Crash Introduction to markovchain R package

Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS

2017-08-16

Intro

- ▶ The markovchain package (Spedicato 2017) will be introduced.
- The package is intended to provide S4 classes to perform probabilistic and statistical analysis of Discrete Time Markov Chains (DTMC). See (Brémaud 1999) for a theoretical review of the mathematics underlying the DTMC models.
- The vignette will show: how to load the package and create a DTMC, how to manage a DTMC, how to perform basic probabilistic analysis, how to fit a DTMC.

- ► The package is on Cran since Summer 2013.
- It requires a recent version of R (>=3.0). Since version 0.2 parts of code have been moved to Rcpp (Eddelbuettel 2013).
- The package won a slot in Google Summer of Code 2015 for optimizing internals and expanding functionalities.

First moves into the markovchain package

Loading the package

The package is loaded using

#load the package
library(markovchain)

Creating a DTMC

 DTMC can be easily create following standard S4 classes syntax. The show method displays it.

```
## MarkovChain A
## A 3 - dimensional discrete Markov Chain defined by the
## a, b, c
## The transition matrix (by rows) is defined as follows
## a b c
## a 0.0 0.5 0.5
## b 0.5 0.0 0.5
```

Otherwise, it can also be created directly coercing a matrix.

dtmcA2<-as(tmA, "markovchain") #using coerce from matrix
states(dtmcA2) #note default names assigned to states</pre>

[1] "s1" "s2" "s3"

 It is also possible to display a DTMC, using igraph package (Csardi and Nepusz 2006) capabilities

plot(dtmcA)

Probabilistic analysis The basic

- It is possible to access transition probabilities and to perform basic operations.
- ➤ Similarly, it is possible to access the conditional distribution of states, Pr (X_{t+1}|X_t = s)

dtmcA[2,3] #using [method

[1] 0.5

[1] 0.5

It is possible to simulate states distribution after n-steps

```
initialState<-c(0,1,0)
steps<-4
finalState<-initialState*dtmcA^steps #using power operator
finalState</pre>
```

a b c ## [1,] 0.3125 0.375 0.3125 As well as steady states distribution

steadyStates(dtmcA) #S4 method

a b c ## [1,] 0.3333333 0.3333333 0.3333333

Advanced

 We use an example found on Mathematica Web page, (Wolfram Research 2013)

 The summary method shows the proprieties of the DTCM

summary(mcMathematica)

Mathematica Markov chain that is composed by: ## Closed classes: ## a b c d ## Recurrent classes: ## {a,b,c,d} ## Transient classes: ## NONE ## The Markov chain is irreducible ## The absorbing states are: NONE

Estimation and simulation

The package permits to fit a DTMC estimating the transition matrix from a sequence of data. - createSequenceMatrix returns a function showing previous vs actual states from the pairs in a given sequence.

```
#using Alofi rainfall dataset
data(rain)
mysequence<-rain$rain
createSequenceMatrix(mysequence)</pre>
```

##		0	1-5	6+
##	0	362	126	60
##	1-5	136	90	68
##	6+	50	79	124

 markovchainFit function allows to obtain the estimated transition matric and the confidence levels (using elliptic MLE hyphotesis).

```
myFit<-markovchainFit(data=mysequence,confidencelevel = .9
myFit</pre>
```

```
## $estimate
## MLE Fit
##
   A 3 - dimensional discrete Markov Chain defined by the
##
    0, 1-5, 6+
   The transition matrix (by rows) is defined as follows
##
##
               0
                       1 - 5
                                   6+
## 0
      0.6605839 0.2299270 0.1094891
## 1-5 0.4625850 0.3061224 0.2312925
## 6+ 0.1976285 0.3122530 0.4901186
##
##
  $standardError
##
##
                0
                          1 - 5
                                      6+
```

See the vignettes for further fitting methods as well as for functionalities targeted on non - homogeneous Markov chains.

alofiMc<-myFit\$estimate
alofiMc</pre>

MLE Fit A 3 - dimensional discrete Markov Chain defined by the ## ## 0.1-5.6+The transition matrix (by rows) is defined as follows ## ## 0 1 - 56+ ## 0 0.6605839 0.2299270 0.1094891 ## 1-5 0.4625850 0.3061224 0.2312925 ## 6+ 0.1976285 0.3122530 0.4901186

Bibliography I

Brémaud, Pierre. 1999. "Discrete-Time Markov Models." In *Markov Chains*, 53–93. Springer.

Csardi, Gabor, and Tamas Nepusz. 2006. "The Igraph Software Package for Complex Network Research." *InterJournal* Complex Systems: 1695. http://igraph.sf.net.

Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with *Rcpp*. New York: Springer-Verlag.

Spedicato, Giorgio Alfredo. 2017. "Discrete Time Markov Chains with R." *The R Journal*. https://journal.r-project.org/archive/2017/RJ-2017-036/index.html.

Wolfram Research, Inc. 2013. *Mathematica*. Ninth. Wolfram Research, Inc.