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Outline

I What is Data Science?

I Statistical Learning

I The Nonparametric Bootstrap

I Trees

I Random Forests

I Making Sense out of a Forest



What is Data Science?



What is Statistical Learning?

I In artificial intelligence, machine learning involves some
type of machine that modifies its behavior based on
experience.

I In statistics, machine learning uses data to learn.

I Machine Learning arose as a subfield of Artificial
Intelligence

I Statistical Learning arose as a subfield of Statistics

I There is much overlap!

I Training data: (y , x)’s
Two types: supervised and unsupervised learning



Some Examples of Statistical Learning

I Predict whether a patient hospitalized due to a heart attack
will have second heart attack.
Based on demographic, diet and clinical measurements for
that patient.

I Predict the price of a stock 6 months in the future.
Based on company performance measures and economic
data.

I Identify numbers in handwritten ZIP codes.
Based on digitized image.

I Classify pixels in a LANDSAT satellite image, by usage.



Some Goals of the Statistical Analysis

I Classification: Group data based on predetermined
classes, develop criteria for distinguishing between classes
(Supervised Method)

I Clustering: Discover reasonable groupings within a dataset
(Unsupervised Method)

I Variable Selection: Reduce the number variables required
to perform a classification or clustering task, determine
interrelationships between variables (can be Supervised or
Unsupervised)



Objectives of the Analysis

From training data:

I Accurately predict unseen test cases or data.

I Understand what and how inputs affect the outcome.

I Assess the quality of predictions and inferences.



Example: South African Heart Disease Data

I 462 observations on males in South Africa
I Variable of interest is congestive heart disease where a 1

indicates the person has the disease, 0 he does not
I Explanatory variables include measurements on blood

pressure, tobacco use, bad cholesterol, adiposity (fat %),
family history of disease (absent or present), type A
personality, obesity, alcohol usage, and age

I Question: How could you find the best predictors of heart
disease?



Statistical Methods

I R and RStudio

I Bootstrap

I Trees

I Random Forests



The Nonparametric Bootstrap

I What does nonparametric mean?

I What is bootstrapping and what is it good for?
I Resampling technique used to obtain properties of

estimators (summary statistics) from data
I Uses random sampling with replacement



Trees

I What is a tree?

I Tree-based algorithms

I How to grow (and prune) a tree in R

I Example: South African Heart Disease Data
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Figure 6.1: Splitting on age and adiposity
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Figure 6.3: A large tree, with classifications at the leaves
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Figure 6.4: The tree, with unnecessary branches snipped



Random Forests

I A Random Forest is composed as a set of trees.

I Each tree in a Random Forest is generated from a random
subset of all the data. This subset is generated by bagging:
bootstrap aggregation - sampling with replacement.
Unsampled data in each set are called out-of-bag.

I Each node in each tree is determined from a random
subset of all the variables.

I Instead of classifying new data by tree branching rules,
Random Forest classifies by vote of its component trees.



Random Forest Generation

Samples

Bag Bag BagOut Out Out



Supervised and Unsupervised Random Forests

A Random Forest can be supervised or unsupervised.
I Supervised:

I In a supervised Random Forest, groupings for the training
data are input to the algorithm.

I Estimated classification error is computed using out-of-bag
data.



RF: Variable Importance

Random Forest reports which variables are most important
during construction. Particular variables are considered more
important if:

I The accuracy of prediction of a sample is diminished when
that particular variable in the sample is replaced with
random noise during error analysis.

I The nodes of the trees become more homogeneous when
that particular variable is used.



Variable Importance Plot
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Some References

I An Introduction to Statistical Learning (ISLR) at
www.StatLearning.com, by James, Witten, Hastie, and
Tibshirani

I The Elements of Statistical Learning by Hastie, Tibshirani,
and Friedman (more advanced)

I Notes on Statistical Learning by John Marden (even more
advanced)



Part II

I Random Forest for Regression Estimating

I Model Selection

I Model Assessment



The Model

Suppose we have response Y and p different predictors
X = (X1,X2, . . . ,Xp).

We can write the model: Y = f (X ) + e

where e is random noise or an error term, which is independent
of X and has mean zero.

The regression function is:

f (x) = f (x1, x2, . . . , xp) = E(Y |X1 = x1,X2 = x2, . . . ,Xp = xp)

How do we estimate f? (f̂ is our estimate for f )



Model Selection and Model Assessment

I Model Selection: Estimating performance of "different"
models in order to choose the "best" one.

I Model Assessment: Having chosen a final model, estimate
its prediction error on new data. (Generalization Error)

Next set of slides is from the ISLR book!



Assessing Model Accuracy

Suppose we fit a model f̂(x) to some training data
Tr = {xi, yi}N

1 , and we wish to see how well it performs.

• We could compute the average squared prediction error
over Tr:

MSETr = Avei2Tr[yi � f̂(xi)]
2

This may be biased toward more overfit models.

• Instead we should, if possible, compute it using fresh test
data Te = {xi, yi}M

1 :

MSETe = Avei2Te[yi � f̂(xi)]
2

17 / 30
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FIGURE 2.9. Left: Data simulated from f , shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

statistical methods specifically estimate coe�cients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.

Figure 2.9 illustrates this phenomenon on a simple example. In the left-
hand panel of Figure 2.9, we have generated observations from (2.1) with
the true f given by the black curve. The orange, blue and green curves illus-
trate three possible estimates for f obtained using methods with increasing
levels of flexibility. The orange line is the linear regression fit, which is rela-
tively inflexible. The blue and green curves were produced using smoothing
splines, discussed in Chapter 7, with di↵erent levels of smoothness. It is

smoothing spline
clear that as the level of flexibility increases, the curves fit the observed
data more closely. The green curve is the most flexible and matches the
data very well; however, we observe that it fits the true f (shown in black)
poorly because it is too wiggly. By adjusting the level of flexibility of the
smoothing spline fit, we can produce many di↵erent fits to this data.

We now move on to the right-hand panel of Figure 2.9. The grey curve
displays the average training MSE as a function of flexibility, or more for-
mally the degrees of freedom, for a number of smoothing splines. The de-

degrees of freedom
grees of freedom is a quantity that summarizes the flexibility of a curve; it
is discussed more fully in Chapter 7. The orange, blue and green squares

Black curve is truth. Red curve on right is MSETe, grey curve is

MSETr. Orange, blue and green curves/squares correspond to fits of

di↵erent flexibility.
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FIGURE 2.10. Details are as in Figure 2.9, using a di↵erent true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.
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FIGURE 2.11. Details are as in Figure 2.9, using a di↵erent f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

Here the truth is smoother, so the smoother fit and linear model do

really well.
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FIGURE 2.10. Details are as in Figure 2.9, using a di↵erent true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.
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FIGURE 2.11. Details are as in Figure 2.9, using a di↵erent f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

Here the truth is wiggly and the noise is low, so the more flexible fits

do the best.
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Bias-Variance Trade-o↵

Suppose we have fit a model f̂(x) to some training data Tr, and
let (x0, y0) be a test observation drawn from the population. If
the true model is Y = f(X) + ✏ (with f(x) = E(Y |X = x)),
then

E
⇣
y0 � f̂(x0)

⌘2
= Var(f̂(x0)) + [Bias(f̂(x0))]

2 + Var(✏).

The expectation averages over the variability of y0 as well as
the variability in Tr. Note that Bias(f̂(x0))] = E[f̂(x0)]� f(x0).

Typically as the flexibility of f̂ increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-o↵.

21 / 30



Bias-variance trade-o↵ for the three examples

36 2. Statistical Learning
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(✏)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11.
The vertical dashed line indicates the flexibility level corresponding to the smallest
test MSE.

ibility increases, and the test MSE only declines slightly before increasing
rapidly as the variance increases. Finally, in the right-hand panel of Fig-
ure 2.12, as flexibility increases, there is a dramatic decline in bias because
the true f is very non-linear. There is also very little increase in variance
as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.

The relationship between bias, variance, and test set MSE given in Equa-
tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-o↵. Good test set performance of a statistical learning method re-

bias-variance
trade-o↵quires low variance as well as low squared bias. This is referred to as a

trade-o↵ because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-o↵ is one of the most important recurring themes in this book.

In a real-life situation in which f is unobserved, it is generally not pos-
sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-o↵ in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In

22 / 30



Part III

I Unsupervised Learning - Discover interesting things about
the measurements or features.

I PCA: Principal Component Analysis for Dimension
Reduction (not covered here)

I Clustering: Discover reasonable groupings within a dataset



Unsupervised Random Forests

An unsupervised RF can be used to estimate a proximity matrix
for clustering.
I The (i , j) element of the matrix is the fraction of trees that i

and j fall in the same terminal node.

I Trick:
I Call original data "class 1".

I Generate synthetic "class 2" data by sampling uniformly
within the range of each variables.

I Use supervised RF on the above 2 classes to estimate the
proximity matrix.



Clustering with the Proximity Matrix

I We choose Partioning around Medoids (PAM)

I Similar to k-means but uses the median.

I More robust to outliers and noise.

I Choose the "best" number of classes using silhouettes.



Silhouettes
I Can be used with any clustering algorithm.

I Description for each proposed clusters number k:
I For each data point, first find the average distance between

it and all other points in the same cluster.

I Then find the average distance between the data point and
all points in the nearest cluster.

I The silhouette coefficient for each data point is defined as
the difference between the above, divided by the greater of
the two.

I Use the average silhouette coefficient to obtain an "overall"
measure.

I Calculates a measure of dissimilarity (so high is good).

I Use average silhouette plot over a range of the number of
clusters k to determine best number of groups.



Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = iris[, −5], k = 3)

Average silhouette width :  0.55

n = 150 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   50  |  0.80

2 :   62  |  0.42

3 :   38  |  0.45


