. 

Thus if we interpret the components of P as coefficients of the polynomial p(x) = 

eee ie = eh tae +--+ p,x + po. then the ith component is p(w!) and com- 

puting the discrete Fourier transform of P means evaluating the polynomial p(x) at 

OA ae w"—!, that is, at each of the nth roots of 1. We will approach the prob- 
lem from this point of view. We will develop a recursive divide-and-conquer algorithm 

first and then examine it closely to remove the recursion. We assume that n = 2‘ for some 

k > 0. (Adjustments to the algorithm can be made if it is to be used for n not a power of 2.) 

The divide-and-conquer strategy 1s to divide the problem into smaller instances, solve 

those, and use the solutions to get the solution for the current instance. Here, to evaluate 

p at n points, we evaluate two smaller polynomials at a subset of the points and then 

combine the results appropriately. Recall that w!"/* = —1 and thus for 0 < j < Gri 2Z)— 1, 

w\"/°)+) = —@, Group the terms of p(x) with even powers and the terms with odd powers 

as follows: 

n—| n/2- nj2—1 

=) pir = = pax” Be >» Poj 41x"! 

i=0 =) eh) 

Define 

n/2-1 

Peven( s pux' and poaa(a es pri+ix'. 

Then 

p(x) = Peven(x") + xpoag(&?) and p(—x) = peven(x) — apoaux?). C24) 
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Equation (12.4) shows that, to evaluate p at l,w,..., CEES eg as) arene ane Sy 

it suffices to evaluate Peyen and pogg at 1,@,..., (0/2)? and then do n/2 multipli- 
cations (for x Dada(x?)) and n additions and subtractions. The polynomials Peyen and Poud 

can be evaluated recursively by the same scheme. That is, they are polynomials of degree 

n/2— 1 and will be evaluated at the n/2-th roots of unity: 1, @7,..., (@/2)— e Clearly, 

when the polynomial to be evaluated is a constant, there is no work to be done. 

The recursive algorithm follows. 

Algorithm 12.4 Fast Fourier Transform (Recursive Version) 

Input; The vector P= (po, pis. ..4 Pn—\), aS a Complex array with n entries, where 

n = 2*; integer k > 0; and integer m > 0. (To process a vector of float, copy it into the 

real part of the Complex array P, and set all the imaginary parts to 0.) 

Output: The discrete Fourier transform of P stored in the Complex array transform. This 

array (with indexes 0,..., 2 — 1) is passed in and the algorithm fills it. 

Remark: We assume the class Complex provides complex arithmetic to simplify the 

pseudocode. This class does not currently exist in Java. 

We assume the 2'-th roots of 1: @°, @,...,@” |, are stored in the global array omega 

in the order listed here. We use 77 to select roots from this array. Procedure recursiveFFT 

would be called initially with m = |. In general, the set consisting of every mth entry, that 

is, @, w”, w*", .. ., is the set of (2*/m)-th roots of 1. 

void recursiveFFT(Complex{] P, int k, int m, Complex|[] transform) 

if (k==0) 

transform[O] = po; 

else 

int n= 2k: 

Complex{[] evens = new Complex([n/2]; 

Complex{] odds = new Complex([n/2]; 

Complex xPOdd: 

int j; 

J// Evaluate Peven at the 2'—!th roots of 1. 

recursiveFFT((po, p2.-.-- Pok_2), k-1, 2m, evens); 

J// Evaluate Poda at the 2'—! th roots of 1. 

recursiveFFI((p}, p3,..., Pok_1), k-1, 2m, odds); 

for (i= Os Nae areas Weal eae 

// Evaluate p(w!) and p(w *4). 

xPOdd = omega[m«j] « odds{jJ; 

// Compute p(w!). 

transform[j] = evens|[j] + xPOdd; 

// Compute pia + ). 
transform[2‘—! + j] = evens[j] — xPOdd; 
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The recursive nature of the algorithm makes it easy to find a recurrence equation for 

the number of operations done. We count the arithmetic operations done on components of 

P and roots of 1. Let M(k), A(k), and S(k) be the number of multiplications, additions, and 

subtractions, respectively, done by recursiveFFT to compute the discrete Fourier transform 

of a 24-vector. The three operations are done, one each, in the body of the for loop, so 

M (k) = A(k) = S(k). We solve for M(k). 

M(0) =0 

Mi) =o EO — 1). 

where the first term on the right-hand side, that is, 2~!, counts the multiplications in the 

for loop, and the second term, 2M(k — 1), counts multiplications done by the recursive 

calls to recursiveFFT to compute the values in the arrays evens and odds. It is easy to see 

that M(k) = 2‘—'k. Thus M(k) = A(k) = S(k) = 24~'k, or (n/2) lg n. Since the operations 
are done on complex numbers, this result should be multiplied by a small constant to reflect 

the fact that each complex operation requires several ordinary ones. 

Algorithm 12.4 would require a lot of extra time and space for the bookkeeping 

necessitated by the recursion. Yet the breakdown of the polynomial seems systematic 

enough that we should be able to obtain a scheme for carrying out the same computation 

“from the bottom up” without using a recursive program. The example in the tree diagram 

of Figure 12.5 should help suggest the pattern of the computation. The depths of the tree 

correspond to the depth of recursion, but we could eliminate the recursion if we start 

the computation at the leaves. The leaves are the components of the vector P permuted 

in a particular way. Determining the correct permutation, zz, 1s the key to constructing 

an efficient implementation of the evaluation scheme. We will give 2, (and prove its 

correctness) after the presentation of the nonrecursive algorithm. Readers are invited to 

try to determine how to define 2, before proceeding. 

Observe that, at each level of the tree, the same number of values is to be computed: 

2* since at depth d there are 2 nodes, or polynomials, to be evaluated at 24~@ roots of 

unity. Since the values computed at one level are needed only for the computation of two 

values in the next level, one array, transform, with 2‘ entries suffices to store the results of 

the computations. Figure 12.6 illustrates how two values at a node at depth d are computed 

using one value from each of its children. The diagram may help clarify the algorithm’s 

indexing. 

Algorithm 12.5 The Fast Fourier Transform 

Input: The vector P= (pox pis... Pn—1), aS a Complex array with n entries, where 

n = 2*; and integer k > 0. (To process a vector of float, copy it into the real part of the 
Complex array P, and set all the imaginary parts to 0.) 

Output: Complex array transform, the discrete Fourier transform of P, with n entries. 
The array is passed in and the algorithm fills it. 
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a Po+ pixte+++ pysxP 

3 Pot poxt-+++ pax! py + paxt-::+ pysx! 

») PO pas PI ro P| i eon P3 + p7x 
+ Pgx- + pox” + pox" + pyax? + pox? + pi3x° pie + pike 

i. aX ink a. 
L Pot psx pat pi2x pr2+piox Poet Piax pit pox pstpi3x p3tpiux p7tpisx 

ee Re 
0 PO Ps P4 P12 P2 Pi0 P6 P14 P| P9 Ps Pie P3 PAI P7 P15 

Figure 12.5 Polynomial evaluation at roots of unity: For a polynomial p at any internal node, 

the left child 1s peyen and the right child is pogg. 

num = 24~4 Jocations 

Depth d 

Depth d+ | 

num/2 locations t+num/2 

Figure 12.6 Illustration for FFT: At the node shown in depth d, the unease p is to be 
J 

evaluated at x9, X1,..-.,- See —X, —X), » —X2k-(d+1)—1, Where p(x;) = Peven(x;) + 
*y) 9 

Xi Doad(x; ) and p(—X;) = Peven(x; ) — Xi Podat The diagram ae yin ae from the 

previous ne are a to compute p(x;) and us =e) 

Remarks: We assume the class Complex provides complex arithmetic to simplify the 

pseudocode. This class does not currently exist in Java. 

We assume omega is a Complex array containing the nth roots of 1: @”,@,....@ 

The Complex array transform is initialized to contain the values for depth k — 1, not the 

leaves, in the tree of Figure 12.5. zz is a certain permutation on {0,1,..., n— I}. 

n—| 
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void fft(Complex[] P, int k, Complex{] transform) 

int n= 2': 

int d: // the current depth in the tree 

int num; 

// num is the number of values to be computed at 

// each node at depth d. 

int t; 

// t is the index in transform for the first of 

// these values for a particular node 

int j; 

// j counts the pairs of values to be computed 

// for that node. 

int m; 

// mis used as in recursiveFFT to pick out 

// the correct entry from omega 

Complex prevTrans; // temporary variable 

// To initialize transform, evaluate polynomials of 

// degree | =2' — | at square roots of 1. 
for (@=0h tani 2a 2) 

transform[t] = Plz, (t)] + Pla, (t + 1)]; 

transform[t+1] = Plz,(t)] — Pla, (t + 1)]; 

// The main computation 

na) inves (A = 2 

for (d=k-2:d>0:;d--) 

m=im/2. num= 2 num: 

for (t = 0; t < (24 - 1) « num; t += num) 

for (j = 0; | < (num/2) — 1; j +4) 

xPOdd = omega[m~«j] « transform[t + num/2 + j]: 

prevTrans = transform[t + j]; 

transform[t+j] = prevTrans + xPOdd; 

transform[t + num/2 + j] = prevTrans — xPOdd: 

An analysis of the number of operations done by fft gives a result only slightly differ- 

ent from that obtained for recursiveFFT. The statements that do the bulk of the computation 

(one complex multiplication, one complex addition, and one complex subtraction) are in a 

triply nested for loop. It is easy to verify that num = 2‘~“ so the ranges of the loop indexes 

indicate that the number of each operation done in these statements is 

35) 5 k-2 

ecu . 
\° 24 = OR eae = So = (k — 1)2*-! = Fn(Ig(n) a Ly. 

d=0 a d=0 d=0 



12.4 The Fast Fourier Transform and Convolution 

The first for loop, initializing transform, does n/2 additions and n/2 subtractions, so the 

total is sn lg(2) — $n complex arithmetic operations. We claim that the permutation zr, can 

be computed easily enough so that the running time of fft is in @(n log n). 

Note that the fast Fourier transform allows us to evaluate a polynomial of degree n — | 

at m distinct points at a cost of only tn(lg(z) — 1) complex multiplications. The lower 

bound on polynomial evaluation given in Section 12.2 suggests that this is not possible for 

n arbitrary points. The speed of the FFT derives from its use of some of the properties of 

roots of unity. 

Now, what is 2,? Let ¢ be an integer between 0 and n — 1, where n = 2‘. Then ¢ can 

be represented in binary by [bob, - - - bg_\], where each b; is 0 or 1. Let revg(t) be the 

number represented by these bits in reverse order, that is, by [by_) «+ - bj bo]. We claim that 

T(t) = rev, (t). Lemma 12.3 describes the values computed by the FFT using 7, = rev,. It 

is used in Theorem 12.4 to establish the correctness of the algorithm, thus also establishing 

the correctness of this choice of 7,. The proof of the lemma follows the theorem. First, we 

need some notation. 

Definition 12.3 

Let P be the complex n-vector P[0], P[1], .. ., Pin-1], where n = he Thinking of n (and k) 

as fixed, for each f such that 0 < tf < n—1 and for each d such that 0 < d < k—1, we define 

the vector of coefficients c; g[j] as 

calj)= P24 j+revy(t)]  ford< jf <2" 4-1. 

Now we define P,_4 to be the polynomial of degree 2k—-4 _ | with coefficients c;y[j]. 

Lemma 12.3 Let 2; in Algorithm 12.5 be revy. The following statements hold for d = 

k — | before the triply nested for loop is first entered and for each d such that k — 2 >d = 0 

at the end of each execution of the body of the outer for loop. 

1. m= 24 and num = 24-2. 

2. Fort =r2*~4 where 0 <r < 24—1, transform[t], .. ., transform[t+num-—1] contain 

the values of P; 4 evaluated at the (2'-4)-th roots of 1, where P,.y was defined in 

Definition 12.3. 

Theorem 12.4 Algorithm 12.5 computes the values of 

n—| p(x) =P(O] + P[VJx +--+» +Pln — 2]x” * + Pin — 1] 

at the nth roots of |. That is, it computes the discrete Fourier transform of P. 

Proof Let d =0 in Lemma 12.3. Then the only value for ¢ is 0 and the lemma says that 

EAMSEO nM Olaewnes transform[2* — 1] contain the values of Po,o at the 2‘ th roots of 1. The 

coefficients of Poo are cool /] = P[2° j + rep,00)| = Ply | fort = 7 2k_1\ so Poo is the 

polynomial p. © 
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Proof of Lemma 12.3 | We prove the lemma by induction on d, where d ranges from k — | 

down to 0. Let d =k — | for the basis. Statement | is clearly true. Statement 2 states that 

t ranges from 0 to Of 2 Ge. n= 2) in steps of 2, and that, for each f, transform[r] and 

transform[t+1] contain P; ,—)(1) and P,,—|(—1). But (using Lemma 12.5) the coefficients 

Ol 2A ale 

Cy k—1{0] = P[24-!0 + rev; (t)] = Plrevy(t)], 

Cr e—1 EL] = PI24- 11 + revy(t)] = Plrev;(t + 1)). 

That is, P;,—1(«) = Plrev,(t)] + Plrev,(t + 1)]x. This corresponds exactly to the initial 

values assigned to transform in the first for loop. 

Now suppose that 0 < d < k — | and statements | and 2 hold for d + 1. It follows 
: d d+l aa. ait 

easily that statement | holds for d. Note that w* and w* ”" are primitive (24~¢)-th and 

(24-(¢+1) th roots of 1, respectively. Using the induction hypothesis, we see that for 

0 <i <num/2 — I, the body of the triply nested for loop computes 

Bie jsd+l v7 

xPOdd = (wr erent es ((«7 )') ? 

jd+1 

transform[t + i] = Py. a41 ((o7 )') a (0) Prenom/2, 441 ((o"")') ‘ 

: d+lyj dyj ad+1y 5 
transform[t + num/2 +i] = P, a4 (( )') _ (w° VP ay ae ((«7 )') 

> 

Tinea) =P. 43 (xe?) + x P;+num/2,d+1 («*) and the array entries transform(0], . . ., 

transform[t+num-—1] contain P,_, evaluated at 

Nici ad. () ave | nd. jk d= 

(ae)? Gr ce (w?") aera, eis. —(w 

that is, at the (24~“)-th roots of 1. The coefficients of P, 4 are derived as follows for 

ee ee aan a 

Cra+ihj/2] for even j, 
Cr+num/2, d+! [J — | )/2] for odd Ihe 

Cdl yl = 

Therefore, using the induction hypothesis, for even /, 

Cr J) = Cra ili /21 = PLZ /2) + revy(t)] = PL247 + reve(t))] 

as required. For odd /, 

CedL J] = Cr+num/2,d+11G — 1)/2] = PZT — 1)/2 + reva(t + 2-44] 
= (by Lemma 12.5) P(2"(j —1)+ revy(t) + pG4 = P(24 j + rev; (t)], 

also as required. O 

The proof used the following lemma, whose proof is left as an exercise. 
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Lemma 12.5 Fork,a,b>0,b<k, anda +2*-§ <2" ifaisa multiple of 24~?*!, then 
revala 2") = retra) ee og 

12.4.2 Convolution 

To motivate the convolution computation we will examine the problem of symbolic poly- 
nomial multiplication. Suppose we are given the coefficient vectors 

P= A Dibegelinse fas Pm—-1) 

Q= (GOs illewe-ets Gm—1)s 

for the polynontials p(x) =p, 10" | + pan 4 3: - 4 ye 4 po and q(x) = 
Gye ae Bice eee qix + qo. The problem is to find the vector R = (ro, rj, 

2m—1) Of coefficients of the product polynomial r(x) = p(x)g(x). The coefficients of 
r are given by the formula 

ns forO <i <2m — | 

f=0 

with px and gy taken as 0 fork > m — 1. (Note that r2,,-; = 0 since r has degree 2m — 2; it 

is included as a convenience.) R is very much like the convolution of P and Q. Let P and O 

be the 2m-vectors obtained by adding m zeros to P and Q, respectively. Then R = Px oO 

So our investigation of polynomial multiplication should lead to a convolution algorithm. 

Consider the following outline for polynomial multiplication: 

I. Evaluate p(x) and g(x) at 27 poms; XG, X), -..- 5 Noni 

2. Multiply pointwise to find the values of r(x) at these 2m points; that is, compute 

r(a;) = pep) tor 0 = 7 = 2m — 1. 

3. Find the ere of the unique polynomial of degree 2m — 2 that passes through 

the points {(x;, r(xj)) |O <i < 2m — I}. (It is a well-known theorem that the coeffi- 

cients of a ea of degree d can be determined if the values of the polynomial 

are known at d + | points.) 

the pounts csoxse. 5: v2m—1 Were chosen arbitrarily, the method outlined would require 

much more work than a straightforward computation of P * Q, but the FFT can evaluate p 

and q at the (2)-th roots of | very efficiently (assume that m is a power of 2). So step | 

can be done in ©(m log m) time. Step 2 requires only 2m multiplications. How do we carry 

out step 3? 

Let @ be a primitive (2m)-th root of 1, and for 0 < j < 2m—1, let wj =r(w/) = 

p(w! )g(w!). We can find the coefficients of r by solving the following set of simultaneous 

linear equations for ro, rj,..., Pecile 

ao7, 
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2m—1| 
ar r2m—1(@°) = Ww0; 

WL 0 QO 
0) Os sig? oo rm —2(@ ) 

2m—2 4 2m— | 
FO aoe es SE + 12m —2(w) + F2m—1(@) a= NN 

2 2m—| | : 2m—1\ 2m—2 P 2m—1| ays + +++ + 7om—2(@ ) + 1m —1(@ ) = WIm—-1- eta rer” 

If r had been evaluated at 2 arbitrary points, a ©(m-*) algorithm such as Gaussian 

elimination might be used to solve the equations. Again, we take advantage of the fact 

that the points are roots of unity to obtain a © (m log m) algorithm. The formulas of 

Equation (12.5) can be written as a matrix equation Fo,,R = W, where F,, is as in 

Definition 12.2 and W is the vector (wo, w),...., Woe) Uhus 

PeO=R=FWe Fr Ua,P + Pon), 
where * denotes convolution and * denotes component-wise multiplication. Three prob- 

lems remain: to show that F,, ts in fact invertible for all n > 0, to show that the formula 

ORV =e '(F,U * F,V) holds for arbitrary 7-vectors U and V, and to find an efficient 

way to compute the inverse transform. The formula for U * V does not follow immediately 

from the formula for R because P and O have the property that half of their components 

are zero. 

Lemma 12.6 For > 0, F;, is invertible and the (i, j)-th entry of its inverse is (1/n)w~!/ 

forO<1,j <n—l. 

Proof Let F,, be the matrix which the lemma claims is | rea We show that F,, F,, = 

By el Similarly: 

n—l | n—| 

a S _ se _iyk 
(FF = =o Pita (w! 1) 

71 7 
k=0 k=0 

For nondiagonal entries (1.e., i 4 j), (F; Fi) = 0 by Proposition 12.8 for roots of unity e ‘ 
since 0) < |i — j| <n (see Section 12.4.3). For diagonal entries (i.e., for i = /), 

Theorem 12.7 Let U and V be n-vectors. Then U *« V = | ian et * FV), where « 

denotes convolution and * denotes component-wise multiplication. 

Proof We show that F,(U * V) = F,U « FV. For0 <i <n — 1, theith component of 

F,U * F,V is 

n—| hel n—-l n—| 

i] k 
} We uj w' Viel = ) ) uu npeo IO), 

pC} k=) (20 k=0 
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The rth component of U * V is Ss a uj;v;—; Where subscripts are taken modulo n. Thus 
the rth component of F,,(U * V) is 

n—| n—| n—| n-1 

it ) w ) Vi) => ) u jv, jo" 

1=0 j=0 j=0 1=0 

Let k =t — j (mod n) in the inner summation. For each /, since f ranges from 0 ton — 1, k 

will also range from 0 ton — 1, although in a different order. Also, for any p, w? = w? 4", 
so the ith component of F,,(U * V) is 

n—1 n—1 

y . u vee UT") 

j=0 k=0 

O which is exactly the 7th component of F,,U * F,V. 

sos 12.6 indicates that the matrix F~! is not very different from F,,. The entries 

of nF! are w~'/. Its rows are the rows of F,, arranged in a different order. Specifically, 

since w" '=q ‘, for 1 <i <n-— 1 the ithrow of F, is the (n — i)-th row of n rs Row 

0 is the same for both matrices. Thus the inverse discrete Fourier transform of an n-vector 

A may be computed as follows. 

Algorithm 12.6 Inverse Discrete Fourier Transform 

input: Vhe vector A = (ap, ai, 2. <, dyj—|), aS a Complex array with n entries, where 

n = 2: and integer k > 0. 

Output: The Complex vector B = (bo, bj,.... b,—,), the inverse discrete Fourier trans- 

form of A: that is, B = F'A. The array is passed in and the algorithm fills it. 

Remark: The remarks for Algorithm 12.5 apply to this algorithm also. 

void inverseFFT(Complex{] A, int k, Complex({] B) 

int n= 2*: 

int |; 

Complex[] transform = new Complex([n]; 

fft(A, k, transform); 

bo = transform[0] / n; 

for d= 1S) 

b; = transform[n — i] / n; 

Analysis 

The FFT does !n(1g(n) — 1) complex multiplications (and the same number of complex 

additions and subtractions), so Algorithm 12.6 does 5n(1g(7) + 1) complex */’s, and both 

run in ©(n log n) time. Computing the convolution of two n-vectors using the FFT takes 

©(n log n) time. 
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12.4.3. Appendix: Complex Numbers and Roots of Unity 

The field C of complex numbers is obtained by joining i, the square root of —1, to the field 

of real numbers R. Thus C = R(i) = {a + bi | a,b € R}. If ce =a + bi, a is called the real 

part of z and b the imaginary part. Let z} = a; + bji and z2 = a2 + boi. Then by definition, 

Zp +22= (a; + a2) + (b) + b2)i, 

Z122 = (aja2 — by bo) + (ayb2 + byaz)!, 

| a\ byl 
=— = = - for zi = (O00). 

Zi ay + by a+ by 

Division and subtraction can be defined easily using the above equations. 

Java sidelight: To simplify the representation of complex numbers and operations in 

the pseudocode of the algorithms, we assume that a class Complex exists and permits the 

arithmetic operations *, /, +, and —; such a class does not currently exist in Java, but C++ 

and Fortran support this notation. It is easy to define a class with two instance fields, re 

and im, each of type float or double. (The abbreviations re and im are commonly used 

in mathematics texts for the real and imaginary parts of a complex number.) However, the 

programmer would have to define the arithmetic operations as functions (static methods), 

and use functional notation in the actual code, rather than operator notation. 

A complex number can be represented as a vector in a plane using the real and imag- 

inary parts for the Cartesian coordinates. The geometric interpretation of multiplication of 

complex numbers is more easily seen by using polar coordinates, r and 6, where r is the 

length of the vector and ¢@ is the angle (measured in radians) that it subtends with the hor- 

izontal, or real, axis. (See Figure 12.7.) The product of two complex numbers (7), 6)) and 

(r2, 02) iS (r1r2, 0; + 2). An example is given in Figure 12.8. 

o£ =a bi = (7,9) 

Imaginary axis 

Real axis 

r= Vae+b a=rcos8 

@=tan—!(b/a) b=rsin0 

Figure 12.7 Cartesian and polar coordinates for complex numbers 



12.4 The Fast Fourier Transform and Convolution 

Figure 12.8 Multiplication of complex numbers: Magnitudes 7; and r2 multiply; angles 6; and 
6> add. 

Figure 12.9 Fifth roots of unity (polar coordinates) 

The complex field C is algebraically closed. This means that every polynomial of 

degree n with coefficients in C has n roots (not necessarily distinct). Therefore +” — | has 

n roots, Which are called the nth roots of unity, or the nth roots of 1. The polar coordinates 

of 1 are (1,0). To find a root (7, 8) of x” — 1 we solve the equation (r”, n@) = (1, 0). Since 

r is real and nonnegative, r must be I, so all roots of unity are represented by vectors of 

unit length. Since n6 = 0, 6 =0 so we have found that (1,0)—that is, 1—1s a solution, 

hardly a surprise. To find the other roots of unity, we use the fact that an angle of 0 

radians is equivalent to an angle of 27/ radians for any integer /. The 1 distinct roots are 

{(1, 27 j/n)|0< j <n — 1}. The vectors representing these numbers slice the unit circle 

into 2 equal pie slices as shown in Figure 12.9. 

K is also an nth root of 1, since (w*)" =a" = If w is an nth root of 1, then w ae 
n—-l ~ 2 > 2) a Fy 

(w")* = 1* = 1. If w is an nth root of 1 and 1,w,w7,...,@ are all distinct, then w 

541 



542 Chapter 12. Polynomials and Matrices 

is called a primitive nth root of unity. One primitive nth root of unity is (1, 27/n), or 

cos(27/n) + isin(27/n). The following properties are used in Section 12.4. 

Proposition 12.8 For n > 2, the sum of all the nth roots of | is zero. Also, if mis a 
wees : : , eras =| 

primitive nth root of | and c is an integer not divisible by n, then $77 _9(@*)/ = 0. 

) Proof Let w be a primitive nth root of 1. Then w”, a, Onna w"—! are all of the nth 

roots of |. Their sum is 

The second statement is proved similarly. 

Proposition 12.9 If is even and w is a primitive mth root of 1, then 

1. w? is a primitive (n/2)-th root of 1, and 

ap at oh 

Proof The proof is left as an exercise. © 

Exercises 

Section 12.2. Evaluating Polynomial Functions 

12.1. Any polynomial p(x) = a,x" + ay— jx?! 4... + ayx + ap can be factored into 

JACQ Nr OS—AEs 1a) (Oe Tea) 

Wiehe ieee r, are the roots of p. Could this factorization be used as the basis of an 

algorithm to evaluate p(x)? How, or why not? 

12.2. We claimed that an algorithm to evaluate a polynomial of degree n must do at least n 

multiplications and/or divisions in the worst case. For special cases, we may get algorithms 

that do better. Devise a fast algorithm for evaluating each of the following polynomials. The 

inputs are n and x. 

a pOyax px +. xe eI. 
How many arithmetic operations does your algorithm do? 

: H a 

De Pry SS ae where e are the binomial coefficients (Equation 1.1). 

k=0 
How many arithmetic operations does your algorithm do? 

12.3. Write out the factorization that would be used to evaluate p(x) =x’ + 6x° — 7x° + 

oe 2 ae by 



ae 

Exercises 

a. Horner’s method. 

b. preprocessing coefficients. 

12.4 What part(s) of the proofs of Theorem 12.2 and/or Lemma 12.1 would not work if 
division were permitted? 

12.5 What modifications or additions must be made to the procedure for evaluating poly- 
nomials with preprocessing of coefficients so that it will work for nonmonic polynomials? 
How many multiplications and/or divisions are done by the extended algorithm? 

12.6 Suppose that A(1) = | and fork > 1, A(k) = 2A(k — 1) + 2. Show that the solution 

of this recurrence equation is A(k) = (3n — 1)/2, where n = 2* — 1. 

12.7 Using the terminology of the first paragraph of Section 12.2.3, what are 7, I’, A;, 

and the algorithm that gives A; from / for the problem of evaluating a polynomial with 

preprocessing of coefficients by the method described in Section 12.2.3? 

Section 12.3 Vector and Matrix Multiplication 

12.8 In Section 12.3.1, we stated that computing the dot product U - V of two n-vectors 

with real components requires at least n */’s. How many */’s are required if U always has 

integer components? Why? 

12.9 Compute exactly the number of multiplications and additions done by Algorithm 

12.3 when n is odd. 

12.10 Let A and B ben x n matrices that are to be multiplied and suppose that a matrix 

entry must be fetched from storage each time it is used in the computation. How many 

times is each entry of A and B fetched to compute AB 

a. by the usual algorithm? 

b. by Winograd’s algorithm (for n even)? 

12.11 

a. Prove that Strassen’s algorithm, using the fourth modification described toward the 

end of Section 12.3.4, does fewer than 4.7 n'®/ arithmetic operations on the matrix 

entries, whether or not 7 is a power of 2. 

b. Show how to reduce the 18 additions given for one invocation of Strassen’s algorithm 

ton: 

Section 12.4 The Fast Fourier Transform and Convolution 

Waa We 

a. Why are the restrictions “n > 2” and “c is not divisible by n” needed in Proposi- 

tion 12.8? 
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Figure 12.10 Matrix and vector for Exercise 12.16 

b. Prove Proposition 12.9 for roots of unity. 

12.13 Let p(x) = p7x’ + pox® +---+ pix + po. Carry out the steps of the FFT on p 

to show how it evaluates p at the 8th roots of I: 1, @, 7, i@, —1, —w, —i, —iw. 

12.14 Suppose you are given the real and imaginary parts of two complex numbers. 

Show that the real and imaginary parts of their product can be computed using only three 

multiplications. 

12.15 Prove Lemma 12.5. 

12.16 Let n = 2* for some k > 0, let w be a primitive nth root of 1, and let F,, be 

as in Definition 12.2. Let V be a complex n-vector. This problem describes the FFT 

(recursively) from the point of view of the matrix-vector product F,,V rather than as 

polynomial evaluation. Note the correspondence of various steps of this algorithm with 

steps of recursiveFFT. 

Let F, be the n x n matrix obtained from F,, by putting all the even-indexed columns 

before the odd-indexed columns. (Note that this is not the same as the F, in the proof of 

Lemma 12.6.) Let V have all the even-indexed components of V before all the odd-indexed 

components of V. That is, for 0 < j <n/2-1, fi = wis) feu so) yeu, 

and Vj4n/2 = v2j+1. Partition F, into four (7/2) x (n/2) matrices G;, G2, G3, andG4, and 

partition V into two (n/2)-vectors V; and V> as shown in Figure 12.10. Now 



Exercises 

Pay G,V, + G2V2 

"" "1 G3V, + GaV2 

Prove the following statements. 

a. F,V=F,V. 

b. Gi =Gs. 
Cc. G4 — —Gp. 

d. Gz = DG,, where D is an (n/2) x (n/2) diagonal matrix (i.e., all off-diagonal ele- 

ments are zero) with dj; =@ for 0 =i = (n/2) —1. 

€. Gy, has entries 2;; =y ‘J where y 1s a primitive (n/2)-th root of 1. Thus Gj = Fy /2, a 

discrete Fourier transform matrix for (7/2)-vectors, and 

Fnj2V, + DFpj2V2 F Vor n/2" 1 n/2%2 ; 

co i DFyj2V2 

That is, the computation can be carried out by recursively computing the discrete 

Fourier transform of V; and V>, both (1 /2)-vectors. 

f. Derive recurrence equations for the number of multiplications, additions, and sub- 

tractions done by the algorithm described here. Let D = (1,0,..., w'"/2)-1)_ (Note 

that the product D(F,,/2V2) can be computed as a component-wise product of D with 

Fy, /2 V2, requiring n/2 multiplications.) Compare your recurrence equations with those 

obtained for recursiveFFT. 

Additional Problems 

12.17 Observe that the Fibonacci numbers (Equation 1.13) satisfy the following matrix 

equation for n => 2: 

Then 

Fn Fine 2 Fi? n—| Fy n—| l 

Fn-| Mie Fn-3 Fo 0 

How many arithmetic operations are done if F;, is computed using the following formula: 

Fy, — ani 9 Peal 
How does this method compare with the recursive and iterative algorithms for computing 

Fibonacci numbers? 
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Programs 

|. Write and debug efficient subroutines for Winograd’s matrix multiplication algorithm 

and for the usual algorithm. How many instructions are executed by each program to 

multiply two 2 x nm matrices? 

i) Implement the FFT (Algorithm 12.5). Make the computation of rev, and the other 

bookkeeping as efficient as you can. 

Notes and References 

The lower bounds given in Sections 12.2 and 12.3 for polynomial evaluation, with or with- 

out preprocessing of coefficients, and for vector-matrix products are established in Pan 

(1966), Reingold and Stocks (1972), and Winograd (1970). Winograd’s matrix multiplica- 

tion algorithm also appears in the latter. Winograd’s proofs use field theory. Reingold and 

Stocks use simpler arguments such as that in the proof of Theorem 12.2. 

Strassen’s matrix multiplication algorithm is presented in Strassen (1969), a short 

paper that gives no indication of how he discovered his formulas. An improvement to use 

15 additions instead of 18, the subject of Exercise 12.11(b), is given in Aho, Hopcroft, and 

Ullman (1974), where it is attributed to S. Winograd. Some additional details are given in 

Gonnet and Baeza-Yates (1991), The O(n?37°) method is in Coppersmith and Winograd 

(1987). Several matrix problems that can be reduced to multiplication and therefore have 

O(n**7°) solutions are described in Aho, Hopcroft, and Ullman (1974). 

Versions of the fast Fourier transform are presented in Cooley and Tukey (1965) and in 

Aho, Hopcroft, and Ullman (1974). Brigham (1974) is a book on the FFT. Press, Flannery. 

Teukolsky, and Vettering (1988) give a thorough discussion of the theory and implemen- 

tation issues for the FFT. Aho, Hopcroft, and Ullman (1974) present an application of the 

FFT to integer multiplication. (The string of digits d,d,—; ... djdo representing an integer 

in base b is a polynomial 5°", d, b'.) There are many other references on the FFT since it 

is widely used. 
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Chapter 13 N‘P-Complete Problems 

Introduction 

In the previous chapters we have studied quite a variety of problems and algorithms. Some 

of the algorithms are straightforward, while others are complicated and tricky, but virtually 

all of them have complexity in O(n>), where n is the appropriately defined input size. From 

the point of view taken in this chapter, we will accept all the algorithms studied so far as 

having fairly low time requirements. Take another look at Table 1.1. We saw there that 

algorithms whose complexity is described by simple polynomial functions can be run for 

fairly large inputs in a reasonable amount of time. The last column in the table shows that 

if the complexity 1s 2”, the algorithm is useless except for very small inputs. In this chapter 

we are concerned with problems whose complexity may be described by exponential 

functions, problems for which the best known algorithms would require many years or 

centuries of computer time for moderately large inputs. We will present definitions aimed 

at distinguishing between the tractable (1.e., “not-so-hard”) problems we have encountered 

already and intractable (1.e., “hard,” or very time-consuming) ones. We will study a class of 

important problems that have an irksome property—we do not even know whether they can 

be solved efficiently. No reasonably fast algorithms for these problems have been found, 

but no one has been able to prove that the problems require a lot of time. Because many of 

these problems are optimization problems that arise frequently in applications, the lack of 

efficient algorithms is of real importance. 

P and NP 

For this chapter, “P” is a class of problems that can be solved in “polynomial time.” “NP” 

is more complicated to describe. Before getting into the formal definitions and theorems, 

we describe several problems that we use as examples throughout this chapter. Then we 

give the definitions of ‘P and N'P. 

13.2.1 Decision Problems 

Many of the problems described in this chapter occur naturally as optimization problems 

(they are called combinatorial optimization problems), but they can also be formulated 

as decision problems. The classes ‘P and N‘P, which will be defined in the following 
subsections, are classes of decision problems. Basically, a decision problem is a question 
that has two possible answers, yes and no. The question is about some input. A problem 
instance is the combination of the problem and a specific input. Usually the statement of a 
decision problem has two parts: 

1. The instance description part detines the information expected in the input. 

2. The question part states the actual yes-or-no question; the question contains variables 
defined in the instance description. 

A decision problem’s output is either ves or no according to the correct answer to the 
question, as applied to a given input. Thus a decision problem can be thought of abstractly 
as a mapping from all inputs into the set {yes, no}. 
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To see why a precise statement of the input is important, consider these two problems: 

1. Instance: an undirected graph G = (V, E). 

Question: Does G contain a clique of k vertices? (A clique is a complete subgraph: 
every pair of vertices in the subgraph has an edge between them.) 

2. Instance: an undirected graph G = (V, E) and an integer k. 

Question: Does G contain a clique of & vertices? 

The question is the same in both problems, but in the first problem k is not part of the input. 

so it does not vary from one instance to the other; in other words, k is some constant. It 

happens that this question can be answered by an algorithm that runs in O(k7n*). If k is 

regarded as a constant, the algorithm runs in polynomial time. In the second question, k is 

part of the input, so it is a variable. The algorithm still runs in O(k7n*), but this expression 

is not a polynomial because the exponent of 77 is variable. 

13.2.2 Some Sample Problems 

Here are some problems we will study in this chapter. In some cases the problem 1s a 

simplification or abstraction of a problem that occurs in realistic applications. Frequently, 

difficult problems are simplified to try to make some progress and gain insights, in the hope 

that the insights can then be used to make progress on the original problem. 

Definition 13.1 Graph coloring and chromatic number 

A coloring of a graph G = (V, E) is a mapping C : V — S, where S is a finite set (of 

“colors”’), such that if vw € EF then C(v) 4 C(w); in other words, adjacent vertices are not 

assigned the same color. 

The chromatic number of G, denoted x(G), is the smallest number of colors needed 

to color G (that is, the smallest & such that there exists a coloring C for G and |C(V)| =k). 

a 

Problem 13.1) Graph coloring 

We are given an undirected graph G = (V, E) to be colored. 

Optimization Problem: Given G, determine x (G) (and produce an optimal coloring, that 

is, one that uses only ¥(G) colors). 

Decision Problem: Given G and a positive integer k, is there a coloring of G using at 

most k colors? (If so, G is said to be k-colorable.) 

The graph coloring problem is an abstraction of certain types of scheduling problems. 

For example, suppose the final exams at your university are to be scheduled during one 

week with three exam times each day, for a total of 15 time slots. Some courses, say, 

Calculus | and Physics |, must have their exams at different times because many students 

are in both classes. Let V be the set of courses, and let E be the pairs of courses whose 

exams must not be at the same time. Then the exams can be scheduled in the 15 time slots 

without conflicts if and only if the graph G = (V, E) can be colored with 15 colors. ™ 
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Problem 13.2 Job scheduling with penalties 

Suppose there are n jobs Jj,..., J, to be executed one at a time. We are given execution 

HIMESH Eien ore f Ceadlines discs d, (measured from the starting time of the first job 

executed), and penalties for missing the deadlines p),..., pn. Assume the execution times, 

deadlines, and penalties are all positive integers. A schedule for the jobs is a permutation 

m of {1,2,...,n}, where J.) is the job done first, J(2) is the job done next, and so on. 

For a particular schedule, the penalty for the jth job is denoted as P;, and is defined 

as P; = pxj) if job Jz, ;) completes after the deadline dz,j), otherwise P; = 0. The total 

penalty for a particular schedule is 

Pe 
j=) 

Optimization Problem: Determine the minimum possible penalty (and find an optimal 

schedule—one that minimizes the total penalty). 

Decision Problem: Given, in addition to the inputs described, a nonnegative integer k, is 

there is a schedule with P, <k? of 

Problem 13.3 Bin packing 

Suppose we have an unlimited number of bins each of capacity one, and n objects with 

SIZESIS renee: S, Where 0 < 5; < 1 (s; are rational numbers). 

Optimization Problem: Determine the smallest number of bins into which the objects 

can be packed (and find an optimal packing). 

Decision Problem: Given, in addition to the inputs described, an integer k, do the objects 

fitin k bins? 

Applications of bin packing include packing data in computer memories (e.g., files 

on disk tracks, program segments into memory pages, and fields of a few bits each into 

memory words) and filling orders for a product (e.g., fabric or lumber) to be cut from large, 

standard-sized pieces. 

Problem 13.4 Knapsack 

Suppose we have a knapsack of capacity C (a positive integer) and n objects with sizes 

So assS MONG PLOUS” G.. 2.5 Pn (where S|,...,S8, and pj,..., Py are positive integers). 

Optimization Problem: Find the largest total profit of any subset of the objects that fits 

in the knapsack (and find a subset that achieves the maximum profit). 

Decision Problem: Given k, is there a subset of the objects that fits in the knapsack and 

has total profit at least &? 

The knapsack problem has a variety of applications in economic planning and loading, 
or packing, problems. For example, it could describe a problem of making investment 
decisions where the “size” of an investment is the amount of money required, C is the 
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total amount one has to invest, and the “profit” of an investment is the expected return. 
In an application of a more complicated version of the problem, the objects are tasks or 
experiments various organizations want to have performed on a space flight. In addition to 
its size (the volume of the equipment needed), each task may have a power requirement 
and a requirement for a certain amount of crew time. The space, power, and time available 
on the flight are all limited. Each task has some value, or profit. Which feasible subset of 
the tasks has the largest total value? = 

Notice that the first three problems we described are minimization problems, but the 
knapsack problem is a maximization problem. 

The next problem is a simpler version of the knapsack problem. 

Problem 13.5 9 Subset sum 

The input is a positive integer C and n objects whose sizes are positive integers 8, .... Sp. 
c 

Optimization Problem: Among subsets of the objects with sum at most C, what is the 

largest subset sum? 

Decision Problem: \s there a subset of the objects whose sizes add up to exactly C? 

Problem 13.6 — Satisfiability 

A propositional (or Boolean) variable is a variable that may be assigned the value true or 

false. If v is a propositional variable, then v, the negation of v, has the value frwe if and only 

if v has the value false. A literalis a propositional variable or the negation of a propositional 

variable. A propositional formula is defined inductively as an expression that is either 

a propositional variable or a propositional constant (1.e., (rue or false) or an expression 

consisting of a Boolean operator and its operand(s), which are propositional formula(s). A 

propositional formula may be represented in several forms, including functional notation 

(e.g., and(x, y)), Operator notation (e.g., (x A y)), or as an expression tree in which each 

internal node is a Boolean operator and each leaf is a propositional variable or one of the 

constants true or false. If truth values are assigned to the variables, the formula has a truth 

value that is obtained by applying the rules for the operators. 

A certain regular form for propositional formulas, called conjunctive normal form, 

turns out to be very useful. A clause is a sequence of literals separated by the Boolean or 

operator (V). A propositional formula is in conjunctive normal form (CNF) if it consists 

of a sequence of clauses separated by the Boolean and operator (A). An example of a 

propositional formula in CNF is 

CON GM SINAG SENT OP VIN INCE SSD AM SG ) 

where p, g, r, and s are propositional variables. Throughout this chapter “CNF formula” 

always refers to a propositional CNF formula. 

A truth assignment for a set of propositional variables is an assignment of one of the 

values true or false to each propositional variable in the set, in other words, a Boolean- 

Sil 
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valued function on the set. A truth assignment is said to satisfy a formula if it makes the 

value of the entire formula true. Notice that a CNF formula is satisfied 1f and only if each 

clause evaluates to true, and a clause evaluates to true if and only if at least one literal in 

the clause is true. 

Decision Problem: Given a CNF formula, is there a truth assignment that satisfies it? 

This decision problem is called CNF-satisfiability, or simply satisfiability, and is often 

abbreviated as CNF-SAT or SAT. The satisfiability problem has applications in automated 

theorem proving. It played a central role in the development of the ideas in this chapter. 

The following simplification of the satisfiability problem, called 3-satisfiability, 3- 

CNF-satisfiability, 3-SAT, and 3-CNF-SAT, is also important. (We list the multiple names 

and abbreviations because nomenclature is not standard, and the problem is mentioned 

often.) 

Decision Problem: Given a CNF formula, in which each clause is permitted to contain 

at most three literals, is there a truth assignment that satisfies it?) ™ 

Problem 13.7 Hamiltonian cycles and Hamiltonian paths 

A Hamiltonian cycle in an undirected graph is a simple cycle that passes through every 

vertex exactly once. The word circuit in place of cycle is sometimes seen. 

Decision Problem: Does a given undirected graph have a Hamiltonian cycle? 

A related optimization problem is the traveling salesperson, or minimum tour, prob- 

lem, described below. 

A Hamiltonian path in an undirected graph is a simple path that passes through every 

vertex exactly once. 

Decision Problem: Does a given undirected graph have a Hamiltonian path? 

Both problems may also be posed for directed graphs, in which case they are called the 

“directed Hamiltonian cycle (or path) problem.” A variant of the Hamiltonian path problem 

includes a specified starting and ending vertex for the path. 

Problem 13.8 Traveling salesperson 

This problem is widely known as the traveling salesperson problem (abbreviated TSP), but 

is also known as the minimum tour problem. The salesperson wants to minimize the total 

traveling cost (time, or distance) required to visit all the cities in a territory, and return to 

the starting point. Other applications include routing trucks for garbage pickup and package 

delivery. 

Optimization Problem: Given a complete, weighted graph, find a minimum-weight 

Hamiltonian cycle. 

Decision Problem: Given a complete, weighted graph and an integer k, is there a Hamil- 
tonian cycle with total weight at most k? 
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The traditional version treats the graph as undirected; that is, the weights are the same 
in each direction. As with the Hamiltonian cycle problem, there is also a directed version. 
® 

The usefulness and apparent simplicity of these problems may intrigue you; you are 
invited to try to devise algorithms for some of them before proceeding. 

loro Fhe Class? 

None of the algorithms known for the problems just described are guaranteed to run in a 
reasonable amount of time. We will not rigorously define “reasonable,” but we will define 
a class P of problems that includes those with reasonably efficient algorithms. 

Definition 13.2 | Polynomially bounded 

An algorithm is said to be polynomially bounded if its worst-case complexity is bounded 

by a polynomial function of the input size (i.e., if there is a polynomial p such that for each 

input of size n the algorithm terminates after at most p() steps). 

A problem is said to be polynomially bounded if there is a polynomially bounded 

algorithm for it. 

All of the problems and algorithms studied in Chapters | through 12 are polynomially 

bounded, except for occasional exercises. 

Definition 13.3. The class ‘P 

P is the class of decision problems that are polynomially bounded. 

P is defined only for decision problems, but you usually will not go wrong by thinking 

of the kinds of problems studied earlier in this book as being in P. 

It may seem rather extravagant to use the existence of a polynomial time bound as the 

criterion for defining the class of more or less reasonable problems—polynomials can be 

quite large. There are, however, a number of good reasons for this choice. 

First, while it is not true that every problem in ‘P has an acceptably efficient algorithm, 

we can certainly say that if a problem is nor in P, it will be extremely expensive and 

probably impossible to solve in practice. All of the problems described at the beginning 

of this section are probably not in ‘P; there are no algorithms for them that are known to 

be polynomially bounded and it is believed by most researchers in the field that no such 

algorithms exist. Thus while the definition of ‘? may be too broad to provide a criterion for 

problems with truly reasonable time requirements, it provides a useful criterion—not being 

in ‘P—for problems that are intractable. 

A second reason for using a polynomial bound to define ‘P is that polynomials have 

nice “closure” properties. An algorithm for a complex problem may be obtained by com- 

bining several algorithms for simpler problems. Some of the simpler algorithms may work 
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on the output or intermediate results of others. The complexity of the composite algorithm 

may be bounded by addition, multiplication, and composition of the complexities of its 

component algorithms. Since polynomials are closed under these operations, any algorithm 

built from several polynomially bounded algorithms in various natural ways will also be 

polynomially bounded. No smaller class of functions that are useful complexity bounds 

has these closure properties. 

A third reason for using a polynomial bound is that it makes ‘P independent of the par- 

ticular formal model of computation used. A number of formal models (formal definitions 

of algorithms) are used to prove rigorous theorems about the complexity of algorithms and 

problems. The models differ in the kinds of operations permitted, the memory resources 

available, and the costs assigned to different operations. A problem that requires ©( f(7)) 

steps on one model may require more than ©( f (7)) steps on another, but for virtually all of 

the realistic models, if a problem is polynomially bounded for one, then it is polynomially 

bounded for the others. 

13.2.4 The Class NP 

Many decision problems (including all our sample problems) are phrased as existence 

questions: Does there exist a k-coloring of the graph G? Does there exist a truth assignment 

that makes a given CNF formula true? For a given input, a “solution” is an object (e.g.. a 

graph coloring or a truth assignment) that satisfies the criteria in the problem and hence 

justifies a yes answer (e.g., the graph coloring uses at most & colors; the truth assignment 

makes the CNF formula true). A “proposed solution” is simply an object of the appropriate 

kind—it may or may not satisfy the criteria. We sometimes use the term certificate for a 

proposed solution. Loosely speaking, NP is the class of decision problems for which a 

given proposed solution for a given input can be checked quickly (in polynomial time) 

to see if it really is a solution (1.e., if it satisfies all the requirements of the problem). 

More formally, inputs for a problem and proposed solutions must be described by strings 

of symbols from some finite set, for example, the set of characters on the keyboard of a 

computer terminal. We need some conventions for describing graphs, sets, functions, and 

so on, using these symbols. The set of conventions that is adopted for a particular problem 

is called the encoding of that problem. The size of a string is the number of symbols in it. 

Some strings of symbols from the chosen set are not valid encodings of objects relevant 

to the problem at hand; they are just gibberish. Formally, an input for a problem and a 

proposed solution for that instance of the problem can be any string from the character set. 

Checking a proposed solution includes checking that the string makes sense (that is, has 

the correct syntax) as a description of the required kind of object, as well as checking that 

it satisfies the criteria of the problem. Thus any string of characters can be thought of as a 

certificate for a problem instance. 

There may be decision problems where there is no natural interpretation for “solu- 

tions” and “proposed solutions.” A decision problem is, abstractly, just some function 

from a set of input strings to the set {yes, no}. A formal definition of NP considers all 

decision problems. The definition uses nondeterministic algorithms, which we define next. 



13.2 P and NP 

Although such algorithms are not realistic or useful in practice, they are useful for classi- 
fying problems. 

Definition 13.4 Nondeterministic algorithm 

A nondeterministic algorithm has two phases and an output step: 

|. The nondeterministic “guessing” phase. Some completely arbitrary string of char- 

acters, §, 1S written beginning at some designated place in memory. Each time the 

algorithm is run, the string written may differ. (This string is the certificate; it may be 

thought of as a guess at a solution for the problem, so this phase may be called the 

guessing phase, but s could just as well be gibberish.) 

bho The deterministic “verifying” phase. A deterministic (1.e., ordinary) subroutine begins 

execution. In addition to the decision problem’s input, the subroutine may use s, or it 

may ignore s. Eventually it returns a value true or false—or it may get in an infinite 

loop and never halt. (Think of the verifying phase as checking s to see if it is a 

solution for the decision problem’s input, 1.e., 1f it justifies a yes answer for the decision 

problem’s input.) 

\we) The output step. If the verifying phase returned true, the algorithm outputs yes. Other- 

wise, there is no output. & 

The number of steps carried out during one execution of a nondeterministic algorithm 

is defined as the sum of the steps in the two phases; that is, the number of steps taken to 

write s (simply the number of characters in s) plus the number of steps executed by the 

deterministic second phase. 

We can also describe a nondeterministic algorithm with an explicit subroutine struc- 

ture. Assume genCertif generates an arbitrary certificate. 

void nondetA(String input) 

String s = genCertif(); 

boolean checkOK = verifyA(input, s); 

if (checkOK) 

Output "yes". 

return; 

Normally, an algorithm terminates for every input, and each time we run an algorithm 

with the same input, we get the same output. This does not happen with nondeterministic 

algorithms; for a particular input x, the output (or lack of output) from one run may differ 

from that of another run because it may depend on s. So what is the “answer” computed by 

a nondeterministic algorithm, say, A, for a particular decision problem with input x? A’s 

answer for x is defined to be yes if and only if there is some execution of A that gives a yes 

output. The answer is no if for all s, there is no output. Using our informal notion of s as 

a proposed solution, A’s answer for x is yes if and only if there is some proposed solution 

that “works.” 
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Input: 4, 5, 
Se a 

kon edges of G 

Figure 13.1 Input for nondeterministic graph coloring (Example 13.1) 

Example 13.1 © Nondeterministic graph coloring 

Suppose the problem is to determine if an undirected graph G is k-colorable. The first 

phase of a nondeterministic algorithm will write some string s, which the second phase 

can interpret as a proposed coloring. The string s can be interpreted as a list of integers cj, 

C2,..., Cy for some g that depends on the length of s. The second phase of the algorithm 

can interpret these integers as colors to be assigned to the vertices: Assign c; to v;. To verify 

that the coloring is valid, the second phase does these steps: 

1. Check that there are n colors listed (..e., that g = 7). 

i) Check that each c; 1s in the range |,..., k. 

3. Scan the list of edges in the graph (or scan an adjacency matrix) and for each edge 

ujv; check that c; # c;; that is, the two vertices incident upon one edge have different 

colors. 

If all of these tests are passed, the verifier returns true and the algorithm outputs yes. If 

s does not satisfy all the requirements, the verifier may return fa/se or go into an infinite 

loop, and the algorithm produces no output for this particular execution. 

As an example, let the input instance be the graph G in Figure 13.1 and k = 4, so the 

question in this case is, “Can G be 4-colored?” For readability, we denote colors by letters 

B (blue), R (red), G (green), Y (yellow), and O (orange), rather than integers 1,... ,5 

Here 1s a list of a few possible certificate strings s and the values returned by the verifier. 

s Output Reason 

RGRBG false v2 and us, both green, are adjacent 

RGRB false Not all vertices are colored 

RBYGO false Too many colors used 

RGRBY true A valid 4-coloring 

R%*,G@ _ false Bad syntax 
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Since there is (at least) one possible computation of the verifier that returns a true, the 
answer of the nondeterministic algorithm for the input (G,4) is ves. ™ 

A nondeterministic algorithm is said to be polynomially bounded if there is a (fixed) 
polynomial p such that for each input of size n for which the answer is yes, there is some 
execution of the algorithm that produces a yes output in at most pi) steps. 

Definition 13.5. The class NP 

NP is the class of decision problems for which there is a polynomially bounded non- 
deterministic algorithm. (The name N‘P comes from “Nondeterministic Polynomially 
bounded.”) 

Theorem 13.1) Graph coloring, Hamiltonian cycle, Hamiltonian path, job scheduling 

with penalties, bin packing, the subset sum problem, the knapsack problem, satisfiability, 

and the traveling salesperson problem (Problems 13.1 through 13.8) are all in NP. 

Proof The proofs are straightforward and are left for the exercises. The work described 

earlier to check a possible graph coloring, for example, can easily be done in polynomial 

time. 

Theorem 13.2. P CNP. 

Proof An ordinary (deterministic) algorithm for a decision problem is, with a minor 

modification, a special case of a nondeterministic algorithm. If A is a deterministic al- 

gorithm for a decision problem, just let A be the second phase of a nondeterministic 

algorithm, but modify A so that whenever it would have output ves, it returns true and 

whenever it would have output mo, it returns false. A just ignores whatever was written by 

the first phase and proceeds with its usual computation. A nondeterministic algorithm can 

do zero steps in the first phase (writing the null string), so if A runs in polynomial time, the 

nondeterministic algorithm with the modified A as its second phase also runs in polynomial 

time. It will output ves if A would have, and will output nothing otherwise. 

The big question is, does ‘P = N’P or is ‘P a proper subset of N‘P? In other words, 

is nondeterminism more powerful than determinism in the sense that some problems can 

be solved in polynomial time with a nondeterministic “guesser” that cannot be solved in 

polynomial time by an ordinary algorithm? If a problem is in NP, with polynomial time 

bound, say, p, we can (deterministically) give the proper answer (ves or no) if we check all 

strings of length at most p(7) (1.e., run the second phase of the nondeterministic algorithm 

on each possible string, one at a time). The number of steps needed to check each string is 

at most p(7). The trouble is that there are too many strings to check. If our character set 

contains c characters, then there are c’”"”” strings of length p(). The number of strings 1s 

exponential, not polynomial inn, Of course there is another way to solve problems: Use 

some properties of the objects involved and some cleverness to devise an algorithm that 

does not have to examine all possible solutions. When sorting, for example, we do not 

check each of the 7! permutations of the given n keys to see which one puts the keys in 
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order. The difficulty with the problems discussed in this chapter is that this approach has 

not yielded efficient algorithms; all the known algorithms either examine all possibilities 

or, if they use tricks to reduce the work, the tricks are not good enough to give polynomially 

bounded algorithms. 

It is believed that NP is a much larger set than ‘P, but there is not one single problem 

in NP for which it has been proved that the problem is not in P. There are no polynomially 

bounded algorithms known for many problems in N'P (including all the sample problems 

in Section 13.2.2), but no larger-than-polynomial lower bounds have been proved for these 

problems. Thus the question we asked above, does ‘P = N‘P?, is still open. 

13.2.5 The Size of the Input 

Consider the following problem. 

Problem 13.9 

Given a positive integer n, are there integers j,k > | such that n = jk? (that is, is n 

nonprime?) 

Is this problem in ‘P? Consider the following algorithm, which looks for a factor of n. 

factor = 0; 

for (j = 2; j <n; j ++) 

if ((2 mod /) == 0 

factor = 

break; 

return factor: 

) 

The loop body is executed fewer than 7 times, and certainly (7 mod /) can be evaluated 

in O(log-(11)), so the running time of the algorithm is in O(n~) with room to spare. Yet 

the problem of determining whether an integer is prime or is factorable is not known to 

be in ‘P, and, in fact, the difficulty of finding factors of large integers is the basis for 

various encryption algorithms exactly because it 1s considered a hard problem. What is 

the resolution of the apparent paradox? 

The input for the prime testing algorithm is the integer 7, but what is the size of 

n? Until now, we have used any convenient and reasonable measure of input size; it 

wasn't important to count individual characters or bits. When our measure of the size of 

an input may make the difference of whether an algorithm is polynomial or exponential, 

we have to be more careful. The size of an input is the number of characters it takes to 

write the input. [f 7 = 150, for example, we write three digits, not 150 digits. Thus an 

integer n written in decimal notation has size roughly log,,) 1. If we choose to think of 

the internal representation inside a computer where an integer is represented in binary, 

then the size of 7 is roughly Ign. These representations differ by a constant factor: that 

is, log, n = logy 10 log;y m, so which we use 1s not critical. The point, however, is that if 

the input size s is logy) 7 and the running time of an algorithm is 7, then the running time 

of the algorithm is an exponential function of the input size (7 = 10°). Thus the algorithm 
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above for determining if 1 is prime is not in ‘P. There is no algorithm presently known for 
prime testing in polynomial time. However, the question, “Is integer 1 prime?” is in N’P 
(see Exercise 13.4). 

In the problems we considered earlier in this book, the variable we used to describe the 
input size corresponded (more or less) to the amount of data in the input. For example, we 
used 7 as the input size when sorting a list of n keys. Each of the keys would be represented 
in, say, binary, but since there are n keys, there are at least 2 symbols in the input. So, if the 
complexity of an algorithm is bounded by a polynomial inn, it is bounded by a polynomial 
in the exact size of the input. 

Similarly, we used (7 + 1) as the input size of graphs, but all edges needed to be listed 

explicitly, so that requires at least m symbols in the input. Although it is not necessary to 

list all n vertices in the input, in all problems of interest every vertex will be incident upon 

some edge so (77 + 7) is at most three times the number of symbols in the input. Again, if 

the complexity of an algorithm is bounded by a polynomial in (7 + 172), it is bounded by a 

polynomial in the exact size of the input. 

If each of two measures of input size is bounded by a polynomial function of the other, 

then determining if the problem is in ‘P will not depend on the specific measure used. For 

the sorting example, if one measure is the number of keys, n, and the second measure is 

n |g(maximum key), which counts individual bits, we have n € O(7 log(maximum key)) 

and n lg(maximum key) € O(n7). Therefore each measure is within a polynomial function 

of the other. 

So, usually, we do not have to be entirely precise about the input size. We must be 

careful, however, when the running time of an algorithm is expressed as a polynomial 

function of one of the input values, as is the case with the prime testing problem. 

A few of the sample problems described earlier have dynamic programming solutions 

that appear to be polynomially bounded at first glance, but, like the prime testing program, 

are not. For example, recall the subset sum problem: Is there a subset of the m objects with 

SIZES Wiiawoye nook s, that adds up to exactly C? Using the techniques of Chapter 10, this 

can be solved with an nm x C table with only a few operations needed to compute each 

table entry (see Exercise 13.5a). Similar dynamic programming solutions exist for various 

versions of the knapsack problem. 

The dynamic programming solution for the subset sum problem runs in @(7C) time. 

Since there are m objects in the input, the term 7 is no problem, but the value of the 

number C is exponentially bigger (in general) than the input, because the datum C in the 

input would be represented in lg C bits. Thus the dynamic programming solution is nota 

polynomially bounded algorithm. Of course, if C is not too large, the algorithm may be 

useful in practice. 

NP-Complete Problems 

NP-complete is the term used to describe decision problems that are the hardest ones in 

N° in the sense that, if there were a polynomially bounded algorithm for an NP-complete 

problem, then there would be a polynomially bounded algorithm for each problem in N’P. 
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yes Or no x Algorithm 
5 Z 

for Q answer 
(an input on input 

for P) for Q 

Algorithm for P 

Figure 13.2 Reduction of a problem P to a problem Q: Problem Q’s answer for T (x) must be 

the same as P’s answer for x. 

Some of the sample problems described in Section 13.2.2 may seem easier than others 

and, in fact, the worst-case complexities of the algorithms that have been devised and 

analyzed for them do differ (they are fast-growing functions like ON oe (n/2)"/?, n}, 

etc.), but, surprisingly, they are all equivalent in the sense that if any one is in ‘P, they all 

are. They are all N‘P-complete. 

13.3.1 Polynomial Reductions 

The formal definition of “NP-complete” uses reductions, or transformations, of one prob- 

lem to another. Suppose we want to solve a problem P and we already have an algorithm 

for another problem Q. Suppose we also have a function 7 that takes an input x for P and 

produces 7’(x), an input for Q such that the correct answer for P on x is yes if and only if 

the correct answer for Q on T(x) is yes. Then, by composing 7 and the algorithm for Q, 

we have an algorithm for P. See Figure 13.2. 

Example 13.2 A simple reduction 

Let the problem P be: Given a sequence of Boolean values, does at least one of them have 
the value true? (In other words, this is a decision-problem version of computing the n-way 
Boolean or, when the string has n values.) 

Let Q be: Given a sequence of integers, is the maximum of the integers positive? 

Let the transformation T be defined by: 

AES ae oy eer yew GR Ne Yn) 

where yj = Til 2; = true, and y; = 0 if x; = false. 

Clearly an algorithm to solve Q, when applied to yj), yo... ., Vi Solves! P for x7, x0. 
.x,). 

Definition 13.6 | Polynomial reduction and reducibility 

Let 7 be a function from the input set for a decision problem P into the input set for a 
decision problem Q. T is a polynomial reduction (also called a polynomial transformation) 
from P to Q if all of the following hold: 

|. 7 can be computed in polynomially bounded time. 
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to For every string x, if x is a yes input for P, then T(x) is a yes input for Q. 
3 - every ctr - if + 1¢ 1 - 1 | 7 3. For every string x, if x is a no input for P, then T(x) is ano input for Q. 

It is usually easier to prove the contrapositive (Section 1.3.3) of part 3: 

3. For every x, if T(x) is a yes input for Q, then x is a yes input for P. 

Problem P is polynomially reducible (also called polynomially transformable) to Q if there 
exists a polynomial transformation from P to Q. (We usually just say P is reducible to Q 
in this chapter; the polynomial bound is understood.) The notation 

FoapQ 

is used to indicate that P is reducible toQ. a 

Notice that parts 2 and 3 (or 3’) in the definition of reduction combine to state that 

T(x) has the same answer for problem Q as x has for P, for every x. 

The point of the reducibility of P to Q is that Q is at least as “hard” to solve as P. This 

is made more precise in the following theorem. 

Theorem 13.3 If P <p Q and Q is in 2, then P is in P. 

Proof Let p be a polynomial bound on the computation of 7, and let g be a polynomial 

bound on an algorithm for Q. Let x be an input for P of size n. Then the size of T(x) is 

at most p(7) (since, at worst, a program for 7 writes a symbol at each step). When the 

algorithm for Q is given 7 (x), it does at most g(p(71)) steps. So the total amount of work 

to transform x to 7 (x) and then use the Q algorithm to get the correct answer for P on x is 

p(n) + q(p(n)),a polynomial inn. Oo 

Now we can give the formal definition of NP-complete. 

Definition 13.7. | N‘P-hard and N‘P-complete 

A problem Q is N’P-hard if every problem P in N’P is reducible to Q; that is, P <p Q. A 

problem Q is NP-complete if itis in N’P and is NP-hard. 

It is important to realize that “NP-hard” does not mean “in N‘P and hard.” It means “at 

least as hard as any problem in NP.” Thus a problem can be N‘P-hard and nor be in NP. 

Being NP-hard constitutes a lower bound on the problem. Being in NP constitutes 

an upper bound. Thus the class of NP-complete problems is bounded both from below 

and from above, although neither boundary is sharply defined with our current state of 

knowledge. The following theorem follows easily from the definition and Theorem 13.3. 

Theorem 13.4 If any N’P-complete problem is in ?, then P= NP. 

This theorem indicates, on the one hand, how valuable it would be to find a poly- 

nomially bounded algorithm for any N’P-complete problem and, on the other hand, how 
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unlikely it is that such an algorithm. exists because there are so many problems in NP for 

which polynomially bounded algorithms have been sought without success. 

Although we have seen that many problems are in NP, it is not at all clear that any 

of them are N‘P-complete. After all, to show that some problem Q is NP-hard, the second 

half of the requirement for N‘P-completeness, it is necessary to show that all problems in 

NP, even problems we do not know about, are reducible to the specific problem Q. How on 

earth would we even approach such a task? The first proof that a certain problem actually is 

NP-complete stands as one of the major accomplishments of theoretical computer science 

and mathematics. 

Theorem 13.5 (Cook’s theorem) The satisfiability problem is N‘P-complete. 

The proof of this theorem and other theorems stated here without proof can be found in 

the sources given in Notes and References at the end of the chapter. We will sketch the idea. 

The proof must show that any problem P in N’P is reducible to satisfiability. Steven Cook’s 

proof gives an algorithm to construct a CNF formula for an input x for P such that the 

formula, informally speaking, describes the computation of a nondeterministic algorithm 

for P acting on x. The CNF formula, which 1s very long but constructed in time bounded by 

a polynomial function of the length of x, will be satisfiable 1f and only if the computation 

produces a yes answer for some certificate. 

Polynomial reduction is a transitive relation (see Exercise 13.6). Thus if satisfiability 

can be reduced to some problem Q, then Q is also N’P-hard. If Q is also in NP (which is 

usually easy to show), then Q is N’P-complete. Thus reduction provides a tool for showing 

other problems are NP-complete without having to repeat all the work of Cook’s theorem. 

For example, satisfiability can be reduced to 3-satisfiability (see Exercise 13.7). 

Satishability (and 3-satisfiability) are logical problems, and have no obvious relation- 

ship to the other problems described in Section 13.2.2 or the many other optimization 

problems that were defying efficient solution, some concerning graphs, others concern- 

ing compilers and operating systems. If the only NP-complete problems were problems 

like satishability, then N’P-completeness might have remained an interesting curiosity, but 

nothing more. 

The second seminal paper in the field was by Richard Karp, who showed that the 

decision versions of a large number of optimization problems, including several of the 

sample problems we described, are also NP-complete. Very ingenious reductions were 

needed to show that problems could be reduced to apparently unrelated problems. For 

example, he showed that 3-satisfiability could be reduced (through a chain of reductions 
in some cases) to apparently unrelated graph problems, such as the Hamiltonian cycle 
problem and the graph coloring problem. This opened the flood gates. Soon many problems 
for which polynomially bounded algorithms were being sought unsuccessfully were shown 
to be NP-complete. In fact. the list of N‘P-complete problems grew to hundreds in the 
1970s. 

Theorem 13.6 Graph coloring, Hamiltonian cycle, Hamiltonian path, job scheduling 
with penalties, bin packing, the subset sum problem, the knapsack problem, and the 
traveling salesperson problem are all N’P-complete. 0 
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As mentioned, to prove that a problem Q € NP is NP-complete, it suffices to prove that 
some other N'P-complete problem is polynomially reducible to Q, since the reducibility 
relation is transitive. Hence the various parts of Theorem 13.6 are proved by establishing 
chains of transformations beginning with the satisfiability problem. We will do a few as 
examples. 

Students often get confused about the direction of the reduction needed to prove that a 

problem is NP-complete, so we emphasize: To show that the problem Q is N‘P-complete, 

choose some known 'P-complete problem P and reduce P to Q, not the other way around. 

The logic is as follows: 

1. Since P is NP-complete, all problems R € NP are reducible to P; that is, R <p P. 

2, show P =p Q: 

3. Then all problems R € NP satisfy R <p Q, by transitivity of reductions. 

4. Therefore Q is NP-complete. 

Theorem 13.7 The directed Hamiltonian cycle problem is reducible to the undirected 

Hamiltonian cycle problem. (Thus, if we know that the directed Hamiltonian cycle problem 

is N’P-complete, we can conclude that the undirected Hamiltonian cycle problem is also 

NP-complete. ) 

Proof Let G=(V,E) be a directed graph with n vertices. G is transformed into the 

undirected graph G’ = (V’, E’), where, for each vertex v € V, the transformed vertex set V’ 

contains three vertices named v!, u~, and v*. Also, for each v € V, the transformed edge set 

E’ contains undirected edges v!v- and v7v°. In addition, for each directed edge vw € E, 

E’ contains the undirected edge v’w!. In other words, each vertex of G is expanded to 

three vertices connected by two edges, and an edge vw in E becomes an edge from the 

third vertex for v to the first for w. See Figure 13.3 for an illustration. The transformation 

Gas) Ce 

Figure 13.3 Reduction of the directed Hamiltonian cycle problem to the undirected Hamilto- 

nian cycle problem 
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is straightforward, and G’ can certainly be constructed in polynomially bounded time. If 

|V| =n and |E| =m, then G’ has 3n vertices and 2n + m-edges. 

Now suppose G has a (directed) Hamiltonian cycle v), 02... ., Dee Clnatulss Upon 
- 2 NS, Came eo 

U, are distinct, and there are edges v;v;+1, for 1 <i <n, and u,v.) Then vj, v7, vj, V5, 
a) a 5 : + 5 rd = nvch. ean) 

vs, u3,.... 0), v2, v3 is an undirected Hamiltonian cycle for G’. On the other hand, if G 
4 x ; F : ; 9”) 3 BOA od ae mee 

has an undirected Hamiltonian cycle, the three vertices, say v!, v?, and v’, that correspond 
3 3) 3 &) 

M Vim PI CONTE US, 210 
“4 z ‘ é . uy | 

to one vertex from G must be traversed consecutively in the order v 
é a) 5 4 Siphes aay $ 

since v~ cannot be reached from any other vertex in G’. Since the other edges in G’ connect 

vertices with superscripts | and 3, if for any one triple the order of the superscripts is 1, 2, 

3, then the order is 1, 2, 3 for all triples. Otherwise, it is 3, 2, | for all triples. Since G’ is 
A : 5 4 f 9) 3 9) 3) 

undirected, we may assume its Hamiltonian cycle 1s UV; Ui Us sees fo v; vu; . Then vj,, 
1 

Vis, +. Uj, IS a directed Hamiltonian cycle for G. Thus G has a directed Hamiltonian cycle 

if and only if G’ has an undirected Hamiltonian cycle. 0 

It is of course much easier to see that the G’ defined tn the proof is the proper 

transformation to use than it is to think up the correct G’ in the first place, so we make a 

few observations to indicate how G’ was chosen. To ensure that a cycle in G’ corresponds 

to a cycle in G, we need to simulate the direction of the edges of G. This aim suggests 

giving G’ two vertices, say v! and vu, for each v in G with the interpretation that vu! is used 

for edges in G whose head is v and v° is used for edges whose tail is v. Then wherever 

v! and v> appear consecutively in a cycle for G’ they can be replaced by v to get a cycle 

for G, and vice versa. Unfortunately, there is nothing about G’ that forces v! and v> to 

appear consecutively in all of its cycles; thus G’ could have a Hamiltonian cycle that does 

not correspond to one in G (see Exercise 13.13). The third vertex, v-, which can only be 

reached from vu! and v°, is introduced to force the vertices that correspond to v to appear 

together in any cycle in G’. 

Theorem 13.8 The subset sum problem (Problem 13.5) is reducible to the job scheduling 

problem (Problem 13.2). 

Proof Lets),...,8,,C be an input / for the subset sum problem (which asks if there is a 

subset of the objects that adds up to exactly C). Let § = )~"_, 5;. If S < C, then the output 

for J is no, and J may be transformed to any job scheduling input with a no output, for 

example, fj) = 2, dj = pj = 1, andk = 0. It S = C, then / is transformed into the following 

input: t; = pj = s; and dj =C for 1 <i <n, and k= S — C. Clearly the transformation 

itself takes little time. 

Now suppose the subset sum input produces a yes answer; that is, there is a subset J of 

N@== te nea n} such that 5°,- , sj; = C. Then let 7 be any permutation of N that causes 

all jobs with indexes in J to be done before any jobs with indexes in N — J. The first |/| 
Jobs are completed by their deadline since $0; _, t; = )))., 5; = C, and C is the deadline Lamet | 

for all jobs. The penalty for the remaining jobs is 

nN i 

a JOA) | = oe alee = S— S's; =e Gee 

tse i=|/|+1 ted 
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: Penalties 
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Figure 13.4 A satisfactory job schedule solves the subset sum problem. 

Thus the jobs can be done with total penalty of k. 

Conversely, let 2 be any schedule for the jobs with total penalty < k. Let m be the 

number of jobs completed by the common deadline C; that is, m is the largest number such 

that 

ee (13.1) 

The penalty, then, is 

i 

Serie (13.2) 
i=m+1 

See Figure 13.4 for an illustration. Since fj = pi = si for | <i <n, we must have 

m i 

) Li) tr ) Pri) = S; 

(=) j=m-+1 

and this can only happen if the inequalities in Equations 13.1 and 13.2 are equalities G6. 10 

the shaded areas in Figure 13.4 are zero). Thus $0", t,(i) = C, so the objects with indexes 

m(1)....,7(m) are a solution for the subset sum problem. 0 

There are similar reduction problems in the exercises. 

13.3.2 Some Known N‘?-Complete Problems 

We collect here several additional NP-complete problems that are discussed in the chapter 

and in the exercises. 

Problem 13.10 | Vertex cover 

A vertex cover for an undirected graph G is a subset C of vertices such that each edge is 

incident upon some vertex in C. Think of the edges of the graph as an irregular system 
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of corridors that intersect at vertices. What is the minimum number of sentries that can be 

posted at the intersections such that all corridors are monitored by some sentry? 

Optimization Problem: Given an undirected graph G, find a vertex cover for G with as 

few vertices as possible. 

Decision Problem: Given an undirected graph G and an integer k, does G have a vertex 

cover consisting of k vertices? @ 

Problem 13.11 Clique 

A clique is a subset K of vertices in an undirected graph G such that every pair of distinct 

vertices in K is joined by an edge of G. In other words, the subgraph induced by K is 

complete. A clique with & vertices is called a k-clique. 

Notice that a graph with a k-clique requires at least & colors to color it. 

Optimization Problem: Given an undirected graph G, find a clique with as many vertices 

as possible. 

Decision Problem: Given an undirected graph G and an integer k, does G have a clique 

consisting of k vertices? 

Problem 13.12 Independent set 

An independent set is a subset / of vertices in an undirected graph G such that no pair of 

vertices in / 1s joined by an edge of G. 

Optimization Problem: Given an undirected graph G, find an independent set with as 

many vertices as possible. 

Decision Problem: Given an undirected graph G and an integer k, does G have an 

independent set consisting of k vertices? = 

The three problems, vertex cover, clique, and independent set, are closely related, as 

suggested by Figure 13.5. 

Vertex cover Independent set Clique 

Figure 13.5 Examples for vertex cover, independent set, and clique 
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Problem 13.13 | Feedback edge set 

A feedback edge set in a digraph G is a subset F of edges such that every cycle in G has 
an edge in F. 

Optimization Problem: Given a digraph G, find a feedback edge set with as few edges 
as possible. 

Decision Problem: Given a digraph G and an integer k, does G have a feedback edge set 
consisting of k edges? = 

13.3.3. What Makes a Problem Hard? 

If the set of inputs for an NP-complete problem is restricted in some way, the problem may 

be in P; in fact, it may have a very fast solution. Technically, restricting the inputs means 

changing the question part of the problem so that more input instances have easy (i.e., 

polynomial-time) no answers. This is done by adding a condition to the standard question 

for that problem, as illustrated with some examples in the discussion below. It is more 

convenient to think of the added condition as a restriction on the set of inputs. 

However, even with restrictions, the problem may still be N’P-complete. Knowing the 

effect on complexity of restricting the set of inputs for a problem is important because, in 

many applications, the inputs that actually occur have special properties that might allow 

a polynomially bounded solution. Unfortunately, the results are discouraging; even with 

quite strong restrictions on the inputs, many N'P-complete problems are still N’P-complete. 

On the other hand, in many engineering situations there is some flexibility in the 

way a problem is defined and in the precise criterion for optimization. If one criterion 

produces an NP-complete problem, it is quite possible that an alternative criterion 1s quite 

acceptable, and produces a problem in ‘P. Therefore familiarity with the characteristics of 

hard problems can be very useful in practical situations. 

Definition 13.8 Vertex degree 

In an undirected or directed graph, the degree of a vertex is the number of edges incident 

upon it. The maximum degree of any vertex in G is denoted A(G). For directed graphs 

the indegree and outdegree of a vertex are the number of incoming and outgoing edges, 

respectively. 

For graph problems we can consider restrictions on A(G). Itis easy to test most graph 

properties on graphs with A < 2. For such graphs, the Hamiltonian cycle problem can be 

solved in polynomial time. (That is, the modified question “Is A(G) < 2 and does G have a 

Hamiltonian cycle?” is easy.) The k-colorability problem can also be solved in polynomial 

time if A < 3. (That is, the modified question “Is A(G) < 3 and can G be colored with 

k colors?” can be solved in polynomial time.) However, even for graphs with A = 3, the 

Hamiltonian cycle problem is NP-complete. For graphs with A < 4, k-colorability is N\P- 

complete. Thus it is not the presence of vertices with high degree that makes these problems 

hard. 
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However, the clique problem (Problem 13.11) is in ‘P for graphs with A < d for any 

constant d. (A simple algorithm that checks all subsets of d + 1 vertices runs in time 

O (net ').) Therefore it is high-degree vertices that make this problem hard. 

A planar graph is one that can be drawn in a plane such that no two edges intersect. 

They occur in many applications, so it is well worth knowing how hard various problems 

are if the inputs are restricted to planar graphs. (Determining if an arbitrary graph is planar 

is an important problem in itself; fortunately, it is Known to be in ‘P. The best algorithms 

for testing planarity are complicated but run in linear ime.) The directed Hamiltonian path 

problem is N‘P-complete even when restricted to planar directed graphs. 

The vertex cover problem (Problem 13.10) is still N’P-complete when restricted to 

planar graphs. Planarity simplifies the clique problem (Problem 13.11), though. For planar 

graphs itis in P because a planar graph cannot have a clique with more than four vertices. 

Three-colorability is still N’P-complete if the graphs are planar and the maximum 

degree is 4+. However, 4-colorability of planar graphs is polynomial, because every planar 

graph is 4+-colorable (this is the famous four-color theorem). That is, the modified question, 

“Is G a planar graph and can G be colored with 4 colors?” always has the same answer 

as “Is G a planar graph?” It is unnecessary to find a 4-coloring to answer this question. 

One of the earliest restrictions to be studied was 3-satisfiability (Problem 13.6), which 

restricts formulas to have at most three literals per clause. It is N‘P-complete. The 2- 

satishability problem restricts formulas to at most two literals per clause, and it can be 

solved in polynomial time. 

Another interesting phenomenon, illustrated by some of the following examples, is 

that two problems that seem to differ only slightly in their statement may differ very much 

in complexity: one may be in ‘P while the other is N’P-complete. 

Although the vertex cover problem (Problem 13.10) is N‘P-complete, its dual, the edge 

cover problem—lIs there a set of k edges such that each vertex is incident upon at least one 

of them?—is in P. 

In Chapter 7 we saw that there are efficient algorithms for finding the shortest simple 

path between two specified vertices in a graph. The longest simple path problem is N‘P- 
complete. (The decision problem formulation for these two problems includes an integer k 
as input and asks if there is a path shorter than k, or a path longer than k, respectively.) 

Determining if a graph is 2-colorable is easy: determining if it is 3-colorable is N‘P- 

complete. 

As mentioned, 2-satishability can be solved in polynomial time. However, consider 
this variation of the problem: Given a CNF formula with at most two literals per clause, 
and given an integer A, is there a truth assignment for the variables that satisfies at least k 
clauses? This problem is N‘P-complete. 

The feedback edge set problem (Problem 13.13) is N’P-complete; however, the same 
problem for undirected graphs is in ‘P. 

The problem of job scheduling with penalties (Problem 13.2) is NP-complete, but if 
the penalties are omitted and we simply ask if there is a schedule such that at most k jobs 
miss their deadlines, then the problem is in ‘P. (In other words, if the penalty for each miss 
is 1, we can minimize this penalty in polynomially bounded time.) 
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These examples do not yield any nice generalizations about why a problem is N‘P- 
complete. There are still a great many open questions in this field, the main one being, of 
course, does) = NP? 

13.3.4 Optimization Problems and Decision Problems 
In our descriptions of sample N’P-complete problems in Section 13.2.2, we included two 
aspects of the optimization problems: We may ask for the optimal solution value (e.g., the 
chromatic number of a graph or the minimum number of bins into which a set of objects 
fit) or we may ask for an actual solution (a coloring of the graph, a packing of the objects) 
that achieves the optimal value. Thus we have three kinds of problems: 

|. Decision problem: Is there a solution better than some given bound? 

Optimal value: What is the value of a best possible solution? 

(Fe) Optimal solution: Find a solution that achieves the optimal value. 

It is easy to see that these are listed in order of increasing difficulty. For example, if we have 

an optimal coloring for a graph, we need only count the colors to determine the graph’s 

chromatic number, and if we know its chromatic number, it is trivial to determine if the 

graph is k-colorable for any given k. In real applications we usually want an optimal (or 

nearly optimal) solution. 

It has been easier to work out the theory of N’P-completeness for decision problems, 

and since the optimization problems are at least as hard to solve as the related decision 

problems, we have not lost anything essential by doing so. That is, our comments about the 

difficulty of NP-complete decision problems apply to the optimization problems associated 

with them. These optimization problems are often called NP-hard, although they are not 

decision problems. In fact, they are harder than the N‘P-complete decision problems in 

some sense because they are not known to be in NP. That is, no polynomial verification 

algorithm is known that can determine if a proposed solution is an optimal solution. 

But suppose it turns out that ‘P = NP. If we had polynomial time algorithms for the 

decision problems, could we then find the optimal solution value in polynomial time? In 

many cases it is easy to see that we could. Consider graph coloring. Suppose we have a 

polynomial time Boolean function subprogram canColor(G, k) which returns true if and 

only if the graph G can be colored with k colors. Then we can write the following program: 

chromaticNumber(G) 

for (k = 1; k <n; k +4) 

if (canColor(G, k)) 

break; 

return k; 

Since any graph with n vertices can be colored with n colors, we know that canColor(G, k) 

will be true within at most 7 iterations of the for loop. So if canColor runs in polynomial 

time, so does the whole program. 
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The same technique will show that for some other problems as well, if we can solve the 

decision problem in polynomial time, we can find the optimal solution value in polynomial 

time. However, it is not always this simple. Consider the traveling salesperson problem. 

We are given a complete graph with an integer cost assigned to each edge, and we want to 

find the cost of a minimum tour, or Hamiltonian cycle. If tspBound(G, k) is a function with 

value true if and only if there is a tour of cost at most k, then the following program finds 

the cost of a minimum tour: 

tspMin(G) 

fon (k= lik oon ke-f) 

if (tspBound(G, k)) 

break: 

return k: 

How many iterations of the loop can there be? Let W be the maximum of the edge weights. 

Since there are n edges in a Hamiltonian cycle, the weight of a minimum tour is at most 

nW, and so there will be at most n W iterations. Unfortunately, as the discussion of input 

size in Section 13.2.5 indicates, this is not good enough to conclude that the program runs 

in polynomial time. We leave it for the exercises to show that this program can be modified 

to find the cost of a minimum tour in polynomial time, and, in fact, that an optimal tour 

can be found in polynomial time—both of course, under the assumption that the decision 

problem has a polynomial time solution (see Exercise 13.59). 

Approximation Algorithms 

Many hundreds of important applications problems are N’P-complete. What can we do if 

we must solve one of these problems? There are several possible approaches. Even though 

no polynomially bounded algorithm may exist, there may still be significant differences in 

the complexities of the known algorithms; we can try, as usual, to develop the most efficient 

one possible. We can concentrate on average rather than worst-case behavior and look for 

algorithms that are better than others by that criterion, or, more realistically, we can seek 

algorithms that just seem to work well tor the inputs that usually occur; this choice may 

depend more on empirical tests than on rigorous analysis. 

In this section we study a different approach to solving NP-complete optimization 

problems: the use of fast (.e., polynomially bounded) algorithms that are not guaranteed 

to give the best solution but will give one that is close to the optimal. Such algorithms are 
called approximation algorithms or heuristic algorithms. A heuristic is a “rule of thumb.” 

usually an idea that seems to make good sense, but might not be provably good. 

In many applications an approximate solution is good enough, especially when the 
time required to find an optimal solution is considered. You do not win by finding an 
optimal job schedule, for example, if the cost of the computer time needed to find it exceeds 
the worst penalty you might have paid. 

The strategies, or heuristics, as they are often called, used by many of the approx- 
imation algorithms are simple and straightforward, yet for some problems they provide 
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surprisingly good results. Many of them are greedy heuristics. In Chapter 8 we studied 
several greedy algorithms that yielded optimal solutions; in this chapter they do not. To 
make precise statements about the behavior of an approximation algorithm (how good its 

results are, not how much time it takes), we need several definitions. In the following para- 

graphs, assume that we are considering a particular optimization problem P and a particular 

input 7. 

Definition 13.9 Feasible solution set 

A feasible solution is an object of the right type but not necessarily an optimal one. F S(/) 

is the set of feasible solutions for /. 

Example 13.3 Feasible solution sets 

For the graph coloring problem and an input graph G, FS(G) is the set of all valid colorings 

of G using any number of colors. 

For the bin packing problem and an input / = {s;,...,: S,}, F S(/) is the set of all valid 

packings using any number of bins (1.e., all partitions of / into disjoint subsets 7), .. ., Tp, 

for some p, such that the total of the s; in any subset 1s at most 1). 

The set of feasible solutions for an input to the job scheduling problem is the set of 

permutations of the 7 jobs. @ 

Definition 13.10 Value function 

The function val(/, x) returns the value of the optimization parameter that is achieved by 

the feasible solution x, for inputinstance /. & 

Example 13.4 Value functions 

1. For graph colorings, val(G, C) is the number of colors used by the coloring C. 

2. For bin packing, if T),..., T, is a feasible partition of the objects for an input /, then 

VRE ACU es T,,)) = p, the number of bins used. 

3. For job scheduling val(/, 7) = Pz, the penalty for the schedule 7. ™ 

It should be easy for readers to identify the feasible solution sets and the solution value 

functions for other optumization problems. 

Definition 13.11. |©Optimum value 

Depending on the problem, we want to find a solution that either minimizes or maximizes 

val: let “best” be “min” or “max,” respectively. Then opt(/) = best {val(/, x) | x € FS(1)}. 

That is. it is the best value achievable by any feasible solution. An optimal solution for I is 

an x in FS(/) such that valU/, x) =optU/). & 

Definition 13.12 © Approximation algorithm 

An approximation algorithm for a problem is a polynomial-time algorithm that, when given 

input /, outputs anelementof FS(/). & 
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There are several ways to describe the quality of an approximation algorithm. Usually 

it is most useful to look at the ratio between the value of the algorithm’s output and the 

value of an optimal solution (though sometimes we might want to look at the absolute 

difference between the two). Let A be an approximation algorithm. We denote by A(/) the 

feasible solution A chooses for input /. We define: 

val([, A(I)) 
Ee) = for minimization problems, (L323) 

opt(l) 

opt(l) 

~ yal(I, A(1)) 

In both cases, ra(/) > 1. To summarize the behavior of A, we would like to consider the 

worst-case ratio. Again, there are several choices: We could consider the worst-case ratio 

for all inputs of a certain size, or for all inputs with a certain optimal solution value, or for 

all inputs. Different approaches are useful for different problems. We define the following 

functions: 

ra(l) for maximization problems. ds) 

Ra(im) = max {ra(1) | 7 such that opt(/) = m} ; (ses) 

Sa (2) = max {ra (7) | I of size mn} . (13.6) 

Note that Ra (7) may be infinite for some m. For some problems, the maximum ratio is 

not well defined; this can occur when the set of inputs being considered is infinite. For 

some problems there are approximation algorithms for which R and S are arbitrarily close 

to 1, for others they are bounded by small constants, and for still others no algorithms are 

known that can guarantee to produce reasonably close solutions. For some problems it can 

be shown that finding a nearly optimal solution is as hard as finding an optimal solution. 

We will present some approximation algorithms in the next few sections. 

Bin Packing 

The bin packing problem is a simplification of a class of problems that arise frequently in 

practice: how to pack or store objects of various sizes and shapes with a minimum of wasted 

space. It is one of the earliest problems for which polynomial algorithms were found that 

were guaranteed to be within a constant factor of the optimal solution. Since the constant 

factor is quite small, these approximation algorithms and their variants are quite useful in 

practice. 

Let S = (s),...,5,) where 0 < 5; < | for 1 <i <n. The problem is to pack s),..., s, 
into as few bins as possible, where each bin has capacity one. An optimal solution can be 
found by considering all ways to partition a set of 7 items into 7 or fewer subsets, but the 
number of possible partitions is more than (7 /2)!/?. 

13.5.1. The First Fit Decreasing Strategy 
The approximation algorithm we present here uses a very simple heuristic greedy strategy, 
called first fit decreasing; it has worst-case time complexity in ©(n7), and produces good 
solutions. The simple first fit strategy places an object in the first bin in which it fits. The 
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Figure 13.6 Example of first fit decreasing heuristic for bin packing: The packing is not 

optimal. 

first fit decreasing (FFD) strategy is a modification that sorts the objects first so that they are 

considered in order of nonincreasing size. The sizes may not be distinct, so a more accurate 

name might be “first fit nonincreasing”; however, “first fit decreasing” is the traditional 

name. There is an example in Figure 13.6. 

Algorithm 13.1 Bin Packing—First Fit Decreasing (FFD) 

Inpul? Avsequence-S: = 6}, 2-44 Sn) Of type float, where 0 <5, =< I fort =1 27.5 

represents the sizes of objects {1,..., n} to be placed in bins of capacity 1.0 each. 

Output: An array bin where for | <i <n, bin[i] is the number of the bin into which object 

i is placed. For simplicity, objects are indexed after being sorted in the algorithm. The array 

is passed in and the algorithm fills it. 

binpackFFD(S, n, bin) 

float{] used = new float[n+1]; 

// used[j] is the amount of space in bin j already used up. 

int i, j: 
Initialize all used entries to 0.0. 

Sort S into descending (nonincreasing) order, giving the sequence 

Sip ee Se a 8 zs Sine 

for (i= 1; i <n; i++) 

// Look for a bin in which s[i] fits. 

for(j= ley Sn +s) 

if (used[j] + s; < 1.0) 

binfi] = J; 
used[j] += sj; 

break: // exit for (j) 

// Continue for (i) 

Dye 
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Room for s; 

Bp By 

Figure 13.7 First illustration for the proof of Lemma 13.9 

The input can be sorted in ©(n log n) time. Index j is incremented while searching 

for an appropriate bin for 5; at most n(n — 1)/2 times, totaled over all 7. All of the other 

instructions are executed at most 7 times so the worst-case time complexity is in O(n”). 

The FFD heuristic does not always give optimal packings; the packing in Figure 13.6 

is not optimal. Theorem 13.11, which gives upper bounds on the worst packings produced 

by FFD, is established via the next two lemmas. After the theorem we will mention some 

results about how well FFD does on the average. 

Lemma 13.9 Let § = (s|,...,.5,) be an input, in nonincreasing order, for the bin packing 

problem and let opt(S) be the optimal (i.e., minimum) number of bins for S. All of the 

objects placed by FFD in extra bins (1.e., bins with index larger than opt(S)) have size at 

most 1/3. 

Proof Leti be the index of the first object placed by FFD in bin opr(S) + 1. Since S is 

sorted in nonincreasing order, it suffices to show s; < 1/3. We examine the contents of the 

bins at the time s; is considered by PPD. Suppose s; = 1/3. Then sj... 45,24 > 1/3 so 

bins B; for | < j < opt(S) contain at most two objects each. We claim that for some k > 0 

the first k bins contain one object each and the remaining opt(S) — k bins contain two each. 

Otherwise there would be bins B, and B,, as in Figure 13.7, with p <q such that B,, has 

two objects, say ¢ and wv (with f > uw) and By only one, v. Since the objects are considered 

in nonincreasing order, f > v and u > s;; so | >t +u >v-+s;, and FFD would have put 

object ¢ in By. 

Thus the bins are filled by FFD as in Figure 13.8. Since FFD did not put any of the 

objects A + 1,...,/ in the first k bins, none of them can fit. Therefore in an optimal solution 

there will be & bins that do not contain any of the objects k + 1,..., i; without loss of 

generality, we may assume they are the first A bins. Then, in an optimal solution, although 

they may not be arranged exactly as in Figure 13.8, objects k + 1,...,i — 1 will be in bins 

B4i,.--, Bop, and since these objects are all larger than 1/3, there will be two in each bin 

and s; > 1/3 cannot fit. But an optimal solution must fit object 7 in one of the first opr(S) 

bins; therefore the assumption that 5; > 1/3 must be false. 

Lemma 13.10 For any input S$ = (sj,....: s,) the number of objects placed by FFD in 

extra bins 1s at most opt(S) — 1. 
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Figure 13.8 Second illustration for the proof of Lemma 13.9 

Proof Since all the objects fitin opt(S) bins, >"_, s; < opt(S). Suppose FFD puts opt(S) 
objects with sizes f},...., tops) in extra bins and let b; be the final contents of bin B; for 

1 < j < opt(S). If b; +t; < 1, FFD could have put t; in B;, so 

n opt(S) opt(S) opt(S) 

SS > Se b; + SS i Ss (bj +t) > opt(S), 

i=] j=) j=) j=] 

which is impossible. 

Theorem 13.11) Rerp(m) < (4/3) + (1/3m). Sprp(n) < 3/2, and for infinitely many 

a Oi 2 

Proof Let S =(s),...,5,) be an input with opt(S) =m. FFD puts at most m — 1 objects, 

each of size at most 1/3, in extra bins, so FFD uses at most m + [(m — 1)/3] bins. Thus 

= 3 m+ [(m Dye 5 Le era | 

m _ 3m 
REDS) = 

3 3m 

Thus Rerp <4/3+4+ 1/3m. For input size n, rrr p(S) is largest for m = 2h 

FED uses only one bin), so Sprp(n) < 4/3 + 1/6 = 3/2. Construction of a sequence ot 

examples /,, for arbitrarily large n where rrr p\ I,) = 3/2 is left as an exercise. O 

A stronger result than that stated in Theorem 13.11 is known: The number of extra 

bins used by FFD is bounded by 2 opt/9 + 4, about 22 percent of the optimal number. 

(That is, Repp(m) < 11/9 + 4/m.) For arbitrarily large m, there are examples that show 

Reep(m) = 11/9, so we cannot improve the bound on the worst packings produced by 

FED; 

FFD usually does much better than these worst-case bounds would suggest. To deter- 

mine the expected (average) number of extra bins used by FFD (i.e., the excess over the 

optimal number needed), extensive empirical studies have been done on large inputs. The 

data were randomly generated for various distributions. The alert reader may wonder how 

extensive studies of the number of extra bins used for large inputs could be done. Don’t we 

have to know the number of optimal bins to determine the number of extra bins used by 
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FFD? We are developing approximation algorithms because it takes too long to determine 

the number of optimal bins for large inputs! In fact, the empirical studies did not determine 

exactly the optimal number of bins; they estimated the number of extra bins by the amount 

of empty space in the packings produced by FFD. The empty space is the number of bins 

used by FFD minus 5°", s;. The number of extra bins used in a packing is clearly bounded 

by the amount of empty space. 

For inputs § with n = 128, 000 and object sizes uniformly distributed between zero and 

one, FFD produced packings using roughly 64,000 bins. The strongest worst-case bound 

(mentioned above) guarantees that the number of extra bins is at most 2 opt(S)/9 + 4 < 

2 x 64, 000/9 + 4 © 14, 200. In fact, there were only about 100 units of empty space in 

the FFD packings. It has been shown that for n objects with sizes uniformly distributed 

between zero and one, the expected amount of empty space in packings by FFD is approx- 

imately 0.3\/n. Hence the expected number of extra bins is at most roughly 0.3/7. 

13.5.2 Other Heuristics 

The first fit strategy (FF) can be used without sorting the objects. The results are not as 

good as for FFD, but it can be shown that the number of extra bins used by FF is at most 

about 70 percent more than the optimal (and some examples are that bad). Empirical studies 

have shown that the expected behavior of FF is not bad. For n =128,000, for example, the 

number of extra bins used was no more than about 2 percent of the total number of bins 

used. 

Another heuristic greedy strategy 1s best fit (BF): An object of size s is placed in a 

bin B;, which is the fullest among those bins in which the object fits; that is, used[j] is 

maximum subject to the requirement used{j] + s < 1.0. If the s; are sorted in nonincreasing 

order, the best fit strategy works about as well as FFD. If the s; are not sorted, the results 

can be worse but the number of bins would still be smaller than twice the optimal. 

There is another strategy that is even simpler than FF and BF, and gives an approxima- 

tion algorithm that is faster and can be used in circumstances where the contents of all the 

bins cannot be stored but must be output as the packing progresses. The strategy is called 

next fit. The s; are not sorted. One bin is filled at a time. Objects are put in the current bin 

until the next one does not fit; then a new bin is started and no more objects are packed in 

bins considered earlier. 

Example 13.5 The next fit strategy 

Let S = (0.2, 0.2, 0.7, 0.8, 0.3, 0.6, 0.3, 0.2, 0.6). The objects would be placed in six bins, 

as in Figure 13.9, although they would fitin four. # 

Clearly the next fit strategy can be implemented with a linear-time algorithm. It may 

seem, however, that next fit will use a lot of extra bins. In fact, its worst-case behavior is 

worse than FFD, but the observation that the sum of the contents of any two consecutive 

bins must be greater than | allows us to conclude that Rnextfit(n) < 2. 
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Figure 13.9 Example of next fit heuristic for bin packing 

For some bin packing strategies, if the s; are bounded by some number less than 1, 

better (i.e.. lower) bounds on the ratio of actual to optimal output can be proved. 

The Knapsack and Subset Sum Problems 

An input for the knapsack problem (Problem 13.4) consists of an integer C and two 

sequences of integers, (54, .:~ 9: Py elo (Gono 6 oe Dry Peet N= Weems n}, which we call 

the set of indexes. The problem is to find a subset T C N (T for “take”) that maximizes the 

total profit, }°;-; pi. subject to the constraint, ier Si < C; that is, the total size of the 

taken objects is at most C. 

Let / be some particular input to the knapsack problem. Using the terminology and 

notation of Section 13.4, 

FS(D= tT IT CN and oe (aD) 
Led 

In other words, an approximation algorithm must output a set of objects that fits in the 

knapsack, and any such set T is a feasible solution. The value function (Definition 13.10) 

for the knapsack problem is 

That is, the total profit of the objects specified by 7. (The parameter / will henceforth be 

omitted from val.) An optimal solution can be found by computing val(7) for each T CN, 

but there are 2” such subsets. 

We will describe some approximation algorithms for a slightly simpler version of 

the knapsack problem, which is equivalent to the optimization version of the subset sum 

problem (Problem 13.5). In the simplified knapsack problem, the profit for each object is 

the same as its size. Thus the input is an integer C and a sequence (Sj, 52... .. Sn). We want 

to find a subset T C N to maximize ier gs; subject to the requirement that ier We (GE, 

Dist. 
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The algorithms we will describe can be extended to the general knapsack problem 

by starting with the list of objects in order by “profit density”; that is, sorting so that 

P1/8| > p2/s2 >+++ > pyn/Sp. There are a few places in the algorithms where references 

to sizes would have to be replaced by references to profits; these should be obvious. The 

theorems about the closeness of the approximations can easily be carried over to the general 

knapsack problem too. 

There is a very simple greedy strategy. Let M be the maximum value (profit) of any 

object in the input. First, go through the sequence of objects and put each one in the 

knapsack if it fits. Let V be the sum of values of the objects chosen. Now, if V < M, dump 

everything out of the knapsack, and put in an object of value M. It is not hard to show that 

with this strategy the sum of the objects chosen will be at least half the optimal; that is, the 

ratio defined in Equation (13.5) satisfies Ry;eeqy(m) < 2 for all m > 0. We can do much 

better. 

We will present a sequence of polynomially bounded algorithms sKnap,; for which 

the ratio of the optimal solution to the algorithm’s output is | + 1/k (sKnap stands for 

“simplified knapsack”). Hence, we can get as close to optimal as we choose. However, the 

amount of work done by sKnap, is in O(kn*+!), Thus the closer the approximation, the 

higher the degree of the polynomial describing the time bound. Using the main idea in these 

algorithms along with an additional trick, it is possible to get a sequence of algorithms that 

achieve equally good results but run in time O(n + k7n). (See Notes and References at the 

end of this chapter.) 

For k => 0, the algorithm sKnap, considers each subset 7 with at most & elements. If 

ier Si < C, it goes through the remaining objects (in some arbitrary order), {s; |i ¢ 7}. 

and greedily adds objects to the knapsack as long as they still fit. The output is the set so 

obtained that gives the largest sum. An example follows the algorithm. 

Algorithm 13.2 | Simplified Knapsack Approximation sKnap, 

Input: Integer C and sj, 52,.... 8), a Sequence of positive integers. 

Output: take, a subset of N={l,..., n}; an object to hold take is passed in and the 

algorithm fills its fields. Also, the algorithm returns maxSum, the sum of s; fori € take. 

Remark: We assume the class IndexSet, is available to represent subsets of N and the 

needed set operations are implemented efficiently in this class. The output parameter take 

is in this class. 

Procedure: See Figure 13.10. @ 

Example 13.6 Simplified knapsack approximation 

Suppose the input for the problem is C = 110 and the sequence (54, 45, 43, 29, 23, 21, 14, 
1). We arranged the sequence in descending order to make it easier to work with: this is not 
a requirement of the algorithm. Table 13.1 shows the subsets considered by sKnapy and 
sKnap,. The optimal solution includes the sizes (43, 29, 23, 14, 1) and fills the knapsack 
completely. This solution would be found by sKnap>. 
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sKnap,(C, S, take) 

int maxSum, sum; 

IndexSet T = new IndexSet: 

int Jj; 

take = 4; maxSum = 0: 

For each subset JT C N with at most k elements: 

sum = ) ier Si; 

if (sum < C) 

// Consider remaining objects. 

For each j not in T: 

if (sum +5; ='C) 

SUM += Sj; 

LCA GBED TS 
// See if T fills the knapsack best so far. 

if (maxSum < sum) 

maxSum = sum; 

Copy fields of T into take. 

// Continue with next subset of at most k indexes. 

return maxSum; 

Figure 13.10 Procedure for Algorithm 13.2 

Subsets Object added by 

of size k inner for loop sum 

k=O 54, 45, | 100 

Objects taken: {54, 45, 1} maxSum = 100 

kt (543 45,1 100 

(45) 54, | 100 

{43} 54, | 98 

{29} D423 1 107 

{23} 54, 29, | 107 

{21} 54, 29; 1 105 

{14} 54, 29, | 98 

{1} 54, 45 100 

Objects taken: {29, 54, 23,1} =maxSum = 107 

Table 13.1 Knapsack example 
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Theorem 13.12 For k > 0, algorithm sKnap, does O(kn‘*!) operations: sKnapy does 

©(n). Hence sKnap,; € P fork > 0. 

Proof There are e subsets containing j elements of NV, so the outer loop is executed 

ys, (‘) times. Since (") < nm and. (,\= I; we (js kn* + 1. The amount of work 

done in one pass through the loop is in O() so for all passes it is in O(kn*+! +n). We 

leave it to you to show that the overhead for systematically generating one subset with at 

most k elements from the previous one can be done in O(k) time (Exercise 13.37; this 1s not 

a trivial problem). Thus the total work done is in O(kn**! + n) and the theorem follows. 

By 

Theorem 13.13 For k > 0. Reknap, (17) and Ssknap, (77), the worst-case ratios of the opti- 

mal solution to the value found by sKnap, (Equations 13.5 and 13.6), are at most | + 1/k 

for all m and n. 

Proof Fix k and let C and sj,...,5, be a particular input /. Let opt(/) =m. Suppose an 

optimal solution is obtained by filling the knapsack with p objects of values, s),. Sj... .. 

sj,- If p <k, then this subset is explicitly considered by sKnap;, so val(sKnap,(/)) =m 

and rsknap, (7) = 1. Now consider the case when p > k. The subset consisting of the largest 

k objects in the optimal solution will be considered explicitly as T by sKnap,. Let / be 

the first index in the optimal solution that is not added to this 7 by sKnap,. (If there 

is no such 7, then sKnap, gives an optimal solution.) The object / is not one of the 

K largest of the objects in the optimal solution, which has sum m, so m/(k + 1) > sj. 

Since object j was rejected, the unfilled space in the knapsack is less than s;. Thus 

val(sKnap;,(/)) +s; > C =m. Combining the last two inequalities gives 

val(sKnap;,(/)) > m i = mis : 
A+ ] A+ | 

Thus we have 

m 

rsknapy Ul) = val(sKnap,(/)) rae 

Since this bound holds for any input /, Rsknap, 7) < 1 + 1/k and Ssknap, (1) < 1 + 1/k. 

O 

Corollary 13.14 Given any € > 0, there is a polynomially bounded algorithm A(e) for 

the knapsack problem for which Ra;.)(m) < | + for all m > 0, and Sa(.)(n) < 1 + € for 

alln. O 

Even though there are approximation algorithms for which the ratio r(/) can be 
made arbitrarily close to one, it is very unlikely that any approximation algorithm A can 
guarantee an O(1) bound on the absolute error, which is (opt(/) — val(7, A(/))). It can be 
proved that if there is such an algorithm, then ‘P = N'P. (The proof is not very hard, and this 
problem is included in the exercises, but you might find it helpful to read Section 13.7.2 
before tackling it.) 
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13.7 Graph Coloring 

Graph Coloring 

For the knapsack and bin packing problems we have found approximation algorithms that 

give fairly good results: the behavior ratio for any particular optimal value is bounded 

by a small constant. A number of heuristic algorithms have been developed for the graph 

coloring problem, but unfortunately they all might produce colorings that are very far from 

optimal. In fact it has been shown that if there were an approximation algorithm for graph 

coloring that was guaranteed to use at most roughly twice the optimal number of colors, 

then it would be possible to obtain an optimal coloring in polynomially bounded time, and 

that would imply P = N‘P. Thus getting near-optimal colorings is as hard as getting optimal 

ones. (We will prove a slightly weaker version of this statement in Section 13.7.2.) 

13.7.1 Some Basic Techniques 

In this section we examine an easy heuristic greedy strategy. It can produce poor colorings, 

but it 1s useful as a subroutine in more complex algorithms that use fewer colors. In the 

next section we will present such an algorithm. 

et GeV 2) wihere, —= Wiens v,}, and let the “colors” be positive integers. 

The sequential coloring strategy (SC for short) always colors the next vertex, say v;, with 

the minimum acceptable color (.e., the minimum color not already assigned to a vertex 

adjacent to v;). 

Algorithm 13.3 Sequential Coloring (SC) 

Input: G =(V, E), an undirected graph, where V = {v1,..., Up}. 

Output: A coloring of G. 

seqColor(V, E) 

Hie Len ile 

ior (= et Sine spe) 

LOG iG = ihecert) 

If no vertex adjacent to v; has color c: 

Color v; with c. 

break: // exit for (c) 

// Continue for (c) 

// Continue for (i) 

Algorithm 13.3 can easily be implemented so that its worst-case complexity is in 

O(n). 

The behavior of SC on a given graph depends on the ordering of the vertices. For 

k > 2, define the sequence of graphs Gx = (Vx, Ex), where Vk = {a;,b; | 1 <i <k} and 

Bp {aib; | fF == He See Figure 13.11 for an illustration. If V is given in the Ondeieaineem. 

ap, bi, .. 5 be, then SC will color all the a’s with one color and all the b’s with another, 

producing an optimal coloring. However, if the vertices are ordered aj, by, a2, bo, ..., 

ay, by, then SC needs a new color for each pair a; and b;, using a total ot k colors. Thus 

Rsc(2) = 00, and if we take n = |V| as the size of a graph, Ssc(n) = n/4 for n = 4. 

581 
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Figure 13.11 The graph Gy; 

Vp 

Figure 13.12 Switching colors: Gj; consists of the four connected components outlined in 

lighter gray. S; consists of the two components also outlined in darker gray. 

Recall from Definition 13.8 that A(G) denotes the maximum degree of any vertex in 

a graph G. The following theorem 1s easy to prove. 

Theorem 13.15 |The number of colors used by the sequential coloring scheme is at most 

AG) alee 

Several more complicated graph coloring algorithms based on sequential coloring have 

additional features intended to prevent the poor behavior of SC. One such feature is to 

interchange two colors in the colored portion of the graph when so doing avoids the need 

for a new color. The interchange rule, formulated as follows, is illustrated in Figure 13.12. 

Suppose that vj,..., Up»—1 have been colored using colors 1, 2, ..., c (where c > 2) 

and Uv, is adjacent to a vertex of each color. For each pair 7 and j with | <i < j <c, let 

G;; be the subgraph consisting of all vertices colored i or 7 and all edges between these 

vertices. If there is a pair (7, 7) such that in each connected component of Gj; the vertices 

adjacent to v, are all of the same color, then an interchange will be done. Notice that 

the subgraph Gj; is itself 2-colored, with colors i and j. If these two colors are swapped 
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throughout a connected component of G;;, the result will still be a correct c-coloring of 
WS eat Unt: 

Specifically, let $; be the set of all vertices in connected components of G;; where 
vertices adjacent to v, are colored i. Colors i and j are interchanged in S;. Now vp is 
adjacent to vertices colored j in S;, and Up, Was already adjacent to vertices colored / in the 
rest of Gj;. Now v, is colored with i. The algorithm then goes on to vp) +1. This algorithm 
is called sequential coloring with interchanges (abbreviated SC/). 

The work needed to determine when to interchange colors and to carry out the in- 

terchange may add significantly to the time requirement of the algorithm, but doing the 

interchanges will produce better colorings than SC for many graphs. It will give optimal 

colorings for the graphs Gx, where SC can do poorly (you should check this). 

Recall x(G), the chromatic number of G, from Definition 13.1. It can be shown 

that SCI will yield an optimal coloring for any graph G whose x(G) is 2. However, 

for k > 3, there is a sequence of graphs Hx, with 3k vertices, that are 3-colorable, for 

which SCI uses.k colors: Hp=(V,, B.) where Vi = {as.b;,c7) | 1 <7 =k) and Ep = 

{aibj. Gila Dic? |) se was Thus Rsc;(3) = o6, and Ssc;(n) = n/9 for large enough n. 

Readers might observe that, if the vertices in this sequence of graphs Hy are ordered 

Qj, ..., Ax, by, ..., be, C1, ..., Cx, then SCI produces an optimal coloring. Thus another 

approach to the problem of improving the basic sequential-coloring strategy is to order the 

vertices in a special way before assigning colors. Some such techniques yield improve- 

ments in the colorings produced for many graphs, but again, there are cases where they 

perform about as badly as SC and SCI. 

13.7.2. Approximate Graph Coloring Is Hard 

No polynomially bounded graph coloring algorithms are known for which the ratio of the 

number of colors used to the optimal number 1s bounded by a constant. In fact, guaranteeing 

a small constant bound on the ratio is N‘P-hard. 

Theorem 13.16 If there were a polynomial-time graph coloring algorithm that colors 

every graph G with fewer than (4/3) x (G) colors, then the 3-colorability problem could be 

solved in polynomial time (and since 3-colorability is N’P-complete, it would follow that 

SNe), 

Proof Suppose G is an input for the 3-colorability problem; that is, we want to know 

if G can be colored with three colors. Let A be an approximate graph coloring algorithm 

described in the theorem. If A colors G with three colors, then obviously G is 3-colorable. 

If A colors G with four or more colors, then G is not 3-colorable, because four is not less 

than (4/3)3. Thus A uses three colors on G if and only if G is 3-colorable, and we can use 

A to solve the 3-colorability problem in polynomial time. 

All the previous proof really proves is that we cannot approximate 3-coloring with 

fewer than four colors, which is a rather limited conclusion. However, we can prove a sim- 

ilar theorem even for graphs with large chromatic numbers. The proof uses a construction 

called the composition of two graphs. Informally, in the composition of G; and G2, each 
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Gi Gy 

Figure 13.13 The composition of two graphs 

vertex of G; is replaced by a copy of G2. An edge xy in G, is replaced by edges between 

each vertex in x’s copy of G2 and each vertex in y’s copy of G2. See Figure 13.13 for an 

example. The formal definition follows. 

Definition 13.13) Composition of graphs 

Let Gj = (Vj, E,) and G2 = (V2, Er) be two graphs. The composition of G, and Go, 

denoted G;[Gz2], is the graph G = (V, E) where V = V, x V2 (.e., ordered pairs with 

the first component from V,; and the second from V2). The set of edges is the union of two 

sets, which we call local and long-distance edges. A local edge is between two vertices in 

the same copy of G2, and is of the form (x, v)(x, w), where x € V; and uw € E>. A long- 

distance edge is between two vertices in different copies of G2, where the two copies are 

“adjacent” in terms of G1; that is, it has the form (x, v)(y, w), where xy € EF; and v and w 

are any vertices in V>, not necessarily different. # 

It is easy to see that the number of vertices and edges in G 1s bounded by polynomials 

in the number of vertices and edges in G; and Go, and G can be constructed in polynomi- 

ally bounded time. 

Theorem 13.17 _ If there were a polynomial-time graph coloring algorithm that uses fewer 

than (4/3)x(G) colors for every graph G with xy(G) => &, for some integer k, then the 3- 

colorability problem could be solved in polynomial time. 

Proof Let A be an algorithm as described in the theorem. Let G be an input for the 3- 

colorability problem. Let Ky be the complete graph with k vertices, and let H = K;[G]. 

H consists of k copies of G where each vertex in one copy is connected by an edge to 

each vertex in each other copy. Each copy of G can be colored with x(G) colors, but 

because every vertex in One copy is adjacent to every vertex in each other copy, a new 

set of k colors is needed for each copy. So x(H) =kx(G). Since this is at least k, A’s 
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performance guarantee holds for H. Now, run A on H, and let val(H, A(H)) denote the 
number of colors A uses. If G is 3-colorable, then 

val(H, A(H)) < (4/3) x (A) < (4/3)3k = 4k. 

That is, A uses fewer than 44 colors. On the other hand, if G is not 3-colorable, then it 
needs at least four colors and H needs at least 4k colors, so A uses at least 4k colors. Thus 

we can infer whether G is 3-colorable by running Aon H = K,[G]. 

The running time of A is polynomially bounded in the size of H, and H can be 
constructed in polynomial time from G. Thus running A on H and checking whether or 
not the number of colors used is less than 4k answers the 3-colorability question for G in 

polynomial time. oO 

13.7.3. Wigderson’s Graph Coloring Algorithm 

As usual, let G=(V,£E), and n =|V|. For many graph coloring heuristics, the worst 

ratio of the number of colors used to the optimal can be as bad as ©():; for some it is 

in ©(n/ log n). For a long time, no better algorithms were known. Now, however, there 

is one (due to A. Wigderson) that does somewhat better (though still, R(3) = oo). The 

number of colors it uses is in O(n’) for p < | (but p depends on x(G)). If x(G) = 3, the 

algorithm uses at most 3 [ Vn colors. 

Let v € V. The neighborhood of v, denoted N(v), is the set of vertices adjacent to v. 

The subgraph induced by N(v) is denoted as H(v); recall that it consists of N(v) and all 

edges of G between vertices of N(v). Note that v is not in its neighborhood. 

A key idea in the algorithm is that neighbors of vertices with high degree are colored 

first. While there are vertices with high degree, the neighborhood subgraphs are colored 

recursively (with 2-colorable graphs as an easy boundary case). If all vertices have small 

degree, the graph is colored directly. The general algorithm and its analysis are not easy 

to follow, so we present and analyze Wigderson’s nonrecursive algorithm for 3-colorable 

graphs first, and then briefly describe the general algorithm. 

Neighborhoods and neighborhood subgraphs, N(v) and H(v), depend on the graph 

G. The algorithm discards vertices from G as they are colored; as G changes so do the 

neighborhoods of the vertices. N(v) and H(v) are always defined in terms of the current 

graph G. 

The algorithm uses the following lemma, which is easy to prove. 

Lemma 13.18 If G is k-colorable, then for any v € V, H(v) is (k — 1)-colorable. Oo 

Since 2-colorable graphs can be identified and colored (with only two colors) in 

polynomial time, the neighborhood of any vertex in a 3-colorable graph can be colored 

with two colors in polynomial time. 

Algorithm 13.4 Approximate Coloring for 3-Colorable Graphs 

Input: G, a 3-colorable graph: n, the number of vertices in G. 

Output: A coloring of G. 

585 
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color3(G) 

int c; // the current color 

Gar 

while (A(G) > \/n) 
Let v be a vertex in G of maximum degree. 

Color H(v) with colors c and c + 1. 

Color v with the color ¢ + 2. 

Delete v and N(v) from G, and delete all edges incident upon the 

deleted vertices. 

Gr= 2: 

// Now A(G) < Jn. 

Use sequential coloring (SC) to color G, beginning with color c. 

Example 13.7. color3 in action 

Consider the graph in Figure 13.14, in which most of the steps are explained. Note, 

however, that the sequential coloring step could have used three colors, not two. The 

coloring produced depends on the order in which the vertices are encountered. If, after 

coloring the vertex at the top of the graph with 3, the next vertex encountered were the one 

at the bottom, the latter would have been colored 3 also (because these two vertices are not 

adjacent); then color 5 would have been needed. 

Theorem 13.19 [f G is 3-colorable, color3 produces a legal coloring. 

Proof By Lemma 13.18, each neighborhood is 2-colorable. The colors used for N (wv) are 

not used again, so they can cause no conflict. The color used for v is used again, but on the 

graph that remains after N(v) is removed, so no other vertex assigned v’s color is adjacent 

to v. The colors used for the sequential coloring of the graph with A < \/n are not used 

again. O 

Theorem 13.20 If G is 3-colorable, color3 runs in polynomially bounded time and uses 

at most 3 | Yn | colors. 

Proof First, the timing. Since each neighborhood is 2-colorable, each can be colored in 

polynomial time (Exercise 13.3). The algorithm colors neighborhoods while A(G) > /n. 

So for each v whose neighborhood is colored, N(v) has at least \/n vertices. These vertices 

are discarded after they are colored, so the number of iterations of the while loop is at 

most \/. Sequential coloring is done once after the while loop; it (Algorithm 13.3) runs 

in polynomial time. Hence the total work is polynomially bounded. 

Two new colors are used for each neighborhood colored in the while loop (note that 

c is incremented by 2 in this loop.) Hence at most 2./n colors are used by the loop for all 
the neighborhoods. 

When sequential coloring is used after the loop, A(G) < \/n, the number of colors 
used there is at most A(G) + | (by Theorem 13.15). Thus sequential coloring uses at most 
| /n | colors, so the total is at most 3 hails 38 
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(a) Graph G with n = 13 (b) H(v): v is assigned color 3. 
vertices: The degree of v is 

6 = RATE 

S 
(c) G with H(v) and v re- 

moved: A(G) =2 </.13: 

(e) The complete coloring 

Figure 13.14 Example for Algorithm 13.4 
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At this point, readers should be wondering what good this algorithm is, since deter- 

mining if a graph is 3-colorable is an N‘P-complete problem. In fact, color3 can produce a 

legal coloring for input graphs where x(G) > 3. After all, it can use as many as 3 [Vn | 

colors. Algorithm color3 will get stuck if it tries to 2-color a neighborhood graph that is 

not 2-colorable. Such a failure can be detected and reported easily. So, color3 can eas- 

ily be modified to return a Boolean variable colored that indicates whether it successfully 

colored its input graph. Theorems 13.19 and 13.20 can be generalized to state that color3 

always runs in polynomial time, and if it succeeds in coloring the input graph (which it is 

guaranteed to do if the graph is 3-colorable), it will produce a legal coloring using at most 

3 | Vn | colors. 

The General Case 

We now consider the general coloring algorithm. Recall that the key idea was to color 

neighbors of vertices with high degree first. The neighborhood subgraphs are colored 

recursively. How small should A(G) be before we do a direct coloring rather than use 

recursion? This cutoff point is chosen to more or less balance the number of colors used by 

the recursive and nonrecursive parts. The value used is n!~!/“*~!), where & is a parameter 

to the algorithm which we may think of as a guess at x(G). Let p(k) = 1 — 1/(A — 1). 

For a k-colorable graph G with n vertices, the recursive coloring algorithm, which we will 

call color, runs in polynomial time and produces a legal coloring using at most 2k [ nr’ | 

colors. (The proof is a more general, and harder, argument using the ideas of the proofs of 

Theorems 13.19 and 13.20.) 

Once again we have the problem that we do not know if an arbitrary graph is k- 

colorable. We want a coloring algorithm that works well for any graph, whether or not 

we know its chromatic number. color can be used to obtain such an algorithm. If k, the 

guess at x(G), 1s too small, and color cannot color G, it will fail on one of the “boundary” 

cases; that is, when it tries to 2-color a graph that is not 2-colorable. So, here too, color can 

be modified so that it returns a Boolean variable colored that indicates whether it colored 

its input graph successfully. Now, color is called repeatedly to find the minimum value of 

k tor which it succeeds in coloring G. To find the minimum such k quickly, only powers of 

2 are tried first. Then we use a binary-search—like scheme to check the values between two 

powers of 2. Here is an outline of the scheme. 

Algorithm 13.5 9 Approximate Graph Coloring 

approxColor(G) 

= ie 

colored = false; 

while (colored == false) 

Kao 

colored = color(G, k): 

// The minimum kO for which color(G, kO) succeeds is 

// between k/2 and k. 

Do binary search on the integers k/2,..., k to find the smallest kg such that 

color(G, Ag) returns true. 

Output the coloring produced by color(G, ko). 
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13.8 The Traveling Salesperson Problem 

Theorem 13.21) The approximate graph coloring algorithm, Algorithm 13.5, runs in 
polynomial time and uses at most 2y(G) fat (x(G) oe colors. 

Proof The number of calls to color in Algorithm 13.5 (not counting the recursive calls 
from within color itself) is at most 2 lg ko, so since color runs in polynomial time, Al- 
gorithm 13.5 does also. For all k > x(G), color(G, k) return true. so kos xo(G)) Southe 
number of colors used by Algorithm 13.5 is at most 

2ko are = 2x(G) erie) < 2x¥(G) eae] ; Oo 

The Traveling Salesperson Problem 

For the traveling salesperson problem (TSP), we are given a complete, weighted graph and 
we want to find a tour (a cycle through all the vertices) of minimum weight. This problem 

has a large number of applications in routing and scheduling problems. Consequently, this 

problem has been studied intensely, both by theoreticians and practitioners. This section 

presents some easy approximation algorithms, and then gives a theorem (without proof) 

that says provably good approximation algorithms are unlikely to exist. 

13.8.1 Greedy Strategies 

In Chapter 8 we studied two greedy algorithms for finding minimum spanning trees in 

weighted, undirected graphs (Prim’s and Kruskal’s algorithms). Both of these algorithms 

have natural, easy variations for the traveling salesperson problem. In this section, we will 

investigate those methods. 

Recall that the greedy method for optimization problems consists of making choices 

in sequence such that each individual choice is best according to some limited “short term” 

criterion that is relatively easy to evaluate. Once a choice is made, it cannot be undone, 

even if it becomes evident later that it was a poor choice. In general, greedy strategies are 

heuristics: They seem to make good sense, but many of them don’t always lead to optimal 

solutions or aren't always efficient. In Chapter 8, we were able to prove that Prim’s and 

Kruskal’s greedy strategies for the minimum spanning tree problem do always produce 

optimum solutions efficiently. 

Recall that Prim’s algorithm begins at an arbitrary start vertex and grows a tree from 

there. At each iteration of the main loop it chooses an edge from a tree vertex to a fringe 

vertex; it “greedily” chooses such an edge with minimum weight. 

Kruskal’s algorithm, on the other hand, “greedily” grabs the lowest-weighted re- 

maining edge from anywhere in the graph, so long as it does not form a cycle with the 

edges already chosen. The subgraph consisting of the edges already chosen at any point in 

Kruskal’s algorithm may not be connected; it is a forest, but not necessarily a tree (untul 

the end). 
The corresponding strategies for the traveling salesperson problem are called the 

nearest-neighbor strategy and the shortest-link strategy, respectively. 

589 
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Figure 13.15 An input for the nearest-neighbor and shortest-link algorithms 

13.8.2 The Nearest-Neighbor Strategy 
The nearest-neighbor strategy is quite simple. In Prim’s algorithm, when we select a new 

edge we could be branching out from any vertex in the tree. Here we are constructing a 

cycle, rather than a tree, so we always branch out from the endpoint of the path constructed 

so far. At the end, we add the edge from the last vertex back to the start vertex to complete 

the tour. The nearest-neighbor strategy may be described as follows: 

nearestTSP(V, E, W) 

Select an arbitrary vertex s to start the cycle C. 

V=S; 

While there are vertices not yet in C: 

Select an edge vw of minimum weight, where w is not in C. 

Add edge vw to C; 

V=W; 

Add the edge vs to C. 

return C; 

It is easy to implement this algorithm with worst case time in O(n7) for a graph with n 

vertices. 

When the nearest-neighbor strategy is run on the graph in Figure 13.15 starting at 

vertex |, it gives the cycle 1, 3, 2, 4, 1, with total weight 85. Did the algorithm find the 

minimum tour? No. This is an example of a greedy strategy that does not always give the 

optimum solution. Let us see if the shortest-link strategy is better. 

13.8.3 The Shortest-Link Strategy 

We describe the shortest-link strategy for undirected graphs. It needs small changes if the 
graph is directed (Exercise 13.52). At each iteration of its main loop, the shortest-link 
strategy for TSP (like Kruskal’s algorithm for MST) grabs a lowest-weighted edge from 
among all remaining edges anywhere in the graph. However, the shortest-link strategy 
must discard an edge if it could not be part of a tour with the other edges already chosen. 
The subgraph consisting of the edges already chosen at any point in the algorithm forms a 
collection of simple paths. There must be no cycles (until the end) and no vertices incident 
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with more than two chosen edges. The algorithm terminates when all edges have been 
processed. 

shortestLinkTSP(V, E, W) 

R=E; //R is remaining edges. 

C=; //Cis cycle edges. 

While R is not empty: 

Remove the lightest (shortest) edge, vw, from R. 

If vw does not make a cycle with edges in C 

and vw would not be the third edge in C incident on v or w: 

Add vw to C. 

// Continue loop 

Add the edge connecting the endpoints of the path in C. 

return C; 

The while loop could be made to end when n — | edges have been chosen. It is easy to 

maintain a count of selected edges incident with each vertex, so the running time of the 

shortest-link strategy 1s about the same as for Kruskal’s algorithm. 

When the shortest-link strategy is run on the graph in Figure 13.15, it selects the edges 

(2.3). (3.4). (1.2), and (1.4). The tour consisting of these edges has weight 77. That is better 

than the tour found by the nearest-neighbor strategy, but it is not optimal. (Find the optimal 

tour. ) 

13.8.4 How Good Are the TSP Approximation Algorithms? 
It should be no surprise that these simple, polynomial-time strategies for the TSP fail to 

produce minimum tours. We have already said that TSP is N‘P-complete, and there is 

probably no algorithm that solves it in polynomial time. (This does not mean, of course, 

that the nearest-neighbor and shortest-link strategies always produce a nonoptimum tour: 

sometimes they happen to find the minimum tour.) 

The nearest-neighbor and shortest-link algorithms are approximation algorithms for 

TSP. Can we establish a bound on how much the weights of the tours found by these 

algorithms differ from the weight of a minimum tour? Unfortunately, no. Consider the 

following theorem. 

Theorem 13.22. Let A be any approximation algorithm for the traveling salesperson 

problem. If there is any constant c such that r4(/) < ¢ for all instances /, then Op INGE 

Proof See Notes and References at the end of the chapter. 0 

This theorem says that it is as unlikely that “guaranteed” good approximation algo- 

rithms for the TSP exist as it is that any polynomial-time algorithm for the TSP itself 

exists—even if “good” is defined so loosely as to allow any constant multiple of the weight 

of a minimum tour. However, if we restrict the inputs to graphs with some special proper- 

ties, then there are approximation algorithms for the TSP with bounds on the weight of the 

tours produced. For example, if the weights on the edges of the graph represent distances 
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in a plane, they satisfy the triangle inequality, which in this context is 

W(u,w) < W(u,v) + Wr, w) for all uw, v, win G. (13.8) 

Exercise 13.53 describes an approximation algorithm for the TSP which is guaranteed to 

produce a tour with weight at most twice the optimal if the graph satisfhes the triangle 

inequality. Algorithms with better bounds than that are known for this special class of 

graphs. 

Computing with DNA 

When we hear the word computer we think of modern electronic, digital computers. But 

the word has had many other meanings. For centuries, a computer was a person who did 

calculations for a living. Computing technology has evolved from fingers (for counting) 

to a variety of mechanical devices (the abacus, adding machines, card sorters), then to the 

electronic computers of the current era (room-sized mainframes to personal computers on 

a desktop to portables and embedded systems). There is no reason to think the evolution 

in computing technology will stop here. What is next? Perhaps DNA-based, or biological, 

computers. 

In 1994 Len Adleman, a computer scientist already well-known for his role in de- 

veloping the public key encryption system called RSA, showed that an instance of an 

NP-complete problem could be solved using DNA. We have seen that it is unlikely that 

there will be algorithms, in the usual sense, to solve N‘P-complete problems feasibly. Bio- 

chemical processes work on huge numbers of molecules in parallel, giving the potential for 

fast soluudons. Adleman’s method opened a whole new approach to computing. It is now 

a subject of intense research. In this section we describe Adleman’s experiment, then dis- 

cuss some recent work and the potential and limitations of DNA computing. Our point is to 

emphasize the algorithmic process, but we very briefly describe the biochemical processes 

used by Adleman. 

13.9.1. The Problem and an Overview of the Algorithm 
The problem Adleman tackled is the Hamiltonian path problem in directed graphs with 

designated start and end vertices. (We will refer to the problem as HP for the rest of this 

discussion.) The input consists of a directed graph G = (V, E), a vertex Us;arr € V, and a 

vertex Uen»g € V. The decision problem is to determine if there is a path from vy;y-7 tO Vend 

that passes through each other vertex in G exactly once. In many applications, if there is 

such a path, we would like to find one. 

HP is N’P-complete. Thus HP is in N‘P, and, in the terminology of Section 13.2.4, if 

we are given an input for the problem and a proposed solution, we can check the validity 

of the solution in polynomial time. Let (G, Usrar. Vena) be the input. Let n = |V|. Let 

Ws TOs sass Wy be any path in G. We can check whether or not this is a Hamiltonian path 

frOM Vsjqr; LO Veng by determining if it satisfies the following properties: 

|. The path begins and ends at the right vertices; that is, wo = vs;_,-, and Wg = Vend- 



13.9 Computing with DNA 

Nw The path has the correct length; that is, Gale 

3. Every vertex of V appears in the path. 

These checks can be carried out very quickly (certainly in polynomially bounded time) 
by a “normal” algorithm. As we saw in Section 13.2.4, the ability to check one proposed 
path quickly does not give us a polynomially bounded algorithm for the Hamiltonian path 
problem because the number of distinct paths to check is not, in general, polynomially 
bounded. However, with the DNA technique, we generate strands of DNA to represent 
paths and check them in parallel. Here is a high-level summary of the algorithm: 

1. Generate DNA strands to represent paths in G. 

2. Use biochemical processes to extract strands satisfying properties | through 3 above, 
discarding all others. 

a. Extract strands that start at vy;¢,; and end at v,, 7. (Discard the rest.) 

b. Extract strands that include n vertices. (Discard the rest.) 

c. Extract strands that contain every vertex. (Discard the rest.) 

3. Any strand that remains represents a Hamiltonian path from vy;q;; tO Ueng. If no strand 

remains, G has no such path. 

Unfortunately, the biochemical processes are not as exact as digital computers. As we de- 

scribe the algorithm in more detail, we will mention where problems occur. We will discuss 

the impact of these problems later. We need to know a little about DNA to understand how 

the computation works. 

13.9.2, DNA Background 

DNA is deoxyribonucleic acid, the genetic material that encodes the characteristics of 

living things. This brief background ts intended to be sufficient to understand how DNA can 

be used to do computation. From the point of view of a biologist, 1t 1s somewhat simplified 

and imprecise. 

DNA consists of strings of chemicals called nucleotides. There are four nucleotides in 

DNA, each denoted by the first letter of its name: adenine (A), cytosine (C), guanine (G), 

and thymine (T). We can encode any information using this 4-letter alphabet, just as we 

can encode any information in bits (O and 1). It is now possible to synthesize strands of 

DNA containing a specified sequence of nucleotides; that 1s, to create any desired string of 

letters to represent data. 

John Watson and Francis Crick discovered the double helix structure of DNA (and 

won a Nobel Prize for their work). The nucleotides form complementary pairs; A and T are 

complements, and C and G are complements. Two strands of nucleotides will attach to each 

other (and twist around each other in a double helix) if they have complementary elements 

in corresponding positions. For example, see Figure 13.16 (where we illustrate the attach- 

ment of complementary strands, but not the double helix). The fact that complementary 

strands attach to each other is used repeatedly in the DNA algorithm for the Hamiltonian 

Be): 
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Figure 13.17 The input for the Hamiltonian path problem: n = 7, Us;arr = V0. Vend = V6 

path problem. It can happen that two strands attach even though they do not have comple- 

mentary elements in some positions; this is one of the properties of DNA processes that 

can cause problems for the algorithm. 

Kary Mullis, a chemist, developed a process called the polymerase chain reaction 

(PCR), which duplicates small samples of DNA. (PCR is now widely used in genetics 

research and in forensics, and Mullis also won a Nobel Prize for his work.) PCR ts used in 

several steps of the algorithm to reproduce strands that satisfy properties we are seeking. 

The actual biochemical processes used at each step of the algorithm are complex, but we 

do not have to understand them to follow the logic of the algorithm. Thus this is all the 

background we need. 

13.9.3. Adleman’s Directed Graph and the DNA Algorithm 

The specific directed graph used by Adleman as the input for the problem is shown in 

Figure 13.17. 

First we associate a string A; of 20 letters from the alphabet A, C,G, 7 with each 

vertex vu; in G. For example, Ro = TATCGGATCGGTATATCCGA. We denote the letters 

in the string K; as dj jd;9 *~*d;o9. Thus do) =T,do6 = G, and doo = A. 

Step 1: Generate Paths in G 

The “recipe” for generating DNA strands to represent paths in G uses two kinds of ingre- 

dients, strands that represent edges of G and strands that represent vertices. 

First, we describe the strands that represent edges of G. For each edge-v;v;, such that 

Ui F Vyrar1 ANd VF Veng, Make a strand, denoted S;_. ;, using the second half of R; and the 

first half of In Thus Spi = dj 1d; 12 pare dj 29d; 1d j.2 Saige djA0- 
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Figure 13.18 The DNA “soup.” containing edge strands and vertex strands 

Observe that each S$; ; has length 20, and that the orientation of the edges in G is 

preserved. That is, S;_, ; 4 S;_.; (probably). 

For edges that leave from the start vertex or enter the end vertex, we create slightly 

different strands. For these edges we use all of Rs:ar, OF Reng. For example, Sypar1—3 

consists of all of Ry;a-; followed by the first half of R3: that is. 

Sstart->3 = Gstart,14start2* > Astart.2043,143.2 + - - d3,10. 

This strand has length 30. 

A large number of the edge strands, about 10!4 copies of each for the graph with 7 

vertices and 14 edges, are synthesized and put into the “pot.” 

For each vertex v;, not including Us;q-; and Ueng, create a large quantity (again, about 

10! for this size graph) of strands that are the complement of R;; call them R;. That is, 

the nucleotide (letter) in each position of Rj is the complement of the nucleotide (letter) 

in the corresponding position of R;. For example, Ro is ATAGCCTAGCCATATAGGCT. 

These go into the “pot” along with the edge strands. (The pot 1s really a test tube, and the 

ingredients—the DNA along with some water, salt, and a chemical called a ligase—fill 

about 1/50-th of a teaspoon, or |/10-th of a milliliter, for this size graph.) Figure 13.18 

shows some of the strands in the mix. 

To create long strands that represent paths, we would like, for example, S45, Ss_.2, 

and S>_,; to join (end to end) to represent the path consisting of the edges v4us, Usv2, 

and vv). But what would make these strands join? Recall that strands of DNA attach to 

form double strands if they have complementary elements in corresponding positions. The 

vertex strands will hold the appropriate edge strands together. Recall, for example, that the 

last half of Ss_,> is the first half of Ro, and the first half of So; is the last half of Ro. Thus 

the vertex strand R> in the soup will attach to Ss_,> and $3_,), as shown in Figure 13.19. 

We now have (double) strands for paths in G. Some of these paths are 

U4U]U20{| U3U20] US U6 U9) U3 U4U5 U6 VQ UG 

UQU] VU2U3U4U5 U6 U4U5U2VU] UI) U3 U2 UV] U2U3U4U5 U6 

The ligase in the mix “glues” the edge strands together, so edges that make up a path will 

remain together when the vertex strands are removed later. 
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$542 32541 

dy) ~~ do yea 2,20 

R> 

Figure 13.19 Attaching strands to generate paths 

At this point, we would like to say that we have strands to represent a// simple paths 

in G, but here is one of the problems: We may not get all simple paths. Although the 

probability is very small (there are only a few hundred simple paths in this graph), it is 

possible that the necessary strands just may not happen to bump into each other and attach. 

Let us ignore this problem for now and go on. Next, we must eliminate the strands that do 

not satisfy the properties | through 3 that describe Hamiltonian paths. 

Step 2a: Verify Proper Start and End Vertices 

The PCR process can be made to duplicate DNA strands that have specific sequences at the 

ends of the strands. In this case, the strands that begin with R,;,,; and end with R,,7 were 

duplicated. Thus we now consider the mix to contain strands representing paths with the 

correct starting and ending vertices. Some of these paths are 

VQ V6 UQU] VIVZV4US VE 

VQUZVIVZU4U5 UG VQUZ3V2V] VIVZ3V4US5 UG 

However, although strands for these paths vastly outnumber “bad” strands (i.e., strands for 

paths that do not have the proper endpoints), some of the latter will remain. 

Step 2b: Extract Paths with Correct Length 

A DNA molecule representing a path has a complete copy of R; for each vertex v; in the 

path. Each ; has length 20. Our input graph has seven vertices, so we want to extract DNA 

strands of length 140. There is a process to do this. DNA is negatively charged. The DNA 

mixture is put at one end of a block of gel, and the other end is positively charged. The 
DNA molecules move toward the positive charge, but smaller molecules move faster and 
the molecules of the desired length can be separated out. Once again, some undesirable 
strands may be included. The process was repeated several times to reduce the fraction of 
strands with incorrect lengths. 

Now we have single-strand DNA representing paths such as 

UQV]VIVZU4USV6 aNd UQV3U2UZV4U5U¢6. 

This example shows the necessity of the next step. The second path has the correct starting 
and ending vertices and the correct length, but it passes through v3 twice and v; not at all. 
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Step 2c: Extract Paths that Pass through Every Vertex 

For each vertex v; in turn (other than vyjq-7 and Ven), We MiX in copies of R;, extract the 
strands to which they attach, and discard the others. R; will attach to strands representing 
paths that pass through v;. (Adleman attached the R; molecules to microscopic magnetic 
beads, then used a magnet to separate the desired strands from the others.) Then the R; 
molecules are separated from the path strands and removed. Now the remaining path 
strands represent paths that pass through v;. (Again, some bad strands may slip through.) 

When this step is completed for all the vertices (other than Mewar Glial Opa, wate 

remaining DNA strands, if there are any, represent the desired Hamiltonian paths. The 

sequence of the path can be read using a device called a sequencer. 

13.9.4 Analysis and Evaluation 

Correctness 

The theoretical algorithm (generate all paths, then check the required properties) is correct, 

but as we have pointed out, “mistakes” can occur in the biochemical processes of the DNA 

implementation. Thus the DNA computation is not guaranteed to give the correct answer. 

All the algorithms we have studied in this book work correctly for all valid inputs 

(unless we made a mistake in logic). However, there is a class of algorithms called prob- 

abilistic algorithms (programmed for ordinary electronic computers) that use randomness 

at various steps. Such algorithms may give an incorrect answer, or may give no answer at 

all, or may fail to give an answer within the specified time bound. Probabilistic algorithms 

that are programmed for computers can be analyzed mathematically. We can calculate the 

probability with which they return the correct answer. Such algorithms have advantages 

that make the trade-off of “certainty” worthwhile in some situations. Often they are much 

faster than usual (deterministic) algorithms for the same problem. For some, we can deter- 

mine precise trade-offs between more computing time and a higher probability of correct 

results. Some can be designed so that the probability of a bad outcome is smaller than the 

probability of a hardware error on a typical computer. 

DNA algorithms are like probabilistic algorithms. The obvious potential advantage 

here is the speed gained from the fact that a huge number of biochemical processes are oc- 

curring at the same time, in parallel. Currently, errors are a significant drawback. Adleman 

found the Hamiltonian path with very careful lab work, repeating some of the processes 

several times to purify the DNA solution. The practical usefulness of this approach will 

depend on future work to improve techniques to reduce errors so that correct answers are 

achieved with high probability. 

Analysis of Time and Space 

We will summarize the steps performed in Adleman’s experiment, keeping in mind that 

counting steps in the laboratory is somewhat less precise than counting operations per- 

formed on a digital computer. Let G = (V, E),n =|V|, and m = |E]. 

|. Synthesis of strands for vertices and edges. The time depends polynomially on the size 

of the graph. 

oor, 
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2. Path generation. This step depends on the volume of DNA, which depends on the prob- 

lem size. Researchers in the field believe that this can be considered nearly constant 

time for practical volumes of material. Similarly, the volume of material being pro- 

cessed affects the time for the remaining steps, but there are practical limits on the 

volume of material, so in a sense the steps are in constant time. However, there is a 

question of how large a problem can be solved with a practical volume of material. We 

will return to this question. 

3. Amplification and extraction of strands with desired endpoints. 

4. Extraction of strands with desired length. 

5. For each vertex (other than the endpoints), extraction of strands that include that 

vertex. The number of steps is proportional to the number of vertices. 

6. In the above steps, several applications of PCR, various washes, heating, and other 

processes. 

Thus we have described a solution for an N‘P-complete problem in a linear number of steps, 

but the times for the steps depend on the volume of the material needed for the particular 

input. For a fixed amount of laboratory equipment, some of the steps take time that is at 

least linear in this volume. Thus understanding how the volume increases with input size 

is critical to analyzing the complexity of both time and space. 

For the seven-vertex graph, the volume is about 1/50-th of a teaspoon. Will volume 

really be a practical concern for inputs of reasonable size? In the beginning of the chapter 

we pointed out that algorithms with exponential growth become infeasible for quite modest 

input sizes. If volume grows exponentially with input size, even a very small constant factor 

will soon be overcome. 

Let's restrict ourselves to graphs with out-degree two. The number of paths of length 

n — | that begin at the start vertex is 2”~!. (Remember, paths need not be simple.) Certainly 

we need enough strands to generate at least that many paths, and actually we need to 

generate considerably more. With a few rough calculations we can see that if 1/50-th of 

a teaspoon (1/10-th of a milliliter) is needed to provide enough strands for a seven-vertex 

graph, then 25 thousand gallons (about 100 thousand liters) would be needed for a 37- 

vertex graph with out-degree two. Some researchers have estimated that 10*> kilograms of 

nucleotides would be needed for a 70-vertex graph. (This is about the mass of the earth.) 

Such is the tyranny of exponential growth. 

This example shows the value of asymptotic analysis. Without it, people might spend 

large amounts of time and money trying to build systems to solve larger problems by 

methods similar to that used by Adleman. However, Adleman and the research community 

recognize that something more sophisticated is needed before DNA computing can scale 

up to significantly large problems. The purpose of the initial experiment was to determine 

if DNA could be harnessed to carry out a significant computation at all, with today’s 

technology. 

Future Directions 

Research in DNA computation (and more generally, molecular computation) is currently 

very active. A thorough survey would be far beyond the scope of this book. Interested 
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readers should consult Notes and References at the end of the chapter, and look for recent 
literature. Some of the research areas are control of errors, improving the constant factors, 
and improving the asymptotic order. 

DNA computation has some advantages over electronic computers. Adleman sum- 
marized its potential for being faster, using less energy, and storing data more densely. 
Computer speeds are constantly improving, so the figures we give may be out of date, but 

they illustrate the point. At the time Adleman did his experiment (1994), the fastest super- 

computers executed approximately 10!* operations per second. Taking concatenation of 

DNA molecules (to generate paths) as a basic operation, Adleman estimated that the DNA 

method performed approximately 10!4 operations (over the course of several hours) and 

that this number could be increased to about 107”. At the higher rate, the number of opera- 

tions per second would be more than 1000 times as many as executed by a supercomputer. 

This comparison has to be interpreted carefully, however, because all the computer opera- 

tions are directed by a program, while the DNA operations are only loosely controlled, and 

are largely random. 

The DNA method uses less energy than a supercomputer. Adleman suggests that the 

path generation process could (in principle) perform more than 10!? operations per joule 

of energy, whereas a supercomputer performs approximately 10? operations per joule. One 

gram of DNA, which takes up about one cubic centimeter of space, can store as much 

information as one trillion compact disks. 

Counterbalancing the speed and low energy requirements of the molecular operations 

is the difficulty of obtaining the “output.” The actual process took seven days of real time in 

a laboratory. That is a lot of time to find a Hamiltonian path in a seven-vertex graph. Also, 

Adleman’s experiment required human intervention and control at each step. The process 

was not automated. There was no “program” submitted to a machine to be run. [t remains 

for researchers to find ways to automate the process. 

DNA algorithms seem naturally suited to problems like the Hamiltonian path problem, 

because it is easy to see how paths can be represented by strands of DNA. Can the tech- 

niques used here be applied, in general, to many other kinds of problems? A fundamental 

theoretical result has been proven about DNA computation: Using a few basic operations 

to cut and paste DNA strands, DNA computing is a universal model of computation. This 

means that it has all the computational power of a general-purpose computer. Any problem 

for which we can write an algorithm, in the traditional sense, to run on a computer, can be 

solved using this model of DNA computation, and programs can be written into the DNA 

itself. 

As we saw, the amount of material needed to generate all certificates of a problem with 

DNA strands can grow exponentially with input size. Thus the challenge is to find methods 

whose material requirements (i.e., space requirements) are not so explosive. Newer DNA 

algorithms being developed use more sophisticated techniques, generating some potential 

solutions, then eliminating bad ones, then generating more, and so on, to reduce the space 

requirements. 

The technology of DNA computing is very young now and the actual accomplish- 

ments so far are small. Laboratory computations have been done for inputs so small that, 

like Adleman’s seven-vertex graph, they could be solved much more quickly without a 

computer at all. But that is how any new technology starts. The first electronic computers 

Dy, 
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filled large rooms and weighed many tons. They were less powerful than computers we can 

now carry in our pockets. Research into ways to speed up the DNA chemical processes and 

make them less error-prone is continuing. It seems likely that DNA computing will prove 

useful for some kinds of problems, especially those whose solution can take advantage of 

the massive parallelism of the biochemical processes. At this point we do not know how 

useful it will be. 

Exercises 

Section 13.2. ‘P and N'P 

13.1 Suppose algorithms A, and A> have worst-case time bound p and q, respectively. 

Suppose algorithm Aj consists of applying A> to the output of Ay. (The input for Ag is the 

input for A;.) Give a worst-case time bound for A3. 

13.2. Give a necessary and sufficient condition for a graph to be colorable with one color. 

13.3. Write an algorithm to determine whether a graph G = (V, E) is 2-colorable. The 

algorithm should run in O(n + m) time, where n = |V| and m = |E|, and produce a 2- 

coloring if one exists. 

13.4 Show that each of the following decision problems is in N‘P. To do this, indicate 

what a “proposed solution” for a problem instance (in the sense of Section 13.2.4) would 

be, and tell what properties would be checked to determine if a proposed solution justifies 

a yes answer to the problem. 

the bin packing problem 

the Hamiltonian cycle problem 

a 

b 

c. the satisfiability problem 

d. the vertex cover problem (Problem 13.10 in Section 13.3.2) 

e The question, “Is integer n prime?” Note that you cannot assume arithmetic operations 

take O(1) when the operands are as big as the input itself. 

a. Give a dynamic programming solution for the subset sum problem. (See also Exer- 

cise 10.21.) Analyze the asymptotic order of your solution. Explain why this solution 

does not put the subset sum problem in PP. 

b. Example 10.3 gave a dynamic programming procedure to compute the nth Fibonacci 

number. Explain why this procedure does not run in polynomial time. 

** ¢, Give a polynomial-time algorithm to compute the nth Fibonacci number. Analyze the 

asymptotic order of your algorithm. Hint: Consider Exercise 12.17. 
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Section 13.3 \'P-Complete Problems 

Note: For the exercises that ask you to show that one problem (P) is reducible to another 
(Q), remember that this involves several steps: Define a transformation from P to Q, and 
show that the transformation satisfies all three properties in Definition 13.6. 

13.6 Show that polynomial reduction‘is a transitive relation. 

13.7 Show that satisfiability is reducible to 3-satisfiability. Hint: The clause C = (xo 
X2Vx3V--+V xx), where k > 4, means “(at least) one of x), ..., xz is true.’ Introduce 
a new variable y and write clauses that mean “y implies x; V x2” and “sy implies 
¥3.V +++ xg.” How many literals does each of your clauses have? What is the relationship 
between C being true and either or both of these clauses being true? 

13.8 The subset sum problem may be stated so that s;,.. . , ), and C are rational numbers. 
Show that this version of the problem is reducible to the version in the text and vice versa. 

13.9 The set intersection problem is defined as follows: 

Problem 13.14 

Given finite sets A}, Ao,..., Vy CMICGN JBN (SIAR & B,,. 1s there a set T such that 

CATs eat (Olas al eras m, and 

aN ip er eae IOV ene Re eR The a 

Show that the set intersection problem is N’P-complete by showing it is in NP and that 

satisfiability is reducible to it. 

13.10 Show that the Hamiltonian cycle problem for undirected graphs is reducible to the 

Hamiltonian cycle problem for directed graphs. 

13.11 Show that the Hamiltonian cycle problem is reducible to the traveling salesperson 

problem. (Choose either directed or undirected graphs for both problems.) 

13.12 Show that the traveling salesperson problem is N’P-complete even if weights are 

restricted to the values {1,2}. Hint: You can do this with a reduction from the Hamiltonian 

cycle problem for undirected graphs. 

13.13 Suppose that we transform a directed graph G =(V, E) into the undirected 

graph G’ = (V’, E’) where V’ = {v'|i=1,2andveV} and E’={v'v*|veV}u 

{u-w! juwe we Show by example that there is a directed graph G such that G does 

not have a Hamiltonian cycle but G’ does. 

13.14 This problem considers an attempt at a polynomial transformation from one prob- 

lem to another that does not work. Your problem 1s to find the flaw. A bipartite graph is an 
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G T(G) 

Figure 13.20 Transformation of a graph to a bipartite graph 

undirected graph in which every cycle has even length. We attempt to show that the Hamil- 

tonian cycle problem (for undirected graphs) is reducible to the Hamiltonian cycle problem 

in bipartite graphs. We need a function T : { graphs} = { bipartite graphs} such that 7 can 

be computed in polynomial time and, for every graph G, G has a Hamiltonian cycle if and 

only if 7(G) has a Hamiltonian cycle. Let 7(G) be the bipartite graph obtained by insert- 

ing a new vertex in every edge. See Figure 13.20 for an example. What is wrong with this 

transformation? 

13.15 We described a variation of the directed Hamiltonian path problem in which the 

path must begin and end at specified vertices, say, Vy;q-; and Vp,q. This exercise shows that 

this variation 1s also NP-complete. 

a. Show that this problem is in NP by briefly describing an algorithm to verify a certifi- 

cate for a given instance of the problem. 

b. Show that the directed Hamiltonian cycle problem is reducible to the directed Hamil- 

tonian path problem with specified start and end vertices. 

13.16 Show that the 3-colorability problem is reducible to the satisfiability problem. 

(This, of course, follows from Cook’s theorem; give a direct transformation. ) 

13.17 Show that the 3-colorability problem is reducible to the 4-colorability problem. 

13.18 Show that the clique decision problem (Problem 13.11) is NP-complete by show- 

ing that it is in N‘P and then using the following polynomial transformation to reduce 

satisfiability to it. Suppose Cy, C2,..., C, are the clauses ina CNF formula and let the lit- 

erals in the ith clause be denoted /; ;,/;2,..., /;4,- The formula is transformed to the graph 

with V = {(i,r)| 1 <i < p,1 <r <j}; that is, V has a vertex representing each occur- 

rence of a literal in a clause, and E = }(i,r)(j,s)|i4A/j andl;, 4 /;,¢. In other words, 

there is an edge between two vertices representing literals in different clauses so long as it 
is possible for both of those literals to be assigned the value true. Let k = p. 

13.19 [fa graph has a k-clique, it is clear that any coloring must use at.least & colors. 
However, k colors may not be sufficient. Give an example of a graph in which the largest 
clique size is three, but four colors are needed to color the graph. 



Exercises 

13.20 Show that the clique decision problem (Problem 13.11) is reducible to the vertex 
cover decision problem (Problem 13.10). 

13.21. A feedback vertex set in a directed graph G = (V, E) is a subset V’ of V such 

that V’ contains at least one vertex from each directed cycle in G. The feedback vertex set 

problem is: 

Problem 13.15 

Given a directed graph G and an integer k, does G have a feedback vertex set with at most 

kK vertices? 

Show that the vertex cover decision problem (Problem 13.10) is reducible to the feedback 

vertex set problem. 

13.22 Consider the following problem: An organization has 200 members and 17 com- 

mittees. Each committee must meet for a full afternoon during the week of the organiza- 

tion’s annual meeting. You are given a list of the members of each committee. Your job is to 

determine whether it is possible to schedule the committee meetings in five afternoons so 

that each member can attend the meeting of each committee of which he or she is a mem- 

ber. Which of the problems discussed in this chapter most closely resembles this problem? 

Explain the correspondence. 

13.23 Devise an algorithm to determine the chromatic number of graphs with the prop- 

erty that each vertex has degree at most 2 (.e., is incident with at most two edges). The 

running time of your algorithm should be linear in the number of vertices in the graph. 

13.24 We have stated that the vertex cover problem (Problem 13.10) is NP-complete. 

Show that if the input is restricted to trees (acyclic, connected, undirected graphs), a 

minimum vertex cover can be found in polynomial time. (With careful implementation, 

you can devise a linear algorithm.) 

13.25. Devise a polynomially bounded algorithm to determine whether a CNF formula 

with at most two literals per clause is satisfiable. What is the worst-case complexity of 

your algorithm? Hint: Construct a directed graph associated with the formula; then use an 

algorithm from Chapter 7. 

13.26 Give a polynomially bounded algorithm to determine if a graph has a 4-clique. 

What is the worst-case complexity of your algorithm? 

13.27. Give necessary and sufficient conditions for an undirected graph with maximum 

degree 2 to have a Hamiltonian cycle. Outline an efficient algorithm to test the conditions. 

13.28 Show that if the bin packing decision problem can be solved in polynomial time, 

then the optimal number of bins can be found in polynomial time. 
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Section 13.4 Approximation Algorithms 

13.29 We may state the satisfiability problem as an optimization problem in the following 

form: 

Problem 13.16 

Given a CNF formula F, find a truth assignment for the’ variables in F to make the 

maximum possible number of clauses true. 

Describe the set FS(F) and the value val(F, x) for this problem (where x is a feasible 

solution). 

1S SO cia — sie Sn} be a set of subsets of a set A such that U/_, 5S; = A. A cover 

of A is-asubset of F, say | Sj,,.42,5 S il such that Sane =A. (F itself is a cover or 

A.) A minimum cover is a cover using the smallest possible number of sets. The set cover 

problem 1s: 

Problem 13.17 

Given F as described above, finda minimum cover of A. @ 

What is the set FS(F) and the value val(F, x) for this problem (where x is a feasible 

solution)? 

Section 13.5 Bin Packing 

13.31 

a. Construct an example for the bin packing problem where the FFD algorithm uses three 

bins but the optimal number is two. 

b. Construct an infinite sequence of examples /;, where /,; has n,; objects for some 

nj <mo<---<n,, and opt(/,) = 2 but FFD uses three bins. 

13.32) Show that Lemma 13.10 cannot be made stronger by constructing a sequence of 

examples such that for each k > 2, there is an input / with opt(/) =k and FFD puts k — | 

objects in extra bins. 

13.33. Show that, if 2 < opt(!) < 4, FFD uses at most opt(/) + | bins. 

13.34 Write a best fit decreasing algorithm for bin packing. What is the order of the 

worst-case running time? 

a. Give an example in which the best fit decreasing (henceforth BFD) strategy for bin 

packing produces a packing that is not optimal. . 

b. Give an example in which BFD produces a different packing from FFD. 
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Section 13.6 The Knapsack and Subset Sum Problems 

13.36 Show that the output of the greedy algorithm described in the text for the simplified 
knapsack problem (i.e., the subset sum problem) is always more than half the optimal. Hint: 

Consider the two cases: the algorithm’s result is greater than C /2, and the algorithm’s result 

is at most C/2. 

13.37 Show that if the greedy algorithm described in the text for the simplified knapsack 

problem (i.e., the subset sum problem) did not explicitly consider the object with the largest 

size, it could give a result arbitrarily far from the optimal. Hint: Construct an example with 

only two objects. 

13.38 Devise an algorithm that, when given n and k such that | < k <n, generates all 

subsets of N = {1, 2,...,m} containing at most k elements. The number of operations 

done between generating one subset and generating the next one should be in O(k) and 

independent of n. 

13.39 Extend the approximation algorithms for the simplified knapsack problem and 

Theorems 13.12 and 13.13 to the general formulation of the problem (with profits as well 

as Sizes). 

13.40 The beginning of Section 13.6 stated that there is a sequence of algorithms Ax 

that run in time O(n + k°n) and find solutions of the simplified knapsack problem that are 

within a factor of (1 + 1/k) of the optimal. 

a. Fora given input C, (s),$2,....5,), explain how to choose k so that solution produced 

by A, is optimal. Hint: Remember that all quantities in the input are integers. 

b. Does your choice of & in part (a) lead to a polynomial time algorithm for the exact 

solution of the simplified knapsack problem? Explain why or why not. 

Section 13.7. Graph Coloring 

13.41 Describe data structures for representing the graph and the coloring in Algo- 

rithm 13.3 to achieve a fast implementation. What is the complexity of your implemen- 

tation? 

13.42 Prove Theorem 13.15. 

13.43 Describe how the SCI strategy behaves on the graphs G, defined in Section 13.7. 

In particular, how many times are pairs of colors interchanged? 

13.44 Suppose G; = (Vi, £\) and Gz = (V2, E2), where |Vi| = 11, |V2| = 12, Eo Ty. 

and |E>| =m. How many vertices and edges are in G = G [G2]? (See Definition 13.13.) 

13.45 Show that the graph in Figure 13.14 is 3-colorable. 

13.46 Prove Lemma 13.18. 
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13.47 Fork =3, Lemma 13.18 says that if a graph is 3-colorable, then the neighborhood 

graph for each vertex is 2-colorable. The converse says: If the neighborhood of every 

vertex is 2-colorable, then the graph is 3-colorable. If the converse were true, there would 

be a polynomial algorithm for the 3-colorability problem (since it is easy to determine if 

each neighborhood is 2-colorable). Show by constructing an example that the converse of 

Lemma 13.18 is not true. 

13.48 Describe the coloring that would be produced by Wigderson’s algorithm (color3, 

Algorithm 13.4) for the graphs G;, = (Ve, Ex), where Vi; = {a;,b; | 1s i =k} and Ey; = 

{aib; ee } (In Section 13.7.1 we observed that the sequential coloring algorithm may 

do a very poor job on these graphs.) 

Section 13.8 The Traveling Salesperson Problem 

13.49 Make up an example of acomplete, weighted graph for which the tour found by the 

nearest-neighbor strategy has lower weight than the tour found by the shortest-link strategy. 

13.50 Make up an example of a complete, weighted graph for which the nearest-neighbor 

strategy and the shortest-link strategy find optimal tours. 

13.51 A simple extension of the nearest-neighbor strategy is to choose an edge of min- 

imum weight that extends either end of the path under construction (without making a 

cycle). 

a. Outline the procedure for this extension, 

b. How good a solution does it find on Figure 13.15, compared to the nearest-neighbor 

strategy? 

c. Does this extension always find a tour at least as small, and possibly smaller, than that 

found by the nearest-neighbor strategy? Justify your answer with an argument or a 

counterexample. 

13.52 What changes are needed in shortestLinkTSP for directed graphs? 

13.53 Consider the following approximation algorithm for the TSP. The input is a com- 

plete, weighted, undirected graph G with n vertices and m edges. 

mstTSP(V, E, W) 

Find a minimum spanning tree for G; call it 7. 

Choose any vertex v; as the root. 

List the vertices in the order in which they are visited by a preorder traversal 

Old: Say, Uys aks, Vins 

Output the tour vj... .. Das Ute 

a. Give a good upper bound on the worst-case running time for this algorithm. 

*b. Prove that if G satisfes the triangle inequality, Equation (13.8), the weight of a tour 
produced by this algorithm is at most twice the weight of an optimal tour. 
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Section 13.9 Computing with DNA 

13.54 Show that if the strings R; that represent the vertices in Adleman’s algorithm are 
chosen arbitrarily, it is possible that in Step 2c, a DNA vertex strand R; could attach to a 

complementary segment of a path strand even if the vertex v; does not appear in the path 

represented by the path strand. (Make up an example of strings for the vertices where this 

happens. ) 

Additional Problems 

13.55 For each of the following statements, indicate whether it is true, false, or unknown. 

(“Unknown” means it is currently not known if the statement is true or false.) Don’t be too 

hasty. 

a. The satisfiability problem is reducible to the traveling salesperson problem. 

b. If P #4 NP, then no problem in NP can be solved in polynomial time. 

c.  2-CNF (the satisfability problem, in which each clause has exactly two literals) is 

reducible to the satisfiability problem. 

d. There cannot exist any (polynomial-time) approximation algorithm for graph coloring 

that is guaranteed to use fewer than 2x (G) colors for all graphs G, where x (G) 1s the 

chromatic number of G, as in Definition 13.1. 

13.56 Consider the following optimization problem: 

Problem 13.18 

Given f). f>....,t,, where all the ¢; are positive integers, find a partition of these integers 

into two subsets that minimizes the larger sum. 

This may be thought of as the problem of scheduling jobs on two processors. Job 7 takes 

time r;. We want to finish the set of jobs at the earliest possible time. 

a. Give a reasonable, but fairly simple, polynomial-time approximation algorithm A for 

this problem. (How much time does your algorithm take?) 

b. Give an example that shows that your algorithm does not always produce an optimal 

schedule. 

c. Say as much as you can about the quality of your algorithm’s output (i.e., about the 

functions S4 and Ry). 

13.57. Consider the following generalization of the previous problem: 

Problem 13.19 

You have p bins, each with unbounded capacity, and are given integers f,..., t,. Pack the 

f; into the bins so as to minimize the maximum bin level. 

Think of the bins as processors and the f; as the time requirements for n independent jobs. 

The problem is to assign jobs to processors to finish the set of jobs at the earliest possible 

time. 
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Give a polynomial-time approximation algorithm A for this problem. Say as much as 

you can about the quality of its output. 

13.58 Let G=(V, E) bea graph. Consider the following greedy attempt at an algorithm 

to find a minimum vertex cover C for G. (See Problem 13.10 for the definition of a vertex 

cover. ) 

Initially all edges are “unmarked” and C is empty: 

while (there are unmarked edges left) 

Choose a vertex v incident with the maximum number of unmarked edges; 

Put vin C; 

Mark all edges incident with v. 

Find an example in which this algorithm does not produce a minimum vertex cover. 

13.59 Suppose we had a polynomial time subprogram, TSP, to solve the traveling sales- 

person decision problem (i.e., given a complete weighted graph and an integer k, it deter- 

mines if there is a tour of total weight at most k). 

a. Show how to use the TSP subprogram to determine the weight of an optimal tour in 

polynomial time. 

b. Show how to use the TSP subprogram to find an optimal tour in polynomial time. 

13.60 Show that if there were a polynomial-time approximation algorithm for the knap- 

sack problem that was guaranteed to fill the knapsack with objects whose total value dif- 

fered from the optimal by a constant, then an optimal solution could be found in polynomial 

time. (In other words, if there is a polynomial-time algorithm A and an integer k such that 

for all inputs 7, opt(1) — val(A, 1) < k, then an optimal solution could be found in poly- 

nomial time.) 

13.61 Suppose there were a polynomial-time algorithm for the satisfiability problem, say 

polySatDecision(F), which returns true if and only if the CNF formula F is satisfiable. Give 

a polynomial-time algorithm that, when given a CNF formula, finds a truth assignment 

for the variables that satisfies the formula, if one exists, or tells that the formula is not 

satishiable, if that is the case. Your algorithm may call polySatDecision as a subroutine. 

Notes and References 

The two papers that began the intensive study of N’P-complete problems are Cook (1971) 
and Karp (1972). The latter outlines proofs of reducibility among many NP-complete 
problems. Both Stephen Cook and Richard Karp have won the ACM Turing Award, and 
their Turing Award lectures (1983 and 1986, respectively) present interesting overviews of 
computational complexity and their own views of the context of their work. 



Notes and References 

A major source for more detail, formalism, applications, implications, approximation 

algorithms, and so on, is Garey and Johnson (1979), a whole book on the subject of N’P- 

completeness. The definition of NP given here uses an informal version of the definition of 

nondeterministic Turing machines given in Garey and Johnson. The latter also contains a 

proof of Cook’s theorem, a proof of Theorem 13.22, a list of several hundred NP-complete 

problems, and a long bibliography (so we will not repeat most of the original references 

here). 

The approximation algorithms in Sections 13.5 through 13.7 are from Sahni (1975) 

(knapsack): Garey, Graham, and Ullman (1972) and Johnson (1972) (bin packing); and 

Johnson (1974) and Wigderson (1983) (graph coloring). The faster approximation scheme 

mentioned for the knapsack problem is in Ibarra and Kim (1975). There are more algo- 

rithms and references in Garey and Johnson. Empirical studies of the expected behavior of 

the bin-packing heuristics are in Bentley, Johnson, Leighton, and McGeoch (1983). 

Approximation algorithms for scheduling problems are in Sahni (1976). Hochbaum 

(1997) is a book on approximation algorithms for NP-complete problems. Lawler (1985) 

is a book entirely about the traveling salesperson problem. Garey and Johnson has more 

theorems concerning the unlikelihood of obtaining good approximation algorithms for 

some problems. 

Empirical studies of the clique, coloring, and satisfiability problems are collected in 

Johnson and Trick (1996). 

Adleman’s DNA algorithm is described in Adleman (1994, 1998). Kaplan, Cecchi, and 

Libchaber (1995) attempted to repeat the experiment and reported “ambiguous” results. As 

of late 1998, no other attempts to replicate the experiment are known. The estimate that a 

70-vertex graph would require 10*° kilograms is from Linial and Linial (1995). One model 

for universal DNA computing appears in Kari, Paun, Rozenberg, Salomaa, and Yu (1998), 

and several others have been proposed. Paun, Rozenberg, and Salomaa (1998) is a book 

about DNA computing. Maley (1998) surveys DNA computing, including other laboratory 

work, with an extensive bibliography. He provides a good nontechnical introduction, and 

explains many of the issues and methods. 
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Chapter 14 Parallel Algorithms 

Introduction 

Our model of computation throughout most of this book has been a general-purpose, 

deterministic, random access computer that carried out one operation at a time. Several 

times we used specialized models to establish lower bounds for various problems; these 

were not general-purpose machines, but they too carried out one operation at a time. We 

will use the term sequential algorithm for the usual one-step-at-a-time algorithms that we 

have been studying up to now. (They are also sometimes called serial algorithms.) In this 

chapter we will consider parallel algorithms, algorithms where several operations can be 

executed at the same time in parallel, that is, algorithms for machines that have more than 

one processor working on one problem at the same time. 

In recent years, as microprocessors have become cheaper and the technology for 

interconnecting them has improved, it has become possible and practical to build general- 

purpose parallel computers containing a very large number of processors. The purpose 

of this chapter is to introduce some of the concepts, formal models, techniques, and 

algorithms from the area of parallel computation. 

Parallel algorithms are natural for many applications. In image processing (for exam- 

ple, in vision systems for robots) different parts of a scene can be processed simultaneously, 

that is, in parallel. Parallelism can speed up computation for graphics displays. In search 

problems (e.g., bibliographic search, scanning news stories, and text editing), different 

parts of the database or text can be searched in parallel. Simulation programs often do the 

same computation to update the states of a large number of components in the system being 

simulated; these can be done in parallel for each simulated time step. Artificial intelligence 

applications (which include image processing and a lot of searching) can benefit from par- 

allel computing. The fast Fourier transform (Section 12.4) is implemented on specialized 

parallel hardware. Algorithms for many combinatorial optimization problems (such as the 

optimization versions of some of the N’P-complete problems described in Chapter 13) in- 

volve examining a large number of feasible solutions; some of the work can be done in 

parallel. Parallel computations can also speed up computation easily and substantially in 

other application areas. 

For the examples of parallel applications just mentioned, and for some of the algo- 

rithms studied earlier in this book, there seem to be fairly straightforward ways to break up 

the computation into parallel subcomputations. Many other well-known and widely used 

algorithms seem inherently sequential. Thus a lot of work has been done both in finding 

parallel implementations of sequential algorithms where that approach is fruitful, and in 

developing entirely new techniques for parallel algorithm design. 

Parallelism, the PRAM, and Other Models 

If the number of processors in parallel computers were small, say two or six, then there 

would be a practical advantage to using them for some problems in which.computation 

could be speeded up by some small constant factor. But such machines, and the algorithms 

for them, wouldn't be very interesting in the context of this book where we often ignore 

small constants. Parallel algorithms become interesting from a computational complexity 
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point of view when the number of processors is very large, larger than the input size for 
many of the actual cases for which a program is used. This is where we can get significant 
speedups and interesting algorithms. 

How much can parallelism do for us? Suppose that a sequential algorithm for a prob- 
lem does W(1) operations in the worst case for input of size n, and we have a machine 
with p processors. Then the best we can hope for from a parallel implementation of the 
algorithm is that it runs in W(n)/p time, and we can’t necessarily achieve this maximum 
speedup in every case. Suppose that the problem is putting on socks and shoes, and a proc- 
essor Is a pair of hands. A common sequential algorithm is: put on the right sock, put on 
the right shoe, put on the left sock, put on the left shoe. If we have two processors we can 
assign one to each foot and accomplish the task in two time units instead of four, However, 
if we have four processors, we can't cut the time down to one unit, because the socks must 
go on before the shoes. 

There are several general-purpose and special-purpose formal models of parallel ma- 
chines that correspond to various (real or theoretical) hardware designs. We will focus on 
one major class of models for general-purpose parallel computers: the PRAM (pronounced 
“p ram”), or parallel random access machine. Although the PRAM model has some unreal- 
istic features (which we will mention later), it serves as a good tool for introducing parallel 
computing. 

We will not always give the most efficient algorithm known for a problem: our aim 
here is to present some techniques and algorithms that can be understood without great 
difficulty. Since this is a short, introductory chapter, much that is interesting and important 

in the study of parallel algorithms is left out. Notes and References at the end of the chapter 

suggest a few additional topics and sources for readers who wish to pursue the subject. 

14.2.1 The PRAM 

A parallel random access machine (PRAM, pronounced “p ram’) consists of p general- 

purpose processors, Po, Pj, ..., Py—j, all of which are connected to a large shared, random 

access memory M, which is treated as a (very large) array of integers (see Figure 14.1). The 

Interconnection 

Oi 2 Memory m—| 

Figure 14.1. A PRAM 
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processors have a private, or local, memory for their own computation, but all communi- 

cation among them takes place via the shared memory. Unless we indicate otherwise, the 

input for an algorithm is assumed to be in the first 7 memory cells, and the output is to be 

placed in M[0] (or an initial sequence of cells). All memory cells that do not contain input 

are assumed to contain zero When a PRAM program starts. 

All the processors run the same program, but each processor “knows” its own index 

(called the processor id, or pid), and it “knows” the input size, usually designated as n, 

sometimes as a pair (7, 77) or some other small, fixed set of parameters.' The program may 

instruct processors to do different things depending on their pids. Frequently, a processor 

uses its pid to calculate the index of the memory cell from which to read or into which to 

write. 

PRAM processors are synchronized; that is, they all begin each step at the same time, 

all read at the same time, and all write at the same time, within each step. Some processors 

might not read or write in certain steps. Each time step has two phases: the read phase, in 

which each processor may read from a memory cell, and the write phase, in which each 

processor may write to a memory cell. Each phase may include some O(1) computation 

using local variables before and after its read or write. The time allowed for these compu- 

tations is the same for all processors and all steps so that their reading and writing remain 

synchronized. The model allows processors to do lengthy (but O(1)) computations in one 

step because for parallel algorithms, communication among processors through the shared 

memory (1.e., reading and writing) is expected to take considerably longer than local op- 

erations within one processor. There are several models with different assumptions about 

how much information fits in one memory cell and which local operations are available. 

The algorithms described in this chapter work with the weakest assumptions, so they are 

robust in this sense. 

In the models we consider in this chapter, any number of processors may read the 

same memory cell concurrently (i.e., at the same step). This is known as the concurrent 

read model. There are also models that prohibit concurrent reads, known as exclusive read 

models. There are several more variations of the PRAM depending on how write conflicts 

are handled. After looking at a few algorithms in which write conflicts are not a problem 

in Section 14.3, we will consider the variations in Section 14.4. 

Several programming languages for describing parallel algorithms exist, but we will 

use a mixture of English and our usual pseudocode language. Types are usually omitted 

from procedure headers because PRAMs only use integers and arrays, and the types are 

made clear in the context. Several of our algorithms have for and while loops. Each 

processor can keep track of the loop index and do the appropriate incrementing and testing 

during the computation phases of its steps. 

Several algorithms use arrays stored in the shared memory. We can assume these are 

handled just as arrays in high-level languages are handled. That is, a compiler decides 
on some fixed arrangement of the arrays in memory following the input, and translates 

; Sen BRAC Ta Lh ae : oe : 3 We could assume the input size was in a fixed global memory location, but that just adds one read Operation per 
size parameter and does not affect the asymptotic order. 
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array references to instructions to compute specific memory addresses. For example, if 
the input occupies 7 cells, and alpha is the third k-element array, the compiler translates 
an instruction telling processor P; to read alphalj] into PRAM instructions to compute 
index =n+2*k+j, and then read M[index]. The address computation 1s completed 

within one PRAM step. 

14.2.2 Other Models 

Although the PRAM provides a good framework for developing and analyzing algorithms 

for parallel machines, the model would be difficult or expensive to provide in actual hard- 

ware. The PRAM assumes a complex communication network that allows all processors to 

access any memory cell at the same time, in one time step, and to write in any cell in one 

time step. Thus any processor can communicate with any other in two steps: One proces- 

sor writes some data in a memory location on one step, and the other processor reads that 

location on the next step. Other parallel computation models do not have a shared memory, 

thus restricting communication between processors. A model that more closely resembles 

some actual hardware is the hypercube. A hypercube has 2” processors for some d (the 

dimension), each connected to its neighbors. Figure 14.2(a) shows a hypercube of dimen- 

sion 3. Each processor has its own memory and communicates with the other processors 

by sending messages. At each step each processor may do some computation, then send 

a message to one of its neighbors. To communicate with a non-neighbor, a processor may 

send a message that includes routing information indicating the ultimate destination; the 

message might take as many as d time steps to reach its destination. In a hypercube with p 

processors, each processor 1s connected to lg p other processors. 

Another class of models, called bounded-degree networks, restricts the connections 

still further. In a bounded-degree network, each processor is directly connected to at most 

d other processors, for some constant d (the degree). There are different designs for 

bounded-degree networks; an 8 x 8 network is illustrated in Figure 14.2(b). Hypercubes 

and bounded-degree networks are more realistic models than the PRAM, but algorithms 

for them can be harder to specify and analyze. The routing of messages among processors, 

an interesting problem in itself, is eliminated in the PRAM. 

The PRAM, while not very practical, is conceptually easy to work with when devel- 

oping algorithms. Therefore a lot of effort has gone to finding efficient ways to simulate 

PRAM computations on other parallel models, particularly models that do not have shared 

memory. For example, each PRAM step can be simulated in approximately O(log p) steps 

on a bounded-degree network. Thus we can develop algorithms for the PRAM, and know 

that these algorithms can be translated to algorithms for actual machines. The translation 

may even be done automatically by a translator program. 

In Chapter 13, we defined the class of problems P to help distinguish between tractable 

and intractable problems. ‘P consists of problems that can be solved in polynomially 

bounded time. For parallel computation, too, we classify problems according to their use of 

resources: time and processors. The class NC consists of problems that can be solved by a 

parallel algorithm with p (the number of processors) bounded by a polynomial in the input 

size, and the number of time steps bounded by a polynomial in the /ogarithm of the input 
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(a) A hypercube (dimension = 3) (b) A bounded-degree network (degree = 4) 

Figure 14.2 Other parallel architectures 

size. More succinctly, if the input size ism, then p(n) € O (n*) for some constant &, and the 

worst-case time, T (7), is in O (log’" 7) for some constant mm. (Recall that Ig” n = (lg n)’".) 
The origin of the name NC is explained in Notes and References at the end of the chapter. 

The time bound for NC, sometimes referred to as “poly-log time” because it is a 

polynomial in the log of m, is quite small—but we expect parallel algorithms to run very 

fast. The bound on the number of processors is not so small. Even for 4 = 1, it may 

not be practical to use n* processors for moderately large input. The reasons for using a 

polynomial bound, rather than some specific exponent, in the definition of NC are similar 

to the reasons for using a polynomial bound on time to define the class ‘P. For one, the class 

of problems that can be solved in poly-log time using a polynomially bounded number of 

processors is independent of the specific parallel computation model used (among a large 

class of models considered “reasonable”). Thus NC is independent of whether we are using 

a PRAM or a bounded-degree network. Second, if a problem cannot be solved quickly with 

a polynomial number of processors, then that is a strong statement about how hard the 

problem is. In fact, for most of the algorithms we will look at, the number of processors is 

in O(n). 

Some Simple PRAM Algorithms 

In this section we introduce some commonly used techniques for PRAM computation, and 

develop some simple algorithms that both illustrate the “flavor” of PRAM algorithms and 

also provide some building blocks or subroutines for later use. 

In general, PRAM algorithms are “theoretical” in the sense that they demonstrate that a 

problem can be solved within time that is in some particular asymptotic order class. There 
are no real PRAMs that magically have more processors for larger inputs, without limit. 
Therefore there is little point in trying to optimize constant factors, since the algorithm 
will not actually be run as is. Instead, the presentation strives for simplicity and clarity. 
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Po Py P4 ee 

Read XO) a) X4 X6 

Read 

Combine 

Write 

Read 

Combine 

Write 

Read 

Read 

Combine 

Write 

M{O| = max 

Figure 14.3 A parallel tournament: Write steps are not shown for cycles in which no processor 

writes. 

14.3.1. The Binary Fan-In Technique 
Consider the problem of finding the largest key in an array of n keys. We have seen 

two algorithms for this problem: Algorithm 1.3 and the tournament method described in 

Section 5.3.2. In Algorithm 1.3, we proceeded sequentially through the array comparing 

max, the largest key found so far, to each remaining key. After each comparison, max may 

change: we can’t do the next comparison in parallel because we don’t know which value to 

use. In the tournament method, however, elements are paired off and compared in “rounds.” 

In succeeding rounds, the winners from the preceding round are paired off and compared 

(see Figure 5.1). The largest key is found in {lg 7] rounds. All of the comparisons in one 

round can be performed at the same time. Thus the tournament method naturally gives us 

a parallel algorithm. 

In a tournament, the number of keys under consideration at each round decreases by 

half, so the number of processors needed at each round decreases by half. However, to 

keep the description of the algorithm short and clear, we specify the same instructions for 

all processors at each time step. The extra work being done may be confusing, so it is 

helpful to look at Figure 14.3 first. Figure 14.3 shows the work that actually contributes 

to the answer. A straight line represents a read operation. A zigzag line represents a write 
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operation; a processor writes (the largest key it has seen) in the memory cell with the same 

number as the processor (i.e., P; writes in M[i]). A circle represents a binary operation that 

“combines” two values; in this case it is a comparison that selects the maximum of two 

keys. “Bookkeeping” computations fit in around the reads and writes. If a read line comes 

into P; from the column of P;, that means P; reads from M[j], since that is where P; wrote. 

Figure 14.4 shows a complete example of the activity of all the processors. The shaded 

parts correspond to Figure 14.3 and show the computations that affect the answer. 

Algorithm 14.1 Parallel Tournament for Maximum 

Input: Keys x(0], x[1],..., x{n-1], initially in memory cells M[O], M[1], ..., M[n—-1], and 

integer 7. 

Output: The largest key will be left in M[O]. 

Remarks: Each processor carries out the algorithm using its own index number (pid) for 

a unique offset into M. The variable incr is used to compute the upper cell number to read. 

Since n may not be a power of 2, the algorithm initializes cells M[n], ..., M[2*n-1] with 

—oo (some small value), because some of these cells will enter the tournament. 

parTournamentMax(M, n) 

int incr; 

1. Write —oo (some very small value) into M[n+pid]. 

ince— ar 

2. while (incr < n) 

Key big, tempO, temp]: 

Read M[pid] into tempo. 

3. Read M[pid+incr] into temp1. 

big = max(temp0O, temp1); 

Write big into M[pid]. 

Wnvele-=3 72 ee MaKel re 

Analyzing the algorithm is easy. The initialization before the while loop takes one 

read/write step (Step I), and each iteration of the while loop is two read/write steps (Steps 2 

and 3); the total is 2[lg m] + 1 steps. So Algorithm 14.1 uses 7 processors and © (log 1) 
time. (It actually needs only n/2 processors and one read/write step in the body of the while 
loop, but this complicates it slightly; see Exercise 14.3.) 

The tournament, or binary fan-in, scheme used by Algorithm 14.1 can be applied to 

several other problems as well, so it is worth doing a formal proof of the correctness of 
this algorithm. We want to show (by induction on f) that after the rth iteration of the 
while loop, incr = 2' and M[i] contains the maximum of x[i], .... x(i+incr—1], with the 
convention that x[j] = —oo if 7 =n. Thus, when the loop terminates after [lg] iterations, 
M[O] will contain the maximum of x[O]. . . .. x[n—1]. Notice that we are proving a statement 
that is more than we really want to prove, to facilitate the use of induction. This is called 
strengthening the inductive hypothesis. 
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Processors Po P P» P; Py Ps P. Py 

Step 1 

Read M[i] into tempo. 

Step 2 

Read M[i+1] into temp. 

big = max(temp0O, temp1); 16 12 7 3) pe} 19 8 8 

Write big into M[i]. 

Step 3 

Read M[i] into tempo. 16 12 Ly) 23 23} 19 8 8 

Step 4 

Read M[i+2] into tempt. 17 OB} 23 19 8 8 Heh ee 

big = max(tempO, temp1); 17 28 23 23 23 19 

Write big into M[i]. 

Step 5 

Read M[i] into tempo. 17 23 23 23 23 IS) 8 8 

Step 6 

Read M[i+4] into temp1. 23 19 8 8 oo oo co oo 

big = max(tempO, temp1); Doe ee Vale 2 oil 8 8 

Write big into M[I]. = | | | ig | 

m fy 23 | 23 | 23 | 23 | 19 | 8 (ea 

Figure 14.4 A tournament example showing the activity of all the processors 
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Theorem 14.1 At the end of the rth iteration of the while loop, incr = 2' and each 

cell M[i], for 0 <i < 2!'2”!, contains the maximum of x{iJ, ..., x{i+iner-1]. (Thus when 

t = flgn] andi = 0, the desired conclusion follows.) 

Proof The proof is by induction on r, the number of iterations completed. Throughout 

the proof, 7 is any integer in the range 0 <1 - 2''2"| unless stated otherwise. For the basis 

of the induction, let = 0. The theorem claims that before the while loop is executed, M[i] 

contains the maximum of x{iJ,. . ., xfi] (.e., x[i]), which is true because that is the input, or 

is the value —oo. Also, from the initialization step, incr = | = 2”. 

Now let ¢ > 0, and we examine the /th iteration of the loop. By the inductive hypoth- 

esis, at the end of the (¢ — 1)-st iteration, incr = 2'~!, M[j] contains the maximum of x{j]. 

ice iinGre—1) (eon OP ya 2/!l2”1 The same is true at the beginning of the rth iteration. 

If i > n, M[i] is unchanged, and —oo is the maximum of all x’s with indexes greater than / 

because they are all —oo. For 0 <7 < p, inthe rth iteration, the values of the local variables 

of P; just before the write are 

tempO = max(x{i], . . ., xfi+2/~'-1]) 

temp] = max(x[i+2!—!], ..., x{i+2’~!4+2'-!-1)) 

big = max(x[i], .. ., x[i+2'-1]) 

Also the new value of incr is 2’. The above value of big is written in M[i] during the write 

step of the rth iteration. This establishes the induction claim for ¢ and completes the proof. 

Oo 

Note that Algorithm 14.1 overwrites the input data. If this is not desirable, itis a simple 

matter to copy the input (in one parallel step) to a scratch area in memory and do the 

computation there. 

With only slight modification to Algorithm 14.1, the binary fan-in scheme can be used 

to find the minimum of 7 keys, to compute the Boolean or or Boolean and of 1 bits, and 

to compute the sum of m keys, each in (log nm) steps, without any write conflicts. The 

common theme of these problems ts that an associative binary operator is used to combine 

all the elements of the input into a single value. The proof of correctness carries over also, 

as it only used the fact that the binary operation was associative. 

14.3.2 Other Easily Parallelizable Algorithms 

Numerous algorithms based on arrays or matrices are easily parallelizable because all parts 

of such structures can be accessed simultaneously—there are no “links” to follow as there 

are in linked lists and trees. 

Problem 14.1 — Parallel matrix multiplication 

Consider the problem of multiplying two 7 x nm matrices A and B. Recall the formula for 

the entries of the product matrix C: 
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n—| 

Cl a ) Aik DK for = 1, 7 =H. 

k=0 

We are using indexes starting at 0 for matrices. Of course, for this problem the output does 
. e} . . ~ > not all go in M[O]; we assume n- cells of memory are designated for the elements of C. = 

The usual matrix multiplication algorithm has a natural parallel version. Since concur- 
rent reads are allowed, we can simply assign one processor to each element of the product, 
thus using n° processors. Notice that n2 is linear in the size of the input. Each processor 
Pj; can compute its c;; in 2n steps. (There are n terms to add, and each term needs two 
reads. The multiplications and additions fit into these steps.) With more processors we can 
do better. 

All the multiplications can be done and stored in two steps using n°? processors. 

Clearly, the binary fan-in scheme used in Algorithm 14.1 can be used to add n integers 

in ©(log nm) steps. The work done would “look” the same as in Figure 14.3 with the dots 

representing additions instead of comparisons. Thus the matrix product can be computed 

in O(log n) time with ©(n°*) processors. 

Problem 14.2 Parallel transitive closure 

Recall that the (reflexive) transitive closure of a binary relation A ona set S' is the binary 

relation R (also on set S$) that describes reachability in the directed graph G = (S, A) 

(Definition 9.1). That is, (wu, v) © R if and only if there is a path from uw to v in G. Paths 

of zero edges are allowed, so (v, v) € R for all v € S, making R reflexive. (Irreflexive 

transitive closure is sometimes defined, in which paths are required to be nonempty.) The 

input is the bit matrix representation of A with | for true and O for false, one bit per 

memory cell. The output has the same format. As with parallel matrix multiplication, n7 

output locations are designated. 

This problem is one level more complex than matrix multiplication. Although Algo- 

rithm 9.1, Transitive Closure by Shortcuts, was not the most efficient sequential algorithm, 

its regular structure makes it easy to parallelize. Its while loop executes about lg 7 times 

in the worst case. The body of the while loop can be parallelized in a manner very similar 

to parallel matrix multiplication (see Exercise 14.4) and run in O(log 1) steps. Therefore 

transitive closure can be computed in O(log? n) steps without write conflicts. 

Many dynamic programming algorithms can be speeded up easily (although not to 

poly-log time, usually) by doing computation in parallel. Recall that dynamic programming 

solutions usually involve computing elements of a table. Often the e 

column or diagonal) depend only on entries in earlier rows (or columns or diagonals). Thus 

with 2 processors, all elements in one row of ann x n table can be computed in parallel, 

cutting the running time of the algorithm by a factor of n. 

ements in one row (or 
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Handling Write Conflicts 

PRAM models vary according to how they handle write conflicts. The CREW (Concurrent 

Read, Exclusive Write) PRAM model requires that only one processor write in a particular 

cell at any one step; an algorithm that would have more than one processor write to one 

cell at the same time ts an illegal algorithm. 

There are several ways to relax the CREW restriction, which are collectively called 

CRCW (Concurrent Read, Concurrent Write) models.” 

1. Inthe Common-Write model, it is legal for several processors to write in the same cell 

at the same time if and only if they all write the same value. 

2. Inthe Arbitrary-Write model, when several processors try to write in the same memory 

cell at the same time, an arbitrary one of them succeeds. An algorithm for this model 

must work correctly no matter which processor “wins” the write conflict. 
A 
3. In the Priority-Write model, if several processors attempt to write in the same memory 

cell at the same time, the processor with the smallest index succeeds. 

These CRCW models are successively stronger, and all are stronger than CREW: An 

algorithm that is legal and correct for an earlier model in the list is legal and correct for 

all later models, but not vice versa. 

The models differ in how fast they can solve various problems. To illustrate the 

difference, we consider the problem of computing the Boolean or function on n bits. 

14.4.1. Boolean or on n Bits 

Using the binary fan-in scheme of Algorithm 14.1, each processor performs an or operation 

on a pair of bits at each round, and the problem is solved in ©(log 7) time. This method 

works on all of the models mentioned because there are no write conflicts: the processors 

write the results of their operations in different memory cells. Can we find an even faster 

algorithm? 

Problem 14.3 Parallel Boolean or 

Find the or of n bits xo, ..., %,—1, input as O's and 1’s in M[O],...,M[n-1]. @ 

It has been shown that the lower bound for Problem 14.3 on a CREW PRAM is in 

§2(log m) time (even if more than 7: processors are used). However, in all the CRCW models 
the problem can be solved in constant time. 

Algorithm 14.2.) Common-Write Boolean or 

Input: Bits xo, ..., X,—, in M[O],..., M[n—1]. 

° Warning: The abbreviations used for the various models in research papers are not consistent. EREW and CREW 
are used consistently for Exclusive Read, Exclusive Write and Concurrent Read, Exclusive Write, respectively. 
But CRCW might mean any of several concurrent-write models. To avoid ambiguity, we spell out the rule for 
write conflicts. 
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Output: xo V +++ x,—, in M[O}]. 

commonwWriteOr(M, n) 

lee? Teads 34 trom [Ne 

If x; is 1, then P; writes | in M[O]. 

Since all the processors that write into M[O] write the same value, this is a legal 

program tor the Common-Write model, and therefore also for the Arbitrary-Write and 

Priority-Write models. Thus the or of n bits can be computed in one step on these mod- 

els with 2 processors. The technique can be used on the transitive closure problem (see 

Exercise 14.8). 

14.4.2) An Algorithm for Finding Maximum in Constant Time 

If we use the Common-Write (or stronger) PRAM model we can get an algorithm for 

finding the maximum of m numbers in less time than the binary fan-in method. This 

algorithm uses n- processors to simplify indexing, although only n(n — 1)/2 processors 

do any work. The strategy is to compare all pairs of keys in parallel, then communicate 

the results through the shared memory. We use an array loser. Recall that this can occupy 

memory cells M[n], ..., M[2*n-1], or some other segment of global memory chosen by 

the compiler. Initially, all entries in this array are zero (or can be initialized to zero in one 

step). If x; “loses” a comparison, then loser[i] will be assigned the value 1. 

Algorithm 14.3.) Common-Write Maximum of 7 Keys 

Lniput ICY S ip; cae v, |. Initially in memory cells M[O], M[1], ..., M[n—-1], and the 

integer n > 2. 

Output: The largest key will be left in M[O]. 

Remarks: For clarity, the processors will be numbered P;_;, for 0 <i < j <n — 1. Each 

processor computes / and / from its index (pid) by 7 = |pid/n| and j = pid — ni. If > J, 

the processor does no work. Figure 14.5 illustrates the algorithm. 

Procedure: See Figure 14.6. @ 

This algorithm does only three read/write steps. However, the number of processors 

is in @(n7). If the number of processors is limited to n, the largest key can be found 

in ©(log log ) time by an algorithm that uses Algorithm 14.3 on small groups of keys 

repeatedly. (See Notes and References at the end of the chapter.) 

This algorithm shows that, if common writes are allowed, the binary fan-in scheme 

is not the fastest way to find the maximum key. In the matrix multiplication example in 

Section 14.3, we suggested using binary fan-in to add n integers in O(log 7) time. You 

may now wonder if addition can also be done in constant time on Common-Write PRAMs. 

In Section 14.7 we will show that it cannot. Thus adding 7 integers is a harder problem 

than finding the maximum of 7 integers. 
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Input loser array 

Initial memory contents (7 = 4) 
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Figure 14.5 The constant-time maximum algorithm 

fastMax(M, n) 

1. Compute i and j from pid. 

if (i > j) return; 

Pj,; reads x; (from M[i]). 

P;_; reads x; (from M[j]). 

P;_; compares x; and xj. 

Let & be the index of the smaller key (i if tied). 

P;_; writes | in loser[k]. 

// At this point, every key other than the largest 

// has lost a comparison. 

3. Pi i+, reads loser[i] (and Po ,,—) reads loser[n—1]). 

The processor that read a 0 writes x; in M[O]. (Po,,—| would write x,,_ 1.) 

// This processor already has the needed x in its local memory 

// from steps I and 2. 

bo 

Figure 14.6 Procedure for Algorithm 14.3 

14.5 Merging and Sorting 

It is not difficult to find ways to speed up some of the sorting algorithms in Chapter 4 by 
doing some of the operations in parallel. You should be able to find parallel implementa- 
tions of, for example, Insertion Sort and Mergesort that can sort n keys in @(7) time. In 
this section we present a parallel sorting algorithm based on Mergesort that does roughly 
lg?(n)/2 PRAM steps using 72 processors. 
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The algorithm presented here gives a dramatic improvement over ©(n log 1) sequen- 

tial sorting. For example, an array of 1000 keys can be sorted in 55 parallel steps; a sequen- 

tial algorithm does about 10,000 comparisons. It is not the asymptotically fastest parallel 

sorting algorithm known; parallel sorting can be done in O(log n) time (in theory—the 

constants are too large for the method to be practical). The algorithm we describe is very 

easy to understand, it uses only n processors, and the number of steps is a small multiple 

of lg7(n ). As usual, we assume that we wish to sort into nondecreasing order. 

14.5.1 Parallel Merging 

As shown in Section 4.5, we can merge two sorted sequences, each containing n/2 keys, 

by doing at most n — | comparisons. The merging algorithm we used there (Algorithm 4.4) 

seems essentially sequential: the two keys compared at one step depend on the result of the 

previous comparison. Here we use a different approach to merge in lg 7 parallel steps. Since 

we intend to use the merge algorithm in a Mergesort-style sorting algorithm in which we 

will always merge two array subranges of equal length, we will write the merge algorithm 

for subranges of equal length. It is an easy exercise to generalize the algorithm and its 

analysis to subranges of different sizes. The central idea is the cross-rank subroutine. 

Definition 14.1 Cross-rank subroutine 

Given two sorted arrays. say X and Y, the cross-rank subroutine finds the rank in Y for 

each element of X and the rank in X for each element of Y. Specifically, the cross-rank 

of x € X is the smallest r such that x < y,; that is, if x» were inserted into Y maintaining 

sorted order and placing x in the lower position in case of a tie, then x would be placed in 

Y[r] and its rank in Y would be r. If x is greater than every element of Y, its cross-rank 

is one greater than the maximum index of Y. Also, the cross-rank of y € Y is the smallest 

r such that y < .x,. Notice the asymmetry of the definition, which causes elements of X to 

be treated as smaller than elements of Y incase ofatie. # 

Suppose the two sorted arrays are in the 2k memory cells M[i]...., M[i +4 — 1] and 

M{itk],...,M[i+ 2k — 1]. For clarity, we refer to the first subrange as X = (x9, X},--., 

x, 1) and the second as Y = (yo, y}. .- -, Yk—1). TO implement cross-ranking in parallel, 

each of the 2k processors, P;, ..., Pj42,—1 18 assigned to one key and has the task of 

determining that key’s cross-rank. A processor assigned to a key in X, say v,,, does a binary 

search in Y to determine the cross-rank of x,,, Call it r(x,,). Similarly, a processor assigned 

to a key in Y, say y», determines the cross-rank of ym, call it r(ym). Each processor 

remembers the value of r that it computed for its assigned element. 

Now we are prepared to merge X and Y. Since x,, follows exactly m keys in X 

and is greater than r(x,,) keys in Y, its proper position in the merged subrange is in 

M[i +m +r(x»)]. Similarly, y,, follows exactly m keys in Y and is greater than or equal to 

r(\m) keys in X, so its proper position in the merged subrange is in M[i +m + (vn) I. (In 

Exercise 14.14 you prove that the positions of an X element and Y element cannot conflict.) 

After the binary searches are completed, each processor writes its assigned element into the 

correct position. (See Figure 14.7, which illustrates the case of x and processor Pj +m.) 
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Pi og ce oe 

M{i] M{i+k—1] M[i+4] M{i+2k—1] 

(a) Assignment of processors to keys 

Pitm 

| < Xm | Xm | 2 Xm | <r | Yr | an) 

(b) Binary search steps: P;+,, finds r such that y_) < x < yp. 

Pim ~ 

Noe Xn and yo,.--5)-—1 (merged) Agen 

M\i+m+r] 

(ClOutpurstep: Fis) StOresmG,: 

Figure 14.7 Cross-ranking and parallel merging 

Algorithm 14.4 Parallel Merge 

Input: Two sorted array subranges of k keys each, in M[i], .. .. M[i+k-1] and M[i+k], .... 

M[i+2*k-1]. 

Output: The merged array, M[i], ..., M[i+2*k-1]. 

Remarks: Processors Pj, ..., Pj+2,—1 participate. Each processor P;,, has a local vari- 

able x Gf0 <m <k)or y (if k <m < 2k) and other local variables for conducting its binary 

search. Each processor has a local variable position that indicates where to write its key. 

Procedure: See Figure 14.8. 

Theorem 14.2 The parallel merge algorithm does [lg &| + 2 steps to merge two sorted 
array subranges, with k keys each, using 2k processors. 

Proof The initialization is one PRAM step. The binary searches are all done in subranges 
of k keys, so they take [lg k| + 1 read/computation steps. Since the binary searches do not 
involve any writing to the shared memory, the output can be done in the last binary search 
step. Thus the total is [Igk] +2. a 

Note that since there are no write conflicts, the merge algorithm works on all the 
variations of the PRAM we have described. 
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parMerge(M, i, k) 

int r, position: 

KeyType x, y; 

// Initialization: 

Ifm <k, P+.) reads M[i+m] into x. 

If im > k, Pi reads M[i+m] into y- 

// Cross-ranking steps: 

Processors Pj, for 0 <m <k, cross-rank x in M{i+k], ..., M[i#2*k-] ie 

saving the result locally in r. 

(Simultaneously) processors P;+,,, fork <m < 2k. cross-rank y in 

M[i]...., M[i+k-1], saving the result locally in r. . 

// Output step: 

Each P;+, (for 0 <m <k) computes position =i +m +r. 

Each P;+44m (for 0 <m <k) computes position =i +m +r. 

Each P;+,, (for 0 <m < 2k) writes its key (x or y) in M[position]. 

Figure 14.8 Procedure for Algorithm 14.4 

14.5.2 Sorting 

Suppose we have an array of n keys to be sorted. Recall the strategy of Mergesort: 

Break the array into two halves. 

Sort the two halves (recursively). 

Merge the two sorted halves. 

If we “unravel” the recursion, we see that the algorithm merges small sorted subranges of 

the array (one key each) first, then merges slightly larger subranges (two keys each), then 

larger subranges, and so on until finally it merges two subranges of size (roughly) n/2. The 

recursive algorithm merges some larger subranges before doing all the small subranges 

(since it completely sorts the first half of the keys before even beginning on the second 

half). To write a systematic, iterative parallel algorithm, we merge all the pairs of subranges 

of size | in the first pass (in parallel), then merge all the pairs of subranges of size 2 1n the 

next pass, and so on. Clearly we use [lg 7] merge passes. The assignment of processors 

to their tasks is very easy. Whenever two array subranges occupying, say M[i], .... M[j] 

are being merged, processors P;,...., P; do the merge using Algorithm 14.4. Figure 14.9 

illustrates one pass. 

Algorithm 14.5 Sorting by merging 

Input: An array of n keys in M[O], .... M[n-1]. 

Output: The n keys sorted in nondecreasing order in M[O], .. ., M[n—1]. 
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Po Po, | PK j PK j+2k=1 Pr—] 
I } i 

k —3<— k 

Figure 14.9 Assignment of processors for one merge pass: Processors P2,;, ..., P2K)+2k—1 

merge the jth pair of array subranges of size k. 

Remarks: The indexing in the algorithm is easier if the number of keys is a power of 2, so 

the first step will “pad” the input with large keys at the end. We still use only 1 processors. 

parMergeSort(M, n) 

int k; // the size of subranges being merged 

P; writes oo (some large key) in M[n+i]. 

fon(k =< ine k= ak) 

For each i = 0, 2k, 4k, 6k, . .., 7 < ” (simultaneously) 

Pho executes parMenge(Mryimk): 

Theorem 14.3) Algorithm 14.5 sorts n keys in (flgn] + 1)({lgn] + 2)/2 steps. Hence 

parallel sorting can be done in O(log? n) time with n processors. 

Proof At the rth pass through the for loop, each subrange being merged has k = 2'~! 

keys, so, by Theorem 14.2, the rth execution of parMerge does ¢ + | steps. There are 
[lg 7] passes because k doubles after each pass. In total, all the passes do 

len] 

Yi @+)=45 (Meni +1) (Men) +2) -1 
=) 

steps, and there is one initialization step. 0 

14.6 Finding Connected Components 

In Chapter 7, Algorithm 7.2, we studied a sequential algorithm to find the connected 
components of an undirected graph (or symmetric digraph) G. It used depth-first search and 
ran in O(n +m) time. Although depth-first search may seem inherently sequential, there 
are fast parallel algorithms to construct depth-first search trees. However, it is not necessary 
to do depth-first search to find connected components. (For example, breadth-first search 
can be used.) How much can we speed up the solution by “throwing more processors at it”? 

For this section G = (V, E) is an undirected graph with |V| =n and |E| =m. (As 
a symmetric digraph, |E| = 2m.) To keep the notation simple, let V = {1,2,..., n}. The 
graph is presented in the input as the two size parameters, n and m, anda sequence of 2m 
integers representing the m edges. 

It is relatively straightforward to find connected components in O(log n) time using 
n? processors in the Common-Write model. The idea is to do transitive closure first (see 
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Exercise 14.8), then in parallel for each vertex v, find an identifier for the connected 

component of v. The details are addressed in Exercise 14.18. Since a graph has at most 

O(n*) edges, the number of processors used grows more than linearly with the input size. 

But the transitive closure of G contains much more information than we needed. Can we 

solve the connected components problem with an algorithm that uses a linear number of 

processors? 

In this section we present a parallel algorithm that finds connected components in 

O (log 7) time using max(n + 1, 2) processors. The algorithm has genuine write conflicts: 

not only are multiple processors trying to write to the same cell, but they may be trying to 

write different values. Among the variations of the PRAM we have described, the CREW 

and the Common-Write models cannot be used. Either the Priority-Write PRAM or the 

weaker Arbitrary-Write PRAM must be used here. Correctness will be shown in the weaker 

model, from which correctness in the stronger model follows. 

14.6.1 Strategy and Techniques 

The connected component algorithm is more complicated than any of the other parallel 

algorithms we have looked at so far. We will give a high-level description of the algorithm, 

then show how the various parts of the algorithm can be implemented on a PRAM. We 

introduce some terminology. 

Definition 14.2) Supervertex, star 

Given a forest of in-trees (edges are directed from vertices to their parents, as in Sec- 
4 

tion 2.3.5), a supervertex is the set of vertices in any one tree, and a star 1s a tree of height 

0 or 1. See Figure 14.10 for an illustration. 

nape oF 
(a) A graph 

SP ops 
(b) Its components as stars 

Figure 14.10 Connected components turned into stars: Edges from roots to themselves are a 

bookkeeping convenience. 
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The algorithm begins with each vertex in a separate in-tree, then repeatedly combines 

trees that are in the same connected component, forming larger supervertices, and shortens 

the trees. Ultimately, each connected component is converted to a star. The in-trees are 

represented by an array parent, such that parent[v] is the parent of vertex v. By convention, 

the parent of a root is the root itself. Once the connected components have been converted 

to stars, we can determine if two vertices are in the same component in constant time by 

comparing their parents. 

Readers who have studied dynamic equivalence relations and Union-Find programs 

in Section 6.6 will notice a lot of similarities to them in the above description. Indeed, 

connected components do define an equivalence relation on an undirected graph. Recall 

that cFind (find with path compression) also shortened in-trees, which were formed by 

union operations. Keeping these similarities in mind will help as we delve into the details 

of the parallel method. 

The algorithm repeatedly uses two basic techniques: shortcutting and hooking. Short- 

cutting shortens trees. It is useful in other parallel graph algorithms, too. It is interesting to 

compare this operation with path compression. 

Definition 14.3 Shortcutting 

Shortcutting (sometimes called doubling or pointer jumping) simply changes the parent of 

a vertex vu to the current grandparent of v: 

parent[v] = parent[parent[v]]. m 

Shortcutting is applied in parallel to all vertices. To see the speed with which this 

operation can cut down long paths, consider a simple chain of vertices as in Figure 14.1 1(a). 

where parent[v] = v — I (and parent[1] = 1). Parts (b) and (c) of Figure 14.11 show the 

parent pointers after the first and second applications of the shortcutting operation. If we 

start with 7 vertices in the chain, after [lg] applications of shortcutting, all vertices have 

the same parent. 

Remember, the graph G = (V, E) for which the algorithm is finding connected com- 

ponents is an undirected graph, but the forest of in-trees manipulated by the algorithm is 
directed and has different edges from G. We need to keep track of whether we are talk- 
ing about an (undirected) edge in G or a directed edge in the forest. The term parent only 
applies in the forest and the directed edges in the forest are (v, parent[v]), provided that 
parent[v] is distinct from v. 

Shortcutting never joins two separate trees. We need the hooking operation to connect 
trees. This is analogous to the union operation of a Union-Find program. 

Definition 14.4 Hooking 

The operation hook(i, j) attaches the root of i’s in-tree to the parent of j as a new child. 
We say that 7's in-tree is hooked to the parent of j. (Note that either i or j may be its own 
“parent” in the parent array.) The algorithm only applies hook(i, j) when parentl[i] is a root 
(1.e., 7 Is a root or a child of a root). Thus the operation can be implemented by 

parent(parent[i]] = parent[j]. 
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CD —O@—O-—_O-—_O— O_O —® 
(a) A chain of vertices 

(b) After one application of shortcutting 

COQ, “Qe. ~@ Oo 
a 

(c) After two applications of shortcutting 

Figure 14.11 The effect of shortcutting in a simple example: After a third shortcut operation, 

all vertices will point to the root. 

The algorithm uses certain special cases of hooking: 

1. Conditional star hooking: 

If 7 is in a star, 7 is adjacent to 7 in G, and j’s parent is less than i’s parent, then 

hook(i, j). The requirement that we attach to the smaller of the two parents helps avoid 

the introduction of cycles. Conditional star hooking is illustrated in Figure 14.12, parts 

(a) and (b). 

Unconditional star hooking: 

If i is in a star, j is adjacent to 7 in G, and / is not in i’s star, then hook(i, j). 

Unconditional star hooking 1s illustrated in Figure 14.12 parts (c) and (d). 

i) 

Note that the algorithm requires / to be in a star in both cases. @ 

At any one time, there may be several pairs of vertices, i and /, that satisfy the 

conditions for hooking, but only one value can be stored as the new parent of /’s root. 

In the parallel algorithm, different processors will be trying the different choices, and 

several processors may try to write in parent[parent(i]] at the same time. For example, 

in Figure 14.12, parts (c) and (d), we show the result of hook(8, 10), which changes 

parent[7]. The requirements for operations hook(7, 11) and hook(8, 11) are satisfied in 

Figure 14.12(c), so other processors will perform them, also trying to write in parent[7]. 

Only one processor succeeds in writing, but the algorithm will work properly no matter 

which one succeeds. 

Notice that two trees are hooked only if there 1s an edge of G incident upon a vertex in 

each tree. Thus a supervertex is always a subset of a connected component. By running long 
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ote ais 
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(a) Trees before hooking: (b) Conditional star hook- 

Dashed edges are in G. ing: hook(2, 3). 

® © io 
— é p 
oA ® @ B 

(c) Trees before hooking: (d) Unconditional star 

Dashed edges are in G. hooking: hook(8, 10). 

Figure 14.12 [lustrations of hooking 

enough, the algorithm eventually hooks together all trees that are part of one connected 

component. 

14.6.2. The Algorithm 

The algorithm begins with each vertex of G in a separate tree, so every vertex 1s a star by 

itself, initially. The algorithm repeatedly does hooking and shortcutting until the desired 

structure is achieved. We first give a high-level description. 

Drawing on our experience with Union-Find programs in Section 6.6, we might expect 

that initializing each vertex to be its own tree (1.e., parent[v] = v) would be sufficient to 

get the algorithm started. Unfortunately, that does not quite work. After presenting the 

algorithm, we will explain the problem and the solution. 

Algorithm 14.6 Parallel Connected Components (Outline) 

Input: An undirected graph G = (V, E). 

Output: A forest of directed trees of height at most 1, represented by the array parent, 

indexed by the vertices. Each tree contains the vertices of one connected component. 

Remarks; An instruction specified for a vertex v is performed in parallel for all vertices. 

The hooking steps are performed in parallel for all edges ij in G (and only for pairs i and 

J such that 77 is an edge). Each edge, say xy, is processed twice (in parallel), once with x 
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(a) The graph G. (b) After conditional star hooking 

(c) After unconditional star hooking: Both 

hook(2, 4) and hook(4, 2) were performed. 

Figure 14.13 Introduction of a cycle during first pass, after faulty initialization 

in the role of 7, and once with y in the role of i. The subroutine initParCC is discussed in 
the text. 

parConnectedComps(G, n, m) // OUTLINE 

initParCC(G, n, m); 

While shortcutting produces changes: 

// Conditional star hooking 

Ifij € E andi is ina star and parent[i] > parent[j]: 

hook(i, j); 

// Unconditional star hooking 

Ifij € E andi is ina star and parent[i] 4 parent[j]: 

hook(i, j); 

// Shortcutting 

If v is not in a star: 

parent[v] = parent[parent[v]]; 

One of the facts used in the proof that the algorithm works correctly is that conditional 

and unconditional star hooking do not produce new stars, because the new supervertex 

forms a tree of height at least 2. But unfortunately, they might do so on the first pass 

through the loop, if initParCC did nothing more than make each vertex its own star. Single 

vertices (trees of height 0) may form a tree of height | (a star) when they are hooked 

together. Then, the unconditional star hooking step might hook two stars to each other 

in both directions, thus creating a cycle. See Figure 14.13 for an illustration. The problem 

is eliminated by having initParCC ensure that all singletons (trees with only one vertex) are 

hooked to something or something is hooked to them (unless the vertex is isolated, i.e., 1s 

not in any edge of £). Here is the correct initialization. 
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Algorithm 14.7 — Initialize for connected components 

Input: Same as for Algorithm 14.6. 

Output: The parent array represents a forest of in-trees of height 1, except for isolated 

nodes. That is, every vertex that is incident upon any edge in G is in a tree of height 1. 

Also every edge in the forest is between two vertices that are connected in G (by a path of 

length one or two). 

initParCC(G, n, m) 

Compute v, 7, and 7 from pid. 

parent[v] = v; 

if (ij © E && i> j) // Conditional singleton hooking 

hook(i, j); 

if (ij © E && i isasingleton) // Unconditional singleton hooking 

hook(i, j); 

Figure 14.14 illustrates the action of the algorithm. The correctness of the algorithm 

is based on two theorems which in turn are proved in a series of lemmas. The algorithm 

itself is not very hard to understand if a few examples are worked through, so you should 

examine Figure 14.14 carefully before proceeding. (Notice how Algorithm 14.7 protects 

the trees rooted at 5 and 7 from the problem illustrated in Figure 14.13.) 

Theorem 14.4 At any time during execution of Algorithm 14.6, the structure defined by 

the parent pointers is a forest. 

Theorem 14.5 When Algorithm 14.6 terminates, the forest defined by the parent point- 

ers consists only of stars, and the vertices in each star are exactly the vertices of a connected 

component of G. 

The proofs of the theorems use the following lemmas. 

Lemma 14.6 After the initialization, the structure defined by the parent pointers is a 

forest. All trees have at least two vertices, except for trees consisting of one vertex that is 

isolated in G (1.e., is a connected component of G). 

Proof Exercise 14.22. a 

Lemma 14.7) Conditional and unconditional star hooking never create new stars; that is, 

the resulting supervertex forms a tree of height at least 2. 

Proof Singletons existing after the initialization will never be hooked to anything else. 

When the root of a tree with at least two nodes is attached to another tree, the new tree will 

have height at least 2. oO 
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(a) The graph (b) The initial forest 

pongey 8 0PK 
(c) After conditional singleton hooking: P42, P2.), (d) After unconditional singleton hooking: P3.4 

Pos, Pg7, and P;).;9 succeeded in writing. and Py; succeeded in writing. 
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(e) After conditional star hooking: Px 4 (f) After unconditional star hooking: Pes 

succeeded in writing. succeeded in writing. 

BRP Ie 

(2) After shortcutting 

Figure 14.14 Illustration of the connected component algorithm: After part (g) completes, on the 

next iteration, no hooking is done. After shortcutting, both components will be stars. On the last 

iteration there will be no changes, and the algorithm will terminate. 
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Lemma 14.8 The unconditional star hooking step never hooks a star to another star. 

Proof Suppose it does. Then, at the beginning of the unconditional star hooking step 

there were two stars, S$; and $5, containing vertices ¢ and j, respectively, such that 1/ 

is an edge in G. Since conditional star hooking does not create stars (Lemma 14.7), Sj 

and S$> were stars at the beginning of the conditional star hooking step. Either parent[i] > 

parent|j], in which case i’s tree would have been hooked (to something) in the conditional 

star hooking step, or parent[j] > parent[i], in which case /’s tree would have been hooked. 

Therefore either 7 or j is no longerinastar, Oo 

Proof of Theorem 14.4 The loop starts with trees (Lemma 14.6); we have to show that 

no step in the loop introduces a cycle. It is clear that shortcutting cannot introduce a cycle. 

In the hooking steps, if a star is hooked to some vertex in a nonstar, no cycle is introduced, 

because nonstars are not hooked to anything else. Since unconditional star hooking always 

hooks a Star to a vertex in a nonstar (Lemma 14.8), 1t cannot introduce a cycle. 

Conditional star hooking attaches the root of a star only to a smaller numbered vertex. 

Suppose v is attached to w in this step. If w is not the root of its tree, then w is notin a star, 

and no vertex in w’s tree has its parent changed in this step. Therefore, if a cycle is formed 

in conditional star hooking, it must consist entirely of roots of stars. But conditional star 

hooking only attaches a root to a smaller numbered vertex, so no such cycle can be formed. 

O 

Lemma 14.9 Any star that exists at the end of the unconditional star hooking step must 

be an entire connected component. 

Proof By Lemma 14.8, the star was a star at the beginning of the unconditional star 

hooking step. But 1f any vertex in the star were adjacent (in G) to a vertex in any other 

tree, the unconditional star hooking step would have hooked the star to another tree, and it 

would no longer be a star. 

Proof of Theorem 14.5 Since the vertices of G start out in disjoint trees, and two trees are 

hooked only if they contain vertices ¢ and / that are adjacent, all the vertices in any one tree 

at any time are in the same connected component. The algorithm stops when shortcutting 

produces no changes. This can happen only when there are no vertices of distance 2 from 

their roots; that is, all vertices are in stars at the end of the unconditional star hooking step. 

By Lemma 14.9, each such star is an entire component. 0 

14.6.3 PRAM Implementation of the Algorithm 

Some processors have two “names.” When we perform an operation for each vertex (say, 

shortcutting), we will use P),..., P,,, referring to them as P,. Because edges are processed 

in each “direction,” it is convenient, for a while, to assume that there are at least 21m 

processors (though only mm will be needed). When we perform an operation for each edge, 

we use the first 277 processors, referring to them by the names Pj;. Since operations on 

vertices and operations on edges are done in different instructions, each processor does 

only one thing at a time. 
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The PRAM algorithm assumes that the input is in the form of an array of edges in the 

graph G. Each edge appears as two consecutive array entries: the eth edge is in M[2e] and 

M[2*e+1]. Processor P2,, having an even pid, reads M[2«e], then M[2*e+1]. Processor 

P>.-4), having an odd pid, reads M[2*e+1], then M[2«e]. If a processor reads i, then /, 

from then on it is the processor for the (oriented) edge (i, /). In the program we refer to this 

processor as P;;. Thus every edge has two dedicated processors, one for each orientation. 

The form of the input is not critical to the speed of the algorithm. If the input were 

provided as an adjacency matrix, we would have n? processors read the matrix entries in 

the first step. Those that read a zero would do no more work for edges. Other variations of 

the input format are also acceptable. 

We present the algorithm again with more implementation detail. The important ob- 

servation to make here is that each step of the algorithm can be implemented in a constant 

number of PRAM steps. 

Algorithm 14.8 — Parallel Connected Components 

Input: An array of edges in the graph, each edge entered in two consecutive locations; 1, 

the number of vertices, and m, the number of edges. 

Output: A forest of directed trees of height at most 1, represented by the array parent, 

indexed by the vertices. Each tree contains the vertices of one connected component. 

Remarks: 

1. A Boolean array star is used to tell if a vertex is in a star; star[v] is true if and only if 

v is ina star. The subroutine computeStar is given in Algorithm 14.9. 

2. Subroutine initParCC is given in Algorithm 14.7. 

[S%) The hook operation is defined in Definition 14.4. 

= The shared Boolean variable changed tells whether or not the shortcutting step has 

made any changes at each iteration of the loop. 

Procedure: See Figure 14.15. @ 

Observe that on every iteration of the loop, a processor P;; tests to determine whether 

it should hook. Sometimes it may try to hook but fail because another processor succeeds in 

writing in parent(parent(i]]. Processor P;; actually succeeds in hooking at most one time 

during the entire course of the algorithm. This observation suggests that it may be possible 

to speed up the algorithm by organizing the work of the processors in amore efficient way. 

In any case, as we will see, this algorithm runs in O(log 7) time. 

Determining If a Vertex Is in a Star 

A vertex is not in a star if and only if one of the following conditions holds: 

1. Its parent is not its grandparent, 

2. Itis the grandparent, but not the parent, of some other vertex, 

1ws) Its parent has a nontrivial grandchild. 
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parConnectedComps(G, n, m) 

J// Initialization 

Each processor reads n and m. 

Each processor computes a vertex number v from its pid: 

Por Pesuchthatwk 1 10 we: 

for P; outside the above range, v = 0. 

Each processor reads a different oriented edge: 

fOmie EO) ie Ot 

If k is even, read M[k] into 7 and read M[k+1] into /. 

If k is odd, read M[k] into 7 and read M[{k—1] into /. 

(Note that different processors are assigned to (7, 7) and (/, 7).) 

initParCC(G, n, m); 

changed = true; 

while (changed == true) 

// Conditional star hooking 

P,, executes computeStar(v). 

Pi; does: 

Read parent[i], parent[j]. and star[i]. 

if (star[{i] == true && parent[i] > parent[j]) 

hook(i, j). 

// Unconditional star hooking 

P,, executes computeStar(v). 

P;; does: 

Read parent[i], parent[j], and star[i]. 

if (star[i] == true && parent[i] 4 parent{[j]) 

// jis notin i's star 

hook(i, j). 

// Shortcutting 

iP does 

Write false into changed. 

Read parent[v] and parent[parent[v]]. 

if (parent[parent[v]] 4 parent{[v]) 

Write parent[parent[v]] into parent[v]. 

Write true into changed. 

All processors read changed to determine if they should stop. 

Figure 14.15 Procedure for Algorithm 14.8 
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Fenton 2 

Condition 3 of Condition 3 

Condition | 

(a) How to tell each vertex is not in a star 

Initial values of the star array T 

If v's grandparent + v’s parent, star[{v] = F (condition 1). 

If v's grandparent 4 v’s parent, star[v’s grandparent] = F (condition 2). ee ia (ES 

(In general at this point, if the tree is not a star, only children of the root 

can still have star[v] = T.) 

If star[v’s parent] is F, then star[v] = F (condition 3). 

(b) The computation for the example in part (a) 

Figure 14.16 Computation of the star array 

Figure 14.16 illustrates all three cases and the computation of star. The computation 

is described in the following algorithm which clearly takes constant time. 

Algorithm 14.9 Computation of star 

Remarks: These steps are carried out by P, (for | < v <n). 

computeStar(v) 

Write true into star[v]. 

Read parent[v] and parent[parent[v]]. 

if (parent[v] 4 parent[parent[v]]) 

Write false into star[v]. 

Write false into star[parent[parent[v]]]. 

Read star[parent[v]]. 

if (star[parent[v]] == false) 

Write false into star[v]. 

14.6.4 Analysis 

Each of the steps in the main loop of Algorithm 14.8 can be carried out in constant time by 

an Arbitrary-Write PRAM, so the number of iterations of the loop determines the order of 

the running time. All that remains is to show that the number of iterations 1s in O(log 1). 
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Lemma 14.10 Let / be the height of a nonstar tree before the shortcutting step. After 

shortcutting, its height 1s at most [(/ + 1)/2}. 

Proof The number of edges in a longest path from a leaf to the root is h. Every sequence 

of two edges, starting from the leaf, is replaced by one edge during shortcutting. If h is 

even, the path length after shortcutting will be exactly h/2. If h is odd, the path length after 

shortcutting will be (4+ 1)/2. oO 

Definition 14.5 

For any connected component C and t > 0, let c(t) be the sum of the heights of all the 

trees in C at the end of the rth iteration of the while loop. @ 

Lemma 14.11 For any connected component whose vertices do not form a star at the 

beginning of the rth iteration of the loop (for f > 1), he(t) < (2/3)he(t — 1). 

Proof Consider what happens to the trees of C during the rth iteration. Since a tree is 

never hooked to a leaf in the loop, the height of a tree that results from hooking is at most 

the sum of the heights of the two trees that were hooked. After shortcutting, each tree is 

at most two-thirds as high as it was before, so the sum of the heights 1s at most two-thirds 

what it was before. © 

Theorem 14.12 Algorithm 14.8 runs in O(log 7) time in the worst case on an Arbitrary- 

Write PRAM with max(n, m) processors. 

Proof From Lemma 14.11, for any connected component C, we have 

3 
het — 1) = shic(t). 

/ 

) hc(t Ne 

Since there are n vertices in G, hc(t) <n for all C and t, so hc(O) <n. Let T be the 

number of the first iteration after which the vertices of C are in one star. Then hc(T) = 1. 

Iterating this recurrence gives 

NO | Go 

So 

a\T a\ Ff 

n> he) = (5) hc(T) = (=) : 

that is, 

Gy (ee = ‘ 

2 

So 
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14.7 A Lower Bound for Adding n Integers 

Since 7 is an integer, we conclude that after [lg(n) / 1g(3/2)| iterations, each component 
is a star. The algorithm does just one more iteration during which nothing changes, so the 
total number of iterations, and the running time of the algorithm, is in O(log n). 

With only m processors, we give each processor responsibility for two (oriented) 
edges. Each hooking step, including the initialization, is performed twice (serially) by each 
processor, once for each of its edges. This obviously does not change the fact that each step 
takes constant time. © 

A Lower Bound for Adding n Integers 

In this section we present a lower-bound argument for parallel computation. In earlier 

sections we saw that all variants of the PRAM can add n integers, or find the or of n bits, 

or find the maximum of n keys, in time O(log 7). Some models can compute the or or the 

maximum in constant time, with enough processors. But we have not seen an algorithm to 

add n integers in o(log 1) in any of these models. We will derive a lower bound that proves 

that this would be impossible on the Priority-Write PRAM, the strongest of the models we 

have considered. Let parAdd be some PRAM algorithm to add n integers that are located 

in M[O], ..., M[n—1], and leave the result in M[O]. We assume that each integer can be as 

many as 7 bits. 

Several of our earlier lower-bound arguments used decision trees. The idea underlying 

those arguments was that there had to be enough branching in the tree, enough decisions, 

to distinguish inputs that should generate different outputs. A similar idea is used here. A 

PRAM for parAdd must do enough steps to distinguish between all possible outputs, which 

are all integers in the range 0 through n(2”~! — 1). Since the output is written in M[O], a 

PRAM must do enough steps so that any of the different values could be written in M[O]. 

Of course, for one particular input, a PRAM always writes exactly one specific value in 

M[O] at any step. Here we are considering the space of all inputs; we count all the different 

values a PRAM could write for all possible inputs. 

Actually, to simplify the counting, we severely restrict the space of inputs, without 

restricting the range of outputs too much. We will consider only inputs in which the ith 

input integer (in M[i]) is either 2' or 0. This gives us 2” possible different inputs (remember, 

each input is a sequence of n integers), and each input has a different sum. That is, the ith 

bit from the right is | in the sum if and only if input M[i] contained 2'. So there are also 2” 

possible different outputs from this restricted space of inputs. 

In fact, in many PRAM models one memory cell cannot store an n-bit integer, and the 

output would need to be written in more than one cell. For purposes of the lower-bound 

argument, all the cells needed to hold an n-bit integer are treated as a single cell. 

The value in a memory cell depends on what the processors write (or do not write). 

What a processor writes depends on the “state” of the processor at the beginning of a step 

and what it reads from memory on that step. Think of the state of a processor as everything 

internal to the processor that affects its action (e.g., the values of all the variables in its 

local memory and its own index). The proof of the lower bound counts how many different 

states processors can be in, and how many values could be written in memory cells, after 

each step. 
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Theorem 14.13 Any Priority-Write PRAM with p processors that computes parAdd 

must do at least lg(7) + | — Ig Ig(4p) steps. 

Proof We want to find answers to the following two questions: 

1. How many different values can be in any particular memory cell M[i] after 7 steps? 

(The range of 7 is not restricted to the input cells). 

2. How many different states can any particular processor P; be in after ¢ steps? 

We define two sequences of numbers: 

aS fOr: = 0) agli i t—l%r-l 0 (14.1) 

Ss = prr+sS;-1) fort > 0, Si=2. 

where r; and s, have meanings as defined in the following lemma, and p is the number of 

processors. Here are the first few values in the sequences: 

ry Se 

0 | 2 

| ps 2p + 2 

2 2(2p+2) 2p2p+2)+2p+2 

After proving some lemmas, we return to the proof of the lower-bound theorem. 

Lemma 14.14 The number of distinct states a processor can be in after ¢ steps (consider- 

ing all inputs in the restricted class described above) is at most r;. The number of distinct 

values that could be ina memory cell after ¢ steps (considering all inputs in the restricted 

class) 18 at MOSt S;. 

Proof We prove the lemma by induction on ¢. For f = 0 (that is, before the PRAM has 

executed any instructions), each processor can be in only one state, its initial state. Each 

memory cell M[i] contains one of two possible values: 0 and 2'. Since ro = | and so = 2, 

the basis for the induction 1s established. 

Now, for ¢ > O, assume that after ¢ — | steps a processor can be in any one of at most 

r;—-, States, and a memory cell can have one of at most s,;—| values. The new state of a 

processor after step ¢ depends on the old state (the state after step t — 1) and the value read 

from memory by that processor on step f. Thus the number of possible states after step ¢ 

is at most 7;—18;—1. Which is r;. On step ¢ any processor can write in a particular memory 

cell, and a processor can write a different value for each state it could be in. That gives pr; 

possible values, but it is also possible that no processor writes in the cell on this step, so 

any of the s,_; values that could have been there before, may still be in the cell after step rf. 

Thus the total number of possible values in a memory cell at the end of step f is pr; + s;—}. 

which is s;. O 
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Lemma 14.15 Fort > 1,5; <5? ,. 

Proof Using Equation (14.1), 

5 

SoS Pt a SH — Pi) oe Sap = et EL) = Seat Pi Se) = Se 

at—1 
Lemma 14.16 Fort > 1, s,; < (4p)° 

Proof Fort =1, 5, = proso + so = 2p+2< 4p. Fort > 1, 

2 pti! 
) =4p) 

Proof of Theorem 14.13 We observe that if any PRAM algorithm computes parAdd in 
T steps, then sy > 2”, because there are 2” distinct outputs that could appear in M[O] when 

the algorithm terminates. So 

Si ae Ss ((4p)?_ 

Pee Sey, ce (4p)? 

Taking logs, 

me! lg(4p). 

Taking logs again, 

Ign <T —1+ 1g le(4p). 

Therefore 

T > Ig(n) + 1 —lIglg(4p). o 

Corollary 14.17 Any CREW PRAM, Common-Write PRAM, Arbitrary-Write PRAM, 

or Priority-Write PRAM that computes parAdd must do at least O(log 7) steps if p is 

bounded by any polynomial inn. 

Proof Any program for either of these other models is also a valid program for the 

Priority-Write model, so the lower bound in Theorem 14.13 applies. Such a program does 

at least lg(n) + 1 — lg lg(4/p) steps. 

If p is bounded by a polynomial inn, then lg lg(4p) is in © (log log n), and lg n + | — 

Ig lg(4p) isinO(logn). Oo 

Exercises 

Section 14.3 Some Simple PRAM Algorithms 

14.1. For Algorithm 14.1, what does P; compute in the first three iterations of the loop? 

14.2. Modify Algorithm 14.1 so that it outputs an index of the largest key instead of the 

largest key itself. (The modified algorithm should not have write conflicts, and it should 

still do © (log 7) steps.) 
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14.3 Revise Algorithm 14.1 to use only one read/write step inside the loop, and to use 

only n/2 processors. 

14.4 Describe a PRAM version of Transitive Closure by Shortcuts, Algorithm 9.1, that 

has no write conflicts and runs in © (log? 1) steps. How many processors does it use? Hint: 

Use the idea for matrix multiplication given after Problem 14.1 in Section 14.3.2. 

Section 14.4 Handling Write Conflicts 

14.5. Writea CREW PRAM algorithm to compute the sum of 7 integers in O(log 7) time. 

14.6 Show that the Boolean and of n bits can be computed in constant time by a 

Common-Write (or stronger) PRAM. 

14.7. Show that the Boolean matrix product of two n x n Boolean matrices can be com- 

puted in constant time by a Common-Write (or stronger) PRAM. (The number of proces- 

sors should be bounded by a polynomial in 7.) 

14.8 Describe a PRAM version of Transitive Closure by Shortcuts, Algorithm 9.1, that 

runs in ©(log 7) steps in the Common-Write (or stronger) model. How many processors 

does it use? Hint: Combine the idea for matrix multiplication given after Problem 14.1 in 

Section 14.3.2 with the ideas of Algorithm 14.2 and Exercise 14.7. 

14.9 Using the lower bound stated in Section 14.4 (right after Problem 14.3) for comput- 

ing the or of n bits in the CREW model, show that computing the maximum of 7 integers 

requires at least (log) time on a CREW PRAM. Hint: Use the reduction technique. 

Show that the known “hard” problem (or of n bits) can be transformed into the current 

problem (maximum of 7 integers) very quickly (in constant time) in such a way that the 

answer to the current problem immediately gives the answer to the “hard” problem. Now 

assume that the current problem can be solved in o(log 7) time on a CREW PRAM, and 

derive a contradiction to the known lower bound. (The reduction technique was used ex- 

tensively in Chapter 13 in a different context, but it is a very general technique, and it is 

not necessary to have read Chapter 13 to use it on this problem.) 

14.10 Using the lower bound stated in Section 14.4 (right after Problem 14.3) for comput- 

ing the or of n bits in the CREW model, show that Boolean matrix multiplication requires 

Q2 (log) time on a CREW PRAM. Hint: See the hint for Exercise 14.9. In this case you 

need to be a litthe more creative with your reduction. 

14.11) Would Algorithm 14.3 work correctly if we did not specify how k should be chosen 

when a processor compares two equal keys? Justify your answer with an argument or a 

counterexample. 

14.12) Modify Algorithm 14.3 so that it outputs an index of the largest key instead of the 

largest key itself. (The modified algorithm should do only a constant number of steps.) 
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Section 14.5 | Merging and Sorting 

14.13) Give a PRAM implementation of Insertion Sort for n keys that runs in O(n) time 
steps. (You can use any PRAM variation, but specify which one.) 

14.14 Show that the position of an ¥ element and a Y element cannot be the same in the 
output step of Algorithm 14.4. 

14.15 Modify the parallel merge algorithm (Algorithm 14.4) to merge two sorted arrays 

of n and m keys, respectively. The indexing used in Algorithm 14.4 was designed specif- 

ically so that parMerge could be used in the recursive sorting algorithm, parMergeSort 

(Algorithm 14.5). For this exercise, simplify the indexing by writing the merge algorithm 

for arrays indexed 0,...,n —1and0,...,m—1. 

How many steps does the revised algorithm take? 

14.16 Describe an algorithm to sort 7 keys in O(log 1) steps on an CREW PRAM. The 

number of processors may be greater than 1, but it should be bounded by a polynomial in 

n. Hint: Start by finding the ranks of all elements, in parallel. You might find Exercise 14.5 

helpful. 

14.17 Give an algorithm to merge two sorted arrays of n keys each in constant time ona 

CREW PRAM. The number of processors may be greater than 7, but it should be bounded 

by a polynomial inn. 

Section 14.6 Finding Connected Components 

14.18 Describe how to combine the parallel transitive closure algorithm in Exercise 14.4 

or 14.8 with other parallel algorithms in the chapter to produce an algorithm for connected 

components, using n° processors on a graph of n vertices. The output should be an array 

leader[{v] that contains the vertex with the least index of any vertex in the connected 

component. Thus leader[v] = leader[w] if and only if v and w are in the same connected 

component. (Note that the leader array can also be interpreted as an in-forest of trees with 

height at most one, just as the parent array 1s in Algorithm 14.8.) 

a. How fast does your algorithm run in the Common-Write model? 

b. How fast does your algorithm run in the CREW model? Do any different algorithms 

need to be used as subroutines in the CREW model? Which ones? 

14.19 The connected component algorithm (Algorithm 14.8) does not tell us the number 

of connected components in the input graph G. Write a parallel algorithm to determine 

how many connected components G has. Your algorithm should run in O(log 7) time. 

14.20 Using the trees in Figure 14.12(c), show the result of hook(7, 11) and (separately ) 

show the result of hook(8, 11). 

14.21 Inthe example in Figure 14.14, when more than one processor tried to write in one 

memory cell at the same time, we made an arbitrary choice as to which one succeeded. 
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Redo the example making a different valid choice at each step at which there was a write 

conflict. 

14.22 Prove Lemma 14.6. 

14.23 Suppose that in the proof of Lemma 14.8 S,’s root is larger than Sy’s root. Would 

S; necessarily have been hooked to $:? Why? 

14.24 We showed how to determine if a vertex is in a star. Give a method for determining 

if a vertex is a singleton (in constant time), for the initialization steps. 

14.25 Show that when there are write conflicts, the arbitrary choice of which processor 

succeeds in writing can have an extreme effect on the number of iterations of the loop in 

Algorithm 14.8. Specifically, describe a connected graph G with 7 vertices (for general 1) 

such that it is possible that all the vertices will be in one star after the initialization steps, 

but it is also possible that the number of iterations of the loop will be in © (log 7) for this 

graph. 

14.26 Let G be the input graph for Algorithm 14.8. Let S be the set of edges (7, 7) for 

which P;; succeeds in performing a hook(i, j) operation. In other words, (7, 7) € S if and 

only if Pj; is the processor that actually writes in parent{i], not simply one of perhaps 

several processors that try. Prove that S is a spanning tree collection (Definition 8.4) for G. 

14.27 Show how to modify Algorithm 14.8 to produce a spanning tree collection for the 

input graph G. The output may be in the form of a Boolean matrix stc indexed by the pairs 

(1, 7), where stc[i][j] = true indicates that the edge /7 is in the spanning tree collection. 

(See Exercise 14.26.) 

14.28 This exercise investigates whether a small change in Algorithm 14.8 produces an 

algorithm that will find a minimum spanning tree collection for a weighted graph. 

The initialization step of Algorithm 14.8 1s modified so that, before each processor 

reads an edge from the input list, the edges are sorted in nondecreasing order by weight. 

We assume that each processor reads the edge from the position in the input list that 

corresponds to its own index. Thus for k; < 3, the weight of P;,’s edge is less than or 

equal to the weight of Py,’s edge. The revised algorithm will be run on a Priority-Write 

PRAM. In this model, as described in Section 14.4, when more than one processor tries to 

write in the same shared memory location at the same time, the processor with the lowest 

index wins. 

Assume that the algorithm has been modified as indicated in Exercise 14.27 to produce 

a spanning tree collection. 

Either prove that the spanning tree collection produced is always a minimum spanning 

tree collection, or show an example where it is not. In the latter case, try to make whatever 

further modifications are needed in the algorithm so that it always produces a minimum 
spanning tree collection. 



Notes and References 

Additional Problems 

14.29) The n-bit unary representation of an integer k is a sequence of k ones followed by 
n — k zeros. For each of the following problems you should use at most ” processors. 

a. Show thata PRAM (CREW, Common-Write, or stronger model) can read an integer k 
between 0 and n from M[O] and convert k to its unary representation in one step. (The 

output is to go in cells M[O], . .., M[n—1].) 

b. Show that a Priority-Write PRAM with 7 processors can read the unary representation 

of an integer & from cells M[O], ..., M[n—1] and write k in M[O] in one step. 

¢. Show that a CREW PRAM can solve the problem in part (b) in two steps. 

14.30 Suppose you have a sorted array of n keys in memory and p processors, where p is 

small compared to 7. Give a CREW PRAM algorithm for searching the array for a key x. 

How many steps does your algorithm do? Hint: Use a generalization of binary search. You 

may find Exercise 14.29(c) helpful. Your search algorithm should do ©(log(1)/ log(p + 

1)) steps in the worst case. 

14.31 Go through the earlier chapters of this book and pick out any algorithm that has 

a natural parallel version. Write the parallel algorithm and tell how many processors and 

time steps it uses. (Choose an algorithm for which the running time of the parallel version 

is of lower order than the sequential version.) 

14.32 Make alist of the problems covered in this chapter that are in the class NC (defined 

in Section 14.2). Are there any algorithms in this chapter that are not NC algorithms? 

Notes and References 

The PRAM model was presented (in slightly different forms) in Fortune and Wyllie (1978) 

and Goldschlager (1978). The class NC was defined and named by Steven Cook (1985) as 

an abbreviation for “Nick’s class.” The name refers to Nick Pippenger (1979). Pippenger 

studied the same class of problems, but in terms of circuit complexity rather than parallel 

computation. The class has several other equivalent definitions. 

Section 14.5 is based on Shiloach and Vishkin (1981). Their paper gives algorithms 

for sorting (and several other problems) in which the number of processors is smaller than 

the number of keys. It also contains the O(log log 1) algorithm for finding the largest of 1 

keys mentioned in Section 14.4.2 and a solution to Exercise 14.29(c). 

The general strategy of the connected component algorithm presented in Section 14.6 

is from Hirschberg (1976). The fast version presented here is based on Shiloach and 

Vishkin (1982) and Awerbuch and Shiloach (1983, 1987). The Awerbuch and Shiloach 

papers also contain a parallel algorithm for finding a minimum spanning tree collection 

(Definition 8.4). The lower bound in Section 14.7 is based on Beame (1986), where more 

general results of a similar nature are derived. 

647 



648 Chapter 14 Parallel Algorithms 

For those who wish to read further, the bibliography includes a sampling of other 

papers: Cook, Dwork, and Reischuk (1986) on upper and lower bounds for several prob- 

lems considered in Sections 14.3 and 14.5; Chandra, Stockmeyer, and Vishkin (1984) 

on a number of interesting problems and the relations between their parallel complex- 

ity; Kruskal (1983) and Snir (1985) on parallel searching (including the solution to Ex- 

ercise 14.30); Batcher (1968) on sorting networks; Landau and Vishkin (1986) on ap- 

proximate string matching; and Tarjan and Vishkin (1985) on biconnected components 

of graphs. Akl (1985) is a book on parallel sorting (using various models of parallel com- 

putation); Richards (1986), a bibliography on parallel sorting, contains nearly 400 entries. 

Quinn and Deo (1984) is a survey of parallel graph algorithms. JaJa (1992) is a text on 

parallel algorithms using the PRAM model. 

Greenlaw, Hoover, and Ruzzo (1995) survey known limits to parallel computation, in 

terms of the class of ‘P-complete problems (not to be confused with N‘P-complete). The 

question of whether ‘P-complete problems are separate from NC is a long-standing open 

question, and is the parallel analog of the question of whether the NP-complete class is 

separate from P for serial computation (see Chapter | 3). 

Another important model for parallel computation requires processors to be arranged 

in a plane and only connected to their neighbors; there is no shared memory. This model is 

considered to be good for studying the capabilities of VLSI (very large scale integration) 

chips, and is generally considered to be more realistic than the PRAM model. Ullman 

(1984) surveys theoretical results for this kind of model. Hambrusch and Simon (1985) 

give some results on the connected component problem in this model. Parberry (1987) 

surveys several models of parallel computation. 
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A.1 

Appendix A Java Examples and Techniques 

Introduction 

The purpose of this appendix is to help readers get Java programs working to imple- 

ment and test some algorithms. As you read it, you will see that many aspects are not 

thoroughly explained, the reasons for the choices we made might not be given, and the al- 

ternatives are not mentioned. Where we have presented a “cookbook” solution, it can be 

used intact for its purpose, and does not require modification from one program to another, 

or the modifications are very straightforward, such as a simple name substitution. Readers 

wishing to learn about Java should plan to consult other sources. 

The programming language Java became famous because it was adaptable to the 

special needs of Internet programming. But Java was designed first as a general-purpose 

programming language, and that is how we treat it. However, Java is closely linked to the 

Internet even if you do not plan to use it for an Internet application, because the Internet is 

the primary source for much of the information about the language. Here are some Internet 

sites (URLs) for information about Java, release 1.2: 

http://java.sun.com/products/jdk/1.2/docs 

http://java.sun.com/products/jdk/1.2/docs/api 

http://java.sun.com/docs/books/jls/htm|l 

There are many books about Java, but they rarely cover the whole language, let alone 

all the packages that are available. However, the reference manual is Gosling, Joy, and 

Steele (1996). 

All code in this appendix is automatically translated from tested code and is protected 

under the copyright covering this book. However, this does not ensure that it is free of 

errors, and the author and publisher make no expressed or implied warranty of any kind 

and assume no responsiblity for errors or omissions. 

Java restores many of the restrictions and checks that are in Pascal, and are omitted 

from C and C++. Pascal was designed as a teaching language; C and C++ are designed as 

production languages. To an expert programmer, these restrictions might be an annoyance 

and the checks might be unnecessary, but for most students learning to program, the 

restrictions help to avoid errors and the checks help to detect other errors. For example, 1n 

Java, if you use an out-of-range index on an array, the system catches it: this is like Pascal 

and different from C and C++. In Java, you cannot create a pointer to another object, such 

as an integer, nor can you add to a pointer, nor can you assign an arbitrary value to a pointer. 

None of these operations are available in Pascal, but all of them are available in C and C++. 

With currently available compilers, a program written in Java runs much more slowly than 

a program written in C. For student exercises, this is usually not a big concern. Having a 

program that runs correctly at any speed is usually the primary goal. 

Even if you need “production” software, you may find it beneficial to do the first 

implementation in Java, because you will have it working much sooner. This is called rapid 

prototyping. The logic and data structures are checked out in the language that provides the 

most help. Then the working procedures are recoded into a more efficient language. 

One purpose of this appendix is to cover enough material on Java so readers can 

implement the algorithms in the book. There are annoying details like input and output 
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A.2 A Java Main Program 

that are necessary for a real program. Many Java packages throw exceptions, which must 
be handled, whether you are interested in exceptions or not (we're not). 

A second purpose is to introduce a few features of Java that we avoided in the book 
in order not to distract attention from the algorithmic issues. These are features that most 
programmers will wish to use if they do serious programming in Java. We will stick to 
simplicity, even so, and avoid many of the more “interesting” features. 

A Java Main Program 

We begin by showing a main program in Figure A.1. This program must be in a file 
named graph.java because main is in a class named graph. The file can be compiled 

by the command “javac graph.java.” The program would be executed by the command 

“java graph inputFile.’ The commands to compile and execute are based on a Unix! 

environment. Alternatively. invoke the Java debugger with jdb and then type “run graph 

inputFile.” 

The program reads a file and builds the adjacency list representation (see Section 7.2.3) 

of the graph defined in the file. The file is expected to have the number of vertices on the 

first line and to have one edge per line after that. Each edge is specified by the two vertices, 

from and to, and possibly followed by a weight, which is floating point. The input format 

is flexible in that there may be extra spaces or tabs. After the data structure is built, its 

contents are printed: this would not be practical for a large graph. 

This 1s a typical main procedure. It calls subroutines in the LoadGraph and InputLib 

classes, which are shown in this appendix. It first checks if the parameter inputFile is 

present, and if not, it issues a usage message and exits. Otherwise, it uses the facilities 

of InputLib (Appendix A.3) to obtain a BufferedReader object, inbuf, for the input file. 

The BufferedReader class is a standard Java class. The InputLib class conceals several 

technicalities that are needed for accessing the input file, and provides procedures for 

opening, closing, and reading lines of a file. Next, the first line of the input file is read, using 

getLine, but this only returns a String, so another procedure, parseN, is needed to extract 

the integer from the string. This integer is the number of vertices in the graph represented 

in the input file. Most of the real work is accomplished by calling the subroutines initEdges 

and loadEdges. 

Output is accomplished with the standard Java procedures System.out.printin and 

System.err.printIn (used in some subroutines for error output), Most details of standard 

Java procedures and classes are omitted from this appendix; see the Internet sites men- 

tioned for complete information, or a book on Java. The printiIn procedure simply prints a 

String, followed by a newline (print would print the string only). It is the programmer’s 

job to assemble the information into a string, but this is made fairly easy by the use of 

“4” to concatenate strings, and the fact that Java automatically converts numbers into type 

String when they appear in an expression that requires that type. It is normally necessary 

to write a toString procedure to convert objects in programmer-defined classes into strings, 

because the Java default is not very meaningful. But Java finds the toString for the class 

! Unix is a trademark of AT&T Bell Laboratories. 
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import java.io.*«; 

class graph 

{ 
public static 

void main(String[] argv) 

{ 
int mi, in: 

IntList[] adjVertices; 

if (argv.length == 0) 

{ 
System.out.printin("Usage: java graph input.data’); 

System.exit(0); 

} 
String infile = argv(0]; 

BufferedReader inbuf = InputLib.fopen(infile); 

System.out.printin("Opened " + infile + " for input."); 

String line = InputLib.getLine(inbuf); 

n = LoadGraph.parseN(line); 

System.out.printin('’n = "+ n); 

adjVertices = LoadGraph.initEdges(n); 

m = LoadGraph.loadEdges(inbuf, adjVertices); 

InputLib.fclose(inbuf); 

System.out.printIn(’m =" + m); 

fOr Gint | = 12 i <= ine 4) 

System.out.printIn(i + "\t" + adjVertices|[i]); 

return: 

} 
} 

Figure A.1) Java program graph.java: See Figures A.2-A.4 tor the LoadGraph class. See 

Figures A.5 and A.6 for the InputLib class. 

automatically through inheritance mechanisms; even though the type of adjVertices[i] is 

IntList in the last printin, it is printed intelligibly because the IntList class has a toString 

method. See Section A.6 for more details. 

The LoadGraph class has several procedures. The main subroutines are initEdges and 

loadEdges, shown in Figure A.2. The latter builds adjacency lists in a simple loop, but 

some not so trivial details of getting the numbers out of the input line are relegated to 

the subroutine parseEdge. An organizer class Edge is defined to communicate between 

loadEdges and parseEdge; it will be discussed shortly. In the loadEdges loop, the cons 
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import java.io.*: 

import java.util.«: 

public class LoadGraph 

{ 
public static 

IntList{] initEdges(int n) 

{ 
IntList{[] adjVertices = new IntList[n+1]: 

for (int i = 1; i <= ny i 44) 

adjVertices[i] = IntList.nil: 

return adjVertices: 

} 

public static 

int loadEdges(BufferedReader inbuf, IntList[] adjVertices) 

{ 
int num; 

String line; 

num = 0; 

line = InputLib.getLine(inbuf); 

while (line != null) 

{ 
Edge e = parseEdge(line); 

adjVertices[e.from] = IntList.cons(e.to, adjVertices[e.from]): 

num ++: 

line = InputLib.getLine(inbuf); 

} 
return num: 

} 

Figure A.2. The LoadGraph class, part | 

function makes a new list by attaching e.to to the front of the old adjacency list of e.from; 

the new list is then assigned as the adjacency list of e.from. 

The procedures parseEdge in Figure A.3 and parseN in Figure A.4 demonstrate the 

use of several Java features. Let’s step through the process in parseEdge. It needs to extract 

information from line, construct an Edge, newE, and return it. The Edge organizer class has 

three instance fields (see Figure A.4). Notice that we use double rather than float; the text 

uses float for readability, but double is usually preferred unless space is really an issue, 

because of its greater precision. 

First we construct sTok, giving it the line we want to parse, getting an object in the 

stringTokenizer class. Now we can apply methods of that class to get the words (tokens) 
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static 

Edge parseEdge(String line) 

{ 
StringTokenizer sTok = new StringTokenizer(line); 

int numWords = sTok.countTokens(); 

if (numWords < 2 || numWords > 3) 

{ 
System.err.printIn("Bad edge: " + line); 

System.exit(1); 

} 

Edge newE = new Edge(): 

newE.from = Integer.parselnt(sTok.nextToken()); 

newE.to = Integer.parselnt(sTok.nextToken()); 

if (numWords == 3) 

newE.weight = Double.parseDouble(sTok.nextToken()); 

else 

newE.weight = 0.0; 

return newE; 

} 

Figure A.3. The LoadGraph class continued, part 2: Note that Edge is an inner class. 

on line, and other information. We check that the line has the required number of words 

with the countTokens method. Then the nextToken method repeatedly extracts the next 

word, skipping over spaces and tabs as necessary. But nextToken returns a string and we 

need integers and doubles. 

The primitive types int and double are not classes, but Java provides classes Integer 

and Double (and several others) to allow integers and doubles to enjoy the facilities of 

objects. The Integer class provides the static method parselnt to convert a string into 

an int. Similarly, Double provides parseDouble to convert a string into a double. Other 

primitive types can be converted from strings also. 

The organizer class Edge is defined in Figure A.4 as a subclass of Organizer so it can 

inherit the copyllevel function, which is explained in Appendix A.7. We follow the rule 

that any inner class should be declared static (Section 1.2.1); the reasons are too technical 

for this appendix. 

A Word about Visibility 

As we mentioned in the early chapters, Java gives programmers a lot of control over visi- 

bility: which program elements are accessible from others. For getting a program working 

to implement or test algorithms, you probably do not want to worry about this any more 

than is necessary. If all your code is assembled in one directory, and you do not use any 

package declarations, then all this code is in something called the “unnamed package.” 
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public static class Edge extends Organizer 

{ 
int from, to: 

double weight; 

public static Edge copy(Edge oldE) 

{ return (Edge) copyllevel(oldE); } 

public static 

int parseN(String line) 

{ 
StringTokenizer sTok = new StringTokenizer(line): 

if (sTok.countTokens() != 1) 

{ 
System.err.printin("Bad line 1: " + line); 

System.exit(1): 

} 

int n= Integer.parselnt(s Tok.nextToken()): 

return n; 

} 

Figure A.4 The LoadGraph class continued, part 3 

and all classes and members of classes are accessible from each other by default, without 

needing to declare them public. 

To use classes defined in a different package, you need to import them (except for the 

package java.lang, which is considered so fundamental that its import is not required). The 

various figures show that we have imported the Java packages io and util in files where one 

or more of their classes are used. 

In this appendix we have declared classes public where they are of general use, and 

we have declared members public where they are intended to be accessed from other 

classes. We have declared members protected where they are intended to be accessed from 

subclasses only. However, a protected member is still accessible everywhere in its own 

package. We could have declared members private (the third visibility category) to prevent 

their access outside of the class, but did not. These examples illustrate the appropriate 

declarations for breaking the files up into various packages. However, anyone wishing 

to develop packages should consult other sources for details. All public and protected 

declarations can be omitted if all files are in the same directory. The static declarations are 

necessary, though. 
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import java.io.*; 

import java.util..; 

public class InputLib 

{ 
static class InputError extends Error 

{ 
public InputError(String s) { super(s); } 

} 

/x* fopen opens infile or System.in if infile == "-". «/ 

public static 

BufferedReader fopen(String infile) 

{ 
BufferedReader inbuf; 

try 

{ 
InputStream instream; 

if (infile.equals("—")) 

instream = System.in; 

else 

instream = new FilelnputStream(infile); 

InputStreamReader in = new InputStreamReader(instream); 

inbuf = new BufferedReader(in); 

} 
catch (java.io.JOException e) 

{ 
throw new InputError(e.getMessage()): 

} 

return inbuf; 

} 

Figure A.5 The InputLib class, part | 

A.3 A Simple Input Library 

The InputLib class (see Figures A.5 and A.6) 1s a technical class that we want to use often 

and think about seldom. Readers will have to consult other sources to get explanations of 

most of the internals. However, using it is straightforward. We call fopen with the name of 

the input file, or the string "—" to read standard input. It returns a BufferedReader object for 

that file. This is something we don’t want to look at too closely, so we just pass it to another 
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/«* fclose closes inbuf, which fopen returned earlier. «/ 

public static 

void fclose(BufferedReader inbuf) 

{ 
try 

{ 
inbuf.close(); 

} 
catch (java.io.|OException e) 

{ 
throw new InputError(e.getMessage()): 

} 

/*« getLine reads and returns the next line from inbuf. 

+ It returns null on EOF; it's OK to keep calling 

x after EOF was reached. 

« Note that getLine returns a String with no CR, whether 

x the line ends with a CR or ends via EOF. 

« Thus it is not quite like fgets() in C. 

+, 

public static 

String getLine(BufferedReader inbuf) 

{ 
String line; 

try 

{ 
line = inbuf.readLine(); 

} 
catch (java.io.IOException e) 

{ 
throw new InputError(e.getMessage()); 

} 

return line; 

i 

Figure A.6 The InputLib class, part 2 
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function, getLine, to read a line of data from the file. We saw an example in Figure A.2. 

Refer to the discussion of parseEdge in Appendix A.2 for information on extracting data 

fields from this line. If there is nothing to read, getLine returns null; otherwise it returns 

the next line as one string. Finally, fclose closes the file. 

A line-oriented format is most common for data, and we recommend it because it helps 

to verify that the data has the correct format. Frustrating hours can be spent looking for a 

program bug that is really just a missing or extra field in the input data. However, text input 

(like program code) is usually nor line oriented, and getLine would usually not be the best 

choice for reading such input. 

There is one technique that we want to look at in some detail. Java provides for 

exceptions and errors. If a class “throws an exception” and you want to use this class, 

you are required to “handle” the exception. Usually you don’t want to bother. In that case, 

what most sources recommend ts that you just throw it to your caller. But then that caller 

has to handle it, or throw it, and so on. 

The interesting fact is that you are not required to “handle” an error. So our recom- 

mendation for situations where you want to use a standard Java package, and it throws an 

exception that you do not want to worry about, 1s to convert the exception to an error at 

the lowest level possible, so it doesn’t clutter up your higher level code. This technique 

is demonstrated in Figures A.5 and A.6, using try and catch. Procedures are allowed to 

handle errors (also with try and catch); they just aren't required to do so. The system will 

catch the error if no other procedure does; your program wil! not sail on into oblivion. So 

these procedures catch the exceptions thrown by BufferedReader, and convert them into 

errors, so their clients can either ignore them or catch them, as they please. 

Documenting Java Classes 

Java provides a special comment format for the documentation of a class, including the 

preconditions and postconditions of its methods. Comments beginning with “/** begin 

a javadoc comment. Readers may look through the figures of this appendix and see sev- 

eral examples. This facility is particularly useful for documenting an abstract data type 

(ADT), because one of the features of ADT design is that the implementation should be 

encapsulated and should nor be examined to determine how the ADT works. 

The javadoc program extracts these comments, as well as prototypes of the public 

functions and procedures, from the java file in which the ADT class is implemented, and 
formats this information in html. It can then be read with a Web browser or other html 
reader. If the class has public instance fields, declarative information about these is also 
extracted. There are conventions for special formating of parameters, and other ways to 
dress up the output: refer to javadoc documentation for details. Since there are no header 
files in Java, as there are in C and C++, the best way for a person to get information about 
a class is often to read the files produced by javadoc on that class. 

The placement of comments relative to the material that they are documenting may 
be somewhat unintuitive. The comment must precede whatever it is related to. Thus a 
comment about a procedure must be placed before the procedure header, or javadoc will 
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not associate it with that procedure. You might want to repeat the name of the procedure 
or data field at the beginning of a long comment, so the reader of the code knows what the 
comment is about without trying to skip to the end of it and see what’s there. There is no 

problem after it has been processed through javadoc; then the procedure name appears first 

and the comments follow. 

Generic Order and the “Comparable” Interface 

Wouldn't it be nice if we could write one sorting procedure and it could sort a set of ob- 

jects from any class? Well, we can go a long way in that direction by using the Comparable 

interface. We can think of an “interface” as a sort of generic class name. Various classes 

may “implement” an interface by supplying methods with the names and type signatures 

required for that interface. Other procedures, unrelated to that class, can invoke the meth- 

ods in the interface, and get whatever method each class implements. We use the important 

Comparable interface as an example. Many standard Java classes implement the Compa- 

rable interface, such as Integer, Double, Float, and String. First we show an example 

class that wses the Comparable interface as though it were a class, to provide a generic 

capability. Then we show another class that implements the Comparable interface. A test 

program is included. 

Figures A.7 and A.8 show a class named Sort. This class defines five boolean func- 

tions for generic comparisons, named less, lessEq, eq, greater, and greaterEq. It also 

defines a function insert] that uses lessEq to insert a new element into a List in sorted or- 

der, without knowing anything about the class of the element. This will only work if the 

elements already in the list are of the same class as the new element being inserted, and that 

class implements the Comparable interface. In this context we see that the word Compa- 

rable is used as though it were a class name. The method compareTo returns an int, and 

appears to be a method in a class named Comparable. 

The code for the List class is not shown, but it is similar to that for the IntList 

class, which is given in Section A.6. The logic of the insert] method was discussed in 

Example 2.1. 

If you would like procedures to be able to use the facilities of the Sort class on a class 

that you are defining, then you should specify that your class implements the Comparable 

interface. We show an example in Figure A.9, where the WgtEdge class is defined. Notice 

that the class statement includes the phrase “implements Comparable.” indicating that 

this class intends to participate in that interface. 

The WgtEdge class has some similarities to the Edge class in Figure A.4, but it is 

considerably richer, and therefore is not an organizer class. We have not emphasized 

nondefault constructors, but that is what the two methods named WgtEdge (the same as 

the class name) are. Notice that there is no return type and no return statement, but a new 

WgtEdge object is returned implicitly. The wse of a Java constructor 1s always preceded by 

the new operator, as illustrated in Figure A.10. Defining two methods with the same name 

and the same return type, but different parameter type signatures is called overloading. It 

can be convenient, but indiscriminate overloading can defeat error detection through type 
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public class Sort 

{ 
public static 

boolean less(Comparable x, Comparable y) 

{ return (x.compareTo(y) < 0); } 

public static 

boolean lessEq(Comparable x, Comparable y) 

{ return (x.compareTo(y) <= 0); } 

public static 

boolean eq(Comparable x, Comparable y) 

{ return (x.comparelo(y) == 0); } 

public static 

boolean greater(Comparable x, Comparable y) 

{ return (x.compareTo(y) > 0); } 

public static 

boolean greaterEq(Comparable x, Comparable y) 

{ return (x.compareTo(y) >= 0); } 

Figure A.7 The Sort class illustrates use of the Comparable interface as though it were a class. 

This figure contains part |. 

checking although the programmer wrote something that was not intended, it matches 

some version of the method and the semantic error goes undetected. 

The crux of implementing the Comparable interface is to provide the compareTo 

method. The expression x.compareTo(y) performs a three-way comparison between . and 

y and returns a negative integer if x < y, a positive integer if x > y, and 0 if x = y. (See 

the methods less, lessEq, and so on, in Figure A.7, which interpret the return values.) 

The comparison is based on whatever order the programmer wants to define on objects in 

this class. There are some technicalities involved. First, we need to typecast the parameter 

e2 from Object into WgtEdge, so we can access its WgtEdge fields. That is what the 

expression “((WgtEdge)e2)” is doing. Notice that the outer parentheses are needed to get 

the correct precedence with respect to the following dot operator. (Suppose the object 1s 

not really a WgtEdge and does not have those fields? That would be a run-time error, and 

Java would stop execution.) 

Now we want to delegate the decision to the compareTo method of the Double class, 

rather than figure it out independently. Keep in mind that Double is a class, while double 

is a primitive type. Primitive types do not have methods, so the Double class provides 

methods and other object-oriented facilities for objects that are surrogates for doubles; this 
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/«* Return new List with newElement inserted in order. tf 

public static 

List insert] (Comparable newElement, List oldList) 

{ 
List ans; 

if (oldList == List-nil) 

ans = List.cons(newElement, oldList): 

else 

f 
l 

Comparable oldFirst = (Comparable)List.first(oldList): 

if (lessEq(newElement, oldFirst)) 

ans = List.cons(newElement, oldList): 

else 

f 
t 

List oldRest = List.rest(oldList): 

List newRest = insert] (newElement, oldRest): 

ans = List.cons(oldFirst, newRest): 
1 
J 

} 
return ans; 
. 
s 

i 

Figure A.8 The Sort class illustrates use of the Comparable interface as though it were a class. 

This figure contains part 2, the final part. 

is often called a wrapper class. So we create two wrapper objects in the Double class. 

using the weights of the edges to be compared. Ultimately, our compareTo on objects of 

type WgtEdge simply runs compareTo for Double on the weight fields, and returns that 

result. 

Our implementation allows ties—two objects compare as equal if they have equal 

weights, although their other fields might differ. The Java documentation recommends, but 

does not require, that such ties be broken. For simplicity we have not broken the ties. 

A test program to exercise the Sort and WgtEdge classes 1s shown in Figure A.10. It 

calls methods in the Sort class with three different classes of parameter, requiring three 

different comparison methods, but they all fall under the umbrella of Comparable, so only 

one greater method, for example, is sufficient. Without the interface, the Sort class would 

need three greater methods with different type signatures, and each would require its own 

code. Moreover, the support would be limited to those three types: if any new class were 

to be supported, another procedure with a new type signature would need to be added. 
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public class WgtEdge implements Comparable 

{ 
public int from, to: 

public double weight; 

public 

WgtEdge(int f, int t, double w) 

(from = fi tor te weight = we } 

public 

WgtEdge(int f, int t) 

{from—=f to— to weight = 0.02 } 

public 

int compareTo(Object e2) 

{ 

Double elwgt = new Double(weight); 

Double e2wgt = new Double( ((WgtEdge)e2).weight ): 

return elwgt.comparelo(e2wdt); 

} 
public 

String toString() 

{ return "("+ from +","+to+"," + weight +")" ; } 

} 

Figure A.9 The WgtEdge class implements the Comparable interface and supplies the re- 

quired compareTo method for that interface. [t also has two nondefault constructors and a 

toString method. 
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public class testSort 

{ 
public static void main(String argyv[]) 

{ 
Integer i88 = new Integer(88), i66 = new Integer(66); 

WgtEdge e88 = new WgtEdge(1, 2, 88.0): 

WgtEdge e66 = new WogtEdge(2, 3, 66.0); 
WogtEdge e54 = new WgtEdge(1, 4, —54.0): 

WgtEdge e33 = new WatEdge(4, 2, 33.0): 

EIS Sell 

x1 = List.cons(e88, List.nil): 

x1 = List.cons(e66, x1); 

x1 = List.cons(e54, x1): 

System.out.println(x1): 

System.out.printin(e3 3): 

List x2 = Sort.insertl(e33, x1): 

System.out.printIn(x2); 

System.out.printIn(Sort.greater("abc", "ab")): 

System.out.printIn(Sort.greater(i66, i88)): 

j 

} 

Figure A.10 The file testSort.java tests the functions of the Sort class that use the Compara- 

ble interface. 

Subclasses Extend the Capability of Their Superclass 

This section demonstrates some Java features involving subclasses and inheritance. The 

explanations are brief, and these are involved subjects. We will show a dynamic (opposite 

of static) method, toString, which 1s useful for printing lists, and we will define an extended 

class, or subclass, of IntList that has a new list operation. A short test program is included. 

One aspect of subclasses that seems backwards at first is that a subclass has more 

capabilities than its superclass, which is the class from which it is derived, or which it 

extends. To see why this really makes sense, let’s think of the classes person, athlete, 

and star athlete. Athletes are a subclass of people, because some people are not athletes, 

while all athletes are people. However, athletes have capabilities that not every person has. 

Similarly, star athletes are a subclass of athletes, but have more capabilities. This is not to 

say that some individual person does not have capabilities that star athletes do not have; it 

only means that any capability present in every person is present in every star athlete. 

Figure A.11 repeats the class definitions for IntList as they were given in Section 2.3.2, 

but with comments removed. There is one change: The instance fields are declared pro- 

tected. so they can be accessed by subclasses. The toString method is defined next, to 
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convert an IntList object to a String. Java converts any object into a String if it appears ina 

context that requires that type. Java supplies a default method named toString that is inher- 

ited by every class. A class may override the default by defining its own toString method, 

and that is what we do in Figure A.I1. A method in a subclass overrides a method in a 

superclass when it has the same name, the same return type, and the same parameter type 

signature. 

Notice that toString is a “wrapper” for the recursive function toStringR. Java auto- 

matically converts the elements of the list (returned by first) into strings using the toString 

method for that object’s class, so this technique works for lists of other types of elements; 

it is not specialized for integers. 

Now let’s say we want to add a new list operation, but want to leave IntList intact. 

We can extend IntList instead, to a subclass that we'll call IntListA, and define the new 

operation in IntListA. Then IntList is called the superclass of IntListA. The new operation 

is amanipulation procedure, append], so IntListA is no longer a nondestructive class. The 

intent is that append] puts a new element at the end of an existing nonempty list. In terms 

of the implementation, the list object whose next field is nil is modified. The new next 

field is a list of one element, the new element. However, the next field is not part of the 

ADT interface, and so the logical specification of what append] does is stated in terms 

of the access functions, which are in the interface. Figure A.12 shows the specifications as 

javadoc comments, and shows the necessary code, 

Unfortunately, it is necessary to redefine static members of IntList if we want their 

result type to be IntListA. The result type is the type of a field or the return type of a 

function. This applies to nil, rest, and cons in this case. Notice, for nil and rest, the 

expression “(IntListA).” This 1s called a type cast, or simply a cast. In our examples it 

changes the type from the superclass IntList to the subclass IntListA. The situation for cons 

is more involved because it needs to construct an instance of the subclass, not just process 

an existing instance. So cons invokes the class constructor IntListA using the new operator. 

We see that this is similar to IntList. However, the IntListA constructor does not want to 

invent a completely new kind of object; it wants to create an object that is like the superclass 

object. Java has a special method for this purpose, called super. In our example, using 

super is all that is necessary. When the subclass has additional instance fields, compared 

to the superclass, the constructor might have additional statements to initialize these fields. 

Figure A.13 shows a program that tests the IntListA class. Notice that it is able to print 

objects in the IntListA class simply by passing them to printIn. This program does not even 

need to know that the IntList class exists—it only deals directly with IntListA. However, 

the toString method in IntList is inherited by IntListA and becomes available for use by 

any method that processes an IntListA object. 

Notice that length ts followed by parentheses in one case and not in the other in main. 

This is because argv is an array (of strings), so its length is an instance field, while argv[0] 

is a String object, so its length is a method call. 

We leave it to readers to decipher what testA.java “does.” As a hint, it is related to a 

FIFO queue (see Section 2.4.2). Suppose the command “java testA word” is issued. The 

value of nis the length of word. If word is omitted, n = (0. What do you think the asymptotic 

order of this program’s time is, as a function of n? 
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public class IntList 

{ 

protected int element: 

protected IntList next: 

public static final IntList nil = null: 

public static int first(IntList aList) 

{ return aList.element; } 

public static IntList rest(IntList aList) 

{ return aList.next: } 

public static IntList cons(int newElement, IntList oldList) 

{ return new IntList(newElement, oldList): } 

// the real constructor, but we want cons for interface. 

protected IntList(int newElement, IntList oldList) 

{ 
element = newElement: 

next = oldList; 

} 

/«x« Convert IntList to String, similar to prolog, ML style. «/ 

public 

String toString() 

{ return "[" + toStringR("", this); } 

Static 

String toStringR(String prefix, IntList L) 

{ 
String s; 

if (== nil) 

se) 
else 

s = prefix + first(L) + toStringR(", ", rest(L)); 

return S; 

} 
} 

Figure A.11_ The file IntList.java gives the definition of toString, as well as the basic IntList 

ADT operations. Some members are protected so they can be accessed from subclasses. 

Pros and Cons of Subclasses 

For a small class like IntList, not much is accomplished by making a subclass; that is, the 

subclass does not inherit much. Seeing all the complications of defining the subclass, it 

is reasonable to ask whether it is all worthwhile. However, in other cases there is more 
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public class IntListA extends IntList 

{ 
// Redefine all members whose result type becomes IntListA. 

public static final IntListA nil = (IntListA) IntList.nil; 

public static IntListA rest(IntListA aList) 

{ return (IntListA) IntList.rest(aList); } 

public static IntListA cons(int newElement, IntListA oldList) 

{ return new IntListA(newElement, oldList); } 

// the real constructor, but we want cons for interface. 

protected IntListA(int newElement, IntListA oldList) 

{ super(newElement, oldList); } 

/** append! is new in the extended class. 

+ Precondition: aList != nil. 

+ Postcondition: aList has newE as additional element at 

« the end, after the previous last element. 

+ That is, suppose previously endL was the suffix of aList 

* for which rest(endL) == nil. Now first(rest(endL)) == newE 

« and rest(rest(endL)) == nil. 

+/ 

public static 

void append] (IntListA aList, int newE) 

{ 
if (rest(aList) == nil) 

{ 
IntListA newLast = cons(newE, nil); 

aList.next = newLast; 

} 
else 

{ 
append 1(rest(aList), neweE); 

} 

} 

} 

FigureA.12 The file IntListA.java gives the definition of IntListA. The extends keyword states 

that this is a subclass of IntList. 

functionality to inherit. Reusing code helps ensure consistency. We saw IntListA inherit the 

functionality of toString, and it was able to reuse the method first. 

On the negative side, use of subclasses can make things very confusing. There may 

be several versions of a method with the same name, and it is often unclear which one 

will be applied unless you have a thorough understanding of the language. Type casting is 
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public class testA 

{ 
public static void main(String argy[]) 

{ 
int n: 

if (argv.length > 0) 

= argv[O].length(); 

else 

n = 0: 

IntListA a= IntListA.cons(1, IntListA.nil): 

IntListA end =a; 

for (int i = 0; i < n; i++) 

{ 
IntListA.append1 (end, i+2); 

end = IntListA.rest(end); 

} 
System.out.printIn(a): 

System.out.printIn(IntListA. first(a)); 

System.out.printIn(IntListA.rest(a)); 

} 

} 

Figure A.13 The file testA.java contains a main procedure that exercises the IntListA class. 

frequently necessary. Implementing and testing algorithms does not require programmer- 

defined subclass structures, so if that is your main goal, we suggest that you avoid them. 

Copy via the “Cloneable” Interface 

Java provides an interface called Cloneable that requires the method clone for copying 

objects. The class Object implements clone as a one-level copy of the members of the 

object. That is, any members that are themselves objects simply have their references 

copied; they are not cloned recursively. We have assembled the ugly technical code in a 

class named Organizer, as shown in Figure A.14. The catch statement simply suppresses 

the exception, which we don’t expect ever to occur. If you'd rather throw an error, see 

Appendix A.3. 

Programmer-defined organizer classes can be declared as subclasses of Organizer, 

inherit copy!level, and use that to implement their own copy functions. The simple case 

is shown for the Edge class in Figure A.4. If the organizer class contains an instance field 

in another organizer class, that instance field must be copied explicitly, to conform to the 
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public class Organizer implements Cloneable 

{ 
protected static 

Organizer copyllevel(Organizer obj) 

{ 
Organizer objCopy; 

objCopy = null; // needed because of try/catch 

try{ objCopy = (Organizer)obj.clone(); } 

catch(CloneNotSupportedException e) { } 

return objCopy; 

} 

Figure A.14_ The file Organizer.java 

that section (Date would be declared with “extends Organizer,’ like edge), the copy 

function for date becomes: 

class Date extends Organizer 

public static Date copy(Date d) 

{ Date d2 = (Date) copy] level(d): 

d2.year = Year.copy(d.year); // organizer class 

return d2; 

} 

Notice that the type cast “(Date)” is necessary. The type returned by copy] level is Object. 
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clique, 566, 568, 602, 603, 609 
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cluster in red-black tree, 262, 265 

CNF. See conjunctive normal form. 

CNF-satisfiability. See satisfiability. 

coin, 16, 62, 67 

coin changing problem, 480 

combinatorial optimization problem, 548, 612 
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compare-exchange, 217 

compiler, 94, 102 

compiler optimization, 122, 123, 147, 154, 169 

complex number, 540-542, 544 

composition of graphs, 584 

computability theory, 2 

computational complexity, 2, 15, 608 

class, 43, 51 

lower bound, 40 

measure, 2, 33 

parallel, 615-616 

of songs, 67 

concurrent read concurrent write PRAM, 622. 628. 
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644, 645, 647 

condensation of a digraph, 351, 357, 358, 359, 379 

conditional probability, 17, 18, 19, 20, 54 

conjunctive normal form, 551 

connected component, 321, 338-342, 345, 364, 412 

parallel algorithm for, 628-641, 645-646, 648 

connectivity in graphs, 320, 357, 367, 373, 385 
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contrapositive, 29, 41, 63 

convex, 23, 24-25, 62, 117, 141 

convolution, 529, 537-539 
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Cook’s theorem, 562, 609 
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Coppersmith, Donald, 546 

Corasick, M. J., 513 

Cormen, T. H., 146, 310, 385, 422, 449 

Cray, 49 

CRCW. See concurrent read concurrent write PRAM. 

CREW. See concurrent read exclusive write PRAM. 
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critical path, 351, 354-357 
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cross edge, 343-347, 365, 376 

cross product, 13 

cross-rank, 625 

crucial comparison, 238, 240 

crystallography, 528 

cubic function, 44, 49, 52 

cut point, 367 

cycle; 321 

cyclic shift, 512 

Cytron, R., 146 

DAG. See graph, directed acyclic. 

data abstraction, 3, 70 

data structure, 42, 69-100 

proofs about. 111, 112, 115 

deadline. See job scheduling. 

decision problem, 548-549, 554-560, 600 

decision tree, 224-225, 241, 242, 641 

for binary search, 59-60, 65 

for sorting, 178-181, 213 

decrease key, 295-302 

degree, 52, 80 

degree of vertex, 567 

A(G), 567, 582 

De Millo, R. A., 146 

DeMorgan’s law, 28 

dense, 415 

Deo, Narsingh, 385, 648 

depth, 81 

depth-first search, 105, 328-383, 384, 385, 405, 416, 

418, 455. 456 

directed graph, 336-364, 377-379 

in dynamic programming, 454462, 475 

forest, 346, 347, 359 

skeleton, 344-346, 353, 356, 364-365, 372, 378, 
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transitive closure by, 428, 446 

tree, 330, 342-350, 359-364, 368, 369, 370, 

376-382 

undirected graph, 364-373, 380-381 

depth of recursion, 169 

dequeue, 89 

derivative, 16, 25, 47 

descendant, 85, 342 

descendant edge, 343-347 

designing against an adversary, 226, 240-241 

design technique. See binary fan-in, divide and 

conquer, dynamic programming, greedy 

algorithm, Method 99, recursion. 

determinant, 528 

DFS. See depth-first search. 
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dices 16.7, 62 

dictionary ADT, 73, 93-94, 296 

in dynamic programming, 455-461, 470, 473, 474 

implementation by hash table, 275 

implementation by red-black trees, 254 

digraph. See graph, directed. 

Dijkstra, Edsger W., 221, 404, 422 

Dijkstra’s algorithm. See shortest path. 

diminishing increments. See Shellsort. 

directed acyclic graph. See graph, directed acyclic. 

distance, 406, 410, 419, 433 

distribution sort, 20] 

divide and conquer, 133, 137-139, 143, 144, 157-158, 

209, 404 

accelerated Heapsort, 193 

binary search, 55 

and dynamic programming, 452 

fast Fourier transform, 528-536 

matrix multiplication, 522, 526 

Mergesort, 174-177 

polynomial evaluation, 519 

Quicksort, 159-171 

selection, 233, 234-237 

sorting, 158 

transitive closure, 439 

DNA computing, 3, 592-600, 607, 609 
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dot product. See vector dot product. 

Dowling, Geoff R., 513 

DP. See dynamic programming. 

Dreyfus, Stuart E., 482 

duplicate element problem, 219 

Dutch National Flag problem, 217, 221 

Dwork, Cynthia, 648 

dynamic equivalence relation, 283, 294-295, 414, 630 

dynamic programming, 94, 452-482, 559, 600, 621 

approximate string matching by, 505-508 

dynamic set, 89-94, 250-253 

edge biconnected, 383 

eight-queens problem, 338 
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epl. See external path length. 
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equivalence relation, 14, 51, 283, 358, 367, 382, 414, 
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EREW. See exclusive read exclusive write PRAM. 
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Euler path, 375, 376 

Even, Shimon, 385, 423 

exchange sort. See bubble sort. 

exclusive read exclusive write PRAM, 614, 622 

execution time, 31, 105 

expectation, 19, 37, 58 

experiment, 16, 17 

exponential growth, 49, 52, 140, 476, 548, 558 

external node, 115, 180, 254, 257, 258, 260, 261, 262, 
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external path length, 115, 116, 117, 118, 141, 180 

external sorting, 221 

factorial function, 16, 27, 126 

fail link, 490 

fast Fourier transform, 528-542, 544-545, 546, 612 

feedback edge set, 567, 568 

feedback vertex set, 603 

Ferrante, J., 146 

FFD. See bin packing, approximation algorithm. 

FFT. See fast Fourier transform. 

Fibonacci heap. See priority queue. 

Fibonacci number, 141, 245, 337, 452-456, 475, 545 

FIFO. See first in first out. 
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first fit, 572, 576 

first in first out, 89, 91, 335, 397 
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fixHeap, 184, 186, 188, 189, 191, 192, 193, 195-196 

Flannery, B., 546 

floor function, 15 

flowchart, 315, 318, 359 

for KMP algorithm, 488-493 

Floyd, Robert W., 221, 246, 449 

Floyd’s shortest path algorithm, 433-435 

Ford-Johnson algorithm, 221 

Ford, Lester R., Jr., 221, 423 

forest, 83, 290, 321, 629 

FORTRAN, 122, 294 

Fortune, Stephen, 647 

forward edge. See descendant edge. 

Fourier transform. See fast Fourier transform. 

four Russians’ algorithm. See Kronrod’s algorithm. 

frame pointer, 103 

frame stack, 102, 103, 105, 156, 169, 340, 346 

Frankle, Jon, 482 

Fredman, M. L., 310, 422 

free tree. See graph. 

fringe vertex, 390, 406, 422, 589 

frond. See descendant edge. 

Fulkerson, D. R., 423 

function, 4, 6, 13-14, 118 

Gabow, H. N., 422 

Galler, B. A., 310 

gambling, 16 

garbage collection, 3, 72, 209, 212 

Garey, Michael R., 609 

Gaussian elimination, 538 

generalized searching routine, 35, 55, 78, 107, 124, 
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geometric series, 22, 52, 138, 139, 237, 527 
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Golden Ratio, 144, 475 
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Gonnet, G. H., 310, 546 
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graph, 14, 283, 294, 314-385, 388-423, 549-609 

bounded-degree family of, 417 

complete, 319; See also clique. 

composition, 584 

cycle, 321 

directed, 314, 316, 318, 319, 320, 321, 325, 

327, 328, 332, 336, 339, 342, 344, 347, 350, 

358, 359-364, 365, 376-380, 

383-385 

directed acyclic, 321, 350-357, 454 

dynamic programming subproblem, 453 

forest, 321 

free tree, 321 

minimum spanning tree, 388-403, 412-415, 

416-418, 420, 589 

shortest path, 403-412, 422, 433-435 

symmetric digraph, 319, 327-336, 338, 364-366, 

382 

transitive closure, 426-439 

transpose, 361, 377 

traversal. See best-first search, breadth-first search, 

depth-first search. 

undirected, 314, 316, 318, 319, 320, 321, 325, 

327-328, 340, 364-373, 375-376, 380-385 

graph coloring, 549, 556, 557-562, 567, 568, 569, 

571, 600, 602, 603, 605, 606, 609 

approximation algorithm, 581, 585-589, 607, 609 

Grassmann, W. K., 67, 146 

greedy algorithm, 91, 250, 388-423, 458, 472, 

476-481 

bin packing, 572-577 

graph coloring, 581 



knapsack, 578, 605 

minimum spanning tree, 389-403, 412-415, 

416-418, 420 

shortest path, 405-412 

traveling salesperson problem, 589-591 

vertex cover, 608 

Greene, Daniel H., 146 

Greenlaw, R., 648 

Gries, D., 146 

guessing game, 225 

Guibas, Leo J., 309, 512 

©. See asymptotic growth rate. 

Hall, Patrick A. V., 513 

halting problem, 2 

Hambrusch, S. E., 648 

Hamiltonian cycle, 552, 557-562, 563-564, 567, 600, 

601, 602, 603 

Hamiltonian path, 552, 557-562, 568, 602 

DNA algorithm, 592-598 

handle, 305, 306 

Hantler, S. L., 146 

hashing, 275-282, 310 

heap, 91, 133, 182-196, 221, 233, 242, 250, 295, 296, 

297, 299, 308, 395, 417 

construction, 186-188, 190 

deletion, 183-186 

inseruon, 192, 195 

Heapsort, 91, 158, 182-196, 213-215, 216, 221, 244, 
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accelerated, 158, 182, 192-196, 216, 221, 244 

height, 81, 214 

binomial tree, 305 

red-black tree, 253 

union based on, 304 

with weighted union, 287 

heuristic, 570 

Hirschberg, D. S., 647 

Hoare, C. A. R., 159, 160, 221 

Hochbaum, D. S., 609 

Hoover, H. J., 648 

Hopcroft, John E., 310, 385, 422, 449, 546 

Horner’s method, 517, 543 

Hyafil, Laurent, 246 

hypercube, 615 

hypersink, 383 

Ibarra, Oscar H., 609 
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incident, 319, 325 

indegree, 379, 567 
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maximum tn tree, 146, 475 

induction, 102, 111-118, 128, 141, 142, 146, 287 

induction variable, 113-116 

inductive hypothesis, 108, 113-117, 287 

information hiding, 7, 70 

inorder, 82, 85, 254, 255 

Insertion Sort, 151, 153, 156-157, 169, 198, 200, 208, 

209, 216, 217, 244, 645 

integration, 22, 23, 25-27 

interchange rule, 582 

internal node, 80, 115, 180, 270 

internal sort, 151 

intractable, 548, 553 

in-tree, 83, 93, 97, 99, 284, 292, 333, 346, 398, 629 

ADT, 85-86, 285, 333 

invariant, 31, 70, 88 

inversion, 21, 156, 157, 165, 200, 209, 221 

investment problem, 479, 550 

JaJa, Joseph, 648 

Java a4 5.0.07, 

650-668 

Java sidelight, 7, 9, 56, 74, 77, 80, 85, 151, 484, 496, 

540 

job scheduling, 550, 557-562, 564, 568, 571, 607 

approximation algorithm, 609 

Johnson, David S., 609 

Jones, D. W., 310 

Joy, Bill, 67 
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Kannan, Sampath, 221 

Kaplan, P. D., 609 

Kari, Lila, 609 

Karp, Richard M., 67, 562, 608 

key, 91 

Kim, Chul E., 609 

King, J. C., 146 

King, K. N., 385 

Kingston, Jeffrey H., 146 

Kislitsin, S. S., 246 

Kleene, S. C., 449 

Kleene’s algorithm, 426 

KMP. See Knuth-Morris-Pratt. 

knapsack, 550, 557, 559-562, 577, 605, 608 

approximation algorithm, 577-580, 605, 609 

Knuth, Donald E., 67, 221, 246, 310, 385, 472, 482, 
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Knuth-Morris-Pratt algorithm, 488-495, 497, 

509-510, 512 

Konigsberg bridges, 375 

Kronrod, M. A., 449 
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Kronrod’s algorithm, 439-444 

Kruskal, Clyde P., 648 

Kruskal, J. B., Jr., 422 

Kruskal’s algorithm. See minimum spanning tree. 

Landau, Gad M., 513, 648 

largest key, 40, 48, 183, 225, 226-228, 229, 230, 233, 

242, 243, 617, 618, 623, 643 

last in first out, 86, 335 

lattice, 379 

Lawler, Eugene L., 609 

lawn tennis, 246 

leader, 359 

leaf, 80, 115 

left-complete binary tree, 182 

Leighton, F. T., 609 

Leiserson, C. E., 146, 310, 385, 422, 449 

lg*(n), 291 
L’Hopital’s Rule, 47, 52 

Libchaber, A., 609 

The Life of Reason, 452 

LIFO. See last in first out. 

linear function, 52 

linear interpolation, 23 

Linial, M., 609 

Linial, N., 609 

linked list. See list. 

Lipton, R. J., 146 

Lisp, 9, 74, 102 

lists 7,11, 74; 77, W025 150) 152.202.2009; 216; 298. 

304, 309 

ADT, 74, 75, 79-80, 81, 88, 89; 96, 97, 98, 107, 

204; 209), 211, 212,299" 301, 3265373 

closed address hashing, 277 

matching a sublist, 484 

literal, 551 

local variable, 78 

logarithm, 15-16, 52, 61, 139, 615 

logarithmic series, 52 

logic, 28-30, 108 

Lomuto, N., 210, 221 

longest path problem, 354-357, 568 

loser, 41, 226, 623 

lower bound, 30, 39-42, 59, 115, 133 

adversary argument, 224-226 

Boolean matrix multiplication, 444446 

find with path compression, 310 

hypersink, 383 

largest key, 40, 225 

matrix multiplication, 42, 525, 528 

max and min keys, 226-228 

median, 238-240 

merging sorted sequences, 173, 242 

minimum spanning tree, 403 

NP-complete problems, 558 

polynomial evaluation, 517-519, 522, 535, 546 

PRAM addition, 641-643 

PRAM, CREW model, 622, 644 

search, 54 

second-largest key, 230, 247 

shortest path, 411 

sorting, 156-157, 178-181, 242 

vector dot product, 523, 543 

majority element, 246 

Maley, Carlo C., 609 

manipulation procedure, 72, 73, 86 

Master Theorem, 139, 143, 147, 158, 166, 176, 188, 237 

matrix, 4, 37 

matrix inversion, 528 

matrix multiplication, 37, 38, 41, 48, 522-528, 543 

optimal sequence for, 457-466, 476, 482 

parallel, 621, 623 

matrix search, 218, 246 

maximal, 322, 339, 358 

maximizing heap, 182, 183 

maximum. See largest key. 

maxint, 66 

Maxsort, 206 

McCarthy, John, 102, 146 

McGeoch, C. C., 609 

Mclllroy, M. D., 422 

median, 63, 158, 168, 209, 224, 226, 233, 234, 237, 

238-240, 244, 245 

of five elements, 241 

Mehlhorn, K., 512 

memo-ization, 461 

Merchant of Venice, 85 

Merge Insertion, 221 

Mergesort, 133, 134, 158, 174-177, 179, 180, 181, 

197, 212-213, 221, 244 

parallel, 627 

merging sorted sequences, 158, 171-174, 175, 176, 

DOE DIS 242. 

parallel, 625-628, 645 

method, 71, 72, 102 

Method 99, 102, 106-107, 171, 473 

minimum spanning tree, 86 

Kruskal’s algorithm, 294, 412-415, 420, 422, 589, 

590 

Prim’s algorithm, 388, 389, 390, 392, 393, 397, 

402403, 405, 415, 416-418, 422, 589 

minimum spanning tree property, 391, 392-393 



minimum tour. See traveling salesperson problem. 

model of computation, 2, 444, 554, 599, 613-616, 622 

Modula, 9 

modus ponens, 30, 63 

monic polynomial, 519 

monotonic, 23, 24-25, 53 

Moore, J. Strother, 512 

Mormis, James H., Jr., 512 

Morris, R., 422 

MST. See minimum spanning tree. 

Munro, I., 438, 449 

natural logarithm, 15 

NC, 615-616, 647-648 

nearest-neighbor strategy, 590, 606 

neighborhood of vertex, 585 

neighborhood subgraph, 585, 606 

network, 367, 615 

network flow, 423 

next fit, 576 

Nievergelt, Jurg, 385 

nondeterministic algorithm, 554, 555, 557, 562, 609 

NP, 548, 554-561, 600-603, 607, 612 

NP-complete, 66, 559-570, 583, 600-603, 607, 608 

NP-hard, 569, 583 

O, o. See asymptotic growth rate. 

object-oriented programming, 100 

Odlyzko, Andrew M., 512 

Oldehoeft, R. R., 146 

Omega. See asymptotic growth rate. 

Omicron. See asymptotic growth rate. 

open addressing, 278 

optimal 

line breaking, 471-474 

polygon triangulation, 480 

sorting, 180 

optimality, 30, 39, 42 

binary search, 54, 59-60 

Boolean matrix multiplication, 444 

Fibonacci heap, 310 

merging sorted sequences, 172 

tournament, 230 

optimal solution, 571, 572 

optimization problem, 296, 354, 548, 569, 570, 612 

organizer class, 9-11, 61, 94, 118 

outdegree, 567 

out-tree, 83, 298 

overload, 8 

override, 8 

P, 548, 553-561, 567, 615 
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pairing forest or heap. See priority queue. 

Pan, Victor, 546 

parallel algorithm, 612-648 

parallel random access machine, 612-648 

Parberry, I., 648 

parent, 80, 83, 321, 342 

in a heap, 189 

Parnas, David, 70, 100 

partial order, 115, 128, 351, 426 

fortress, 111), 017 

partial order tree, 182, 183, 184, 186, 188, 190, 192, 
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partition, 14, 158, 159, 160-162, 168, 209, 210, 211, 

PAs 238,607 

partition-exchange sort. See Quicksort. 

partition of set, 283 

partition problem, 479, 607 

Pascal, 7, 9 

Pascal, Blaise, 16 

Patashnik, Oren, 67 

Paterson, M., 246, 310 

path, 319 

path compression, 288, 304, 307, 310, 630 

Paun, G., 609 

P-complete, 648 

Perlis, Alan J., 146 

permutation, 12, 15, 16, 20, 21, 156, 209, 212, 218, 
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The Phases of Human Progress, 452 

Pippenger, Nicholas, 246, 647 

pivot element, 159, 168, 234 

in place, 38, 151, 160, 189, 190 

planar graph, 385, 417, 568 

Pohl, I., 247 

pointer, 3, 5 

polygon triangulation problem, 480 

polynomial, 63 

polynomial evaluation, 516-522, 542-543 

polynomially bounded, 553 

nondeterministic algorithm, 557 

number of processors, 615 

polynomial multiplication, 537 

polynomial reduction, 560-565, 601-603 

polynomial series, 22, 52 

polynomial time, 314, 459, 473, 548, 553, 554 

polynomial transformation. See polynomial reduction. 

pop, 86, 252, 302 

postcondition, 30, 71, 75, 122 

postorder, 82, 187, 336, 338, 342, 359, 464465 

PRAM. See parallel random access machine. 

Pratt, Vaughan T., 246, 512 

precondition, 30, 71, 75, 121, 128 
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preconditioning. See preprocessing. 

preorder, 82, 336, 338, 346 

preprocessing 

binary search tree, 466-47 | 

polynomial coefficients, 519-522, 543 

string matching pattern, 488-493, 495-502 

sums over subranges, 477 

Press, W., 546 

prime testing, 559 

Prim, R. C., 422 

Prim’s algorithm. See minimum spanning tree. 

principal subtree, 83, 84, 146, 255 

priority queue, 99 

ADI Seo oO 82.0530 

Fibonacci heap, 310, 403 

for greedy algorithms, 91 

heap implementation of, 182-196 

pairing forest, 295-302, 308, 402-403, 412 

pairing heap, 297, 310, 403 

priority-write PRAM, 629, 641-646, 647 

probabilistic algorithm, 597 

probability, 15, 16-21, 35, 62, 66, 131, 467-471, 529 

procedure, 6 

processors, 612-616 

proof, 108-130 

proof by contradiction, 29, 63 

proof of correctness, 30-31, 56, 78, 102, 118-130, 

142, 146 

prototype, 4, 7, 75 

pruning, 99, 179 

push, 86, 252, 253 

quadratic function, 44, 52 

quantifier, 28 

queue, 86, 89,91, 98, 334 

ADT, 86, 89, 91 

open, 509 

Quicksort, 158, 159-171, 177, 209, 210, 211, 212, 

213, 216, 217, 221, 234, 243, 244 

Quinn, Michael J., 648 

Rabin, Michael O., 67 

radix, 204 

radix sort, 201, 204-206, 215, 216, 221 

random access, 150, 613 

random variable, 19 

rank, 224, 233, 235, 246, 290, 291, 292, 293, 625 

Raucous Rockers, 481 

reachability matrix, 428, 435, 446 

reachability relation, 427 

recurrence equation, 106, 112, 130-141, 143-145, 

158, 216, 459, 543 

recursion, 88, 102-108, 111, 115, 119, 145, 

338, 34] 

in dynamic programming, 452-462 

recursion tree, 134-141, 147, 176, 196, 212, 

red-black tree, 253, 254, 256, 257, 258, 260, 

266, 267, 272-275, 303, 309 

reflexive, 14, 283 

Reingold, Edward M., 385, 546 

Reischuk, Rudiger, 648 

relation, 13-14 

Richards, Dana, 648 

Rivest, R. L., 146, 246, 310, 385, 422, 449 

Roberts, Eric, 146 

root, 80, 81, 83 

root of polynomial, 522, 542 

roots of unity, 529, 535, 538-542, 544, 545 

Rosen, B. K., 146 

routing, 389, 552, 589, 615 

routing table, 435, 448 

Rozenberg, G., 609 

rule of cases, 30 

rule of inference, 30 

Ruzzo, Walter L., 648 

Rytter, W., 512 

Sahni, Sartaj, K., 609 

Saks, M. E., 310 

Salomaa, A., 609 

Santayana, George, 452 

satisfiability, 551-562, 600-608, 609 

2-satisfiability, 568, 603, 607 

3-satisfiability, 552, 562, 568, 601 

Savage, John E., 449 

146, 337, 

scheduling problem, 350, 352-357, 589; See also job 

scheduling. 

Schonhage, A., 246 

Schreier, J., 246 

search, 53-60, 65-66 

second-largest key, 229-233, 241, 243, 246 

Sedgewick, Robert, 67, 309, 385 

selection, 158, 224, 225, 226, 233-237, 243- 
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sequence, 74, 119, 150 

sequential search, 36, 48 

series, 21—23 

set, 11-14 

set cover, 604 

set intersection problem, 601 

Shakespeare, William, 85 

Sharir, M., 385 

Shell, Donald, 197, 221 

Shellsort, 197-201, 215, 216, 221 
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Shiloach, Yossi, 647 

shortcut, 343, 429-430, 630-641 

shortest-link strategy, 590, 606 

Dijkstra’s algorithm, 405, 410, 411-412, 422, 433 

Floyd’s algorithm, 433-435 

shuffle, 479 

signal processing, 528 

signature. See type signature. 

Simon, J., 648 

single-assignment paradigm, 118, 122, 123, 124, 126, 

147 

sink in a graph, 383 

Sleator, D. D., 310 

Smit, G. de V., 512 

Smith-Thomas, B., 385 

Snir, Marc, 648 

solvable, 2 

song, 505 

sorted list, 79 

sorting, 150-222, 242 

lower bound, 156-157, 178-181, 197 

parallel, 625-628, 645, 648 

sorting network, 648 

space usage, 38-39, 42, 209 

spanning tree, 388 

sparse, 325, 415, 475 

speech recognition, 504 

SSSP. See shortest path. 

stable, 216 

stack, 86, 302, 361 

ADT, 86-89, 98, 252, 361, 373 

list implementation of, 98 

star, 629 

star hooking, 630, 631-641, 645-646 

Stasko, J. T., 310 

static, 6, 10, 11, 71 

Steele, Guy, 67 

Stirling’s formula, 27 

stochastic independence, 18 

Stockmeyer, Larry J., 648 

Stocks, A. 1., 546 

straight-line program, 517-519 

Strassen’s matrix multiplication algorithm, 438, 444, 

526-528, 543, 546 

Strassen, Volker, 546 

string matching, 484, 485-513 

approximate, 504-508, 511,512, 513 

parallel approximate, 648 

strongly connected component, 322, 338, 357-364, 

379-380, 385, 428 

strongly connected graph, 320 
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subsequence 

longest common, 479 

longest increasing, 478 

subset sum, 479, 551-562, 564, 565, 577, 600, 605 

approximation algorithm, 577-580 

substring, longest common, 478 

summation, 25-27, 293 

summation by parts, 23 

summation formula, 15, 21-23, 52 

sum of consecutive integers, 21 

sum of squares, 21 

syllogism, 30 

tail recursion, 170 

Tarjan, Robert E., 246, 310, 385, 648 

Teukolsky, S., 546 

Tex, 471 

Theta. See asymptotic growth rate. 

Thompson, Ken, 482 

top-down, 310, 474 

topological order, 351, 352, 353-354, 357, 379, 385, 

454-456, 475 

tournament, 226, 229, 230, 233, 241, 242, 244, 246, 

298, 617-620 

towers of Hanoi, 145 

tractable, 548 

transitive closure, 426, 437-439 

irreflexive, 448 

parallel, 621, 623, 628, 644, 645 

Warshall’s algorithm, 430-433, 435 

transpose permutation, 156 

traveling salesperson problem, 552, 557-562, 570, 

589, 601, 607, 608, 609 

approximation algorithm, 589, 591-592, 606 

traversal, 96, 254, 255 
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