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Outline

» What is Data Science?

» Statistical Learning

» The Nonparametric Bootstrap
> Trees

» Random Forests

» Making Sense out of a Forest



What is Data Science?



What is Statistical Learning?

» In artificial intelligence, machine learning involves some
type of machine that modifies its behavior based on
experience.

> |n statistics, machine learning uses data to learn.

» Machine Learning arose as a subfield of Artificial
Intelligence

> Statistical Learning arose as a subfield of Statistics
» There is much overlap!

» Training data: (y, x)’s
Two types: supervised and unsupervised learning



Some Examples of Statistical Learning

» Predict whether a patient hospitalized due to a heart attack
will have second heart attack.
Based on demographic, diet and clinical measurements for
that patient.

» Predict the price of a stock 6 months in the future.
Based on company performance measures and economic
data.

» ldentify numbers in handwritten ZIP codes.
Based on digitized image.

> Classify pixels in a LANDSAT satellite image, by usage.



Some Goals of the Statistical Analysis

» Classification: Group data based on predetermined
classes, develop criteria for distinguishing between classes
(Supervised Method)

» Clustering: Discover reasonable groupings within a dataset
(Unsupervised Method)

» Variable Selection: Reduce the number variables required
to perform a classification or clustering task, determine
interrelationships between variables (can be Supervised or
Unsupervised)



Obijectives of the Analysis

From training data:

> Accurately predict unseen test cases or data.
» Understand what and how inputs affect the outcome.

> Assess the quality of predictions and inferences.



Example: South African Heart Disease Data

> 462 observations on males in South Africa

> Variable of interest is congestive heart disease where a 1
indicates the person has the disease, 0 he does not

» Explanatory variables include measurements on blood
pressure, tobacco use, bad cholesterol, adiposity (fat %),
family history of disease (absent or present), type A
personality, obesity, alcohol usage, and age

» Question: How could you find the best predictors of heart
disease?



Statistical Methods

» R and RStudio
» Bootstrap
> Trees

» Random Forests



The Nonparametric Bootstrap

» What does nonparametric mean?

» What is bootstrapping and what is it good for?
» Resampling technique used to obtain properties of
estimators (summary statistics) from data
» Uses random sampling with replacement



Trees

» What is a tree?
> Tree-based algorithms
» How to grow (and prune) a tree in R

» Example: South African Heart Disease Data
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Figure 6.1: Splitting on age and adiposity
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Random Forests

» A Random Forest is composed as a set of trees.

» Each tree in a Random Forest is generated from a random
subset of all the data. This subset is generated by bagging:
bootstrap aggregation - sampling with replacement.
Unsampled data in each set are called out-of-bag.

» Each node in each tree is determined from a random
subset of all the variables.

» Instead of classifying new data by tree branching rules,
Random Forest classifies by vote of its component trees.



Random Forest Generation

Samples

OO0ogooo
IAVAVAVAVIANOIO)@,




Supervised and Unsupervised Random Forests

A Random Forest can be supervised or unsupervised.
» Supervised:
> In a supervised Random Forest, groupings for the training
data are input to the algorithm.
> Estimated classification error is computed using out-of-bag
data.



RF: Variable Importance

Random Forest reports which variables are most important
during construction. Particular variables are considered more
important if:

» The accuracy of prediction of a sample is diminished when
that particular variable in the sample is replaced with
random noise during error analysis.

» The nodes of the trees become more homogeneous when
that particular variable is used.



Variable Importance Plot
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Some References

» An Introduction to Statistical Learning (ISLR) at
www.StatLearning.com, by James, Witten, Hastie, and
Tibshirani

» The Elements of Statistical Learning by Hastie, Tibshirani,
and Friedman (more advanced)

» Notes on Statistical Learning by John Marden (even more
advanced)



Part Il

» Random Forest for Regression Estimating
» Model Selection

> Model Assessment



The Model

Suppose we have response Y and p different predictors
X =(X1,X,..., Xp).

We can write the model: Y = f(X) + e

where e is random noise or an error term, which is independent
of X and has mean zero.

The regression function is:
f(X) = f(X1,X27...,Xp) = E(Y‘X1 :X17X2 :X27---7Xp:Xp)

How do we estimate f? (f is our estimate for f)



Model Selection and Model Assessment

» Model Selection: Estimating performance of "different”
models in order to choose the "best" one.

» Model Assessment: Having chosen a final model, estimate
its prediction error on new data. (Generalization Error)

Next set of slides is from the ISLR book!



Assessing Model Accuracy

Suppose we fit a model f(z) to some training data
Tr = {z;, 5}V, and we wish to see how well it performs.
e We could compute the average squared prediction error
over Tr:
MSET, = AveieTe[yi — f(-”)]z
This may be biased toward more overfit models.
e Instead we should, if possible, compute it using fresh test
data Te = {z;, 3} -

MSErte = Aveerelyi — f(:)]*
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Black curve is truth. Red curve on right is MSEve, grey curve is
MSE+,. Orange, blue and green curves/squares correspond to fits of
different flexibility.
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Here the truth is smoother, so the smoother fit and linear model do
really well.
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Here the truth is wiggly and the noise is low, so the more flexible fits
do the best.



Bias-Variance Trade-off

Suppose we have fit a model f(x) to some training data Tr, and
let (zo,y0) be a test observation drawn from the population. If
the true model is Y = f(X) + € (with f(z) = E(Y|X = x)),
then

~ 2 N ~
E (0 — f(z0)) " = Vax(f(z0)) + [Bias(f(x0))]? + Va(e).
The expectation averages over the variability of yo as well as

the variability in Tr. Note that Bias(f(z0))] = E[f(z0)] — f(zo).

Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.



Bias-variance trade-off for the three examples
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Part

» Unsupervised Learning - Discover interesting things about
the measurements or features.

> PCA: Principal Component Analysis for Dimension
Reduction (not covered here)

» Clustering: Discover reasonable groupings within a dataset



Unsupervised Random Forests

An unsupervised RF can be used to estimate a proximity matrix
for clustering.

» The (i,]) element of the matrix is the fraction of trees that /
and j fall in the same terminal node.

> Trick:
» Call original data "class 1".

> Generate synthetic "class 2" data by sampling uniformly
within the range of each variables.

> Use supervised RF on the above 2 classes to estimate the
proximity matrix.



Clustering with the Proximity Matrix

» We choose Partioning around Medoids (PAM)

» Similar to k-means but uses the median.
» More robust to outliers and noise.

» Choose the "best" number of classes using silhouettes.



Silhouettes
» Can be used with any clustering algorithm.

» Description for each proposed clusters number k:
» For each data point, first find the average distance between
it and all other points in the same cluster.

> Then find the average distance between the data point and
all points in the nearest cluster.

> The silhouette coefficient for each data point is defined as
the difference between the above, divided by the greater of
the two.

> Use the average silhouette coefficient to obtain an "overall"
measure.

» Calculates a measure of dissimilarity (so high is good).

> Use average silhouette plot over a range of the number of
clusters k to determine best number of groups.
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Silhouette plot of pam(x = iris[, =5], k = 3)
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