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Abstract

A metagenome is a sampling of genetic sequences from the entire
microbial community within an environment. Examining the func-
tional diversity represented by these sequences gives insight into the
biological processes within the environment as well as the biological
differences between environments. Most research has focused on sin-
gle specific environments and the few comparative analyses have been
based only on small fractions of the metagenomic data which is cur-
rently available. Dinsdale et al used canonical discriminant analysis
to investigate 45 microbial metagenomes in Functional metagenomic
profiling of nine biomes, Nature, 452, (2008), 629-632. We expand on
this work by applying a wider variety of multivariate statistic and ma-
chine learning techniques to study over 200 metagenomes from various
human, marine, terrestrial, and extreme environments. Our findings
demonstrate the ability to differentiate or predict environments with
only a subset of key functional hierarchies.
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1 Introduction

Vast communities of microbes occupy every environment, processing and pro-
ducing substances at the molecular level which shape the local geochemistry.
Study of the functional families of microbial proteins reveal these processes.
Recent studies have shown the viability and reliability of functional metage-
nomic analysis in describing and identifying environmental microbial and
viral samples [9, 32, 27, 28, 33]. Metagenomic analysis has been shown to
far surpass 16s marker methods in explaining variance among and within
environmental samples [9].

Technological advances over the last decade have allowed for quick ge-
nomic sequencing of microbes as well as larger organisms. However, it is es-
timated that less than 1% of microbes can be individually sequenced due to
difficulties of culturing them in a controlled laboratory. The field of Metage-
nomics instead sequences samples of a community of microbes or virii directly
from the environment.

Most of the focus in Metagenomics has been on single environments
such as coral atolls[10, 32], cow intestines[4], ocean water[2], and human
excrement[16, 29](Add more categories and citations). Recently, Dinsdale
et al.[9] demonstrated that analysis of functional diversity in metagenomes
can differentiate between multiple environments. We offer an overview of
statistical techniques that aid in the analysis of multiple metagenomic envi-
ronments.
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2 Data

A protein or DNA chain is recorded as a sequence of letters representing the
component amino acids or nucleotides. The matching of two such sequences
against each other, letter by letter with possible gaps, is known as an align-
ment. The goal of a sequence alignment is maximizing the quality of the
matching. Good matches imply homology between two sequences. The qual-
ity of the matching is often measured by a scoring function. A simple scoring
function might add one every time the letters in the same positions match
and subtracting every time they do not. More complex scoring schemes in-
clude varying weights depending on the particular letter combinations and
linear gap penalties.

A common alignment task would be searching for significant matches
against an entire database of known sequences. Exact algorithms for sequence
alignment such as Smith-Waterman[24] are too computationally intensive to
use on this scale. Heuristic algorithms such as Basic Local Alignment Search
Tool (BLAST)[1] are used instead. BLAST searches the database for likely
matches based on index sequence snippets. It then grows an alignment for
each candidate. The statistical significance of a match is determined based
on the length of the alignment, the size of the existing database, and the
scoring function used.

Because metagenome sequence sets include tens of thousands to hunreds
of thousands of sequences, search and alignment is still relatively slow even
with existing heuristic algorithms. As a result, updating metagenomic se-
quence alignments after database changes is costly. K-mer alignment per-
forms the matching based on only index sequence snippets, forgoing the
calculation of match significance. The full set of available metagenomes can
then be re-aligned after database changes. This removes differences between
metagenomes due to differences of their underlying alignment databases.

Publicly available metagenomic sequence sets were acquired from the
SEED database[19]. Sequences were aligned and categorized into functional
hierarchies using K-mer alignment[11] with a word length of 10 and a word
cutoff of 2.

Once alignment is completed, annotation is added, providing details about
the sequence’s function and structure. Anotation was originally done by
hand, but there are now methods which perform this task computationally.
With the wealth of genome data being generated and made available, the
ability to automatically annotate genomic data has become increasingly im-
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portant.
Metagenome sequences uploaded to the SEED database are automatically

annotated with functional information. Curators of the SEED have grouped
existing similar sequences into functional families. When a sequence in a
metagenomic sequence set matches the existing database, it is automatically
categorized with the same functional information as the database sequences
it matched. Even though metagenomes include sequences from previously
unsequenced and possibly unknown organisms, the homology implied by the
alignment enables us to develop a functional profile of the environment. The
functional information is what we use throughout this manuscript.

We have removed the functional hierarchies clustering-based subsystems
and experimental subsystems from our data, leaving 27 first level functional
hierarchies. Hierarchy counts were normalized by the total number of nonex-
cluded hits to yield percent composition by function.
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3 Principal Component Analysis

Principal component analysis (PCA) is a statistical technique that uses prin-
cipal components as a dimensional reduction tool to preserve variance. Prin-
cipal components (PC) are orthonormal linear combinations of the variables
of the data that maximize variance over a specific set of variables. The num-
ber of principal components of a dataset is equal to the number of variables,
with the first principal component having maximal variance and successive
principal components absorbing as much of the remaining variance as possi-
ble.

Given an n× q (with n ≥ q) data matrix Y with q× q covariance matrix
S, the q × 1 principal components ~v1, ~v2, . . . ~vq are vectors such that

max
〈~vi,~vj〉=0,1≤j<i

‖~vi‖=1

‖~vTi S~vi‖ (1)

Using the spectral decomposition theorem, which states that symmetric
matrix S can be decomposed into GBGT , with orthogonal matrix G and
diagonal matrix B, it follows that ~v1, ~v2, . . . ~vq equal the eigenvectors of S.
The variance of the ith principal component is equal to its corresponding
eigenvalue λi, with λ1 ≥ λ2 ≥ . . . ≥ λq.[15]

All of the variance in the q variables will be transformed into the q prin-
cipal components, but an effective PCA will concentrate a large proportion
of the variance in the first few principal components (as much as 95% of the
variance in 2 components is not rare). This result minimizes the number
of dimensions needed to sufficiently account for the variance in the entire
dataset.

For our metagenomic research, PCA was used to identify clustering within
the data, to test how various sample groups tended to cluster or spread, to
identify outliers, and to note relations between certain variables with samples
or other variables.

3.1 Visualization

A PCA plot (or biplot), as seen in Figure 1, graphs each metagenome as
a point in a 2-dimensional graph transformed over the first two principal
components. This can also be done in 3 dimensions over 3 components, or
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Figure 1: This figure shows a PCA plot of the organism-associated data. The variables
are represented as vectors, and each sample is plotted as a point. Distinct clusters emerge
naturally in this PCA, as seen in the corals widely dispersed on the left with high pho-
tosynthesis and respiration. The mat community and whale fall samples form their own
tight clusters on the right, and the microbiolites are loosely grouped in that area. This
graph displays over 90% of the variance from the original 27-variable dataset.
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in higher dimensions with multiple pairwise plots. Data points are usually
colored based on their metagenomic classification. Vectors representing vari-
ables are drawn, with coordinates based on their respective weights in the
principal components. Due to the nature of the analysis, the amount of vari-
ance explained by the first 2 dimensions will depend on the effectiveness of
the orthonormal combination. A good PCA graph will have the majority of
the variance contained in the first two principal components.

3.2 Samples

The PCA process is unsupervised, meaning that no classifications of samples
are given to the analysis. This makes PCA less vulnerable to misclassified
data or forming false divisions in classified data. Sample selection is crucial
in PCA. If the number of samples is too large and diverse, the graph is clut-
tered with data. If a particular class only has 2 or 3 samples (a common
occurrence in metagenomic data), the PCA will not be able to make defini-
tive conclusions about those classes. Ideally, the samples are fairly similar
and are not trivially seperated, but with distinct groups that the PCA can
differentiate between.

Due to the nature of PCA, outliers or outlier classes (most notably coral)
skew the maximal-variance principal components and thus the graph as a
whole. Conversely, PCA is adept at identifying outliers, partly due to being
unsupervised. These outlier data points are more easily found with an un-
scaled PCA (see Section 3.3), and removing them usually improves the PCA
(see Figure 2). Identifying and removing outlier data points has played a
crucial role in our metagenomic research, as throughout the process several
samples were found to be misclassified or contaminated.

3.3 Scaling and Centering

Scaling1 is an important technique when performing PCA. Normalizing the
variance for each variable prevents a variable with a high count (e.g. Car-
bohydrates) from being considered more important than a variable with a
low count (e.g. Dormancy and Sporulation), even though their variances are
proportionally the same. Conversely, a variable whose count is high may

1Note that this refers to scaling variables to normalize their variance, not the general
scaling applied to all metagenome samples prior to statistical analysis that normalized the
sum of each sample’s variables to 1.
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Figure 2: This plot uses the same data and variables as that in Figure 1, except that
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Figure 3: These two PCAs are of the same data over the same variables, but (a) has
all of its variables scaled to equal variance and (b) does not. The samples spread well in
the scaled graph, but this spread is only maintained by the coral samples in the unscaled
graph. The scaled graph treats each variable equally, while the unscaled graph reveals
Photosynthesis and Respiration to be the dominating variables. The scaled graph explains
79% of the variance, while the unscaled explains 84%.
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actually be much more significant than a variable whose count is low, and
scaling may not demonstrate this. Scaling also decreases the concentration
of the variance in the first couple principal components, which hinders the
ability of 2 or 3 dimensions to explain the entire dataset. This hindering
effect is amplified when there are more variables.

The following plots of organism metagenomes demonstrate this scaling
issue. Figure 3(a) is the scaled PCA, with an even spread between all of
the groupings. Figure 3(b) is the unscaled PCA, with a much larger spread
within the corals, and the rest of the samples clumped together. In this case,
the scaled plot does not demonstrate the extremely high variance internal to
the coral group, but the unscaled plot does not display any sort of spread
between the mat community, whale fall, and microbiolite groups.

Centering the metagenomic data such that each variable’s mean is 0 is
necessary, because otherwise every value is positive and this uncentered PCA
only occupies 2 quadrants of the graph. Note that the statistics program R
centers the PCA by default.

3.4 Variables

Variable choice is very important for PCA. Our metagenomic data has 27
different functional classifications as variables, yet very few samples due to
the novel nature of metagenomic research. The number of variables selected
must be less than the number of samples; otherwise PCA is not possible
due to dimensional limitations. Generally 5 to 10 well-picked variables were
sufficient capture the majority of the variance in a dataset.

Selecting a handful of variables with highest variance is the best way to
retain a high proportion of the variance in the dimensional reduction, al-
though other methods are viable as well. Variables with the highest variance
between class means aids in separating groups in the PCA. Using variables
from supervised Random Forest variable importance plot (see Section 7.1)
may be more effective in differentiating between classes. Selecting biologi-
cally significant groups of variables to see groupings based on specific traits
may also prove useful (see Figure 4).

In addition to finding clusters, PCA with specific variables over one well-
established group of samples yields properties of the variables in those sam-
ples (see Figure 4). The magnitude of the vectors is proportional to the
variance within that particular variable, and the angle between a pair of vec-
tors is linked to the correlation between those two variables. If two vectors
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are pointing in the same direction, they are positively correlated; if they are
pointing in opposite directions, they are negatively correlated; if they are
orthogonal, they are uncorrelated. This technique decreases in effectiveness
as the number of variables and thus the number of dimensions projected into
a single plane increases.
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Figure 4: These PCAs over variables associated with nutrient usage are of the coral (a)
and mat community (b) metagenomes. In the coral samples, Amino Acids, Carbohydrates,
and Protein Metabolism are by far the dominant nutrient-associated variables, as seen in
the vector magnitudes. The mat community samples are much more diverse in terms
of nutrient usage, and their vectors are much more even in length and distributed in all
directions.
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4 K-Means Clustering

K-means clustering is an unsupervised method which aims to classify obser-
vations into K groups, for a choice of K. This approach seeks to select K
means and partition observations into clusters in order to minimize the sum
of squared distances from each observation to the mean of its assigned group.
The function that is minimized is called the objective function:

obj(µ1, . . . , µK) =
n∑
i=1

minµ1,...,µK

∥∥x(i) − µk
∥∥2

(2)

where x(i) is an observation and µ1, . . . , µK are the means. The result is K
clusters where each observation belongs to the cluster with the closest mean.

The K-means algorithm starts by randomly selecting µ1, . . . , µK and plac-
ing all observations into groups based on minimizing the objective function
using Euclidean distance. As shown in Figure 5, group means are then calcu-
lated using the observations in each cluster and replace the previous means,
µ1, . . . , µK . The algorithm is repeated until additional runs no longer modify
the group means or the partitioning of observations. Each initialization of
the algorithm with multiple runs will converge to a minimum objective func-
tion, though not necessarily a global minimum. It is therefore a good idea
that the algorithm is initialized numerous times before selecting the means
and clusters which produce the lowest sum of squares.

4.1 Methods for K Selection

4.1.1 Sum of Squares Plot

Different choices of K will alter the output of the K-means algorithm, so
selecting the optimum K is important. A plot of the sum of squares versus
values of K is one technique that can be used for selection. This method is
useful for minimizing both the sum of squares within each cluster and the
value of K. The sum of squares decreases as K increases since the larger
the number of groups, the fewer observations are in each group, and thus,
the smaller the within-group sums. For this reason, selecting the K with the
smallest sum of squares overfits the data. It is desirable to select a K from
a plot that has an ‘elbow’, where there is a steep drop at a specific K from
which the plot more gradually approaches zero as shown Figure 8(a). With a
distinct elbow, a best K can be selected and useful classification may result.
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1 2

3 4

Figure 5: K-Means Algorithm. Observations are denoted by circles, means by
crosses, and clusters by dashed lines. Step one: For K = 2, means are randomly selected
and observations are partitioned into clusters. Step two, three, and four: Group means
replace previous means and observations are reclassified. Algorithm results in clusters and
means which minimize the objective function.
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Figure 6: K-Means Sum of Squares Plots

Depending on the data, the sum of squares plot does not always have a clear
elbow (see Figure 6(b)). For metagenomic data, it was not unusual for the
plot to appear rounded or have multiple elbows. In this case, alternative
approaches of selecting K were tested.

4.1.2 Silhouettes

With our metagenomic data, a more effective method of choosing K used
silhouettes which test how well an observation fits into the cluster it has
been partitioned into rather than the next nearest cluster. Silhouettes give
a good indication of how spread out groups are from each other. Let a(i) =∥∥x(i) − µk

∥∥2
and b(i) =

∥∥x(i) − µl
∥∥2

, where x(i) is an observation in group
k and l is the group with the next closest mean [15]. A silhouette is then
defined as

silhouette(i) =
b(i)− a(i)

max{a(i), b(i)}
. (3)

Ideally, each observation is much closer to the mean of its group than to
the mean of any other group. In this case, the silhouette would be close
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Figure 7: K-Means Sum of Squares Plot. Organism Associated and Coastal Marine
metagenomic data. Slight elbow at K = 5 indicates an optimal K of 4 or 5.

to 1. Figure 8(a) shows silhouette graphs for multiple values of K. Similar
to the sum of squares plot, one must be careful about choosing a minimal
K which has a large average silhouette width (see Figure 8(b)). Though
silhouette graphs frequently suggest a clear K to select, for some data there
is no indication of an optimal K. When neither the sum of squares plot nor
the silhouette graphs provide a best K, the algorithm then depends on a
semi-arbitrary choice of K.

4.2 Applications to Metagenomic Data

K-means is a mathematically supported method of selecting classifications
without regard to predetermined groupings. It therefore can be used as a
tool to check assumed classifications or to develop more meaningful ones.
With some metagenomic data, K-means identified biologically supported
groups which could then be used with visualization methods such as PCA (see
Figure 9) and supervised techniques that require initial classifications. Here
is an example with Organism Associated and Coastal Marine metagenomes2.

The sum of squares plot given by the data, shown in Figure 7, has a slight
elbow at K = 5. As a general rule, the K one up from the elbow is chosen to

2The Organism Associated data included the following number of samples: 2 fish gut,
2 fish slime, 9 mat communities, 3 whale fall, 31 human gut, 4 cow gut, 2 chicken gut, and
2 mouse gut. There were 57 samples of Coastal Marine metagenomes.

18



0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 2

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 3

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 4

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 5

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 6

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 7

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 8

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 9

0 40 80

0.
0

0.
6

Observations

S
ilh

ou
et

te
s

K = 10

(a) Silhouette Graphs. Organism Asso-
ciated and Coastal Marine metagenomic
data. Silhouettes calculate how well each
observation fits into the cluster it is parti-
tioned into versus the group with the next
closest mean. (In these graphs, silhouette
width corresponds to height.)
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(b) Average Silhouette Width Plot. Organism
Associated and Coastal Marine metagenomic
data. Minimizing K while maximizing the av-
erage silhouette width suggests 5 or 6 are op-
timal values of K. Demonstrates the conver-
gence of average silhouette width to one as K
increases.

Figure 8: K-Means Silhouettes

be the number of clusters. If it happens that the K at the elbow results in
better classification it can be used instead. According to our sum of squares
plot K = 4 and K = 5 are potential best K’s. To verify this, silhouettes were
used. Silhouette graphs for this data are shown in Figure 8(a). The average
silhouette width plot in Figure 8(b) shows a high average width for both
K = 5 and K = 6. Because these two values for K are similarly effective and
the sum of squares plot did not have a sharp elbow, the best strategy would
be to disregard K = 4 and run the K-means algorithm for both K = 5 and
K = 6 to determine which value results in desirable classifications.

Tables 1 and 2 show the resulting clusters for K = 5 and K = 6. The
clusters given by both values of K demonstrate two interesting qualities of
K-means. First, when partitioning observations with an increased number
of groups, clusters with high in-group variance are divided up first. When
K changed from 5 to 6, the new sixth group was composed of all available
fish associated samples along with two human samples, therefore splitting
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Cluster Number
Environmental Groupings Environment Types 1 2 3 4 5

Fish Gut 2 0 0 0 0
Water Organism Associated Fish Slime 2 0 0 0 0

Mat Community 9 0 0 0 0
Whale Fall 3 0 0 0 0

Human Gut 1 30 0 0 0
Land Organism Associated Mouse Gut 0 2 0 0 0

Chicken Gut 0 2 0 0 0
Cow Gut 0 3 1 0 0

Coastal Marine Coastal Marine 1 0 52 2 2

Table 1: K-means Clusters. Organism Associated and Coastal Marine metagenomic
data with K = 5. Clusters appear to agree with environmental groupings. Cluster 1 corre-
sponds with Water Organism Associated data, Cluster 2 with Land Organism Associated
data, and Cluster 3, 4, and 5 with Coastal Marine data.

Cluster 1 into two groups. Second, the ability of K-means to detect outliers
was demonstrated. For both values of K, three of the four coastal marine
metagenomes from Botany Bay did not group with the rest of the coastal
marine samples (two of which fall in Cluster 4, one in Cluster 1). This
indicates variance between these samples and the rest of the coastal marine
metagenomes. In addition, one human sample and one cow sample did not
group with metagenomes from similar environments for either value of K. It
would be useful to study these outlying metagenomic samples to understand
the biological reasons they are partitioned into different clusters.

For this example, the K-means algorithm output for K = 5 coincides
with environmental groupings. Cluster 1 corresponds with Water Organism
Associated data, Cluster 2 with Land Organism Associated data, and Clus-
ter 3, 4, and 5 with Coastal Marine data. In this case, the differences in
clusters were biologically identifiable in terms of environment. For K = 6,
Cluster 1 is divided into two separate groups and another human sample was
misclassified. Therefore this value of K did not give classifications that were
as desirable. One way to visualize the given results for K = 5 is to graph a
PCA with coloring given by K-means clusterings. Despite three misclassified
samples, the resulting PCA in Figure 9 shows clear clustering based on en-
vironmental groups, hence demonstrating the ability of K-means to identify
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Cluster Number
Environmental Groupings Environment Types 1 2 3 4 5 6

Fish Gut 0 0 0 0 0 2
Water Organism Associated Fish Slime 0 0 0 0 0 2

Mat Community 9 0 0 0 0 0
Whale Fall 3 0 0 0 0 0

Human Gut 0 29 0 0 0 2
Land Organism Associated Mouse Gut 0 2 0 0 0 0

Chicken Gut 0 2 0 0 0 0
Cow Gut 0 3 1 0 0 0

Coastal Marine Coastal Marine 1 0 52 2 2 0

Table 2: K-means Clusters. Organism Associated and Coastal Marine metagenomic
data with K = 6. Clusters do not agree with environmental groupings as well as for
K = 5. Cluster 1 corresponds with half of the Water Organism Associated data, Cluster
2 with Land Organism Associated data, and Cluster 3, 4, and 5 with Coastal Marine, and
Cluster 6 with the remaining Water Organism Associated data.

groups which are biologically significant. Although K-means produced nice
classifications in this example, even with a clear optimal K, clusters which
are identifiably meaningful in a biological way are not guaranteed.
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Figure 9: PCA using K-Means Clustering. Organism Associated and Coastal
Marine metagenomic data. Variables selected using Random Forest variable importance
plot (see Section 7.1). Despite a few misclassified samples, this PCA shows clear clus-
tering based on environmental groups, demonstrating the ability of K-means to produce
biologically significant classifications.
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5 Linear Discriminant Analysis

For a data set with predetermined groups, linear discriminant analysis(LDA)
constructs a classification criterion which can be used for predicting group
membership of new data. That is, linear discriminant analysis is a supervised
statistical technique. LDA finds linear combinations of the data’s variables
that best separate the groups, and using these linear combinations, we define
linear discriminant functions. The linear discriminant functions are hyper-
planes cutting through the data space trying to separate the groups.

Let X be a data set with defined groups 1, . . . , n. For each group j,
there exists a corresponding conditional distribution

X(i)|G(i) = j ∼ fj. (4)

Furthermore, let πj represent the proportion of X that is contained in group
j. To perform a linear discriminant analysis on X, we must assume that each
fj is normally distributed with an equal covariance matrix, but with possibly
different means 3. With this assumption, our conditional distributions for our
groups become

X(i)|G(i) = j ∼ N(µj,Σj). (5)

Consequently our maximum likelihood estimation becomes [15]

fj(x;µj,Σj) =
C

|Σj|1/2
e−

1
2

(x−µj)Σ−1
j (x−µj)′ , (6)

where C is the constant that insures fj is a pdf. Expanding (6) yields

fj(x;µj,Σj) =
C

|Σj|1/2
e(− 1

2
xΣ−1

j −
1
2
µjΣ−1

j )(x−µj)′

=
C

|Σj|1/2
e−

1
2
xΣ−1

j x′eµjΣ−1
j x′e−

1
2
µjΣ−1

j µ′j .

To classify a given data value x, we seek to maximize

πjfj(x;µj,Σj) = πj
C

|Σj|1/2
e−

1
2
xΣ−1

j x′eµjΣ−1
j x′e−

1
2
µjΣ−1

j µ′j (7)

3Logistic regression is a popular alternative to linear discriminant analysis, and does
not require these two assumptions about the group conditional distributions. However,
statisticians such as Jia Li and Jerome Friedman assert that LDA on a data set that has
group distributions not normally distributed and/or lacking equal covariance matrices will
have similar results to a logistic regression.

23



by choosing the appropriate j∈{1,. . .,n}. Note that we assumed each group’s
conditional distribution has equal covariance, and consequently Σj = Σk for
all j ∈ {1, . . . , n}. So let Σ = Σ1 = · · · = Σn. To find which j maxi-
mizes πjfj(x;µj,Σj) for a given x, it suffices to compare πjfj(x;µj,Σ) to
πkfk(x;µk,Σ) for all j. Therefore, it is unnecessary to keep the terms shared
by each fj(x;µj,Σ), and consequently we omit them. Hence we seek to
maximize the following instead of (7)

πje
µjΣ−1x′e−

1
2
µjΣ−1µ′j . (8)

We take the natural logarithm of the above equation to obtain our linear
discriminant functions

gj(x) ≡ log(πj) + µjΣ
−1x′ − 1

2
µjΣ

−1µ′j. (9)

Note that πj, µj, and Σ are unknown parameters for our groups’ conditional
distributions, so we estimate them using our sample data X in an intuitive
manner. Suppose X has N data points and group j has nj points contained

in it. Then we estimate πj by π̂j =
nj

N
, and µ by µ̂j =

nj∑
i=1

xi

nj
. Let Sj be the

sample covariance matrix for group j calculated from X. Also, Σ̂j is taken

to be 1/nth of the pooled covariance matrix of X. Consequently, Σ̂j = Σ̂k

for all k ∈ {1, . . . , n}. Therefore, let Σ̂j = Σ̂ for all k ∈ {1, . . . , n}. With
our population parameters estimated from our sample data X, the linear
discriminant functions from (9) become

gj(x) ≡ log(π̂j) + µ̂jΣ̂
−1x′ − 1

2
µ̂jΣ̂

−1µ̂′j. (10)

Note that (10) is a linear equation since log(π̂j)− 1
2
µ̂jΣ̂

−1µ̂′j is a constant.
These g′js from (10) are our classifying functions. Since for a point x we

sought to maximize πjfj, our classification criterion is

assign x to group j if gj(x) > gk(x) for all k 6= j.

With the classification criterion, decision boundaries between groups can
be found. The decision boundaries are where the discriminant functions
intersect. That is, the decision boundary between group j and k is

{x : gj(x) = gk(x)} (11)
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Therefore, the linear discriminant functions split the data space into regions.
Each region corresponds to a specific group and the decision boundaries
separate the regions.

5.1 Linear Discriminant Analysis on Metagenomes

Linear discriminant analyses were performed on a broad subset of the metage-
nomic data. For example, we looked at the metagenomes from the marine
environment, hypersaline environment, gut environment, and microorganism
environment separately. For an LDA on a subset of the metagenomic data,
leave one out cross-validation was used to judge the quality of the LDA as a
classifier. To visualize the separation between groups caused by the discrim-
inant functions, 2-dimensional plots using linear discriminants[30].

5.1.1 Cross-Validation

To judge how well a given LDA acts as a classifier for new data, a function
in the statistical program R that implemented leave one out cross-validation
was written[31]. Let X be a data set with m data points, and with groups
1, . . . , n. For an LDA carried out on X, leave one out cross-validation re-
moves one observation, x(i), at a time from X, performs an LDA on the
reduced data set, and then uses this new LDA to classify x(i). Since the
group membership of x(i) is already known, we can check if the quasi-LDA
for X classifies x(i) correctly or not. For every observation in X, the proce-
dure of leaving one out, and classifying with a new LDA is performed. The
number of misclassifications is found; say we had p misclassifications. Then
the proportion p

m
is an estimate for the probability of the linear discriminant

analysis carried out on X misclassifying a new observation.
The leave one out cross-validation uses the assumption that the quasi-

LDA’s of X as classifiers are representative of the LDA of X. For the metage-
nomic data, the sizes of our defined groups varied greatly. In particular we
had many groups with small sample sizes which raises the question if leave
one out cross-validation technique is the most appropriate way to judge a
given LDA as a classifier. To illustrate why, suppose we perform a linear
discriminant analysis on the data set X with defined groups 1, . . . , n. For
group j, suppose j = {xj1 , xj2}. During the leave one out cross validation,
eventually xj1 will be left out and then classified. However, when xj1 is left
out, our quasi-group j contains only one point xj2 . Then the discriminant
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function for group j is built using only one point. Consequently if xj1 is not
similar to xj2 , then it is not surprising that xj1 may be misclassified.

To view the classification results of leave one out cross-validation, a con-
fusion matrix was constructed (See Figure 10). For a confusion matrix, the
row and column names of the matrix are the group names from the data set.
If C is a confusion matrix, then the Cij entry in the matrix represents how
many data points from group i were classified into group j. Therefore the
diagonal entries represent correct classifications, and the off-diagonal entries
refer to misclassifications.

C =



G1 G2 G3 G4 G5 G6

G1 0 0 0 2 0 2
G2 0 3 0 1 0 2
G3 1 0 2 0 0 0
G4 1 0 0 1 1 1
G5 0 0 0 0 2 0
G6 0 1 0 1 0 2


Figure 10: Example of a confusion matrix. The Cii entry refers to the quan-
tity of observations from group i classified into group i. The off diagonal
entries refer to a misclassification. The Cij entry represents how many ob-
servations from group i were misclassified into group j.

5.1.2 Subsampling

For a meaningful misclassification measure from a leave one out cross-validation,
subsampling prior to performing an LDA may be needed. Subsampling
should be implemented when group sizes have large variation, to reduce one
or more groups’ sizes. Subsampling refers to taking a random subset of a set
with replacement. That is, subsampling k points from a group G is the pro-
cess of randomly choosing k samples from group G with replacement. This
gives k random samples from G, and these k samples are taken to be the
new group G. The motivation for subsampling groups for linear discriminant
analysis is to prevent groups with large sample sizes from dominating the
leave one out cross-validation.

Consider the gut sample metagenomes(Table 3). The twin group con-
sists of 18 samples, and the human group consists of 13 samples. These
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two group sizes are significantly larger than the other groups from this
data set, and therefore, dominate an LDA–in particular the human and
twin groups monopolize the misclassification rate reported from the cross-
validation. Two different linear discriminant analyses were run on the gut
sample metagenomes; one with subsampling, and one without subsampling
(Table 3). The leave one out cross-validation led to differing results depend-
ing on whether subsampling was used or not. For an LDA performed on the
original groups, the leave one out cross-validation resulted in 27% misclassi-
fication rate. For the gut sample metagenomes with subsampled human and
twin groups, the leave one out cross-validation resulted in a 35% misclassifi-
cation. Differing conclusions can be drawn from the two linear discriminant
analyses even though the misclassifications rates only differ by 8%.

The human and twin groups account for 31 out of 41 total data samples
for the gut metagenomes, and 16% of the twin and human samples were
misclassified. The remaining 10 data points, which represent 4 of the 6
groups, had a 60% misclassification rate. Since each data sample contributes
equally to the misclassification measure, the human and twin groups are
overrepresented in the misclassification measure.For the metagenomic data,
near equal contribution to the misclassification measure by each group is
desired. In this instance, it is wise to subsample the human and twin groups,
in order for each group to contribute fairly to the misclassification measure.

For the LDA performed on the gut sample metagenomes that were sub-
sampled, there was a 35% misclassification rate, as mentioned above. From
the confusion matrix (Figure 11(b)), it is evident that the fish samples are
classified correctly, while the mouse samples were both misclassified. Be-
sides these comments, it is difficult to take away other conclusions from the
confusion matrix.


Chicken 1 0 0 0 0 1
Cow 0 3 0 0 0 1
Fish 0 1 0 0 1 0
Human 0 1 0 9 2 1
Mouse 0 1 0 1 0 0
Twin 1 0 0 0 0 17


(a) Original Gut Metagenomes


Chicken 1 0 0 0 0 1
Cow 0 3 1 0 0 0
Fish 0 0 2 0 0 0
Human 0 0 0 3 0 1
Mouse 0 0 0 2 0 0
Twin 1 0 0 0 0 2


(b) Subsampled Gut Metagenomes

Figure 11: Confusion Matrices for LDA’s Performed on Gut Metagenomes
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Gut Sample Metagenomes
Group Name Original Sample Size Sample Size After Subsampling

Chicken 2 2
Cow 4 4
Fish 2 2

Human 13 3
Mouse 2 2

Twin Study 18 4

Table 3: Group sample sizes before and after subsampling was performed

5.1.3 2-Dimensional Plots using Linear Discriminants

The linear discriminant functions are functions of 27 variables for the orig-
inal metagenome data. Consequently we cannot visualize the discriminant
functions directly in the data space, and how they separate the groups. To
see the separation of the groups, a 2-dimensional plot using the linear dis-
criminants as axes variables are made in R[31]. Linear discriminants, not
to be confused with linear discriminant functions, are linear combinations of
the variables that best represent the between-class variance[30]. There is a
close relationship between linear discriminants and the linear discriminant
functions, and therefore, no harm is done in using linear discriminants as our
axes.

Consider the Organism Associated and Mat-forming Metagenomes (Ta-
ble 4). The mat community group consists of samples from microbial mats,
the microbiolite group consists of samples taken from sedimentary structures
structures that are composed of microorganisms, and the slime group con-
sists of slime samples taken from fish. Figure 12 shows a 2-D plot using
the first two linear discriminants from the LDA performed on the organism
associated and mat-forming metagenomes. The mat community and micro-
biolites are plotted next to each other, while there is separation between the
other groups. Since the first two linear discriminants represent 91% of the
between-group variance, this plot represents most of the group separation
caused by the LDA. Furthermore, the leave one out cross-validation of the
LDA resulted in 5 misclassifications. 3 of the 5 misclassifications were mi-
crobiolites misclassifying into the mat community, and 1 of the remaining 2
misclasifications was a mat community sample misclassifying into the micro-
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Organism Associated and Mat-forming Metagenomes
Group Name Sample Size

Coral 6
Mat Community 10

Microbiolites 3
Slime 2

Table 4: Organism Associated and Mat-forming Metagenomes

biolites. These four misclassifications are reasonable from Figure 12, since
the mat community and microbiolite groups were plotted next to each other.
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Figure 12: Together, the first two linear discriminants explain 91% of the
between-class variance. Five misclassifications resulted from leave one out
cross-validation: all three microbiolites were misclassified into the mat com-
munity, one mat community sample was misclassified as a microbiolite, and
one coral sample was misclassified into the mat community.
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6 Trees

6.1 An Introduction to Trees

A tree analysis generates a branching decision scheme, which graphically re-
lates values of a response variable to values of one or more predictor variables.
There are two types of trees, classification trees and regression trees. When
the dataset is divided into predetermined classes–generally by a discrete-
valued response variable–the tree algorithm constructs a classification tree,
which uses the predictor variables to distinguish between classes. When
classes are not provided, the process constructs a regression tree, which pre-
dicts average values of the response variable. At each branching point, trees
of each type attempt to minimize the node impurity, or the mixing of different
values of the response variable on a single side of a branch. However, the two
types of trees rely on different measures of impurity. Our analysis will focus
on classification trees, outlining the theory, construction, and application of
these trees as they relate to metagenomic analysis.

Most trees are constructed using a greedy algorithm, which begins at the
root node and proceeds down a series of binary branching decisions until
terminating at the leaves. Although the set of predictor variables and split-
ting points chosen by this greedy algorithm may not be globally optimal,
the procedure is computationally efficient. At each branch, the algorithm
chooses a single predictor variable and a critical value of this variable which
minimizes the impurity of the resulting node. Specifically, most tree algo-
rithms use either the Gini criterion, the twoing criterion, the deviance, or
the misclassification rate as methods of measuring and ultimately of limiting
node impurity [3, 14]. Deviance is based on the likelihood of each split, and
the Gini criterion is described in the section on Random Forests 7. Minimiz-
ing the deviance or Gini during tree construction and then minimizing the
misclassification rate during tree cross-validation is a standard technique [7].
As a result of their reliance on binary partitions, trees are invariant under
monotonic transformations of the predictor variables and thus most variable
scaling is unnecessary. Good trees balance classification strength against
model complexity to maximize prediction strength and minimize over-fitting.
Most authors suggest growing a large tree and using a pruning technique to
select the strongest model from a nested series of subtrees of that original
tree [3].
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Zone Cell Wall Photosynthesis

tropics 0.055789155 0.002531765
n.temp 0.054635574 0.00270913
n.temp 0.047888534 0.00272034
tropics 0.053397667 0.002728348
...

...
...

Table 5: An excerpt from the coastal marine dataset

6.2 Coastal Marine Samples by Geographic Zone

The tree in Figure 13 uses photosynthesis and cell wall hierarchies to clas-
sify various coastal marine metagenomes based on the geographic zone in
which each sample was collected. First, an initial tree containing 7 different
leaves was grown to fit the coastal marine data, an excerpt of which is given
in Table. 5 [22]. Next, this tree was pruned to minimize the 10-fold cross-
validation rate over a series of 100 random trials 4. Limiting the data to
metagenomes of a single type (marine) from a single environment (coastal),
helps eliminate confounding variables, and focuses the analysis on differences
between the two geographic zones. Coastal samples from the southern tem-
perate zone were excluded because of a lack of sufficient data, and samples
from between 23.4◦N and 30◦N were also excluded in order to better dis-
tinguish between samples from the two remaining zones, northern temperate
and tropical. The resulting tree is effective as a classifier, with an error rate
of only 12%, although its error rate as a predictor may be higher. Further-
more, the model indicates simple relationships between the predictor and
the response variables: coastal samples from the tropical zone exhibit higher
diversity in photosynthesis and cell wall hierarchies than those collected in
northern temperate zone.

The scatterplot in Figure 14, indicates the correspondence between the
sample space and the tree diagram. Each coastal marine data point is la-
beled based on the geographic zone in which it was collected, and each axis

4See Section 6.3 for more information on cross-validation procedures. Figure 15 plots
this misclassification rate for various tree sizes
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|Cell.Wall.and.Capsule < 0.0504919

Photosynthesis < 0.0039528

Cell.Wall.and.Capsule < 0.0514783

n.temp

n.temp tropics

tropics

Coastal Marine Samples Divided by Geographic Zone

Figure 13: Coastal marine samples from two geographic zones: northern temperate and
tropical. The tree plot groups samples using as predictor variables the relative diversity of
the cell wall hierarchy and of the photosynthesis hierarchy. Labels on each branch indicate
the splitting criteria, and labels on the leaves indicate classifications. For example, samples
with less than 5.05% of identified genetic material in the cell wall hierarchy are grouped on
the left side of the first branch and are classified as tropical. The plot is both a classification
tool and an indicator of how these functional groups change across geographic zones.
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Figure 14: A scatter plot corresponding to the coastal marine data in Figure 13 The
two axes correspond to the two functional hierarchies, and data points have been labeled
based on geographic zone. Solid lines within the plot indicate branching in the tree dia-
gram, whereas dashed lines indicate branchings in the over-fitted tree, which was originally
grown. All divisions in the sample space are rectangular, later divisions (all those on the
bottom right) divide between fewer data points, and the predictive strength of each split
must be determined through cross-validation.

corresponds to one of the predictor variables, the x-axis to cell wall diversity
and the y-axis to photosynthesis diversity. The solid lines drawn inside the
plot indicate branchings in the tree diagram. The first branch corresponds
to the vertical division separating low and high levels of cell wall diversity,
and subsequent branches correspond to the solid lines in the lower right.
It is evident from the scatterplot that all divisions in the sample space are
rectangular, i.e. that branching only depends on whether a single predictor
variable is greater than or less than a critical value.

The original 7-leaf tree was pruned back after cross-validation, and the
scatterplot indicates that the tree was likely overfit. Dashed lines within the
plot indicate branches grown in the original tree that were pruned back during
cross-validation. The position of each of these divisions was determined by
very small subsets of the original dataset: only 6 samples were used to fit
the horizontal line on the bottom right. The final branches in a large tree
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diagram are fit using small subsets of the original data and may not be
statistically significant. As long as data points from separate classes are
distinct, a tree can be grown until it perfectly fits the data set, although in
extreme cases this may result in a tree with only one data point per leaf.
Cross-validation and pruning techniques help avoid this type over-fitting,
and many of the techniques are more straightforward than those available
for other classification techniques.

6.3 Pruning and Cross-Validation

After a tree has been grown, model selection algorithms can be used to select
a best-fitting subtree. The different model selection techniques balance tree
size against classification strength, seeking to minimize the quantity:

λ(treesize)− impurity(Tree). (12)

In Equation 12, λ is a cost complexity parameter, which determines the
specific balance between model size and strength. Depending on the specific
model selection tool, the term for impurity will be replaced by a specific
measure such as the misclassification rate or the deviance of the entire tree5.
Given a cost complexity parameter, one can select a unique subtree from a
nested series inside the original tree that minimizes the quantity in Equa-
tion 12 [3]. This procedure yields a sequence of subtrees of decreasing size;
the length of this sequence is at most the number of leaves in the original tree.
The choice of this cost complexity parameter is not clear, but cross-validation
can be used to select a best-fitting tree from this sequence of subtrees.

Many projects in metagenomics already suffer from a lack of sufficient
data, and so cross-validation techniques should attempt to preserve as much
data as possible in the training set. One of the most efficient techniques
is k-fold cross-validation [3]. In this method, the data set is divided into
k randomly selected groups of near equal size. A tree is built using the
data points in only (k − 1) of these subsets, and a sequence of subtrees is
constructed as described in the previous paragraph. Next, this tree and its
subtrees are used to predict the classes of the remaining 1/k data points,

5Total deviance is computed by summing the deviance of each leaf, and this value
should be distinguished from the single-node deviance used in tree construction.
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Tree Size Cross Validated Deviance

1 68.99766
2 67.43564
3 65.40249
4 63.74900
6 63.51468
7 70.38529

Table 6: A table comparing average deviance and tree size, for the coastal marine data
set. Estimated total deviance values were computed using one hundred 10-fold cross-
validation trials. Using this method of cross-validation one would select a tree with either
4 or 6 leaves. Note that this is a larger tree than selected using the method in Figure 15.

and these predictions are compared against the actual classes of these data
points. The misclassification rate and the cross-validated deviance estimate
are computed for each tree, and the process is repeated for each group of
k − 1 subsets. The misclassification and deviance values for each tree size
are averaged over the k repetitions, and the best subtree can be selected.
This k-fold cross-validation procedure can be repeated several times, so that
different subsets are selected in each trial.

Several statistical packages, including R, have implementations of k-fold
cross-validation. However, some freedom remains in selecting the specific
method and style of cross-validation. One of the simplest methods is to
average the cross-validated deviance over several trials, and to select the
tree size which minimizes this deviance. Then, a full tree can be grown
using all of the available data, and this tree can be pruned back to the
selected size [15]. However, this method often over-estimates the number of
branches that should be included in the final tree [7]. An alternative method
that addresses this issue is as follows: Determine the misclassification rate
over several cross-validation trials. Next, compute the standard error in the
misclassification rate. Finally, select a larger tree only if its misclassification
rate is one standard deviation less than that of a smaller tree [3]. We applied
both methods to the coastal marine dataset with k = 10. The results of
100 cross-validation trials are given in Figure 15 and in Table 6. Although
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Coastal Marine Metagenomes: CV Misclassifications vs Tree Size

Figure 15: A plot of the average number of misclassifications versus sub-tree size, where
the original 7-leaf tree was grown using the coastal marine dataset. The misclassification
rate is based 100 trials of a 10-fold cross-validation experiment. In contrast to the method
of minimizing cross-validated deviance, this plot suggests that a best-fitting tree only
include one branch, the first branch in Figure 13.

there are many different options for and implementations of these model
selection algorithms, a basic understanding of the procedures will result in
reasonable trees well suited for data exploration. Trees constructed using
cross-validation tools are less susceptible to overfitting than many other forms
of classification.

6.4 Applications to Metagenomics

Since metagenomic data often includes a large number of variables but only
a small number of samples, variable selection is an important consideration.
Unlike other classification methods (such as linear discriminant analysis),
trees often select small subsets of the original predictor variables for use in
classification, and so trees can be used as variable selection tools. However,
since the set of variables chosen by a tree is not necessarily optimal and since
trees do not give information on any predictor variables not used in classifi-
cation, trees are not ideally suited for variable selection. Other tools, such
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as the related Random Forests 7, are preferable. If a subset of the predictor
variables is of special biological or statistical interest, a tree analysis can be
performed just on that subset of variables. Selecting variables before growing
a tree will decreasing computation time and can also increase the significance
of the final analysis. For example using the Random Forest technique, one
can determine which predictor variables are strong classifiers, and a tree
can be grown just using these variables. However, the significance of a tree
grown using a preselected variable set can be challenging to calculate, and
such calculation ultimately depends on the specifics of the variable selection
procedure.

The standard tree construction scores errors between any pair of groups
in the same way. The tree in Figure 17 includes samples from two different
studies of human subjects, labeled as twin gut and as human gut. The tree at-
tempts to separate these classes of human associated samples just as strongly
as it attempts to separate the human samples from the fish associated sam-
ples. It might not be important for a tree to distinguish between these two
very similar classes, whereas a good tree plot should probably distinguish
between the human samples and metagenomes from deep water marine envi-
ronments. In order to account for similarities between classes or to prioritize
separations between certain classes, one can run the tree analysis using a
loss matrix. This matrix includes a scoring system for penalizing misclassi-
fications between different groups, and the resulting tree should emphasize
separations between groups as prioritized in the loss matrix. However, the
implementation of this technique in many statistical programs and the choice
of reasonable scoring weights remain obstacles 6 .

Another consideration when using tree analysis is its frequent instability
with respect to changes in the dataset. If even a small number of samples
is discarded from the dataset and a new tree is constructed, this second tree
may use a different set of predictor variables than the first, and the two trees
may not be easily compared. This can complicate cross-validation, which
assumes that the misclassification error rate of a tree grown with the entire
dataset is approximately equal to that of a tree grown with k − 1/k of the
data set. Instability generally increases as both the size of the dataset de-
creases and the number of predictor variables increase, so finding a sufficient
number of metagenomic samples for the construction of stable trees can be

6The R package rpart [26] allows the specification of a loss matrix whereas the package
tree [22] allows the specification of observational weights.
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challenging. Variable selection can help decrease instability issues, but at the
price of decreasing the tree’s simplicity and eliminating its use as a variable
selection method. Random Forest techniques address problems of both vari-
able selection and instability while eliminating the need for cross-validation.
However, Random Forests often lack the the simplicity which makes trees an
attractive analytical option.

6.5 A Tree Analysis of Various Microbial Metagenomes

This final subsection presents a brief overview of the tree construction proce-
dure as applied to a simple dataset consisting of metagenomic samples of five
different classes. An overlarge tree is first grown, and the results of 10-fold
cross-validation experiments are presented in Table 7 and in Figure 16. Since
a 7-leaf tree was the largest tree which could be grown using this dataset,
the misclassification plot in Figure 16 terminates before sloping upwards for
higher values of tree size. The lowest value of average cross-validated deviance
is attained with a 6-leaf tree. However, the misclassification method suggests
a choice between the 3-leaf tree and the 5-leaf tree, which has an error rate
close to one standard deviation less than the 3-leaf tree. The smaller tree
separates between human and twin samples, and groups all other samples on
the other side of the tree. This grouping results from sample size issues–the
human and twin studies were larger than the other studies–and could be al-
tered using a loss matrix. The 5-leaf tree is given below in Figure 17. This
tree groups twins and humans on the same side of the tree, it distinguishes
between samples from each of the five different classes, and it indicates the
importance of the respiration hierarchy in distinguishing between terrestrial
associated human gut samples and the remaining sample types. A more
detailed exploration will require a larger dataset and additional statistical
tools.
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Various Microbial Metagenomes: Tree Size vs. Deviance:
Tree Size Average CV Deviance

1 163.4791
2 172.7798
3 161.7896
4 150.6584
5 147.9482
6 146.6510
7 150.7419

Table 7: A table of average deviance versus tree size for an analysis of various microbial
metagenomes. The minimum deviance is attained with a 6-leaf tree, although the im-
provement between a tree of size 5 and size 6 is minimal. The tree resulting from pruning
to 5 leaves is plotted in Figure 17, which can be found below.
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Various Microbial Metagenomes: CV Misclassifications vs Tree Size

Figure 16: A plot of CV misclassifications for a tree analysis of the mixed microbial
dataset. The mean and standard deviations were computed after performing one hundred
10-fold cross-validation trials.
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|
Respiration < 0.0361596

Membrane.Transport < 0.0159585 DNA.Metabolism < 0.0416289

Amino.Acids.and.Derivatives < 0.130985

Twin Gut Human Gut

Fish Associated Deep Water

Mat Community

Various Microbial Metagenomes: Fitted Tree Plot

Figure 17: A classification tree dividing various microbial metagenomes into five groups
corresponding to sample type. The tree plot distinguishes between data groups with
misclassification error of approximately 19%, and was constructed by pruning a larger
tree. The number of leaves was selected from the cross-validation experiments, which
are depicted in Table 7 and Figure 16. The importance of the respiration hierarchy in
distinguishing between marine and terrestrial associated samples is evident from the first
branch.
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7 Random Forests

While decision trees are useful classification instruments, the biggest draw-
back is their lack of robustness. Re-running the same data can yield different
results. Instead, Random Forests[25] examine a large ensemble of trees. We
generate the different trees by randomly choosing a subset of the data and
variables at each step. We can then count how many times given results were
observed and return the most plural result. This is analogous to a democracy
where each member is given a vote and majority rules. Random Forests may
be used alone or in conjunction with other clustering and graphical methods
to ascertain a range of information.

Another benefit of Random Forests is that they are not computationally
intensive. A Random Forest with one thousand trees trained on two hundred
metagenome datasets takes only seconds to compute on a desktop computer.

7.1 Supervised Random Forest

In the supervised version of a Random Forest, class groupings are given to
the classification algorithm. The trees are generated to classify around these
given groups. A random sampling of available metagenomes is chosen with
replacement to generate each tree as shown in Figure 18. Furthermore, at
each node, a random subset of the available variables are used to determine
node splitting, unlike the single classification tree which would examine them
all. The number of variables to be considered at each node can be specified
as an input variable to the algorithm.

New metagenomic data is analyzed by all the trees and classified into the
group that the plurality of the trees indicate. The Random Forest can then
use the generated trees to predict the environment to which a new unclassified
metagenome belongs. Due to the plurality consensus of this method, the
instability of a single tree is overcome, resulting in a more robust result,
especially when using a large number of trees. However, because the trees in
the Random Forest all differ from one another, unlike a single classification
tree, the Random Forest does not produce branching rules. Instead, the
Random Forest produces an out-of-bag (OOB) error, a confusion matrix,
and variable importance measures.

To grow each tree, a new dataset, the same size as the initial training
set, is generated by sampling with replacement. The term for this process is
bagging, which stands for bootstrap aggregating. The metagenomes that are
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Samples

Bag Bag BagOut Out Out

Figure 18: The squares, circles and triangles represent samples from three different
metagenome environments. The metagenomes are used to create many permutations of
in-bag and out-of-bag sets. The in-bag sets are generated by bootstrap sampling with
replacement. The out-of-bag sets are composed of all metagenomes that were not selected
at least once by the bootstrap sampling. Each in-bag set is used as training data to
generate one tree. Each tree has a different structure for predicting the classes square,
circle and triangle.

chosen at least once during the sampling process are considered in-bag. The
remaining metagenomes are considered out-of-bag (OOB) for the resulting
tree. These new datasets are used to generate a single tree each in the
Random Forest, as depicted in Figure 19. Upon completion of the forest,
each metagenome sample is out-of-bag for a subset of the trees. That subset
is used to predict the class of the metagenome. If the predicted class does
not match the original given class, OOB error is increased[25]. A low OOB
error means the forest is a strong predictor.

Misclassifications contributing to the OOB error are displayed in a con-
fusion matrix as shown in Figure 20. The confusion matrix shows how many
of the metagenomes were classified in each class, on a class basis. If some
classes are often misclassified as each other, that may indicate a biological
closeness between those groups. Furthermore, the confusion matrix may clar-
ify the OOB error. A Random Forest with a high OOB error may still be
a strong predictor of particular environments. A Random Forest with a low
OOB error may not actually be a good predictor – in the case where the
classes have highly varying sizes, if all the small classes are misclassified as
the larger ones, OOB error will still be small.

While the Random Forest does not have branching rules, biological insight
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Figure 19: Graphical representation of samples sorted into in-bag and out-of-bag. The
in-bag samples are used to generate a tree. The out-of-bag samples are compared to all
trees for which they were out-of-bag. In this figure, a square was predicted to be a circle.
This would increase the OOB error.

human hypersaline mat community spring terrestrial water class.error

human 31 0 1 0 0 1 0.0606061
hypersaline 0 8 0 0 0 7 0.4666667

mat community 0 0 9 0 0 1 0.1000000
spring 0 2 0 3 0 1 0.5000000

terrestrial 5 0 0 0 3 1 0.6666667
water 0 0 1 0 0 129 0.0076923

Figure 20: Confusion matrix showing results from a Random Forest generated from
33 human, 15 hypersaline, 10 mat community, 6 spring, 9 terrestrial, and 130 wa-
ter environments. The rows in the confusion matrix represent the given classes of the
metagenomes. The row sums without class.error equal the total number of samples of
each class. The columns represent the classes predicted by the subsets of the trees for
which each metagenome was OOB. Each class error, weighted for class size, contributes
to the single OOB error. The overall OOB error in this example is 9.85%, with the
hypersaline and terrestrial classes being misclassified the most often.
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may be ascertained by exploring variable importance measures such as mean
decrease accuracy and mean decrease Gini. These values indicate which
variables contributed the most to generating stronger trees. We then use
the indicated important variables to generate single trees with branching
rules or used in canonical discriminant analyses.

The mean decrease accuracy of a variable is determined during the OOB
error calculation phase. One at a time, each variable is randomly permuted
along the set of metagenomes. The classification is then computed by the
subset of the Random Forest similarly to the computation of normal OOB
error. The more the accuracy of the Random Forest decreases due to the
permutation, the more important variable is deemed[25]. Variables with
large mean decrease accuracy are more important in proper classification.

The mean decrease Gini is a measure of how a variable contributes to
the homogeneity of nodes and leaves in the Random Forest. Let pmgi

be the
proportion of samples of group gi in node m. Let gc be the most plural group
in node m. The Gini index of node m Gm is defined as:

Gm = 1−
∑
i∈g

pmgi
∗ pmgi

. (13)

The Gini index is a measure of the purity of the node, with smaller values
indicating a purer node and thus a lesser likelihood of misclassification[14].
Tree generating algorithms may use this index as their likelihood to pick
which variable to split on. Each time a particular variable is used to split
a node, the Gini index for the child nodes are calculated and compared to
that of the original node. When node m is split into mr and ml, there is a
probability pmr of samples going into the child node mr and pml

of going into
ml. The decrease[3] in Gini is then:

Dm = Gm − pmrGmr − pml
Gml

. (14)

The calculated decrease is added to the mean decrease Gini for the splitting
variable and normalized at the end. The greater the mean decrease Gini of
a variable, the purer the nodes splitting.

In Figures 21 and 22, the variable importance plots for a Random Forest
generated from the microbial data sets are shown. Looking at the natural
breaks in the graph, we chose the top scoring 7-8 variables from both. Be-
cause many are overlapping, this generates a set of 11 unique variables used
to generate trees or canonical discriminants.
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Figure 21: Mean decrease accuracy variable importance plot for Aquatic, Human, Hy-
persaline, Mat Community, Spring, and Terrestrial groupings. Variables Phages and Mem-
brane Transport contribute greatly to the classification accuracy of the generated trees.
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Figure 22: Mean decrease gini variable importance plot for Aquatic, Human, Hyper-
saline, Mat Community, Spring, and Terrestrial groupings. The variable Phages con-
tributes greatly to the node purity of the generated trees.
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Supervised Random Forests are a good tool for classification, prediction
and variable selection. The variable importance measures generated offered
insight into which hierarchies strongly differentiate metagenomes. The im-
portance rankings generated can be used to select variables for other tech-
niques. Out-of-bag error and confusion matrices can be used to assess the
quality and differentiability of the metagenome groupings.

7.2 Unsupervised Random Forest

In an unsupervised Random Forest, the metagenome data is input without
class specifications. Instead, synthetic classes are generated randomly and
then the trees are fit. Clusters form because metagenomes will end up in the
same leaves despite the synthetic classes. As Figure 23 shows, the samples
that are similar may still end up in the same leaf despite different synthetic
classes. Since the prediction and variable importance calculations in this
method are based on the synthetic classes, these features are not useful for
an unsupervised Random Forest.

Whenever two metagenomes end up in the same leaf of a tree in a Ran-
dom Forest, their proximity measure is increased[23]. This proximity is nor-
malized so that a metagenome has a proximity of one with itself. Then,
1−proximity can be used as a dissimilarity measure for partitioning around
medoids (PAM). The dissimilarity grouping can be visualized using a mul-
tidimensional scaling (MDS) plot which works similar to PCA but on dis-
similarity data. An example using all three of these techniques will be given
after the section on PAM.

7.3 Partitioning Around Medoids (PAM)

Partitioning around medoids (PAM)[15] is similar to K-means with a different
measure. Like K-means, PAM attempts to create K clusters, where K is
given. Also, original grouping size variances are not much of an issue, though
within group-variances may cause problems. Unlike K-means, the measure
used need not obey the triangle inequality. Dissimilarity measures should
be symmetric between metagenomes and each metagenome should have a
dissimiliarity of 0 with itself.

Instead of clustering around calculated means, PAM creates its clusters
around whichever K metagenomes (known as medoids) minimize the sum of
the distances between other cluster members and the medoid. Silhouettes
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Figure 23: The squares, circles and triangles represent samples from three different
metagenome environments. Samples are randomly flagged with synthetic classes black
and white. Samples A and B have different synthetic classes, but are sorted into the same
leaf during tree generation. Every time two samples are in the same node, their proximity
measure is increased. In this example, the proximity between sample A and sample B
would be increased.

can be calculated as they were for K-means to help determine a value for K.
Again, visualization of the groups can be done with an MDS plot.

Unsupervised Random Forest with PAM classifying can be a strong argu-
ment for metagenome groupings – none of the original grouping information
was used, yet groupings formed within a large number of randomly created
trees. The method also has the benefit of not relying on any particular dis-
tribution of the data, which works well with metagenomic data which may
not be normal.

7.4 Applications to Organism-Associated and Mat-Forming
Metagenomes

Supervised and unsupervised Random Forest methods explain variations in
data samples via different mechanisms which result in each method provid-
ing the opportunity to glean biological connections from different points of
view. A good example of the differences and interplay between the results
obtained from supervised Random Forest and unsupervised Random Forests
with PAM is the case of 4 distinct microbial environments that were analyzed
together.

The four environments are: coral (n = 6), slime (n = 2), mat com-
munity (n = 10) and microbiolites (n = 3). Microbial slime samples were
collected from the sides of freshwater fish that were found to be high in
Sulfur. Both healthy and morbid fish slime samples collected. The coral
samples were collected from the community of metazoans, protists and mi-
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Figure 24: Four organism environments: Coral, Mat Community, Microbiolite, and
Slime. The three Microbiolite microbial samples come from very different environments
and naturally class with organisms that live in those environments.
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Figure 25: Four organism environments: Coral, Mat Community, Microbiolite, and
Slime. Even though the microbiolite are highly different from one another, it was able to
find subsystems that uniquely differentiate each community from the rest. Hence the four
tight clusters we see here.
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crobes associated with scleractinian corals, otherwise known as the coral
holobiont. Metagenomes from both healthy and stressed coral (each subject
to a different kind of stress) samples were collected [28]. The mat-forming
metagenomes came from porous Teepee-like structures of evaporative salt
deposits. Vast and diverse microbial life was found within the evaporates
creating layered hypersaline communities that had developed highly adap-
tive methods for surviving in their extreme environmental conditions(cite/).
Last the microbiolite came from stromatolites and thrombolites found in a
marine location at Highborne Cay in the Bahamas and two freshwater loca-
tions: Pozas Azules II and Rio Mesquites in Mexico [8].

The different metagenomic samples of a given environment type, as de-
scribed above, were found to exhibit high genomic and physiological diversity.
While being phylogenetically related microbes, a genetic uniqueness could be
ascribed to each of them. Further microbes with similar lifestyles were found
to contain a core or minimal set of genes required for survival in similar
conditions [28].

Such findings emanated from a newly formed school of thought that has
found that functional subsystems uniquely define environment-types [9]. De-
tractors to this novel idea often posit the enormous complexity and vari-
ability within environment-types and the ‘sharing’ of given genomic parts by
microbes that belong to different environments making it difficult to uniquely
differentiate given environment-types. We were interested in describing these
findings via different statistical methods.

To do so, we would first need to employ a classification algorithm that
would create tight clusters for each environment-type, in spite of the genomic
diversity among samples belonging to the same environment-type. And that
at the same time would display clear separations among environment-types,
in spite of the high similarities of environments-types (it is often very chal-
lenging to statistically differentiate mat communities and microbiolites). Sec-
ondly, we needed a classifier that was unbiased of environment-type member-
ship which would find relevant associations of individual samples with other
different environment-type microbes who shared similar lifestyles.

To carry out the first part of the analysis we employed a supervised
Random Forest algorithm which generated the proximity measure for each
of the n = 21 samples and then employed an MDS plot that found the
linear combinations of the proximity measures that would minimize the intra-
cluster distances and maximize the inter-cluster space when the 27 functional
subsystem space was collapsed into the 2 dimensions that best described the
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clusters. Figure 24 shows the MDS plot of the supervised Random Forest
proximity measures of the four microbial environment-types.

Because each of the environments was placed in a single tight cluster with
statistically significant separation between them, we know that the proximity
values must be high within each group, leading to clear divisions in the MDS
plot. The algorithm knows the desired groupings so it does its best to create
branching patterns among the 27 subsystems that are best at differentiating
the desired classes. It should be noted that such results are not the norm,
especially when dealing with environmental metagenomic data. The confu-
sion matrix showed an error of 19% which came primarily from microbiolite
being misclassified as mat. One coral that was stressed by adding nitrogen
(nutrient) to it is sometimes misclassified as a mat due to the high nitrate
concentration in the hypersaline deposit.

The four unique clusters seen on Figure 24 support findings by Dinsdale
et al to the effect that metagenomic functional subsystem analysis is able
to clearly define environments [9], and explain variations among and within
microbial communities.

For the second part of the analysis we employed an unsupervised Random
Forest algorithm to generate proximity measure for each sample, unbiased
environment-type membership. Because the unsupervised Random Forest
starts by generating random synthetic classes ignorant of the sample’s true
group membership, an unbiased ‘natural’ clustering emerges. While the su-
pervised RF was employed to find given classes (i.e. to find the core shared
set of genes per members of a given environment), the unsupervised RF is
used to glean the natural tendencies of given samples (i.e. will samples clus-
ter with others who share not their group membership but their lifestyle?).
The results were plotted using an MDS plot depicted in Figure 25. This
was followed by generation of silhouettes and a PAM algorithm that would
tell us both the ’ideal’ k number of clusters for this data and the kth group
membership of each of sample.

Figure 25 shows that while coral, mat community, and slime environments
each cluster together nicely, the microbiolite do not form a tight cluster, and
in fact different members of the microbiolite environment are seen to have
higher proximity to other environment-types rather than to the microbiolite
environment-type.

In trying to understand why the three microbiolite tend to naturally be
pulled towards different environment-types and away from one another (low
intra-group proximity), the metagenomic composition of each microbiolite

53



sample offers key information. The Highborn Cay (HC) microbiolite sample
clustered near the slime cluster. Both the slime and HC microbiolite came
from environments high in sulfur which seems to be the determining envi-
ronmental factor that has driven their adaptation. The microbiolite has had
millennia to adapt to the sulfur environment, and hence become specialized
to it over time.

The slime samples came from a freshwater farmed hybrid bass tank that
due to its containment and isolation forced the bass and its associated mi-
cribiota to quickly adapt to high sulfur conditions. Isolation, captivity and
industrial type environments have been shown to bring rapid behavioral
change in animals, it is then not a far stretch to suppose that microbiota
living under similar conditions would also feel the pressure of their disrupted
environment to evolve quickly to specialized adaptations to the environmen-
tal conditions. While different process have led the microbiolite and the slime
to develop specialized adaptations to high sulfur conditions, the unsupervised
RF shows them sharing functional subsystems that are best explained along
lifestyle lines.

The Pozas Azules (PA) sample microbiolite came from a thrombolites
which is a rock deposit that exhibits an internal clotted structure. It was
found to be above a biofilm mat community [8]. This sample clusters close to
the mat community environment which has a similar structure (layered saline
porous deposit). The PA sample had marine traces which point date back to
a time when the PA was connected to the ocean. Having marine traces in an
isolated environment that adapted to living along mat communities makes
this sample the most like the hypersaline mat community. Though the HC
sample was also marine, it was not sharing habitat with a mat community,
and though the Rio mesquite (RM) sample was also sharing space with bio
film mat communities, it had much lower saline levels (freshwater).

Finally the RM microbiolite clusters somewhere between the PA and HC
samples. It clusters closer to the PA, perhaps due to biogeographic func-
tional adaptation. Yet in the MDS plot it is about equidistant from either of
the other two microbiolite. This finding supports Desnues et al [8] findings
regarding the fact that the 3 microbiolite samples were genetically unique
and highly adapted to their environments. The fact that these are ancient
organisms that have had a lot of time to evolve and adapt and that they
are still around in minimally changed form makes them successful example
of bio-adaptation and highlights the important role that environment plays
in the survival of organisms. Each of the 3 microbiolites are seen to nat-
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urally adapt along the lines of their environment (marine, freshwater) and
along the lines of the other members of the environment (mat communities,
marine life) so that environment or ecosystem composition are seen to be
fundamental to the ways in which organisms adapt and evolve. Disruptions
in either can be truly devastating.

PAM algorithm silhouettes of the unsupervised Random Forest showed
k = 3 was the ideal number of clusters for the unsupervised RF (on this data).
The slime and coral, despite their differences, were all classified in their own
groups, while mat and microbiolites were both classified as single class. The
unique clusters of slime and coral and the clustering of each microbiolite
sample closer to organisms that share their environmental lifestyle points to
the fact that there is a minimal set of core genes shared along lifestyle /
environment lines. This set is minimal and while much interplay and simi-
larities remain among different environments (as seen in the mat community
/ microbiolite samples). Nonetheless, these similarities can be partially de-
tangled by a supervised RF which can find subsystems that uniquely define
each environment.

In analyzing the clustering we see a two-pronged behavior. In the super-
vised RF each environment clustered together tightly, even though the each
environment had high intra-environment diversity [27, 28]. On the other
hand, the microbiolite environment, whose members had otherwise similar
levels of stress and health and even relative peaks of key subsystems, clustered
not with each other, but with the environment in which they had evolved.
Thus we find good statistical support for the view that functional genomic
analysis is effective due to environments exhibiting genetic uniqueness. Fur-
ther subgroups of given environments would naturally cluster together due to
microbes with similar lifestyles containing a core or minimal set of functional
subsystems required for survival in similar conditions.

7.5 Summary

On the whole we find that both the supervised and unsupervised Random
Forest are able to provide statistical support for biologically meaningful re-
sults. Supervised and unsupervised RF provides us with tools for different
types of investigations, and are very good at yielding good results that speak
of different underlying biological mechanisms. MDS plots of supervised RF
derived proximity measures can tell us if the algorithm is acting as a good
classifier if tight clustering results which discriminates well between distinct
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groups. Such good classification means that the associated variable impor-
tance hierarchies are highly insightful. In such cases we can use a small subset
of the functional subsystems in lieu of every subsystem when perfuming as
the starting point while perfuming a PCA, LDA or Canonical Discriminate
Analysis (CDA). Using a small subset is a direct result, as mentioned above,
of the fact that a minimal functional subset is elemental to given environ-
ments.
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8 Canonical Discriminant Analysis

Canonical Discriminant Analysis (CDA) is a dimension reduction statistical
tool, similar to both principal component analysis (PCA) and linear discrimi-
nant analysis (LDA), used to separate data into categories. The most impor-
tant aspect of the CDA is that it is used to separate data into g preassigned
categories. Specifically, it finds g-1 axes (uncorrelated linear functions) that
best separate the data classes. The goal of the CDA is to understand which
variables are responsible for differentiating between chosen groups.

8.1 How it Works

To perform a canonical discriminant analysis, we start with a data set con-
taining n multivariate samples, along k variables, that has been divided into
g groups. Canonical variables (or components), which are linear combina-
tions of the explanatory variables, are then derived. These canonical compo-
nents summarize the inter-class variance of the data. The theory is similar
to that of constructing principal components in the PCA, except that the
PCA is blind to classes. The PCA summarizes the total variance, across
all samples, while the CDA looks only at variation between classes. When
we have k variables and g groups, we can construct min(k,g-1 ) canonical
components to explain the variance. These are constructed in much the
same way as principal components, where the first canonical component is
the linear combination of variables that has maximum multiple correlation
with the classes[5]. The second canonical component is obtained by finding
the linear combination uncorrelated with the first canonical variable that has
the highest possible multiple correlation with the classes. This process is
repeated until we have the maximum number of canonical components. In
our research, we dealt with 27 variables (the functional groups) and a range
of class numbers. Since we almost always had fewer classes than variables,
we had g-1 canonical components. In general, only two or three dimensions
are needed to adequately separate distinct groupings, and so only the first
few canonical components are pertinent.

The theory behind calculating the canonical components during CDA
is identical to that of calculating principal components during PCA. The
practical difference is in the covariance matrix. In PCA, the covariance
matrix displays the variance between individual samples, while in CDA the
covariance matrix contains variance between classes. The covariance matrix
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must be full rank in order to complete the analysis, and as such requires at
least as many individual samples as variables.

Ensuring the full rank of the covariance matrix can require removing
some variables from the analysis. In our research, we started out with 27
variables and 248 distinct microbial metagenomes. This are good values when
computing analyses over the entire data set, since there is room to remove
outliers and highly unique samples. The problem comes when working with
smaller subsets of the data. When looking at small enough subsets of data,
it is necessary to reduce the number of variables used in the analysis, but
care must be taken. While it will not compromise the analysis to remove
unimportant data, how do we know which data is important before running
the analysis? There are several tools at our disposal for deciding which are
the most important.

One method is informed selection. For example, if a researcher was specif-
ically interested in how nutrient metabolism varies across environments, she
could choose to look only at variables pertinent to nutrient metabolism.
Choosing variables like this introduces an inherent bias into any analysis
that is to be performed, and in general it is to be avoided. An analysis done
by openly selecting variables can only speak as to the relative importance of
the chosen variables, and the divisions along those lines. This is because im-
portant mitigating factors may have been eliminated. In an overall analysis,
the nutrient metabolism levels may have such small differences as to get lost
in the noise. Then our researcher friend has not modeled the overall trends,
but some of the noise.

Another method of measuring variable importance is the correlation ma-
trix, which can be computed over any number of variables. This is a rough
estimate of what explanatory variables are linearly related to the response
variables. The variables with the largest correlation values (positive or neg-
ative) are the ones that are most likely important toward determining class.
It proves useful for estimation, but is not infallible, and has scaling problems.
One of the major drawbacks is that it measures only linear correlation, and
in real-world data other types of relationships abound. Using the correlation
matrix is an acceptable method for eliminating a small number of variables
from an analysis, but for further whittling it is not sound.

It is a good idea to combine statistical techniques, as they strengthen
the analysis. Two of the stronger variable importance measures we worked
with are the Random Forest variable importance measures described in Sec-
tion 7.1. These determine the ability of each variable to classify data, us-
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ing different measures of classification skill. Performing a CDA using only
the most discretionary variables yields a more significant analysis, especially
when the data has many more variables than samples.

8.2 Visualization

An advantage of the CDA is the visualization aspect. It is trivial to plot the
analysis, since it centers around transforming the coordinate system. All we
need to do plot the canonical scores of the data points along new axes (the
canonical components). See Figure 27 for a plot of CDA performed on ma-
rine metagenomic data. In this CDA we used 46 samples, 26 function groups
(removing the ‘miscellaneous’ group) as explanatory variables, and classified
our data into four groups, based on the types of marine environment they
came from. This subset of the data was collected in the northern hemisphere,
which homogenizes the data and reduces the possibility of confounding vari-
ables.

The influence of each variable along the canonical axes is visualized
through vectors. CDA centers on the construction of canonical components
to explain the variance between classes. The amount of the inter-class vari-
ance that is explained by each component is indicated in parentheses along
each axis. For a data set with variables {v1, v2, . . . , vk}, these canonical com-
ponents have the form

Can1 = â1v1 + â2v2 + · · ·+ âkvk

Can2 = b̂1v1 + b̂2v2 + · · ·+ b̂kvk.

Figure 26 shows the projections of variable vectors v1 and v2, onto the canon-
ical component axes Can1 and Can2. The projections of the variables main-
tain the relationship between their coefficient variables. That is,

ai
bi

=
âi

b̂i
and

ai
aj

=
âi
âj
.

Graphically, the vectors can be rescaled to obtain the clearest visualization,
but they must maintain the ratio of their lengths. Qualitatively, the greater
the magnitude of a canonical variable vector, the greater its importance to
separation of groups.

Looking at the plot, it is easy to see that removing variables will clarify
the graphical interpretation of a CDA, and also that the choice of these
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variables is important. We can see qualitatively that the ‘Carbohydrates,’
‘Cell.Wall,’ ‘Cofactor,’ and ‘Potassium’ vectors are small, which indicates
that those variables are explaining the least of the inter-class variance. This
implies that the proportion of hits in these categories is similar across the
classes, and so these are good candidates for removal in a second analysis.
It is important to remember, however, that this graphical view shows only
the first two canonical components, and they may have larger magnitude in
higher dimensions.

Each sample is plotted according to its canonical scores. Let x be a
sample, such that x = (x1, x2, ..., xk) from a data set whose first canonical
components are C1 and C2, such that the coefficients of C1 are {a1, a2, ..., ak}
and those of C2 are {b1, b2, ..., bk}. Then we compute

xC = x

 | |
C1 C2

| |

 = (x1x2 · · ·xk)


a1 b1

a2 b2
...

...
ak bk

 =

(
C1(x)
C2(x)

)
.

The canonical scores of a sample x are C1(x), C2(x), which describe its posi-
tion in the 2-dimensional space defined by the first two canonical components.
We also plot the mean scores, represented by +, and confidence intervals of
the means, represented with circles. Our research centered on the strength of
clusters, so we focused on the spread of individual samples about the mean.
For other analyses, it is valid to plot only the means and confidence intervals.

Using a variable importance plot, calculated using a Random Forest, 12
most important variables were selected to further investigate the metabolic
processes driving class divisions (Figure 28). We also removed the confidence
intervals, to simplify the representation. This plot is easier to comprehend,
and more legible. Note that the environments are less clearly separated in
this second image. This analysis, and the accompanying plot, are more sig-
nificant. The canonical discriminant analysis is prone to overfitting, because
it is very good at finding small differences. Our metagenomic data, with its
small sample sizes, is particularly vulnerable to artificial separations. The
smallest vectors are often statistically insignificant, and so removing them
gives more robust results. These two plots (Figures 27 and 28) insinuate
that estuary samples are very similar to open ocean and coastal water sam-
ples, which themselves are closer than initially apparent. Only variables with
small impact on separation were removed, and the environments clustered
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Figure 26: Projection of variable vectors onto the first two canonical components.

more tightly. This implies that there are only small differences between the
two.

8.3 Prediction and Error Estimation

It is important to estimate the error of any statistical model. The CDA
can separate preassigned classes easily when it knows what they are, but a
misclassification error helps establish if separations exist between the classes
themselves, or only the particular samples used. In general we estimate error
by testing a model’s skill at classifying a set of known samples. There were
no available error estimation functions for canonical discriminant analyses in
R, so we devised our own. Two proved especially useful7.

The first, mahalErrorEst.fun, operates on the leave-one-out principal.
For a data set with n samples, it computes n canonical discriminant analyses,
each time leaving out a different sample. Using the canonical components of
each analysis, the canonical scores are computed for the left out sample, and
this score then determines how the sample is classified.

The choice of group was determined by the minimal Mahalanobis distance[6].

7The code for these can be found in A.7.
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Figure 27: Plot of a CDA of marine microbial metagenomic samples collected in the
northern hemisphere. This was calculated with 46 samples, 26 variables, and 4 environ-
ments.
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The Mahalanobis measure is a scale-invariant distance measure based on cor-
relation. The distance of a multivariate vector x = (x1, x2, ..., xn) from a
group with mean µ = (µ1, µ2, ..., µn) and covariance matrix S is defined as:

DM(x) =
√

(x− µ)S−1(x− µ)T

More intuitively, consider the ellipsoid that best represents the group’s proba-
bility density. The Mahalanobis distance is simply the distance of the sample
point from the center of mass, divided by the spread (width of the ellipsoid)
in the direction of the sample vector.

mahalErrorEst.fun goes through the data in this manner, computing a
CDA for all but one of the data points, and predicting the class of the leftover
sample. It returns both a misclassification rate and a confusion matrix8, a
record of how each sample was classified. From the confusion matrix we can
see how the misclassifications occurred (was a human sample classified as a
chicken or a mouse?), from which we can determine not only the percentage
of samples which were misclassified (error estimate), but how egregious the
errors were. For example, it would be more egregious to mistake a human
metagenome for one from deep water, rather than to mistake a deep water
metagenome for one from the open ocean.

The second test function, cdaErrorEst.fun, combines canonical and lin-
ear discriminant analyses. The function first randomly divides the data
into in-bag and out-of-bag (OOB) data sets. By default, cdaErrorEst.fun
chooses 20% of the data in each class as OOB. It then performs a CDA
on the bagged data, looks at the canonical scores of each sample, and per-
forms an LDA on the canonical scores. Canonical scores are then calcu-
lated for the OOB samples, and LDA is used to predict their classes. Like
mahalErrorEst.fun, cdaErrorEst.fun returns a confusion matrix along
with a misclassification rate.

8.4 Considerations

Canonical discriminant analysis is far from perfect. There are several things
to take into consideration when using this tool. The most obvious of these
is the presence of bias. We group our data before CDA, which means that
the analysis is not blind. The canonical components are the linear combi-
nations that best separate predetermined groups, not blind data, so CDA is

8For a detailed explanation, see Figure 10 in Section 5.1.2.
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very prone to overfitting, or finding artificial separations in data (often from
modeling noise). The larger a data set, and the more similar class sizes are
within that data set, the smaller the risk of overfitting.

A major constraint on canonical discriminant analysis is sample size. To
use CDA, a data set must have at least as many samples as explanatory
variables to ensure the full rank of the matrices involved in the computations.
Having bigger sample sizes is always better, and will improve the validity
of the analysis. The size of the class groupings must also be taken into
consideration. Given a data set with many more samples than variables,
a class with only few samples will reduce the significance of the analysis.
Classification is done by comparing a sample to existing class means. Small
samples have large confidence intervals, which means that their means are
not significant. That is not to say that CDA can say nothing about small
samples, but the results must be taken with a grain of salt.

The sample size considerations are particularly relevant to metagenomic
analysis, due to the nature of the data. Metagenomic data is divided into
subsystems, currently 27 at the broadest level. The data available to us
was the public metagenome database of about 300 samples. The data set
is sparse, with samples from a limited range geographically, and of vastly
ranging sample sizes. For example, there are dozens of marine samples,
ranging around the world but still not globally representative. There is only
a single termite gut sample. Trying to significantly differentiate between
these two classes with the CDA would be futile.

As with any statistical method, care must be taken when interpreting
the results. There is always the risk of confounding variables tainting the
results, recalling that correlation does not mean causation. There are ways
of decreasing the risk of confounding variables, but the chance will never be
totally eliminated.

8.5 Conclusion

The canonical discriminant analysis is an excellent technique for exploring
metagenomic data, and more generally for any type of classification analysis.
The CDA is really good at separating preexisting classes, and gleaning which
variables make the difference. The ease and extent of visual representation
are also extremely helpful, it is very clear what the results of the analysis
are. The CDA can predict the class of a new sample, which is useful not
only for understanding new samples but also for approximating the strength
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of the model. Canonical discriminant analyses can be combined with many
other statistical methods in order to improve their significance.

As with any statistical method, there are constraints and drawbacks to
CDA. It is prone to overfitting, biased toward groupings, and requires samples
of a certain size. There is also the risk of misinterpretation and confounding
variables. However, if this analysis is performed under a watchful eye, and
care is taken, it is extremely powerful and informative. As the database of
metagenomic data continues to grow, and its study alongside, the significance
of this technique will only increase.
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9 Example

Now that several statistical techniques have been discussed, we will work
through them all, using the data set “all.data”. This set (all.data) con-
sists of 203 samples, the proportion of their identified sequences pertaining
to each of 27 functional groups9, and their classification into 6 environmen-
tal groups. Removed from this data set are classes with extremely small
sample sizes, samples that were contaminated during sequencing, and a few
samples externally determined to be outliers. The environmental groups are
human10, hypersaline, mat community, spring11, terrestrial12, and water13.
This section will display the strengths and weaknesses of these techniques
with regard to all.data, and along the way we will discuss our findings.

9.1 Motivation

To date, there is only one published study on the total public database of
metagenomic data, Functional Metagenomic Profiling of Nine Biomes by
Dinsdale et al[9]. Their study was conducted when there were only 45 pub-
licly available metagenome samples. Continuing in their footsteps, we per-
formed analyzed all publicly available microbial metagenomic data, today
consisting of over 200 samples.

The findings in the Dinsdale paper indicated that there are metagenomic
differences between environments, and in part this study aimed to substanti-
ate or refute their findings. We wanted to discover which functional groups,
if any, can be used to differentiate between environments.

9Amino Acids and Derivatives; Carbohydrates; Cell Division and Cell Cycle; Cell Wall
and Capsule; Cofactors, Vitamins, Prosthetic Groups, and Pigments; DNA Metabolism;
Dormancy and Sporulation; Fatty Acids, Lipids, and Isoprenoids; Membrane Transport;
Metabolism of Aromatic Compounds; Miscellaneous; Motility and Chemotaxis; Nitro-
gen Metabolism; Nucleosides and Nucleotides; Phages, Prophages, and Transposable El-
ements; Phosphorus Metabolism; Photosynthesis; Plasmids; Potassium Metabolism; Pro-
tein Metabolism; Regulation and Cell Signaling; Respiration; RNA Metabolism; Secondary
Metabolism; Stress Response; Sulfur Metabolism; Virulence.

10Human gut samples, taken from separate studies of Americans and Japanese.
11Samples from hot springs
12Non-human, land-based animal gut samples.
13Samples from an assortment of marine and freshwater environments
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Figure 29: Plot of scaled PCA over 10 functional groups with highest variance.

9.2 PCA

We begin by performing a principal component analysis on all.data. We
plot data along the first two principal components, coloring the resultant plot
by environmental grouping. First we look at the scaled and unscaled variance
analyses over all 27 variables, but these give rather messy and confusing
results. Since the PCA acts on variance, we perform the analysis again, this
time using the variables with the largest spread. There was a clean break
after the top 10 variances, so the PCA was performed over those variables.
The resultant plot can be seen in Figure 29. We see two water samples that
are far away from the rest, and seem to be forcing the other samples into
one large cluster. Note that these samples may be outliers. Figure 30 shows
a zoomed-in view of the central data cluster. The environmental classes are
separating, although the water class overwhelms the eye.
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Figure 30: Zoomed view of central cluster from Figure 29
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Cluster Environmental data within Cluster
1 All but 1 hypersaline; water samples
2 1 water sample (probable outlier)
3 All spring samples; 1 human (possible outlier); water samples
4 3 water samples (possible outliers or contaminated data)
5 1 water sample (not shown, probable outlier)
6 1 water sample (not shown, probable outlier)
7 All mat community samples; 5 human; 3 terrestrial; water
8 1 water sample (possible outlier)
9 Remaining human samples; 2 terrestrial; water

Table 8: Breakdown of environmental data present in each of the 9-mean clusters.

9.3 K-means

The sum of squares plot for our data set, Figure 31, has no clear ‘elbow’,
which would indicate the best number of clusters. In our experience with
metagenomic data, this implies the existence of outliers. To understand the
clusters that K-means found, we plot the PCA but include the clustering
assigned by K-means. When the data is graphed and colored based on
clustering for K = 3, the apparent elbow of the graph, the data clusters into
2 single points, and a central mass. This is not a helpful analysis.

A second way of looking for good clusters is the silhouette plot. When we
make silhouette plots of our data (Figure 32) and plot their average width
(Figure 33), we again are led to the conclusion that K = 3 should be ideal.
We have already decided that it is not, and so look further. In Figure 33,
there are peaks at 5 and 8. Looking at these as values for K, we find that
5 seems to indicate outliers, but K = 8 seems to form separations along
groupings.

Looking at the plot for K = 9, however, a clearer picture appears. In
Figure 34, several clusters contain only a single point, which indicates that
they are probably outliers. Two of these points (both water samples) have
been cropped out of Figure 34, for ease of visualization. All of the points
put into their own categories are, in fact, water samples. Close inspection
reveals something about the clusters, detailed in Table 8. Note that, while
imperfect, there seems to be some separation along known environmental
categories, which leads us to continue our investigation.
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Figure 31: Sum of squared error versus K values, ranging 2:16, from K-means analysis
of all.data

9.4 LDA

We performed a linear discriminant analysis (LDA) on all.data, with en-
vironmental groupings as the response. First we attempt the analysis over
all 27 functional group variables. Plotting the data along the first two lin-
ear discriminant functions, Figure 35, it appears that the LDA succeeds in
separating our data along environmental factors.

There is a lot of separation between the environmental groups. There
are a few overlaps that may indicate outliers, specifically the human and
terrestrial samples that mix in with water. The mat community sample that
mixes in with hypersaline samples comes from a hypersaline environment,
which may explain its proximity. There is a fair amount of mixing between
spring, hypersaline, and water samples. This is not altogether unexpected,
as they are all aquatic environments.

Using the leave-one-out error estimation technique for this LDA, this anal-
ysis has an error rate of approximately .167, that is, we expect to misclassify
about 17% of samples with this technique.
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Figure 32: Silhouette plots from K-means analysis of all.data, K ranging 2:10
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Figure 33: Plot of average silhouette widths for K-means analysis of all.data. The
silhouette plots are in Figure 32.
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Figure 35: Plot of the first two dimensions of the linear discriminant analysis of all
all.data over 27 variables, with 6 environmental groupings.
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9.5 Trees

We also performed tree analyses on the data. The fully grown tree over all
the data is Figure 36. To figure out the best tree, we ran a series of cross-
validation experiments. Figure 37 shows the mean and standard error of
misclassification over 100 trials at different tree sizes, and Table 9 shows the
average deviance for the series. From these we can determine that 9 leaves
is the best, and plot the pruned tree seen in Figure 38.

While this tree is not as definitive as we might like, there is information
to be gleaned from it. At first glance we see that water is a leaf along several
branches. This is less than ideal, and seems to indicate the wide range of
values among water samples. This spread is partly due to the presence of
both freshwater and marine saline samples in the ‘water’ class, as well as the
large sample size. However, note that the bacteria samples from terrestrial
guts (human as well as non-human) are all on the left of the first node, having
a very low proportion of photosynthesis coding. That there are low levels of
coding for photosynthesis here makes biological sense. Bacteria in eukary-
otic guts have no access to sunlight, and so have nothing to photosynthesize.
The human and non-human samples are split under membrane transport.
On the other branch, with higher proportions of proteins dedicated to pho-
tosynthesis, we see that there are differences between these groups as well,
though they seem a bit more muddled. This is biologically sensible, since hot
springs, hypersaline, and water samples all come from aquatic environments,
and the mat communities (though very different from the microbes that float
in water), also live in pools of water of varying salinity. Note that the water
grouping includes samples from a wide variety of marine environments, which
accounts for the large variance. Again, the water samples mix in through the
data, but the tree appears to differentiate between environments. Of course,
these are not perfect leaves, and there is some overlap between the groups,
but the majority of the data splits along environmental lines, though the vast
water group mixes in.

9.6 Random Forest

As noted in Section 6, trees are highly unstable. In our research we have had
more robust, and repeatable, results from Random Forest analyses, so that
is the next technique to use.

With unsupervised Random Forests, we want to see if our groupings
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|
Photosynthesis < 0.000795923

Mem.Trans < 0.012166

Dormancy < 0.00191578RNA.met < 0.0528424

Cell.Div < 0.0309652

Mem.Trans < 0.0144102

Cell.Wall < 0.0416959

DNA.met < 0.0431087Aromatic < 0.0109641

Cofactor.etc < 0.0939862

DNA.met < 0.0411064Amino < 0.128034

water terrestrial
water

human human

water hypersaline water water watermat communityspring hypersaline

Figure 36: Full tree grown from all.data using all available variables.
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Figure 37: Plot of mean and standard errors of misclassifications for different sized trees
over all.data.
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Tree Size Average CV Deviance

1 72.65
3 52.05
4 50.26
6 45.63
9 42.45
13 39.54
15 39.82

Table 9: Tree size and average deviance from a series of tree cross-validation experiments
over all.data

|
Photosynthesis < 0.000795923

Mem.Trans < 0.012166

RNA.met < 0.0528424

Mem.Trans < 0.0144102

Cell.Wall < 0.0416959 Cofactor.etc < 0.0939862

DNA.met < 0.0411064 Amino < 0.128034

terrestrial

water human

hypersaline water

water mat community spring hypersaline

Figure 38: Tree of all.data pruned to 9 leaves, as indicated by a series of cross-
validation experiments.
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match up with clear clustering in unmarked data. Similar to K-Means,
PAM silhouettes help determine the best number of clusters. In the plot of
PAM silhouette widths (Figure 40), we see that K = 5 is the best point.
Constructing MDS plots using PAM coloring (Figure 39a) and known group-
ing coloring (Figure 39b), reveals its accuracy. We see that PAM seems to
have picked a cluster of human and terrestrial samples (circles, upper left),
a cluster of mostly hypersaline data (triangles), a cluster of mat community,
spring, and various extras (squares), and split the rest of the water samples
into two clusters (inverted triangles and diamonds). The PAM coloring is
not a perfect match to our outside clustering, but it is similar.

We use supervised Random Forests to calculate the mean decrease accu-
racy (plotted in Figure 41a) and mean decrease Gini (Figure 41b) of each
variable. These graphs were discussed in Section 7.1. The variables with
the highest mean decrease accuracy are those judged most important for
accurate classification by the Random Forest, and those with highest mean
decrease Gini are those that have the most impact on node purity. It is clear
that the functional group ‘Phages’ is one of the most important to separating
all.data, as it is at the very top of both plots. Looking at the clean breaks,
we take the top variables from each and combine them to form a set of the
most important variables. This is an excellent set of variables to create trees
from, and a good set to start from when using any classification or clustering
technique.

Constructing a tree from this set of variables, as shown in Figure 42, we
see that it has similar leaves to the tree constructed using all the variables,
which is in Figure 36. The difference is the purity of the nodes. In the
Random Forest assisted tree, the leaves are much more definitive. Originally,
in the node that leads to the human class, there was approximately 40%
chance of being human, but in the new tree, we have 85% probability of
being human and less than 10% chance for anything else. Using a smaller
set of variables also increases the stability of the trees.

9.7 CDA

The next step was to perform a canonical discriminant analysis on all.data.
We first did a CDA over all the variables, and looked at the vectors that
seemed most important from that plot. We also calculated error, using an
LDA on canonical scores. Combining the information from all these analyses,
we settle on a set of 8 functional hierarchies:
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Figure 39: MDS plots of unsupervised Random Forest analysis on all.data.
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Figure 40: PAM silhouette widths for all.data.

• Cell Wall and Capsule
• Cofactors, Vitamins,

Prosthetic Groups, Pigments
• Dormancy and Sporulation
• Membrane Transport

• Phages, Prophages,
Transposable Elements
• Photosynthesis
• Respiration
• Stress Response

We performed our analysis using those variables, and plotted the results
(Figure 43). This plot contains a lot of information. First, we see that
samples from organisms split from water samples along the first canonical
component, with the primitive mat communities in the middle. The first
canonical component also separates the hot spring samples from the rest
of the water. The splitting along the second canonical component separates
human and non-human samples, as well as hypersaline and hot spring samples
from the rest of the water. There is some overlap, but overall we see good
separation into the general environmental categories. These findings are
similar to those of Dinsdale et al. The four-fold increase of the metagenomic
database has further defined environmental clustering.
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Figure 41: Variable importance plots generated using supervised Random
Forest analysis on all.data.
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|
Photosynthesis < 0.000795923

Mem.Trans < 0.012166

Dormancy < 0.00191578

Mem.Trans < 0.0144102

Cell.Wall < 0.0416959

Phosphorus < 0.0116159

Cofactor.etc < 0.0939862

Phosphorus < 0.0140808 Cofactor.etc < 0.109989

water terrestrial
human

water hypersaline
water

water mat communityhypersaline spring

Figure 42: Tree grown with the top 8 variables indicated by the variable importance
plots.
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human hyper- mat spring terrestrial water class
saline community error

human 6.025 0.000 0.490 0.000 0.390 0.095 0.139286
hypersaline 0.000 1.760 0.000 0.000 0.000 1.240 0.413333

mat community 0.000 0.000 1.990 0.000 0.000 0.010 0.005000
spring 0.000 0.135 0.000 0.865 0.000 0.000 0.135000

terrestrial 0.970 0.000 0.000 0.000 0.805 0.225 0.597500
water 0.105 0.775 0.445 0.145 0.095 24.435 0.060192

Table 10: Confusion Matrix for CDA

9.8 Strength of Analysis

Using the LDA on CDA error estimation technique (the second discussed in
Section 8.3), this model has an estimated 12.5% misclassification error, which
is very low. This was calculated by running the algorithm 200 times and
averaging the misclassifications. By doing this we improve our confidence
level. The confusion matrix of this CDA is Table 10. Note that the row
sums are the number of OOB samples for each class, in this case 20% of
the original class sizes. Looking at the last column, “class error,” we can
see the accuracy of our CDA as a predictor for each class, and averaging all
these scores (weighted by number of samples) gives us .125, our overall error
estimate. Looking more closely at the misclassifications, we see that most of
them are benign. We see water, hypersaline, and spring mixing a little, which
is not surprising since they are just different types of aquatic habitats. We
are not surprised by the mixing of terrestrial organisms and humans either,
since humans are terrestrial, but the mixups of human samples with mat
community and water samples are a little disturbing. Taking into account
our sample sizes and the possibility for outliers, the error is small. Our model
is not perfect, but it is a very good predictor.
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A Appendix: R Code

This appendix includes the R[21] code used to generate the graphics14 in
Section 9. We reference several packages that we installed in R, more in-
formation is available about each package (after it has been installed once)
using the R commands:

> library(package.name)

> help(package.name)

For this overview, we’ll call our data frame “data”. We read the data
frame in from a tab-delimited text file “data.txt” that contains all the infor-
mation we need to perform the analyses discussed in this section.

> data<-read.table("data.txt", header=T, sep="\t")
> data

[1] [2] [3] ... [29] [30]
name env Amino ... Virulence Genome.ID

coa1143 water 16125 ... 4742 4441143.3
coa1144 water 17110 ... 5226 4441144.3

...
...

...
...

...
gut452.4 human 14826 ... 5688 4440452.4

Note that columns [3:29] are the 27 variables (functional groupings). In
order to compare our data samples, we normalized based on number of total
identified hits, that is, we turned the number of hits in each functional group
into a proportion, using a simple for-loop. Recall that we have n samples.
In generating the graphs in Section 9, we used n = 203.

> cbind(env=data$env, name=data$name, data[3:29]/rowSums(data[3:29]), Genome.ID=data$Genome.ID)}

Now all.data contains n rows and 30 columns, and the data in columns
[3:29] are the proportions of recognized hits that fall under that hierarchy.

A.1 Utilities

Here is a function that creates a formula from a data set y, predictors, and
response variables.

14Note: This is the code used to generate original analyses and graphs. Since then many
of the figures have been remade in other programs, whose graphical abilities are different
from those in R.
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> createFormula.fun <- function(y, response, predictors){
ifelse(is.character(predictors[1]), for(i in 1:length(predictors)){

(1:length(names(y)))[names(y)==paste(predictors[i],sep="")]

->predictors[i]}
,predictors<-predictors);

predictors.names<-paste(names(y)[predictors], sep="");

ifelse(is.character(response),

(1:length(names(y)))[names(y)==paste(response,sep="")]

->response,response<-response);

response.name<-paste(names(y)[response], sep="");

fmla<-as.formula(paste("cbind(",paste(predictors.names,collapse=","),")

","∼ ",paste(response.name,collapse=""),collapse=""));

return(fmla) }

If response is given as a character, getSingleResponse.fun gets the
numeric value:

> getSingleResponse.fun <- function(y, response){
if (is.character(response)){

for (i in 1:length(names(y))){
if (names(y)[i] == response) response = i}}

return(response)}

This is code for breaking data into in-bag and out-of-bag sets. The func-
tion takes outPercent as the percentage of data that should be out of bag,
rounds to the nearest whole, then splits the data up and returns bag and
oob.

> bagData.fun <- function(data, outPercent, response=c(1)){
envColumn <- getSingleResponse.fun(data,response)

vCategories <- levels(data[,envColumn])

num levels <- length(vCategories)

for (i in 1:num levels){
subData <- data[grep(vCategories[i],data[,envColumn]),]

sampleSize <- round(outPercent * length(subData[,1]))

randValues <- sample(1:length(subData[,1]), sampleSize)

bData <- subData[-1 * randValues,]

outData <- subData[randValues,]

if (i == 1) {
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bagData <- bData

oobData <- outData}
else{

bagData <- rbind(bagData, bData)

oobData <- rbind(oobData, outData)}}
return(list(bag=bagData, oob=oobData))}

A.2 Principal Component Analysis

R has built-in principal component analysis functions, but we used the pack-
age bpca[12]. Recall that the PCA is an unsupervised technique, and so
it does not take into account groupings, so the input data frame will be
all.data[3:29], a table of values only. To make a raw PCA analysis (un-
scaled or scaled):

> pca.unscale<-bpca(data[3:29],var.scale=F)

> pca.scale<-bpca(data[3:29], var.scale=T)

These can then be graphed. However, for sake of clarity, we want to
analyze only the variables with highest variance. So we run:

> order(apply(data[3:29],2,sd),decreasing=T)+2

[1] 22 4 5 8 3 7 25 29 6 18 10 24 19 14 16 27 12 11 28 23

[21] 17 15 21 13 26 9 20

The resultant row vector (1×27) is the list (ordered high to low variance)
of column names. When plotted, we found a clean break after the ten highest
variance values, so we compute:

> pca10scale<-bpca(data[c(22,4,5,8,3,7,25,29,6,18)], var.scale=T)

Note that, while the PCA is blind to the classes of the data while per-
forming its analysis, R has access to the groupings from data. This means
that we can indicate, on a plot of the PCA, which points are from which
class. This is useful for finding where natural breaks in the data coincide
with those expected. To obtain Figure 29, we ran the code:

> plot(pca10scale, obj.name=F, obj.cex=1,

obj.pch=c(1,2,0,4,5,6)[unclass(data$env)],

obj.col=c(1,2,3,4,5,6)[unclass(data$env)],

86



xlim=c(-4,7), ylim=c(-5,5), var.factor=.5, var.cex=1)

A.3 K-Means

K-means is the first technique discussed that uses randomness. To exactly
replicate results you get from an analysis that includes a random factor,
use set.seed(x) for some x. When the seed value changes, the random
numbers generated will also change. Setting the seed will ensure replicable
results, simply reset the seed to repeat the pattern.

To perform a K-means analysis for some K, averaging over 10 indepen-
dent random starts:

> kmeans(data[3:29], K, nstart=10)

To make a sum of squares plot (Figure 31):

> temp<-rep(NA,15)

> for(k in 1:15){
temp[k]<-sum(kmeans(data[3:29],k+1,nstart=10)$withinss)}

> plot(2:16, temp, type="o")

We wrote code to make both a silhouette plot (Figure 32) and a plot of
average silhouette widths (Figure 33), based off code by Marden[15]. The
default is to run the K-means algorithm with 10 random starts, but the
argument iter allows that to change. The argument maxK (also with default
10) is the maximum value of K that you want silhouettes for. This function
takes a data frame "x" that has only data, no classes.

> doSilhouette.fun <- function(x, iter=10, maxK = 10){
kms <- vector("list", maxK)

w <- NULL

for(k in 2:maxK) {
kms[[k]] <- kmeans(x, centers=k, nstart=iter)

w <- c(w,sum(kms[[k]]$withinss))}
ss <- NULL

for(k in 2:maxK) {
a <- sil(x,kms[[k]]$centers)

s <- NULL

for(j in 1:k) {
s<-c(s,sort(a[kms[[k]]$cluster==j]))}
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ss <- cbind(ss, s)}
par(mfrow=c(ceiling((maxK - 1) / 3),3))

for(k in 2:maxK) {
plot(ss[,k-1], type="h", ylim=c(0,1), xlab="Observations",

ylab="Silhouettes")

title(paste("K =", k))}
a <- apply(ss,2,mean)

win.graph()

par(mfrow=c(1,1))

plot(2:maxK,a,type="l",xlab="K",ylab="Average silhouette width")}

After running the function code, with 50 as our number of starts, we
input:

> doSilhouette.fun(data[2:29],iter=50)

After choosing some K-values from the elbow plot and silhouettes, we
like to plot the PCA analysis with K-means cluster choices. In Figure 34,
we graphed the scaled PCA analysis over the 10 highest-variance functional
groups, and used K = 9. We’ve colored the image according to our classes,
but shaped the data points according to their assigned cluster. To make this
image:

> kmeans(data[c(22,4,5,8,3,7,25,29,6,8)], 9, nstart=10)-> cl9

> plot(pca10scale, obj.name=F, obj.cex=1,

obj.pch=c(1,2,0,4,5,6)[unclass(cl6$cluster)],

obj.col=c(1,2,3,4,5,6)[unclass(data$env)],

xlim=c(-5,20), ylim=c(-5,10), var.factor=5, var.cex=1)

A.4 Linear Discriminant Analysis

The linear discriminant analysis is one of the simpler functions to run in R.
The function lda is in the package MASS[31] that is built in to R. To perform
an LDA against the environmental groups, simply run:

> lda.data<-lda(data[3:29],data$env)

To plot the LDA, just use:

plot(lda.data, col=c(1,2,3,4,5,6)[unclass(data$env)])
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To plot just the first two linear functions, add the argument dimen=2.
To estimate the misclassification rate of the LDA, we wrote a function

that runs a leave-one-out cross-validation. The data frame inputed into this
function needs to have the classification in its first column, the data in the
rest. First we run the code to create the function:

> error est<-function(x,response){
n<-length(x[,1]);

k<-0;

getSingleResponse.fun(x,response)->response;

nlevels(x[,response])->levels.n;

confusion<-matrix(0,nrow=levels.n,ncol=levels.n);

row.names(confusion)<-levels(x[,response]);

for(i in 1:n){
lda(x[-i,-response],x[-i,response])->x lda;

predict(x lda,x[i,-response])->x predict;

ifelse(x predict$class==x[i,response],k+0->k,k+1->k);

(1:levels.n)[levels(x[,response])==x[i,response]]->confusion.r;

(1:levels.n)[levels(x[,response])==x predict$class]->confusion.c;

confusion[confusion.r,confusion.c]+1->confusion[confusion.r,confusion.c]};
output<-vector("list",2);

output[[1]]<-confusion;

output[[2]]<-k*1/n

output}

With this function, you can run LDA leave-one-out cross-validation on
any data frame, as long as it has the classes in the first columns, and it will
return the misclassification rate. For our example:

> error.est(data[2:29])

[1] 0.167

A.5 Trees

To exactly replicate results you get from an analysis that includes a random
factor, use set.seed(x) for some x. When the seed value changes, the
random numbers generated will also change. Setting the seed will ensure
replicable results, simply reset the seed to repeat the pattern.
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To do tree analyses in R, we used the tree[22] package.

> tr.data<-tree(as.factor(env)∼.,data[3:29])
> plot(tr.data);text(tr.data, digits=1)

Optional: add argument label="yprob" to print the proportion of sam-
ples in each leaf that belong to each class.

We wrote code to find the average deviance from a series of cross-validation
experiments. The function formats the names of predictor variables (predict)
and response, grows a tree using the control parameters mincut and minsize,
repeats a cross validation experiment n times, then outputs a data frame of
tree size and average deviance.

> table.deviance<-

function(y, predict, response, n=100, kfold=10, mincut=0, minsize=0){
createFormula.fun(y, response, predict)->fmla;

getSingleResponse.fun(y, response)->response;

ifelse(mincut!=0, tree.control(length(y[,response]), mincut, minsize)->control,

tree.control(length(y[,response]),5,10)->control);

y.tr<-tree(formula=fmla, data=data.frame(y), model=T, control=control);

y.tr$call<-call("tree", fmla, data=quote(y));

length(cv.tree(y.tr,,prune.misclass,K=kfold)$dev)->n.dev;

x<-rep(0,n.dev);

for(i in 1:n){
cv.tree(y.tr,,prune.misclass,K=kfold)$dev+x->x};

cbind(cv.tree(y.tr,,prune.misclass,K=kfold)$size,x/n)->x;

rev(x[,1])->x[,1];

rev(x[,2])->x[,2];

data.frame(x)->x;

names(x)<-c("Tree Size","Average CV Deviance");

x;

}

A second function formats the names of predictor variables (predict) and
response, grows a tree using the control parameters mincut and minsize,
keeps track of total misclassifications over n cross-validation trials, then finds
and plots the mean and standard error over all the trials.

> plot.misclass<-
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createFormula.fun(y, response, predict)->fmla;

getSingleResponse.fun(y, response)->response;

ifelse(mincut!=0, tree.control(length(y[,response]), mincut, minsize)->control,

tree.control(length(y[,response]),5,10)->control);

y.tr<-tree(formula=fmla, data=data.frame(y), model=T, control=control);

y.tr$call<-call("tree", fmla, data=quote(y));

length(cv.tree(y.tr,,prune.misclass,K=kfold)$dev)->n.dev;

x<-matrix(0,nrow=n,ncol=n.dev);

for(i in 1:n){
cv.tree(y.tr,,prune.misclass,K=kfold)$dev->x[i,]};

apply(x,2,sd)->x.sd;

apply(x,2,mean)->x.mean;

matplot(cv.tree(y.tr,,prune.misclass,K=kfold)$size,

cbind(x.mean,x.mean-x.sd,x.mean+x.sd), type="l",

ylab="Misclassifications", xlab="Tree Size",

col=c(1,2,2), lwd=2,main=" ");

legend("topright",legend=c("Mean","Mean+1sd","Mean-1sd"),

lty=c(1,3,2),lwd=2,col=c(1,2,2));

}

These functions were used to make the plots in Section 9.5. Specifically,
for Figure 36:

> tree(env∼.,big[,2:29])->big.tree
> plot(big.tree);text(big.tree)

Figure 37:

> plot.misclass(big,c(3:29),2,n=100)

Table 9:

> table.deviance(big,c(3:29),2,n=100)

Figure 38:

> prune.tree(big.tree,best=4)->big.tree4

> plot(big.tree4);text(big.tree4)
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A.6 Random Forests

To exactly replicate results you get from an analysis that includes a random
factor, use set.seed(x) for some x. When the seed value changes, the
random numbers generated will also change. Setting the seed will ensure
replicable results, simply reset the seed to repeat the pattern.

To do Random Forest analyses, we used the randomForest[17] R package.
To compute a supervised Random Forest analysis:

> rfAll <- randomForest(all.data[3:29], all.data$env,

importance=TRUE, proximity=TRUE, ntree=5000)

Then we want to plot the variance important plots from this analysis
(Figures 41):

> varImpPlot(rfAll, type=1, pch=19, col=black, cex=.8)

> varImpPlot(rfAll, type=2, pch=19, col=black, cex=.8)

And the unsupervised:

> urfAll <- randomForest(all.data[3:29],proximity=TRUE,ntree=5000)

With the unsupervised Random Forest analysis, we can create MDS plots.
This is the coding for (Figure 39b):

> MDSplot(urfAll, all.data$env,

bg=rainbow(length(levels(all.data$env)))[unclass=all.data$env],

pch=c(rep(21:25,plot.cycles),

21:(21 + plot.remainder))[unclass=all.data$env],

palette=rep("black",length(levels(all.data$env))))

A.7 Canonical Discriminant Analysis

For our canonical discriminant analyses, we used the R package candisc[13].
To perform a CDA, we first build a linear model using the functional groups
(here referenced by their shortened column names) as our explanatory vari-
ables, and environment class (env) as our response. Any set of variables can
be used in the formula, and several good methods of choosing variables have
been discussed previously.
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> data.mod <- lm(cbind(Amino, Carb, Cell.Wall, Cofactor.etc, DNA.met,

Dormancy, Fatty.Acids, Mem.Trans, Aromatic, Motility, Nitrogen,

Nucleo, Phages.etc, Phosphorus, Photosynthesis, Plasmids,

Potassium, Protein.met, Regulation, Respiration, RNA.met,

Secondary.met, Stress.Response, Sulfur, Virulence)

∼ env, data=data)

Only then can we use the canonical discriminant function:

> data.can <- candisc(data.mod, data=data)

The candisc object can then be plotted. To obtain Figure 43:

> data2.mod <- lm(cbind(Cell.Wall, Cofactor.etc, DNA.met, Dormancy,

Mem.Trans, Aromatic, Phages.etc, Respiration, Secondary.met,

Stress.Response) ∼ env, data=data)

> data2.can <- candisc(data2.mod, data=data)

> plot(data2.can, pch=c(1,2,3,4,5,6)[unclass(data$env)],

col=c(1,2,3,4,5,6)[unclass(data$env)], conf=0)

Two methods for error-estimation of CDA were discussed in Section 8.3,
the first is here:

> can error<-function(y,response,predictors){
getSingleResponse.fun(y,response)->response

for(i in 1:length(predictors)){
getSingleResponse.fun(y,predictors[i])->predictors[i]} createFormula.fun(y,response,predictors)

length(y[,1])->row.n;

length(y[1,])->col.n;

levels.n<-nlevels(y[,response]);

error.n<-0;

confusion<-matrix(0,nrow=levels.n,ncol=levels.n);

row.names(confusion)<-levels(y[,response]);

for(i in 1:row.n){
y[-i,]->x;

y.mod <- lm(fmla,data=x);

y.can <- candisc(y.mod,data=x);

y norm<-y;

apply(x[,predictors],2,mean)->x mean;
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for(j in 1:length(predictors)){
y[,predictors[j]]-x mean[j]->y norm[,predictors[j]]};

as.numeric(y norm[i,predictors])%*%y.can$coeffs.raw->score;

means.n<-length(y.can$mean[,1]);

mean dist<-rep(0,means.n);

cov.list<-vector("list",levels.n);

for(h in 1:levels.n){
grep(levels(y.can$scores[,1])[h],y.can$scores[,1])->class.rows;

ifelse(i>=min(class.rows),class.rows,class.rows-1->class.rows);

cov(y.can$scores[class.rows,-1])->cov.list[[h]]};
for(j in 1:means.n){

mahalanobis(as.numeric(score), as.numeric(y.can$mean[j,]),cov.list[[j]])

->mean dist[j]};
(1:levels.n)[levels(y[,response])==y[i,response]]->confusion.r;

confusion[confusion.r,order(mean dist)[1]]+1

->confusion[confusion.r,order(mean dist)[1]];

ifelse(row.names(y.can$mean)[order(mean dist)[1]]==y[i,response],

error.n->error.n,error.n+1->error.n);

};
output<-vector("list",2);

output[[1]]<-confusion;

output[[2]]<-error.n/row.n;

output;

};

This is the second:

> cdaErrorEst.fun <- function(metagenome, response, predictors,

outPercent=.2, trials=length(metagenome[,1])){
totalTest = 0

totalError = 0

fmla <- createFormula.fun(metagenome,response,predictors)

envColumn <- getSingleResponse.fun(metagenome,response)

envFactor <- levels(metagenome[,envColumn])

facLength <- length(envFactor)

confuMatrix <- matrix(rep(0, facLength * (facLength+1)),

nrow=facLength, ncol=(facLength+1),
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dimnames=list(envFactor, c(envFactor, "class.error")))

for (i in 1:trials){
metagenomeBags <- bagData.fun(metagenome, outPercent, response)

bagMG <- metagenomeBags$bag

oobMG <- metagenomeBags$oob

metagenome.mod <- lm(fmla, data=bagMG)

metagenome.can <- candisc(metagenome.mod, data=bagMG)

can.scores <- metagenome.can$scores

can.env <- can.scores[,1]

metagenome.lda <- lda(can.scores[,-1], can.env)

bag.means <- apply(bagMG[,predictors],2,mean)

oobMG.norm <- oobMG[,predictors]

for (j in 1:length(oobMG[,1])){
oobMG.norm[j,] <- oobMG.norm[j,] - bag.means}

oobMG.scores <- as.matrix(oobMG.norm) %*% as.matrix(metagenome.can$coeffs.raw)

metagenome.predict <- predict(metagenome.lda, oobMG.scores)

for (k in 1:length(oobMG[,1])){
totalTest = totalTest + 1

currentRow <- oobMG[k,]

trueClass <- as.character(oobMG$env[k])

predictClass <- as.character(metagenome.predict$class[k])

confuMatrix[trueClass,predictClass]

<- confuMatrix[trueClass,predictClass] + 1

if (predictClass != trueClass){
totalError = totalError + 1}

}}
confuMatrix <- confuMatrix / trials

for (m in 1:facLength) {
confuMatrix[m,facLength+1] = 1 - (confuMatrix[m,m] / sum(confuMatrix[m,]))

}
return (list(error=(totalError / totalTest), confusion=confuMatrix))}

A.8 Packages Used

The R packages we used in the analyses presented here are:
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• bpca[12]

• tree[22]

• randomForest[17]

• candisc[13]

• cluster[18]

• RColorBrewer[20]
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