Confidence Intervals for Nonlinear Regression Parameters

- 1. The matrix $F(\theta) = F$ plays the role in nonlinear least squares the X matrix plays in linear least squares.
- 2. If $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{I}\sigma^2)$, then $\hat{\boldsymbol{\theta}}$ is *approximately* normally distributed with mean $\boldsymbol{\theta}$ and $Var(\hat{\boldsymbol{\theta}}) = (\boldsymbol{F'F})^{-1}\sigma^2$. (Gallant 1987)
- 3. The residual sum of squares $S(\hat{\theta})$ when divided by σ^2 , has approximately a chisquared distribution with n - p degrees of freedom.
- 4. In practice, $F(\theta)$ is computed as $F(\hat{\theta}) = \hat{F}$ and σ^2 is estimated with $s^2 = S(\hat{\theta})/(n-p)$, so that the estimated variance-covariance matrix for $\hat{\theta}$ is $s^2(\hat{\theta}) = (\hat{F}'\hat{F})^{-1}s^2$
- 5. Confidence Intervals for $\boldsymbol{\theta}$. Let $C = \boldsymbol{K'}\boldsymbol{\theta}$ be any linear function of interest (point estimate is $\hat{C} = \boldsymbol{K'}\hat{\boldsymbol{\theta}}$).

100(1 – α)% CI estimate of C is: $\hat{C} \pm t_{\alpha/2}(n-p)s(\hat{C})$

where $s(\hat{C}) = \{ K'[s^2(\hat{\theta})] K \}^{1/2}$

6. Likelihood Ratio Theory: Approximate joint $100(1 - \alpha)\%$ confidence region for $\hat{\theta}$: Set of $\hat{\theta}$ s.t.

$$S(\boldsymbol{\theta}) \leq S(\hat{\boldsymbol{\theta}}) \left[1 + \frac{p}{n-p} \mathbf{F}_{\alpha}(p, n-p) \right]$$