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yacc is a parser generator.  It is to parsers what lex is to scanners.  You provide the
input of a grammar specification and it generates an LALR(1) parser to recognize
sentences in that grammar.  yacc stands for "yet another compiler compiler" and it is
probably the most common of the LALR tools out there.  Our programming projects are
configured to use the updated version bison, a close relative of the yak, but all of the
features we use are present in the original tool, so this handout serves as a brief
overview of both.   Our course web page include a link to an online bison user’s manual
for those who really want to dig deep and learn everything there is to learn about parser
generators.

How It Works
yacc is designed for use with C code and generates a parser written in C.  The parser is
configured for use in conjunction with a lex-generated scanner and relies on standard
shared features (token types, yylval, etc.) and calls the function yylex as a scanner co-
routine.  You provide a grammar specification file, which is traditionally named using a
.y extension.  You invoke yacc on the .y file and it creates the y.tab.h and y.tab.c
files containing a thousand or so lines of intense C code that implements an efficient
LALR(1) parser for your grammar, including the code for the actions you specified.  The
file provides an extern function yyparse.y that will attempt to successfully parse a valid
sentence.  You compile that C file normally, link with the rest of your code, and you
have a parser!  By default, the parser reads from stdin and writes to stdout, just like a
lex-generated scanner does.

% yacc myFile.y              creates y.tab.c of C code for parser
% gcc -c y.tab.c compiles parser code
% gcc –o parse y.tab.o lex.yy.o –ll -ly link parser, scanner, libraries
% parse                       invokes parser, reads from stdin

The Makefiles we provide for the projects will execute the above compilation steps for
you, but it is worthwhile to understand the steps required.
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yacc File Format
Your input file is organized as follows (note the intentional similarities to lex):

%{
Declarations
%}
Definitions
%%
Productions
%%
User subroutines

The optional Declarations and User subroutines sections are used for ordinary C code
that you want copied verbatim to the generated C file, declarations are copied to the top
of the file, user subroutines to the bottom.  The optional Definitions section is where you
configure various parser features such as defining token codes, establishing operator
precedence and associativity, and setting up the global variables used to communicate
between the scanner and parser.  The required Productions section is where you specify
the grammar rules.  As in lex, you can associate an action with each pattern (this time a
production), which allows you to do whatever processing is needed as you reduce using
that production.

Example
Let's look at a simple, but complete, specification to get our bearings.  Here is a yacc
input file for a simple calculator that recognizes and evaluates binary postfix expressions
using a stack.

%{
  #include <stdio.h>
  #include <assert.h>

  static int Pop();
  static int Top();
  static void Push(int val);
%}

%token T_Int

%%

S   :  S E '\n' { printf("= %d\n", Top()); }
    |
    ;

E   :  E E '+' { Push(Pop() + Pop()); }
    |  E E '-' { int op2 = Pop(); Push(Pop() - op2); }
    |  E E '*' { Push(Pop() * Pop()); }
    |  E E '/' { int op2 = Pop(); Push(Pop() / op2); }
    |  T_Int   { Push(yylval); }
    ;
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%%

static int stack[100], count = 0;

static int Pop() {
    assert(count > 0);
    return stack[--count];
}
static int Top() {
    assert(count > 0);
    return stack[count-1];
}
static void Push(int val) {
    assert(count < sizeof(stack)/sizeof(*stack));
    stack[count++] = val;
}

int main() {
   return yyparse();
}

A few things worth pointing out in the above example:

• All token types returned from the scanner must be defined using %token in the
definitions section.  This establishes the numeric codes that will be used by the
scanner to tell the parser about each token scanned.  In addition, the global
variable yylval is used to store additional attribute information about the
lexeme itself.

• For each rule, a colon is used in place of the arrow, a vertical bar separates the
various productions, and a semicolon terminates the rule.  Unlike lex, yacc pays
no attention to line boundaries in the rules section, so you’re free to use lots of
space to make the grammar look pretty.

• Within the braces for the action associated with a production is just ordinary C
code.  If no action is present, the parser will take no action upon reducing that
production.

• The first rule in the file is assumed to identify the start symbol for the grammar.
• yyparse is the function generated by yacc.  It reads input from stdin,

attempting to work its way back from the input through a series of reductions
back to the start symbol.  The return code from the function is 0 if the parse was
successful and 1 otherwise.  If it encounters an error (i.e. the next token in the
input stream cannot be shifted), it calls the routine yyerror, which by default
prints the generic "parse error" message and quits.
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In order to try out our parser, we need to create the scanner for it.  Here is the lex file
we used:

%{
  #include "y.tab.h"
%}
%%
[0-9]+ { yylval = atoi(yytext); return T_Int;}
[-+*/\n] { return yytext[0];}
. { /* ignore everything else */ }

Given the above specification, yylex will return the ASCII representation of the
calculator operators, recognize integers , and ignore all other characters.  When it
assembles a series of digits into an integer, it converts to a numeric value and stores in
yylval (the global reserved for passing attributes from the scanner to the parser).  The
token type T_Int is returned.

In order to tie this all together, we first run yacc/bison on the grammar specification
to generate the y.tab.c and y.tab.h files, and then run lex/flex on the scanner
specification to generate the lex.yy.c file.  Compile the two .c files and link them
together, and voila— a calculator is born!  Here is the Makefile we could use:

calc: lex.yy.o y.tab.o
gcc -o calc lex.yy.o y.tab.o  -ly -ll

lex.yy.c: calc.l y.tab.c
flex calc.l

y.tab.c: calc.y
bison -vdty calc.y

Tokens, Productions, and Actions
By default, lex and yacc agree to use the ASCII character codes for all single-char
tokens without requiring explicit definitions.  For all multi-char tokens, there needs to be
an agreed-upon numbering system, and all of these tokens need to be specifically
defined.  The %token directive establishes token names and assigns numbers.

%token T_Int T_Double T_String T_While

The above line would be included in the definitions section.  It is translated by yacc into
C code as a sequence of #defines for T_Int, T_Double, and so on, using the numbers
257 and higher.  These are the codes returned from yylex as each multicharacter token
is scanned and identified.  The C declarations for the token codes are exported in the
generated y.tab.h header file.  #include that file in other modules (in the scanner, for
example) to stay in sync with the parser-generated definitions.

Productions and their accompanying actions are specified using the following format:
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left_side : right_side1 { action1 }
| right_side2 { action2 }
| right_side3 { action3 }
;

The left side is the non-terminal being described.  Non-terminals are named like typical
identifiers: using a sequence of letters and/or digits, starting with a letter.  Non-
terminals do not have to be defined before use, but they do need to be defined
eventually.  The first non-terminal defined in the file is assumed to the start symbol for
the grammar.

Each right side is a valid expansion for the left side non-terminal.  Vertical bars separate
the alternatives, and the entire list is punctuated by a semicolon.  Each right side is a list
of grammar symbols, separated by white space.  The symbols can either be non-
terminals or terminals. Terminal symbols can either be individual character constants,
e.g. 'a' or token codes defined using %token such as T_While.

The C code enclosed in curly braces after each right side is the associated action.
Whenever the parser recognizes that production and is ready to reduce, it executes the
action to process it.  When the entire right side is assembled on top of the parse stack
and the lookahead indicates a reduce is appropriate, the associated action is executed
right before popping the handle off the stack and following the goto for the left side
non-terminal.  The code you include in the actions depends on what processing you
need.  The action might be to build a section of the parse tree, evaluate an arithmetic
expression, declare a variable, or generate code to execute an assignment statement.

Although it is most common for actions to appear at the end of the right side, it is also
possible to place actions in-between grammar symbols.  Those actions will be executed
at that point when the symbols to the left are on the stack and the symbols to the right
are coming up.  These embedded actions can be a little tricky because they require the
parser to commit to the current production early, more like a predictive parser, and can
introduce conflicts if there are still open alternatives at that point in the parse.

Symbol Attributes
The parser allows you to associate attributes with each grammar symbol, both terminals
and non-terminals.  For terminals, the global variable yylval is used to communicate
the particulars about the token just scanned from the scanner to the parser.  For non-
terminals, you can explicitly access and set their attributes using the attribute stack.

By default, YYSTYPE (the attribute type) is just an integer.  Usually you want to different
information for various symbol types, so a union type can be used instead.  You indicate
what fields you want in the union via the %union directive.
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%union {
int intValue;
double doubleValue;
char *stringValue;

}

The above line would be included in the definitions section.  It is translated by yacc into
C code as a YYSTYPE typedef for a new union type with the above fields.  The global
variable yylval is of this type, and parser stores variables of this type on the parser
stack, one for each symbol currently on the stack.

When defining each token, you can identify which field of the union is applicable to this
token type by preceding the token name with the fieldname enclosed in angle brackets.
The fieldname is optional (for example, it is not relevant for tokens without attributes).

%token <intValue>T_Int <doubleValue>T_Double T_While T_Return

To set the attribute for a non-terminal, use the %type directive, also in the definitions
section.  This establishes which field of the union is applicable to instances of the non-
terminal:

%type<intValue> Integer IntExpression

To access a grammar symbol's attribute from the parse stack, there are special variables
available for the C code within an action.  $n is the attribute for the nth symbol of the
current right side, counting from 1 for the first symbol.  The attribute for the non-
terminal on the left side is denoted by $$.  If you have set the type of the token or non-
terminal, then it is clear which field of the attributes union you are accessing.  If you have
not set the type (or you want to overrule the defined field), you can specify with the
notation $<fieldname>n.  A typical use of attributes in an action might be to gather the
attributes of the various symbols on the right side and use that information to set the
attribute for the non-terminal on the left side.

A similar mechanism is used to obtain information about symbol locations.  For each
symbol on the stack, the parser maintains a variable of type YYLTYPE, which is a
structure containing four members: first line, first column, last line, and last column.  To
obtain the location of a grammar symbol on the right side, you simply use the notation
@n, completely parallel to $n.  The location of a terminal symbol is furnished by the
lexical analyzer via the global variable yylloc.  During a reduction, the location of the
non-terminal on the left side is automatically set using the combined location of all
symbols in the handle that is being reduced.

Conflict Resolution
What happens when you feed yacc a grammar that is not LALR(1)?  yacc reports any
conflicts when trying to fill in the table, but rather than just throwing up its hands, it has
automatic rules for resolving the conflicts and building a table anyway.  For a
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shift/reduce conflict, yacc will choose the shift.  In a reduce/reduce conflict, it will
reduce using the rule declared first in the file.  These heuristics can change the language
that is accepted and may not be what you want.  Even if it happens to work out, it is not
recommended to let yacc pick for you.  You should control what happens by explicitly
declaring precedence and associativity for your operators.

For example, ask yacc to generate a parser for this ambiguous expression grammar
that includes addition, multiplication, and exponentiation (using '^').

%token T_Int
%%

E  : E '+' E
| E '*' E
| E '^' E
| T_Int

      ;

When you run yacc on this file, it reports:

conflicts: 9 shift/reduce

In the generated y.output, it tells you more about the issue:

...
State 6 contains 3 shift/reduce conflicts.
State 7 contains 3 shift/reduce conflicts.
State 8 contains 3 shift/reduce conflicts.
...

If you look through the human-readable y.output file, you will see it contains the
family of configurating sets and the transitions between them.  When you look at states
6, 7, and 8, you will see the place we are in the parse and the details of the conflict.
Understanding all that LR(1) construction stuff just might be useful after all!  Rather than
re-writing the grammar to implicitly control the precedence and associativity with a
bunch of intermediate non-terminals, we can directly indicate the precedence so that
yacc will know how to break ties.  In the definitions section, we can add any number of
precedence levels, one per line, from lowest to highest, and indicate the associativity
(either left, right, or nonassoc).  Several terminals can be on the same line to assign them
equal precedence.
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%token T_Int
%left '+'
%left '*'
%right '^'
%%

E  : E '+' E
| E '*' E
| E '^' E
| T_Int

      ;

The above file says that addition has the lowest precedence and it associates left to right.
Multiplication is higher, and is also left associative.  Exponentiation is highest precedence
and it associates right.  These directives disambiguate the conflicts.  When we feed yacc
the changed file, it uses the precedence and associativity as specified to break ties.  For a
shift/reduce conflict, if the precedence of the token to be shifted is higher than that of
the rule to reduce, it chooses the shift and vice versa.  The precedence of a rule is
determined by the precedence of the rightmost terminal on the right-hand side (or can
be explicitly set with the %prec directive).  So if a 4 + 5 is on the stack and * is coming
up, the * has higher precedence than the 4 + 5, so it shifts. If 4 * 5 is on the stack and + is
coming up, it reduces.  If 4 + 5 is on the stack and + is coming up, the associativity breaks
the tie, a left-to-right associativity would reduce the rule and then go on, a right-to-left
would shift and postpone the reduction.

Another way to set precedence is by using the %prec directive.  When placed at the end
of a production with a terminal symbol as its argument, it explicitly sets the precedence
of the production to the same precedence as that terminal.  This can be used when the
right side has no terminals or when you want to overrule the precedence given by the
rightmost terminal.

Even though it doesn’t seem like a precedence problem, the dangling else ambiguity can
be resolved using precedence rules.  Think carefully about what the conflict is: Identify
what the token is that could be shifted and the alternate production that could be
reduced.  What would be the effect of choosing the shift?  What is the effect of choosing
to reduce?  Which is the one we want?

Using yacc's precedence rules, you can force the choice you want by setting the
precedence of the token being shifted versus the precedence of the rule being reduced.
Whichever precedence is higher wins out.  The precedence of the token is set using the
ordinary %left, %right, or %nonassoc directives.  The precedence of the rule being
reduced is determined by the precedence of the rightmost terminal (set the same way)
or via an explicit %prec directive on the production.
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Error handling
When a yacc-generated parser encounters an error (i.e. the next input token cannot be
shifted given the sequence of things so far on the stack), it calls the default yyerror
routine to print a generic "parse error" message and halt parsing.  However, quitting in
response to the very first error is not particularly helpful!

yacc supports a form of error re-synchronization that allows you to define where in the
stream to give up on an unsuccessful parse and how far to scan ahead and try to cleanup
to allow the parse to restart.  The special error token can be used in the right side of a
production to mark a context in which to attempt error recovery.  The usual use is to
add the error token possibly followed by a sequence of one or more synchronizing
tokens, which tell the parser to discard any tokens until it sees that "familiar" sequence
that allows the parser to continue.  A simple and useful strategy might be simply to skip
the rest of the current input line or current statement when an error is detected.
When an error is encountered (and reported via yyerror,) the parser will discard any
partially parsed rules (i.e. pop stacks from the parse stack) until it finds one in which it
can shift an error token.  It then reads and discards input tokens until it finds one that
can follow the error token in that production.  For example:

Var  :  Modifiers Type IdentifierList ';'
     |  error ';'

  ;

The second production allows for handling errors encountered when trying to recognize
Var by accepting the alternate sequence error followed by a semicolon. What happens
if the parser in the in the middle of processing the IdentifierList when it encounters
an error?  The error recovery rule, interpreted strictly, applies to the precise sequence of
an error and a semicolon.  If an error occurs in the middle of an IdentifierList,
there are Modifiers and a Type and what not on the stack, which doesn't seem to fit
the pattern.  However, yacc can force the situation to fit the rule, by discarding the
partially processed rules (i.e. popping states from the stack) until it gets back to a state in
which the error token is acceptable (i.e. all the way back to the state at which it started
before matching the Modifiers).  At this point the error token can be shifted.  Then, if
the lookahead token couldn’t possibly be shifted, the parser reads tokens, discarding
them until it finds a token that is acceptable.  In this example, yacc reads and discards
input until the next semi-colon so that the error rule can apply. It then reduces that to
Var, and continues on from there. This basically allowed for a mangled variable
declaration to be ignored up to the terminating semicolon, which was a reasonable
attempt at getting the parser back on track. Note that if a specific token follows the error
symbol it will discard until it finds that token, otherwise it will discard until it finds any
token in the lookahead set for the nonterminal (for example, anything that can follow
Var in the example above).
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In our postfix calculator from the beginning of the handout, we can add an error
production to recover from a malformed expression by discarding the rest of the line up
to the newline and allow the next line to be parsed normally:

S   :  S E '\n'   { printf("= %d\n", Top()); }
    |  error '\n' { printf("Error! Discarding entire line.\n"); }
    |
    ;

Like any other yacc rule, one that contains an error can have an associated action. It
would be typical at this point to clean up after the error and other necessary
housekeeping so that the parse can resume.

Where should one put error productions?  It’s more of an art than a science.  Putting
error tokens fairly high up tends to protect you from all sorts of errors by ensuring
there is always a rule to which the parser can recover.  On the other hand, you usually
want to discard as little input as possible before recovering, and error tokens at lower
level rules can help minimize the number of partially matched rules that are discarded
during recovery.

One reasonable strategy is to add error tokens fairly high up and use punctuation as the
synchronizing tokens.  For example, in a programming language expecting a list of
declarations, it might make sense to allow error as one of the alternatives for a list entry.
If punctuation separates elements of a list, you can use that punctuation in error rules to
help find synchronization points—skipping ahead to the next parameter or the next
statement in a list.  Trying to add error actions at too low a level (say in expression
handling) tends to be more difficult because of the lack of structure that allows you to
determine when the expression ends and where to pick back up.  Sometimes adding
error actions into more than one level may introduce conflicts into the grammar because
more than one error action is a possible recovery.

Another mechanism: deliberately add incorrect productions into the grammar
specification, allow the parser to help you recognize these illegal forms, and then use the
action to handle the error manually.  For example, let's say you're writing a Java
compiler and you know some poor C programmer is going to forget that you can't
specify the size in a Java array declaration.  You could add an alternate array declaration
that allows for a size, but knowing it was illegal, the action for this production reports an
error and discards the erroneous size token.

Most compilers tend to focus their efforts on trying to recover from the most common
error situations (forgetting a semicolon, mistyping a keyword), but don't put a lot of
effort into dealing with more wacky inputs.  Error recovery is largely a trial and error
process.  For fun, you can experiment with your favorite compilers to see how good a
job they do at recognizing errors (they are expected to hit this one perfectly), reporting
errors clearly (less than perfect), and gracefully recovering (far from perfect).
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Other Features
This handout doesn't detail all the great features available in yacc and bison, please refer
to the man pages and online references for more details on tokens and types, conflict
resolution, symbol attributes, embedded actions, error handling, and so on.

Bibliography
J. Levine, T. Mason, and D. Brown, Lex and Yacc.  Sebastopol, CA: O’Reilly & Associates,

1992.
A. Pyster, Compiler Design and Construction.  New York, NY: Van Nostrand Reinhold, 1988.


