
NU-Prolog
Reference Manual

Version 1.5.24

edited by

James A. Thom & Justin Zobel

Technical Report 86/10
Machine Intelligence Project

Department of Computer Science
University of Melbourne

(Revised November 1990)

Copyright 1986, 1987, 1988, Machine Intelligence Project, The University of Melbourne.

All rights reserved. The Technical Report edition of this publication is given away free subject
to the condition that it shall not, by the way of trade or otherwise, be lent, resold, hired out, or
otherwise circulated, without the prior consent of the Machine Intelligence Project at the
University of Melbourne, in any form or cover other than that in which it is published and
without a similar condition including this condition being imposed on the subsequent user.
The Machine Intelligence Project makes no representations or warranties with respect to the
contents of this document and specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose. Furthermore, the Machine Intelligence Project reserves
the right to revise this document and to make changes from time to time in its content without
being obligated to notify any person or body of such revisions or changes. The usual codicil
that no part of this publication may be reproduced, stored in a retrieval system, used for
wrapping fish, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, paper dart, recording, or otherwise, without someone’s express permission, is
not imposed.

Enquiries relating to the acquisition of NU-Prolog should be made to

NU-Prolog Distribution Manager
Machine Intelligence Project

Department of Computer Science
The University of Melbourne

Parkville, Victoria 3052
Australia

Telephone: (03) 344 5229. Electronic mail: mip@cs.mu.oz.au

Warning: Some of Doc in TechJarg

PREFACE TO VERSION 1.1

The development of the NU-Prolog† system has been a collective effort of members of the
Machine Intelligence Project at The University of Melbourne. The Machine Intelligence
Project was initiated, in 1984, by the Honourable Barry Jones, Minister of Science, and Dr.
Jean-Louis Lassez. We would like to thank the Australian Government’s Department of
Science and The University of Melbourne for funding the project, and Pyramid Australia for
the loan of a Pyramid 90X computer during 1985.

The NU-Prolog language, which is a advance towards declarative programming in logic,
was principally designed by Lee Naish. The NU-Prolog system itself was designed by Lee

Naish and Jeffrey Schultz. NU-Prolog was implemented under UNIX‡ by Jeffrey Schultz, with
assistance from David Morley (parser, definite clause grammars), Lee Naish (negation,
extended syntax), John Shepherd (assembler, loader, superimposed coding, revision system),
Kotagiri Ramamohanarao (superimposed coding), James Thom (database interface), Justin
Zobel (nit, extended syntax), Philip Dart (top level of interpreter). and Zoltan Somogyi
(revision system design),

This manual was edited and written by James Thom and Justin Zobel, with assistance
from Philip Dart, Lee Naish, Jeffrey Schultz and John Shepherd. We acknowledge the
comments provided by other staff members and graduate students, including Rodney Topor and
Richard Helm. Finally, we would like to thank John Lloyd and Kotagiri Ramamohanarao for
supervising the Machine Intelligence Project.

James Thom
Justin Zobel

January 1987

† NU-Prolog (pronounced ‘‘new prolog’’) is the successor of MU-Prolog 3.2, and is not an acro-
nym for Naish’s Ultra Prolog.

‡ UNIX is a trademark of Bell Laboratories.

iii

Table of Contents

Chapter 1 INTRODUCTION ... 1

Chapter 2 USING NU-PROLOG ... 3

2.1 Getting Started .. 4

2.2 nc − NU-Prolog Compiler ... 6

2.3 np − NU-Prolog Interpreter ... 8

2.4 nit − NU-Prolog Program Checker .. 11

2.5 nac − NU-Prolog control preprocessor .. 14

2.6 revise − Incremental Program Revision Facility ... 17

Chapter 3 SYNTAX OF NU-PROLOG ... 19

3.1 Variables ... 19

3.2 Constants .. 20

3.2.1 Atoms .. 20

3.2.2 Integers .. 20

3.2.3 Floats ... 20

3.3 Terms .. 22

3.4 Clauses .. 22

3.5 Predicates .. 22

3.6 Lists .. 23

3.7 Strings ... 23

3.8 Operators .. 24

3.9 Comments ... 25

Chapter 4 SEMANTICS OF NU-PROLOG .. 27

4.1 Semantics .. 27

4.1.1 Declarative Semantics .. 28

4.1.2 Operational Semantics ... 28

4.2 Declarative Constructs .. 29

4.2.1 Standard Constructs ... 29

4.2.2 Quantifiers ... 30

4.2.3 Negation, Implication, and Related Constructs 30

4.2.4 Aggregate Functions .. 32

4.2.5 When Declarations ... 34

4.3 Non-declarative Constructs .. 36

4.3.1 Non-logical Quantifiers ... 36

4.3.2 Cut ... 36

4.3.3 Non-logical Constructs .. 36

Chapter 5 SYSTEM PREDICATES .. 39

5.1 Predicates which Succeed or Fail ... 39

5.2 Predicates for Conditional Compilation or Loading 40

5.3 Interpreter Predicates .. 41

5.3.1 Examining the Program State .. 41

5.3.2 Examining and Controlling the Execution State 41

iv

5.3.3 Debugging Predicates .. 43

5.4 Terms and Lists .. 47

5.4.1 Manipulating Lists ... 47

5.4.2 Examining Characters .. 49

5.4.3 Examining Terms .. 49

5.4.4 Modifying Terms ... 53

5.4.5 Comparison of Terms .. 53

5.5 Arithmetic Operators and Predicates .. 55

5.5.1 Arithmetic Operators ... 55

5.5.2 Arithmetic Predicates ... 59

5.6 I/O Predicates ... 62

5.6.1 Stream Management Predicates ... 62

5.6.2 Input Predicates ... 65

5.6.3 Output Predicates ... 70

5.7 Database Predicates .. 77

5.7.1 Loading and Saving Programs .. 77

5.7.2 Property List Predicates ... 78

5.7.3 Accessing and Updating Dynamic Predicates 80

5.8 Predicates for External Databases .. 83

5.8.1 Creating and Using External Databases .. 83

5.8.2 Dynamic Superimposed Codeword Databases 84

5.8.3 Static Superimposed Codeword Databases 85

5.8.4 UNIFY Databases .. 86

5.8.5 Compiled Rule databases .. 88

5.9 Miscellaneous Predicates .. 89

5.10 Predicates for Accessing the UNIX Operating System 93

5.11 Foreign Function Interface ... 99

Chapter 6 LIBRARY PREDICATES .. 103

6.1 Compatibility .. 104

6.2 Ordered Sets ... 107

6.3 Debugging .. 109

6.3.1 Initializing the debugging environment ... 109

6.3.2 Accessing the debugging environment .. 109

6.3.3 Manipulting the debugging environment .. 111

6.3.4 Miscellaneous .. 113

6.4 Curses ... 114

6.4.1 Access to Global Variables ... 114

6.4.2 Output Predictes .. 115

6.4.3 Input Predicates ... 119

6.4.4 Miscellaneous Predicates ... 120

6.4.5 Details .. 123

APPENDIX 1 – Example NU-Prolog Programs .. 124

APPENDIX 2 – Definite Clause Grammars .. 130

APPENDIX 3 – Using the NU-Prolog Compiler .. 133

v

APPENDIX 4 – Porting MU-Prolog Programs to NU-Prolog 134

APPENDIX 5 – Using DSIMC Databases ... 135

APPENDIX 6 – Reserved Predicate Names .. 137

APPENDIX 7 – Permitted Characters .. 138

APPENDIX 8 – Standard Operator Declarations ... 143

APPENDIX 9 – Signals ... 144

APPENDIX 10 – Bugs and Limitations of NU-Prolog 145

REFERENCES .. 146

vi

CHAPTER 1

INTRODUCTION

NU-Prolog is intended to be a successor to the current generation of Prolog systems.
Programs can be written more logically in NU-Prolog than is possible with other versions of
Prolog; NU-Prolog is a step towards purely declarative logic programming. The language includes
quantification and if-then-else; logical connectives such as implication; logical equivalents of the
unsafe constructs which were necessary in earlier versions of Prolog; and when declarations, which
delay the execution of predicates until their arguments are sufficiently instantiated, and can be used
to produce code that is more logical and efficient. These features not only simplify programming,
but improve readability and bring NU-Prolog programs closer to the ideal of programs written in
pure logic. In particular, they make most uses of cut unnecessary.

Although the syntax and system predicates of NU-Prolog are essentially a superset of those
available in DEC-10 Prolog [Bowe82], MU-Prolog [], and Quintus Prolog [Inc86][], NU-Prolog
makes most of the uses of the non-logical or unsound aspects of these systems obsolete. A few
DEC-10 and some Quintus Prolog predicates are not available, and some have slightly different
effects, although most DEC-10 and Quintus Prolog programs should run with few alterations.
However, NU-Prolog is a new generation Prolog system.

Prolog has long been recognised as a suitable language for writing database applications
[Gall78]. NU-Prolog incorporates an external database facility which permits the storage of
predicates in which the arguments may be arbitrary terms under a partial-match indexing scheme.
This scheme, however, does not permit databases to grow. An alternative indexing scheme under
which ground terms may be stored in databases which can grow indefinitely is also provided.

NU-Prolog can also access and modify data stored in UNIFY† databases via an interface which
transforms Prolog goals into SQL queries.

Chapter 2 introduces the principal software tools that comprise the NU-Prolog system. These
are the NU-Prolog compiler; an interpreter for testing and debugging programs and for handling
interactive database queries; a program checker which scans NU-Prolog source for probable errors;
a preprocessor for adding control to NU-Prolog programs; and an incremental program revision
facility.

The syntax of NU-Prolog is described in Chapter 3. Chapter 4 describes the semantics of the
principal constructs of NU-Prolog This chapter describes many of the novel features of the
language, including advanced negation facilities and extended syntax. It is recommended that this
chapter be read by all NU-Prolog programmers.

Chapter 5 describes the NU-Prolog system predicates. These includes the NU-Prolog external
database schemes, debugging facilities, and a substantial number of predicates used for handling
I/O, lists, terms and the internal NU-Prolog database. NU-Prolog libraries are described in
Chapter 6. These include a library for the porting of Quintus Prolog and DEC-10 Prolog
programs.

Appendix 1 contains programs illustrating NU-Prolog and demonstrating the use of when
declarations and declarative aggregate constructs. The definite clause grammar notation is
described in Appendix 2. Appendix 3 gives an example of the use of the NU-Prolog compiler.

† UNIFY is a trademark of the UNIFY Corporation.

1

Introduction

Appendix 4 describes the principle changes required in porting MU-Prolog programs to NU-Prolog.
Appendix 5 gives an example of the creation and use of a dsimc database. Appendix 6 lists
predicate names that have been reserved for future use. Appendix 7 defines the classes of ASCII
characters used by NU-Prolog. Appendix 8 gives the operator declarations used by NU-Prolog.
Signals are listed in Appendix 9. Appendix 10 outlines some bugs and limitations of NU-Prolog.

This document is intended to be a reference manual, not a text on writing Prolog programs.
Both novice and experienced Prolog programmers should find this manual an essential and
convenient reference for programming in NU-Prolog.

2

CHAPTER 2

USING NU-PROLOG

NU-Prolog is a compiled Prolog system. §2.2 describes nc , the NU-Prolog compiler; its
behaviour is analogous to cc (1), the compiler for the C programming language, and it has similar
options. An interpreter-like environment, np , is provided for NU-Prolog as an aid in debugging
and development, as described in §2.3. The NU-Prolog system also includes nit , a program
checker which identifies probable bugs in NU-Prolog programs. This is described in §2.4. The
preprocessor nac , described in §2.5, is used to add control to NU-Prolog programs. The other
NU-Prolog facility described in this chapter is revise , an incremental program revision facility,
described in §2.6.

In NU-Prolog, the program which is being executed is essentially fixed at compile time. It is
translated into machine code for an abstract Prolog machine based on the abstract machine
described in [Warr83]. Unlike an interpreter-based system, the compiled predicates are not stored
as Prolog structures in the internal database. Since predicates are not stored in the same format as
other data structures, the programmer does not have the same freedom to manipulate and define
predicates and clauses as in interpreted Prolog systems. If NU-Prolog clauses are to be added or
deleted at run time, the predicates of which they are part should be declared as dynamic/1.
However, a dynamic predicate is not executed as efficiently as the compiled equivalent.
Alternatively, facts and rules may be stored using the external database facilities.

3

Using NU-Prolog - Getting Started

2.1. Getting Started
Developing a program using the NU-Prolog system usually involves the following steps.

(1) Editing a file, say prog.nl , containing the source of the program. The source might be:

parent(fred, mary).
parent(fred, bill).
parent(mary, sally).

ancestor(X, Y) :–
parent(X, Y).

ancestor(X, Y) :–
parent(X, Z),
ancestor(Z, Y).

(2) Compiling the program using nc with the −c option:

nc -c prog.nl

which will generate two files:

prog.no – abstract machine object code.
prog.ns – assembler source for the abstract machine.

(3) To use the program, type:

np

to invoke the interpreter. The user will be given the prompt:

1?–

and can load the compiled program with the command

[prog].

This could have been done in one step with np prog.no. After the message

loading prog.no

the system will give the prompt

2?–

to which the user can type queries such as

ancestor(fred, X).
or

X : ancestor(fred, X).
The former finds the first X for which fred is an ancestor, and finds further values for X on
request; the latter will retrieve all such X .

NU-Prolog programs may contain a predicate main/1 to be invoked when the program is
executed from shell. Any command line arguments are given to main/1 as a list of atoms, just as
command line arguments are given to the C language function main as an array of strings. For
example, suppose that the UNIX directory /db contained student records of the form
student(LoginID, Surname). The command

nc -o names names.nl

could then be used to compile the following program into the executable file names .

4

Using NU-Prolog - Getting Started

?– dbCons(’/db’).

main(_.Surnames) :–
solutions(ID, (member(SN, Surnames), student(ID, SN)), IDs),
printList(IDs).

printList([]).
printList(A.B) :–

writeln(A),
printList(B).

The program will print every ID where member(SN,Surnames),student(ID,SN) is true, and
the goal ?– dbCons('/db') tells NU-Prolog which database to check to find student/2
records. So, the command

names Smith Jones Bloggs

would print the login ID of every student whose surname is Smith, Jones or Bloggs.

All the descriptions of predicates and connectives in this manual are available in the predicate
man/1. It is described in §5.3.

The remaining sections in this chapter describe some of the UNIX commands which comprise
the NU-Prolog system. These commands are nc (described in §2.2), np (§2.3), nit (§2.4), nac
(§2.5), revise (§2.6) and initdb (§5.8).

5

Using NU-Prolog - nc

2.2. nc − NU-Prolog Compiler

The NU-Prolog compiler is nc , which accepts several types of source files as input.
Arguments whose names end with .nl are assumed to be NU-Prolog source programs. Each .nl
file is compiled into an assembler file, whose name is that of the source with .ns substituted for
.nl. Any .ns files are assembled to produce object files, whose suffix is .no. Most of the
compile time is spent producing .ns files, so if space is to be saved it is cheapest to remove .no
files.

If a program is to be executed from shell, compilation produces an executable image – a.out
by default – which incorporates the predicate definitions from all of the specified .no files. If a
predicate definition is split across a number of files, a warning will be printed and the only part of
the definition to be used will be that which occurs in the last file to be loaded. An ‘‘entry
predicate’’ with arity of one can be defined in one of the .no files, The name of the entry predicate
can be specified with the –e option; by default, it is main/1. This will be used as the entry point
into the executable file. That is, when a.out is executed, the program will be run with the goal
main/1, where main is the name of the entry predicate. The argument to main/1 will be a list
of atoms representing the command line arguments; the first element in the list is always the name
of the executable file. There is a default definition of main/1 which enters the top level of the
interpreter when the program is invoked.

NU-Prolog executes all goals in .nl files twice, once at compile time and once at load time.
Goals are executed by the compiler when encountered in the program source, and are also placed in
a initialization predicate which is invoked immediately before the executable file is created, that is,
at load time. This is because some goals − such as useIf/1 and dynamic/1 − are used during
compilation, and others – such as user-defined predicates – when the executable file is created.

NU-Prolog starts with default amounts of memory pre-allocated for its various data areas.
These can be expanded at run-time, but expansion of the permanent data-area usually blocks further
expansion of the others. Larger, or smaller, initial allocations can be made with the –u, –v, –w,
and –x options.

nc may be used as follows.

nc [-c] [-D] [-S] [-U] [-o objfile] [-e entry_pred] [-F flag]
[-u n] [-v n] [-w n] [-x n]
[-l library] *.nl *.ns *.no

The options are used as follows.

–c Compile only, do not link. That is, stop the compilation when the .no files have been
created; this is used for programs which are to be executed from the interpreter.

–D Apply the definite clause grammar preprocessor to the given files and omit the processed code
on standard output. Definite clause grammars are described in Appendix 2.

–e entry_predicate
Specify the name of the predicate with arity of one to be used as the goal when the executable
file is run. This defaults to main/1. It is an error for the entry predicate to be absent from
the program.

–F flag
Make option(flag) true during compile time. Useful for conditional compilation of
clauses with useIf/1.

–l library
Specify a library to be loaded with the executable image. The predicates defined in the library
will be incorporated into the program. Since using this option is quicker it should be used in
preference to embedding ?– lib library goals in the .nl files.

6

Using NU-Prolog - nc

–o object_file
Place the executable image in object_file rather than the default a.out.

–S Compile the named NU-Prolog programs and leave the assembly-language output on
corresponding files suffixed .ns. No .no files are produced.

–U Translate calls to UNIFY databases into a more efficient form before compilation. Described
in more detail in §5.8.

–u n
Ensure that there is at least n kwords of space available for permanent data items when the
compiled program is loaded. These include compiled and interpreted code, properties, IO and
database buffers, and the symbol table. A word will be 4 bytes on most systems, but will
store a similar amount of data on all. Filling this area during compilation is likely to prevent
further expansion of the Prolog stacks. This option is meaningful only when an executable
image is being produced.

–v n
Ensure that there is at least n kwords of space available on the Prolog heap when the
compiled program is loaded. This contains Prolog’s global execution data − mainly holding
terms, floats, and information about delayed calls. A word will be 4 bytes on most systems,
but will store a similar amount of data on all. Prolog can usually expand this if necessary,
unless the permanent data area has overflowed its initial allocation. This option is meaningful
only when an executable image is being produced.

–w n
Ensure that there is at least n kwords of space available on the Prolog local stack when the
compiled program is loaded. This contains choice-points and environments. A word will be
4 bytes on most systems, but will store a similar amount of data on all. Prolog can usually
expand this if necessary, unless the permanent data area has overflowed its initial allocation.
This option is meaningful only when an executable image is being produced.

–x n
Ensure that there is at least n kwords of space available on the Prolog trail when the compiled
program is loaded. This contains information on variable bindings to be reset on
backtracking. A word will be 4 bytes on most systems, but will store a similar amount of
data on all. Prolog can usually expand this if necessary, unless the permanent data area has
overflowed its initial allocation. This option is meaningful only when an executable image is
being produced.

An example of the use of nc is given in Appendix 3.

7

Using NU-Prolog - np

2.3. np − NU-Prolog Interpreter

Compiled NU-Prolog programs may be run by generating executable files or by using np , the
NU-Prolog interpreter. To use np , type:

np [object_file ...]

where object_file is an object file, that is, a file with .no suffix, which will be loaded into np .
Object files may also be loaded with load/1 and similar predicates. Np can also interpret NU-
Prolog programs directly without compiling them first. This is much slower and uses far more
memory than executing compiled code, but it may shorten the edit-compile-run cycle. To load a
file for interpreted execution, consult/1 it. Except when loaded with consult/1, NU-Prolog
will choose the compiled .no version of a file in preference to the .nl source.

Np provides an interactive system which reads and calls one goal at a time. A session with
np is terminated either by end-of-file (type ^D as the first character on the line) or by a call to the
exit/1 predicate.

If a goal read by np contains a syntax error, an error message will be printed and np will
reprompt for another goal to be entered. Np uses a mechanism similar to read1/1 to fetch goals,
which it reads as NU-Prolog terms and thus requires that commands be terminated with a ‘.’ and
whitespace.

Np incorporates a history mechanism. Each ‘?–’ goal, whether syntactically correct or not, is
numbered, and may be repeated, listed or modified with the following history list commands,
which are not themselves added to the history list.

?− N
Repeat the goal numbered N . If −N is chosen, the goal given by subtracting N from the
current prompt number is chosen.

Only available at the top level of the interpreter.

?− e
?− e N

Load the most recent (or N th) goal in the history list into the editor specified by the
environment variable VISUAL (or EDITOR or vi in line mode). If N is negative, the goal
given by adding N to the current prompt number is chosen. When the editor exits, the
new goal is added to the history list and executed.

Only available at the top level of the interpreter.

?− h
Print history list.

Only available at the top level of the interpreter.

?− r Hist
Hist is the UNIX filename of a saved history list to be loaded into np . If the current
prompt number is n and there are m commands in Hist , the commands in Hist are stored
in the history list against the numbers n to n +m −1.

Only available in at the top-level of the interpreter.

8

Using NU-Prolog - np

?− s Hist
Hist is the UNIX filename into which the saved history list is to be saved.

Only available in at the top-level of the interpreter.

The following commands will be executed by np and stored in the history list. Of particular
use in making queries on databases are the constructs described in §4.2, such as all/2, some/2,
count/3, max/3, min/3 and sum/4.

?− Goal
The formula Goal is interpreted as an ordinary NU-Prolog goal, When Goal is solved, any
bindings made to free variables in Goal are displayed. To get alternative solutions to
Goal , type ‘;’ (semi-colon); otherwise type ‘return’ to display the prompt. If there were no
free variables in Goal and the goal succeeds true will be printed. If Goal fails, or there
are no further solutions fail will be printed.

?− : Goal
?− Vars : Goal
?− Vars sorted : Goal
?− Vars sorted Keys ... : Goal

Goal is pure (see pure/1) and therefore may only contain logical predicates and
connectives. All solutions for the variables in the term Vars are printed out. If Vars is
absent, either Yes (there is an answer) or No (no answers) is printed.

If the keyword sorted is included, the solutions are sorted using sort/2. If any
optional Keys are specified, the solutions are sorted with multiKeySort/4.

Only available at the top level of the interpreter.

?− delete Predicates where Goal
Goal is pure (see pure/1) and therefore may only contain logical predicates and
connectives. For each solution to the conjunction of Goal with the elements of Predicates ,
every clause matching an element of Predicates is retracted. Predicates is one of a single
term, (Predicate), a list of terms ([Predicate1, ...]), or a comma separated list
of terms (Predicate1, . . .). The conjunction of Goal with the elements of
Predicates must ground each element of Predicates .

Only available at the top level of the interpreter. Some examples are given in Appendix 1.

?− insert Predicates where Goal
Goal is pure (see pure/1) and therefore may only contain logical predicates and
connectives. For each solution to the conjunction of Goal with the elements of Predicates ,
each element of Predicates is asserted. Predicates is one of a single term, (Predicate),
a list of terms ([Predicate1, ...]), or a comma separated list of terms
(Predicate1, . . .). The conjunction of Goal with the elements of Predicates
must ground each element of Predicates .

Only available at the top level of the interpreter. Some examples are given in Appendix 1.

9

Using NU-Prolog - np

?− update Var1 to Term1, ... in Predicates where Goal
Goal is pure (see pure/1) and therefore may only contain logical predicates and
connectives. For each solution to the conjunction of Goal with the elements of Predicates ,
every clause matching an element of Predicates is retracted, Var1,... is replaced by
Term 1,... and the resulting predicates are asserted. Predicates is one of a single term,
(Predicate), a list of terms ([Predicate1, ...]), or a comma separated list of
terms (Predicate1, . . .). The conjunction of Goal with the elements of
Predicates must ground Var 1,... , Term 1,... and each element of Predicates .

Only available at the top level of the interpreter. Some examples are given in Appendix 1.

10

Using NU-Prolog - nit

2.4. nit − NU-Prolog Program Checker

Nit † is a program which identifies probable bugs in NU-Prolog programs; it is analogous to
lint (1). Nit will check for the following classes of (potential) errors, predicates with the same
functor and different arity, that all defined predicates are called and all called predicates defined,
that pure predicates (see pure/1) contain no non-logical subgoals, that variables are only used
within their defined scope, that variables whose names don’t begin with ‘_’ occur more than once,
that variables do not have confusing names, for clauses in which variables in negations cannot be
ground, and for programs which are not stratified. These classes are described later in this section.

Goals of the form ?– dynamic(Functor/Arity) tell nit that Functor with Arity is
defined. If the goal ?– dbCons(DB) occurs, nit will consider all predicates in external database
DB to be defined. The goals ?– useIf Goal, ?– useElse and ?– useEnd may be used to
mark conditional examination of code. Nit also will recognise goals of the form
?– lib lib_name as being equivalent to –l lib_name being specified as an argument to
nit . Nit will decompose ‘?–’ goals over ‘,’ and ‘;’, but does not attempt to parse more complex
structures.

Several types of arguments are accepted by nit . Arguments which are not an option as
described below are assumed to be NU-Prolog source programs, where the argument ‘–’ (hyphen)
represents standard input (user). If no NU-Prolog source files are given, nit will read from
standard input. Nit has the following usage.

nit [-apsvx] [-d Functor /Arity] [-e Functor /Arity] [-F flag]
[-l library] [-u Functor /Arity] files ...

The options are used as follows.

–a Turn off checking for predicates with the same functor and different arity.

–d Functor /Arity
Functor with Arity is considered to be defined (although its definition may be absent from the
source).

–e entry_predicate
(As in nc). Specify the name of the single-argument entry predicate in the NU-Prolog source.
This defaults to the predicate main/1.

–F flag
(As in nc). Specify that option(flag) be true. Useful in conjunction with useIf/1.

–l library
(As in nc). Specify the name of a NU-Prolog library which will be loaded with the NU-
Prolog executable image. In effect, this turns off ‘‘undefined predicate’’ errors for library
predicates. Nit will recognise goals of the form ?– lib lib_name in NU-Prolog source
as being equivalent to –l lib_name being specified.

–p Turn off checking pure predicates with non-logical features.

–s Turn off checking for stratifiability of programs.

–u Functor /Arity
Functor with Arity is considered to be called, although there may be no call to this predicate
in the source.

–v Turn off checks on variables. These include checks on naming, scope and use of variables.

–x Turn off checking for predicates which are used but not defined, or defined but not used.

† nit is an acronym for ‘‘NU-Prolog incompetence tester’’

11

Using NU-Prolog - nit

The errors reported by nit fall into two groups, those which are part of the program as a
whole, and errors within an individual clause; in this case, the error message is printed with the
clause to which it belongs. The error messages, and the classes to which they belong, are
described below.

Arity check
Nit will report when two predicates have the same functor and different arity. Although this

may not be an error, such code can be obscure and should be avoided, particularly if both arities
are large.

Functor has arities X and Y.
Two predicates have the same functor and the given arities.

Cross-checking of predicate definitions
Nit will report when predicates are called but not defined, or defined but not called.

Functor/Arity is modified but not declared dynamic.
Functor/Arity should be declared as dynamic/1. If there are some initial clauses for
Functor/Arity, the behaviour of the program is not defined.

Functor/Arity is modified but not called.
The predicate with Functor and Arity is modified, via assert/1 or a similar predicate,
but never called.

Functor/Arity is not called.
The predicate with Functor and Arity is defined but never called.

Functor/Arity is not defined.
The given clause calls a predicate with Functor and Arity which is not defined.

Pure predicate definitions with non-logical features
Predicates declared to be pure/1 should not call system predicates which are non-logical.

Nonlogical predicate Functor/Arity called by pure predicate.
The given clause uses the non-logical construct or predicate with Functor and Arity .

Scope of variables
If the same variable name occurs in separate scopes in a clause, it refers to different variables,

and therefore should be given different names. Scopes are defined by quantifiers.

V occurs in distinct scopes.
The variable V occurs in separate scopes in the given clause, and NU-Prolog will treat it as
two separate variables. For clarity, different names should be given to variables in distinct
scopes.

Uniquely occurring variables
If a variable occurs once only in a clause, its name should (for clarity) be prefixed with ‘_’

(underscore). Conversely, variables whose names are prefixed with ‘_’ should occur once only in
a clause.

[V1, . . . ,Vn] should occur once only.
The names of the variables V1,...,Vn are prefixed with ‘_’ (underscore), but these variables
occur more than once in the given clause.

The variables [V1, . . . ,Vn] occur once only.
The variables V1, . . . ,Vn occur once only in the given clause, and should therefore

12

Using NU-Prolog - nit

have their names prefixed with ‘_’ (underscore).

Naming of variables
When the names of two variables in a clause are identical except for the case of some

characters and the placing of underscores, the clause may not only be obscure, but usually contains
a spelling error.

Vi and Vj are suspiciously similar.
The variables Vi and Vj have names which suggest that they are intended to be identical.

Clauses in which variables in negations cannot be ground
A clause is unsafe or will flounder if some variables occur more than once and do not occur

positively. (Variables which only occur once in a clause are always locally existentially
quantified.) Non-positive occurrences of variables are within the condition of if or –>, not/1,
\+, the left hand side of =>, the right hand side of <=, or either side of <=>.

V cannot be ground.
V cannot be ground by the given clause, so that the clause is unsafe or will flounder. If V
only occurs once in the clause, its name should be prefixed with ‘_’ (underscore); if it occurs
more than once, it should be given a positive occurrence.

Nonstratifiability of programs
A program is stratified when, in each instance of recursion, including any mutual recursion,

there are no non-positive or all-solutions predicates. This condition is described as ‘‘negative
mutual recursion’’. It is, in general, safer for a program to be stratified. Non-positive predicates
include not/1, \+, the left hand side of => or the right hand side of <=, either side of <=>, or the
condition of if or –>. All-solutions predicates include all/2, gAll/2, solutions/3,
setof/3, bagof/3, count/3, min/3, max/3 and sum/4.

[F1/A1, . . . ,Fn/An] contains negative recursion.
The predicates with functors F1 to Fn and arities A1 to An respectively have mutual negative
recursion, and therefore the program is not stratified.

13

Using NU-Prolog - nac

2.5. nac − NU-Prolog control preprocessor

nac† is a preprocessor for NU-Prolog programs which adds control information [Nais85].
This can be very useful for programs which are written purely declaratively. Declarative
programming is simpler, since the programmer needs only to consider the logic, but with naive
control tends to result in inefficiency and infinite loops. Many predicates work correctly for only
some input/output modes. By using nac to automatically add control information, program
development time can be reduced.

nac is designed for code which manipulates recursive data structures, such as lists and trees.
It does not work as well for database and numerical programming. To avoid overriding user-
defined control, nac only adds control to predicates which are declared pure and do not already
have when declarations. As well as adding control information, nac produces some comments at
the start of the output, to indicate what has been done and warn of possible errors. Unfortunately,
other comments in the input are stripped. nac also expands DCG grammar rules (see appendix 2).

The control additions made by nac fall into two categories. The first is the insertion of when
declarations. These are used to delay calls to predicates until they are sufficiently instantiated to
run correctly. The algorithm for generating when declarations is based mainly on prevention of
infinite loops. Potential infinite recursions in the program are analysed and when declarations are
added to prevent them. If there is a potential loop that cannot be prevented by addition of when
declarations, a warning is printed. If a program has an infinite loop, there is a very good chance
that nac will be able to eliminate or at least identify it. The when declarations also make many
predicates work correctly for more input/output modes, where this is applicable.

The second way nac adds control information is the reordering of calls in the bodies of
clauses. The main rules for reordering are to call tests and deterministic procedures early and
avoid left recursion (which often results in infinite loops). Calling tests before predicates which
generate bindings for variables can increase efficiency by coroutining. Failure is detected as soon
as possible, so unnecessary computation is avoided. Most system predicates are deterministic and
many are tests. User-defined predicates which are deterministic or likely to be tests can be
detected by analysing when declarations.

Example
Suppose that the file queenl.nl contained the following program, which solves eight queens

problem:

% logic of 8-queens problem

?- pure queen/1.
queen(X) :– permute(1.2.3.4.5.6.7.8.[], X), safe(X).

?- pure permute/2.
permute(X.Y, U.V) :– permute(Z, V), delete1(U, X.Y, Z).
permute([], []).

?- pure delete1/3.
delete1(A, A.L, L).
delete1(X, A.B.L, A.R) :– delete1(X, B.L, R).

?- pure safe/1.

† Could be an acronym for ‘‘not another command’’, but some people think it stands for ‘‘NU-Prolog
addition of control’’.

14

Using NU-Prolog - nac

safe([]).
safe(N.L) :– safe(L), nodiag(N, 1, L).

?- pure nodiag/3.
nodiag(_, _, []).
nodiag(B, D, N.L) :–

D =\= N-B,
D =\= B-N,
D1 is D + 1,
nodiag(B, D1, L).

If this program is run as it stands, the first call to perm/2 results in an infinite loop. Even if
this problem were avoided, the program would be very inefficient; an entire permutation of the
numbers 1 to 8 is generated before it is tested for safety. After typing the command:

nac < queenl.nl > queenc.nl

the file queenc.nl would contain (approximately) the following:

% the following code has been nac’ed
%
% procedure queen/1 is locally deterministic
% procedure permute/2 is locally deterministic
% procedure safe/1 doesnt construct some arg(s)
% procedure safe/1 is locally deterministic
% procedure nodiag/3 doesnt construct some arg(s)
% procedure nodiag/3 is locally deterministic
% procedure safe/1 is deterministic
% procedure nodiag/3 is deterministic
% clause altered: queen(A) :- . . .
% clause altered: permute(A.B, C.D) :- . . .
% clause altered: safe(A.B) :- . . .

?- pure queen/1.
queen(A) :–

safe(A),
permute(1.2.3.4.5.6.7.8.[], A).

?- pure permute/2.
?- permute(A, B) when A or B.
permute(A.B, C.D) :–

delete1(C, A.B, E),
permute(E, D).

permute([], []).

?- pure delete1/3.
?- delete1(A, B.C, D) when C or D.
delete1(A, A.B, B).
delete1(A, B.C.D, B.E) :–

delete1(A, C.D, E).

?- pure safe/1.
?- safe(A) when A.
safe([]).

15

Using NU-Prolog - nac

safe(A.B) :–
nodiag(A, 1, B),
safe(B).

?- pure nodiag/3.
?- nodiag(A, B, C) when C.
nodiag(A, B, []).
nodiag(A, B, C.D) :–

B =\= C - A,
B =\= A - C,
E is B + 1,
nodiag(A, E, D).

The when declarations make calls delay where they might start an infinite loop. This also
allows safe/1 to be called before perm/2, resulting in coroutining between the test and generator.
Initially, safe/1 delays, but whenever perm/2 and delete/2 further instantiate the list of queen
positions, safe/1 and nodiag/3 are resumed and check that the new position is safe.

The comments produced indicate that queen/1, perm/2 and nodiag/3 are locally
nondeterministic (calls to these procedures can only match with one clause); some argument(s) to
safe/1 and nodiag/3 are never constructed (so they must be input); safe/1 and nodiag/3 are
deterministic (the entire computation of these calls does not create any choice points); and the
bodies of the rules for queen/1, perm/2 and safe/1 have been reordered.

16

Using NU-Prolog - revise

2.6. revise − Incremental Program Revision Facility

Revise is an incremental program revision facility for NU-Prolog programs, available from
UNIX and from within NU-Prolog. The precise usage is given below.

During a revise session, only the parts of the program that have been changed are recompiled.
That is, new *.ns files are created from the *.nl source, and the *.no files – which are
relatively cheap to recreate – are removed; if revise is used from within NU-Prolog, the *.no file
representing the changed predicates is loaded into NU-Prolog when revise exits.

Revise recognises changed code by comparing the new source file *.nl with a backup copy
of the source file *.nl@. Each source file is divided by delimiters into blocks; when any part of a
block is changed, the whole block is recompiled, along with any code occurring before the first
delimiter in that file. Any operator declarations or other goals needed at compile time should
therefore be placed before the first delimiter, so that they are used with each recompiled block.

Predicate definitions must not be split across blocks; otherwise only part of the predicate
definition will be used if it is modified. Goals (other than when declarations) are treated as part of
a special predicate, so revise will not include them in the modified *.no file. If goals needed at
load time are changed, the whole file should be recompiled with nc in the standard way or the
*.ns file should be removed (forcing complete recompilation).

The default block delimiter is a blank line. If you like to have blank lines between clauses of
a predicate, you may change the delimiter by making

%tag <delim>

the first line of a source file. %<delim> is then taken as the delimiter throughout that file. The
sequence %<delim> must occur at the start of the line and be followed by white space. If the

delimiter is not a blank line, blocks may be named:1

%<delim> <block> comment ...

<block> is the name of the block, and anything following the string is considered a comment.
Block names can be used as vi tags.

The revise system consists of three commands: redit , rnc and revise . Running redit is the
same as running vi (or whatever editor is specified in the environment variable VISUAL or
EDITOR), except that before a *.nl file is edited, it is copied to a backup *.nl@ file if a backup
does not already exist. It is also possible to create the backup files once using cp , then use your
normal editor directly.

The rnc command is essentially the same as the nc command, but only the modified parts of
files are recompiled if the appropriate *.nl@ and *.ns files exist, and the backup *.nl@ files
are updated (assuming compilation is sucessful). The –F, –D and –U options are not supported by
rnc . If a *.nl@ file is an argument rnc , the compiled form of the modified blocks is placed in
*@.no as well as *.no being updated.

The revise command is the same as redit followed by rnc -c , with *.nl@ files specified.
For example, suppose you had the files f.nl, f.ns and f.no, and ran the command
revise f.nl. The first step would be the execution of redit f.nl, which would copy
f.nl to f.nl@ then run the editor. After changing the file and quitting the editor, rnc -
c f.nl@ would be run. This compares f.nl and f.nl@ to find what blocks have been
modified. These blocks, and the first block of the file, are compiled (they are put in file f@.nl)
to produce assembly code (in f@.ns) and f@.no. The new assembly code is used to update
f.ns which is then assembled to get the updated f.no. Finally, f.nl is copied to f.nl@.

1This is known as the ‘‘. . . but never jam today feature.’’

17

Using NU-Prolog - revise

From within NU-Prolog, the revise system can be used as follows:

revise
revise(File)
revise(Pred)

(Non-logical).
Edit and recompile part of program. Invokes the user’s preferred text editor (vi by default)
to allow modification of the source file for a loaded file. If File (a term of the form
F.nl) is specified, the editor is invoked with that file. If Pred (an atom) is specified, the
editor is invoked with the file containing the definition of the predicate Pred/N, for some
N. If revise/0 is used, the most recently loaded (or revised) file is edited.

When the editor is exited, code in any modified blocks of the file will be recompiled, the
.ns, .no and backup .nl@ files updated, and the modified code reloaded. See §2.6.

18

CHAPTER 3

SYNTAX OF NU-PROLOG

This chapter provides a description of the syntax of NU-Prolog and definitions for the
terminology used throughout this manual.

3.1. Variables
A variable is a sequence of characters, which may be alphanumeric, ‘$’ or ‘_’

(underscore), beginning with an upper-case letter or ‘_’. Case is significant in variable names.
Classes of characters are described in Appendix 7.

The variable named ‘_’ is used to identify anonymous variables; all instances of ‘_’ denote
distinct anonymous variables. Variables whose names begin with ‘_’ (and contain more than one
character) are not anonymous, but nit treats such variables occurring more than once in a clause as
an error. These variables are used as place holders when the bindings in that position are not of
interest. The normal scope of a variable is over the clause containing that variable; all/2,
some/2, count/3, max/3, min/3, solutions/3 and sum/4 may be used to restrict scope. If
the same variable name occurs in distinct scopes, it refers to distinct variables. For example, in the
clause fragment

... p(X), some X q(X), r(X),...

the occurrences of X in some X q(X) are a distinct variable from the other occurrences.

19

Syntax - Constants

3.2. Constants
A constant is an atom, an integer, a float, or any of several internal types. Other types

may be added in the future.

3.2.1. Atoms
An atom is:

• a sequence of characters, which may be alphanumeric, ‘$’ or ‘_’, beginning with a lower-case
letter or ‘$’;

• or a sequence of symbol characters

• or any of one of ’!’, ’,’, ’;’, ’[]’, or ’{}’;

• or any sequence of permitted characters enclosed in single quotes. Two adjacent single quotes
inside a quoted atom are transformed into a single quote, as is the escape sequence \’.

Characters classes are described in Appendix 7.

3.2.2. Integers
An integer is either:

(1) A sequence of decimal digits.

(2) An expression of the form B 'N where B is a decimal base in the range 1 to 36, and N is a
sequence of the digits which may appear in base B . If B is greater than or equal to 10, the
letters A to Z (or a to z) are used to represent the base. If B is less than 10, the base is
represented by a decimal digit.

(3) An expression of the form 0'Char, which is equivalent to giving the ASCII code for Char ,
where Char is alphanumeric, a symbol character or an escape sequence, as defined in
Appendix 7. For the purposes of input and output, characters are represented in NU-Prolog by
their ASCII code.

An integer may be immediately preceded by a ‘+’ or a ‘–’. Note that –1 and – 1 are different;
the first is the integer negative one and the second is the atom – followed by the integer 1.
Depending on context and operator declarations (see §3.8) this is likely to be parsed as the
complex term (see §3.3) with functor minus and argument the integer one.

The range of representable integers is implementation dependent, but is guaranteed to include
– 2^25 and 2^25 – 1. Releases of NU-Prolog later than 1.5 support 32 bit integers, but, like
floats, these take up heap space. The maximum and minimum integers supported can be found
with X is maxint and X is minint.

3.2.3. Floats
A floating-point number (float) is either:

(1) A sequence of decimal digits followed by a ‘.’ and another sequence of decimal digits. Both
sequences must be non-empty. Optionally, this form of floating-point representation may be
followed by an ‘e’ or ‘E’ and an optionally signed decimal exponent.

(2) A sequence of decimal digits followed by an ‘e’ or ‘E’ and an optionally signed decimal
exponent.

A float may be immediately preceded by a ‘+’ or a ‘–’ in the same way as an integer.

Floating point numbers are stored in the same heap as terms.

NU-Prolog uses the floating-point representation of the machine it is running on. It is worth
noting that some machines’ floating-point arithmetics reserve some values to indicate various error
and exception conditions. A common example is the IEEE 754 floating-point standard. Generally,

20

Syntax - Constants

NU-Prolog cannot accept these special values as input, but may print them as output. The textual
representation of any special floating-point values should be listed in the machine’s manual entry
for the C stdio routine printf().

21

Syntax - Terms, Clauses and Predicates

3.3. Terms
A term may be defined recursively as follows:

(1) A variable is a term.

(2) A constant is a term.

(3) If f is an atom and t1,...,tn are terms, then f(t1,...,tn) is a term.

The arity of f(t1,...,tn) is n; f is its functor. The maximum possible arity is
system dependent, but is guaranteed to be at least 63. In version 1.4 and later the maximum is
determined at installation time and will be at least 1024.†

On input, there can be no white space between the functor and the opening parenthesis of a
term. ‘.’ (period) followed by white space is always interpreted as the end of a term.

3.4. Clauses
A clause is an expression of the form

A :– B1,...,Bn.
where A and all Bj are terms which are not integers. A is the head and B1,...,Bn is the body.
If f and n are the functor and arity of A, then A :– ... is a clause about f/n. A unit
clause is a clause with an empty body, and is written

A.
A fact is a ground unit clause. A rule is a clause with non-empty head and non-empty body.
A goal is a clause with an empty head, and is written

?– B1,...,Bn.
‘?–’ is omitted from goals which occur within a clause, and is provided at the command level of
np . A goal is a statement of what is to be proved.

3.5. Predicates
A predicate definition is a set of clauses with heads with the same functor, f, and arity,

n, and is referred to as f/n. The maximum arity for predicates is the same as that of functors.
The maximum arity of predicates stored in an external database is 32. The functors of many
system predicates contain the character ‘$’, and this character should be avoided in the functors of
user-defined predicates. Some predicate names which have been reserved for future use are listed in
Appendix 6.

†The compiler limits the arity of predicates to about 250 and may also be unable to compile clauses
with terms of arity greater than this. This limit is due to the availability of registers and is unlikely to
change.

22

Syntax - Lists and Strings

3.6. Lists
There are two separate notations for representing lists. The first uses ‘.’ (period) as the list

construction operator (pronounced cons). In the term Head.Tail (equivalent to
.(Head, Tail), or [Head | Tail] in the second notation), Head refers to the first element in
the list and Tail the remainder of the list.

The character . is used for a number of syntactic purposes. These are sometimes incompatible
with its use as an operator. On input, there may be no white space after ‘.’ (cons) because this
sequence is interpreted as the end of the term being read; the characters 1.2.3 will parse as the
cons of the float 1.2 and the integer 3; and +.+ parses as one atom with the print name ‘‘+.+’’.

For example, a list consisting of the constants a, b and c would be a.b.c.[] (or
[a, b, c]), where the atom [] (pronounced nil) is used to represent the empty list. Similarly,
a list of indeterminate length beginning with the constants a and b would be represented by a.b.Y
(or [a, b| Y]).

3.7. Strings
A string is a sequence of permitted characters enclosed by double quotes. It is syntactic

sugar for a list of the ASCII codes of the sequence of characters. The ASCII code for a character
Char is an integer (see section 3.2.2.) Two double quotes inside a string, or the escape sequence
\", are converted into one double quote. Permitted characters are listed in Appendix 7. Lists are
usually printed as strings if every element of the list is an integer for which isPrint/1 is true.

Note that the empty string is the empty list, that is, [].

Internally, strings may be stored in two ways, either in a compact form, or as an ordinary list
of ASCII codes. The difference between these two forms is invisible to the user, because a string
and a list consisting of the same character sequence will unify. For example, the string

"Hello"

is equivalent to the list

0’H.0’e.0’l.0’l.0’o.[]
or

[72, 101, 108, 108, 111]

23

Syntax - Operators

3.8. Operators
Operators provide an alternative and convenient syntax for terms. An operator is a functor

with one or two arguments, which can appear in any of prefix, infix or postfix position relative to
its arguments. For example, x + y is equivalent to (and more readable than) the term +(x, y).

Unary operators can be postfix (type xf or yf) or prefix (fx or fy). Binary operators can be
infix (xfx, xfy, yfx or yfy) or prefix (fxx, fxy, fyx or fyy). It is not possible to
unambiguously parse a language with both postfix and prefix binary operators, so postfix binary
operators are not provided. In operator types, f represents the position of the operator, and x and
y represent the associativity of the arguments. Assuming no brackets, an x indicates that the top-
level operator in that argument must be of a strictly lower precedence than the operator, whereas a
y indicates that the top-level operator in that argument must be of either the same or lower
precedence. Precedences are between 1 and 1200; the lower the numerical value of a precedence,
the higher the precedence of the operator and the tighter it binds its arguments. It is possible to
declare a functor as only one unary and/or one binary operator. If a functor is declared as both a
unary and binary operator, both must have the same precedence.

The standard operator declarations − which are nearly all as in DEC-10 Prolog − are listed in
Appendix 8. Parentheses can be used to override precedence of operators. If an operator is to be
used as an atom, it may need to be enclosed in parentheses.

For example, given the standard operator declarations,

X = Y :– unify(X, Y).
is a legal clause, and

?– write(a + b.[]), writeln(not p(X., Y)).
is a legal goal.

A predicate which has been defined as an operator may also be used in prefix format, so
that for example = may be used as =(X, Y) or X = Y, and all/2 may be used as
all Var Goal or all(Var, Goal). However, this implies that in terms such as
a / (b+c) there must be space between the / and the opening parenthesis, or / will be treated as
the functor of (b+c) rather than as an operator.

24

Syntax - Comments

3.9. Comments
Comments in NU-Prolog are treated as if they were white space, and therefore may not

appear within an atom, variable, integer, float or string, and between the functor and the opening
parenthesis of a term. Comments are either:

(1) The character % followed by any sequence of characters up to a newline.

(2) The sequence /* followed by any sequence of characters up to the sequence */. This type of
comment does not nest.

25

26

CHAPTER 4

SEMANTICS OF NU-PROLOG

This chapter is organized as follows. §4.1 of this chapter defines declarative and operational
semantics. §4.2 gives the declarative and operational semantics of declarative constructs and
describes when declarations. Users should use the declarative semantics for writing programs, and
refer to the operational semantics only when a specific order execution is desired. §4.3 gives the
operational semantics of some non-declarative constructs; these constructs should be avoided
wherever possible.

4.1. Semantics
Predicates and constructs in NU-Prolog may have two types of semantics, a declarative

semantics and an operational semantics. On this basis, predicates and constructs may be divided
into two classes.

The first class is based on extended syntax [Lloy84b] and advanced negation facilities
[Nais86], and consists of predicates and constructs which have a declarative semantics. It includes
such logical facilities as implication, if-then-else, an all-solutions predicate, negation and
quantification. The predicates and constructs in this class may also have operational semantics.
However, the user may use pure/1 to declare a predicate to be purely declarative if its definition
only uses predicates and constructs which have a declarative semantics.

The compiler will optimise user-defined predicates which are purely declarative. The order of
evaluation is not specified and subexpressions may be evaluated repeatedly. If such predicates are
not declared as pure/1, they have both declarative and operational semantics. A pure/1
declaration should be omitted from declarative code only when a particular operational semantics is
required; the compiler will in this case make no attempt to optimise the predicate in any way
which alters its operational behaviour.

The second class consists of those predicates and constructs which are purely operational, and
have no declarative semantics. It includes non-logical quantifiers, which highlight non-logical
code, and provide greater flexibility than non-logical constructs such as unsafe negation (\+) and
unsafe if (–>). These are described in §4.3.3.

Good programming style dictates the use of predicates and constructs from the former class
wherever possible and that predicates from the latter class should generally be avoided. The
behaviour of clauses which mix the two is unpredictable.

?− pure Functor/Arity
The predicate definition with Functor and Arity is purely declarative. No particular
operational semantics is intended, and limitations imposed by the operational semantics
may not apply. Predicates definitions which are declared pure/1 may use any mixture of
logical constructs and predicates, but should not contain predicates or constructs which are
defined to be non-logical. Some transformations and optimisations are applied to pure
predicates to execute them more efficiently.

Not meaningful at the command level of the interpreter.

27

Semantics

4.1.1. Declarative Semantics
The declarative semantics of a NU-Prolog program is given by the meaning of the

clauses in the program as formulas of first order logic. The order in which subgoals are called is
not relevant to the declarative semantics of a program, and the NU-Prolog system is free to
manipulate the program into a more efficient but logically equivalent form. As long as the
subgoals of each clause are logical, such manipulation cannot affect the bindings returned to a
top-level goal. A logical predicate is one with a well-defined declarative semantics. A detailed
treatment of this subject is given in [Lloy84a].

4.1.2. Operational Semantics
The operational semantics of a NU-Prolog program is given by regarding each clause

A :– B1,...,Bn.

as a predicate definition. If

?– C1,...,Ck.

is a goal, then each Cj is regarded as a predicate call. A program is run by giving it an initial
goal. A step in the computation process involves the unification of some Cj in the current
goal with the head A of a program clause, thus reducing the current goal to

?– (C1,...,Cj–1,B1,...,Bn,Cj+1,...,Ck)θ

where θ is the most general unifier of Cj and A. Unification is a uniform mechanism for
parameter passing, data selection and data construction. The computation terminates when the
empty goal is produced.

When a variable unifies with a term, the variable is bound to that term and the two are
indistinguishable. A term is ground if it contains no variables. A term which is not a variable is
instantiated. If this term is not ground, it is partially instantiated.

The computation rule determines which subgoal Cj is selected. Like other Prolog
systems, NU-Prolog normally selects the leftmost subgoal. However, NU-Prolog is able to delay
subgoals, that is, call other subgoals until the delayed subgoal is further instantiated. Many system
predicates delay until they are sufficiently instantiated, that is, until the call is safe.
A call is unsafe if it fails (or loops infinitely) but further instantiation could make it succeed (or
terminate). The implementation of negation in NU-Prolog guarantees safety by delaying until
globals variables are ground (see §4.2.3). when declarations may also be used to make user-
defined predicates safe by causing the predicate to delay until some arguments are nonvariable or
ground. A goal has floundered if all of its unproved subgoals are delayed and none can be
woken.

If a subgoal fails, NU-Prolog backtracks to the previous subgoal to find a different
solution, in an attempt to change the bindings which caused the current subgoal to fail. If the
previous subgoal has many solutions, but does not bind the variables which caused failure in the
current subgoal, the goal may be very expensive. Programmers should avoid this kind of structure
in programs.

If a predicate definition has more than one clause, the clauses are considered in the order in
which they appear, so that if the given subgoal cannot be proved with the first clause of a
predicate, then NU-Prolog will attempt to prove it using the second clause, and so on.

Negated subgoals are handled with the negation–as–failure rule (a weaker form of the
closed world assumption). When a negated subgoal not G is selected, G is called; if G fails
finitely, not G succeeds, and if G succeeds not G will fail. Negated calls may be nested.
Unlike most Prolog systems, NU-Prolog provides a safe implementation of negation.

28

Semantics - Declarative Constructs

4.2. Declarative Constructs

4.2.1. Standard Constructs

Head :− Body
Declaratively : clause definition; Head is true if Body is true. Head and Body are terms.
The implementation of negation assumes that if a call is true then there exists a clause for
which the call matches Head and, after the substitution is applied, Body is true.

Operationally : if Head is unified with the current subgoal, NU-Prolog attempts to prove
Body , which may bind variables in Head .

?− Formula
Declaratively : Formula is a goal to be proved. True if Formula is true.

Operationally : attempt to solve Formula . If some subgoals of Formula are delayed when
all other subgoals have been solved, Formula has floundered.

Goals in source programs are executed twice, at compile time and when the object files are
loaded together.

Nonterminal − −> Expression
Statement in a definite clause grammar, as explained in Appendix 2. Equivalent to a
clause about f/(n+2), where Nonterminal is f/n.

Formula
call(Formula)

Declaratively : true if the subgoal given by the binding of Formula is true. This subgoal
may only include constructs and predicates available at the command level of the
interpreter. There is no implicit quantification inside Formula .

Operationally : delays until Formula is instantiated. If Formula contains ‘!’ (cut), the
scope of ‘!’ is local to Formula .

Formula1, Formula2
Declaratively : Formula1 and Formula 2 . True if both Formula 1 and Formula 2 are true.

Operationally : Formula 1 is called, and if Formula1 succeeds or delays then Formula2 is
called. If Formula1 fails then ‘,’ fails; if Formula2 fails then NU-Prolog backtracks and
an alternative solution for Formula1 is sought before Formula2 is tried again.

Formula1 ; Formula2
Declaratively : Formula1 or Formula 2 . True if either Formula1 or Formula 2 is true.

Operationally : Formula 1 is called, and if Formula1 succeeds then ‘;’ succeeds. On
backtracking, further solutions for Formula1 are sought; only when Formula1 fails is
Formula 2 called.

29

Semantics - Declarative Constructs

4.2.2. Quantifiers
NU-Prolog supports both existential and universal quantification. Each quantifier has the form

Quantifier Variables Formula. In logical quantification, any variables which occur
syntactically in the term Variables , or are quantified inside Formula , are considered to be local to
Formula . If the same variable name occurs in distinct scopes it refers to distinct variables. As
well as explicit quantification some variables are implicitly quantified. Variables which only occur
once in a clause, and are not in the head, are locally quantified existentially, except in ∼=, where
the implicit quantification is universal. nit expects unique variables to be prefixed with ‘_’. There
is no implicit quantification in code inside dynamic predicates and call/1.

NU-Prolog provides operational semantics for existential quantifiers in any situation but
universal quantifiers are only useful in conjunction with certain other connectives.

all Vars Formula
Declaratively : universal quantification. All variables in the term Vars are universally
quantified in Formula and the scope of these variables is restricted to Formula . True if,
for all values of Vars , Formula is true.

Operationally : the operational semantics of all in conjuntion with the connectives not,
∼=, =>, <= and <=> are described in the sections relating to these constructs. All other
uses of all/2 will result in floundering.

some Vars Formula
Declaratively : existential quantification. All variables in the term Vars are existentially
quantified in Formula , and the scope of these variables is restricted to Formula . True if,
for some value of Vars , Formula is true.

Operationally : if all non-local variables in Formula are ground, only one solution to
Formula is sought; if any non-local variable in Formula is not ground,
some Vars Formula is equivalent to Formula. Special cases of some/2 are
described in not/1, if–then and solutions/3.

4.2.3. Negation, Implication, and Related Constructs
The constructs in this section provide safe negation and selection, and should be used instead

of the unsafe \+, –> and \=.

not Formula
all Vars not Formula
not (some Vars Formula)

Declaratively : the negation of Formula . True if some Locals Formula is false,
where Locals is Vars plus any variables quantified – implicitly or otherwise – inside
Formula .

Operationally : the call to not/1 delays until all variables other than Locals are ground.
Formula is then called and if it succeeds, not/1 fails; otherwise, not/1 succeeds.

30

Semantics - Declarative Constructs

Term1 ∼= Term2
all Vars Term1 ∼= Term2

Declaratively : same as not Term1 = Term2 and not some Vars Term1 = Term2
respectively. True if, for all bindings of quantified variables, Term1 is distinct from
Term 2

Operationally : if Term 1 and Term 2 won’t unify then ∼= succeeds. If Term1 and Term 2
unify without binding any non-local variables, ∼= fails; otherwise, the call delays until
Term 1 or Term 2 is further instantiated.

Formula1 => Formula2
all Vars Formula1 => Formula2

Declaratively : Formula1 implies Formula 2 . True if, for all bindings of local variables,
Formula 1 is false or Formula2 is true.

Operationally : the same as not Formula1 ; Formula2 and
not some Vars (Formula1, not Formula2) respectively.

Formula2 <= Formula1
all Vars Formula2 <= Formula1

Declaratively and operationally : the same as Formula1 => Formula2 and
all Vars Formula1 => Formula2 respectively.

Formula1 <=> Formula2
all Vars Formula1 <=> Formula2

Declaratively : Formula1 and Formula 2 are equivalent. True if, for all bindings of local
variables, both Formula1 and Formula 2 are true, or if both Formula1 and Formula 2 are
false.

Operationally : the same as

(Formula1 => Formula2), (Formula1 <= Formula2)

and

all Vars Formula1 => Formula2, all Vars Formula1 <= Formula2

respectively, except the duplication of Formula1 and Formula 2 does not affect implicit
quantification.

31

Semantics - Declarative Constructs

if Cond then Formula
if some Vars Cond then Formula

Declaratively : the same as (Cond, Formula) ; not Cond and
some Vars (Cond, Formula) ; not some Vars Cond respectively, except the
duplication of Cond does not affect implicit quantification. True if, for some binding of
local variables, Cond is false or Formula is true.

Operationally : the call delays until the non-local variables in Cond are sufficiently
instantiated. Unless Cond is =, the call delays until the non-local variables in Cond are
ground; otherwise, the call delays until these variables are sufficiently instantiated. Cond
is then called, and if it fails, if–then succeeds. If Cond succeeds, Formula is called. If
no variables in Vars are in Formula and Formula fails, if–then also fails; otherwise
(some variables in Vars are in Formula), if Formula fails, alternate solutions for Cond are
tried. Only when Cond fails does if–then fail.

if Cond then Formula1 else Formula2
if some Vars Cond then Formula1 else Formula2

Declaratively : the same as

(Cond, Formula1) ; (not Cond, Formula2)

and

some Vars (Cond, Formula1) ; (not (some Vars Cond), Formula2)

respectively, except the duplication of Cond does not affect implicit quantification. True
if, for some binding of local variables, Cond and Formula1 are true, or Cond is false and
Formula 2 is true.

Operationally : the call delays until the non-local variables in Cond are sufficiently
instantiated. Unless Cond is an =, the call delays until the non-local variables in Cond are
ground; otherwise, the call delays until these variables are sufficiently instantiated. Cond
is called, and if it succeeds, Formula1 is called. If Cond succeeded and no variables in
Vars are in Formula1 and Formula 1 fails, if–then–else also fails; otherwise (some
variables in Vars are in Formula1) if Formula 1 fails, alternate solutions for Cond are
tried. If Cond has no solutions, Formula 2 is tried, and only if Formula 2 fails does
if–then–else fail.

4.2.4. Aggregate Functions
Some examples of the following constructs are given in Appendix 1.

32

Semantics - Declarative Constructs

solutions(Term, Formula, Set)
solutions(Term, some Vars Formula, Set)

Declaratively : Set is the list of instances of Term for which Formula is true. The scope of
the variables in Term is the call to solutions/3, so that they are considered local.
Same as

all X (some Term (Formula, X = Term) <=> member(X, Set)),
sorted(Set)

and

all X (some Term .Vars (Formula, X = Term) <=> member(X, Set)),
sorted(Set)

respectively, where member/2 is the standard list membership predicate and
sorted(Set) is true if Set is a sorted list without duplicates.

Operationally : all answers to Formula are found using backtracking. For each answer, the
bindings of Term and all non-local variables are saved. For each distinct binding of non-
local variables, an answer is returned. The list Set is the sorted (by termCompare/3,
with duplicates removed) set of instances of Term corresponding to these bindings. It is an
error for the binding to Term to contain any local variables. Some answers may have
delayed calls to ∼=. If the binding to Term contains global variables there can also be
delayed calls to termCompare/3 and sort/2.

count(Term, Formula, Result)
Declaratively : same as

solutions(Term, Formula, Set), length(Set, Result).

The scope of variables in Term is the call to count/3. Result is the number of distinct
instantiations of Term by Formula .

Operationally : count/3 delays until non-local variables in Term and Formula are ground.
Each instantiation of Term must be ground (to restrict Result to finite values), or count/3
will fail with an error message.

max(Term, Formula, Result)
Declaratively : same as

solutions(Term, Formula, Set), maximum(Set, Result), where
maximum/2 finds the maximum element of Set .

The scope of variables in Term is the call to max/3. Result is the maximum (via the non-
logical standard ordering) instantiation of Term by Formula .

Operationally : max/3 delays until global variables in Formula are ground. Each
instantiation of Term may contain local variables (this is non-logical).

33

Semantics - Declarative Constructs

min(Term, Formula, Result)
Declaratively : same as

solutions(Term, Formula, Set), minimum(Set, Result), where
minimum/2 finds the minimum element of Set .

The scope of variables in Term is the call to min/3. Result is the minimum (via the non-
logical standard ordering) instantiation of Term by Formula .

Operationally : min/3 delays until global variables in Formula are ground. Each
instantiation of Term may contain local variables (this is non-logical).

sum(Summand, Term, Formula, Result)
Declaratively : same as

solutions(Summand–Term, Formula, Set), sumOfKeys(Set, Result).
where sumOfKeys/2 sums the first arguments of of each –/2 pair in Set .

The scope of variables in Term and Summand is the call to sum/4. Result is the sum of
the instantiation of Summand for each distinct instantiation of Term and Summand by
Formula . If Formula fails then Result is 0.

Operationally : sum/4 delays until global variables in Formula are ground. Summand may
be any arithmetically evaluable term. Each instantiation of Summand and Term must be
ground or sum/4 will fail with an error message.

4.2.5. When Declarations
Predicates without when declarations behave like conventional Prolog predicates − calls to

them either succeed or fail. Calls to predicates which have when declarations may also delay,
resuming execution when their arguments are further instantiated. Making some calls delay is
essential for ensuring safeness (particularly of negation), termination (for example, of predicates
which are called in several ways), and efficiency (especially generate-and-test algorithms). When
declarations specify that a predicate should only proceed with a call when certain variables are
partially or totally instantiated.

If a predicate has when declarations then, in the present implementation, its clauses are
indexed. In a future release NU-Prolog may have an explicit clause indexing facility for rapid
access to the appropriate clause in predicates with a large number of constituent clauses.

Appendix 1 contains some examples of predicate definitions with when declarations.

34

Semantics - Declarative Constructs

?- Head when Body
Operationally : calls to a predicate with when declarations delay until one of the
declarations is satisfied. A when declaration can only appear when a predicate is being
compiled. A when declaration is satisfied when the call to the predicate is an instance of
some Head and, when the call and Head have been unified, Body is satisfied. The set of
when declarations for a predicate is also satisfied if the call does not unify with any Head .
Body may contain:

(1) The single atom ever, which is always satisfied.
(2) Variables, which are satisfied when instantiated.
(3) Terms of the form ground(Var), which are satisfied when Var is ground.
(4) A and B, which is satisfied when A is satisfied and B is satisfied; where A and B are
of form (2) to (6).
(5) A or B, which is satisfied when A is satisfied or B is satisfied; where A and B are of
form (2) to (6). This binds less strongly than and.
(6) (A) where A is of form (2) to (6).

Some sets of when declarations with complex Heads cannot be compiled, in which case
an error message is printed. The following conditions must be observed:

(1) The heads of all when declarations should be mutually non-unifiable.
(2) There cannot be any repeated variables in the head of a when declaration.

Variable Formula
freeze(Variable, Formula)

Declaratively : true if the subgoal given by the binding of Formula is true. This subgoal
may only include constructs and predicates available at the command level of the
interpreter. There is no implicit quantification inside Formula .

Operationally : delays until Var and Formula are instantiated. If Formula contains ‘!’
(cut), the scope of ‘!’ is local to Formula .

35

Semantics - Non-declarative Constructs

4.3. Non-declarative Constructs

4.3.1. Non-logical Quantifiers
The non-logical quantifiers gSome/2 and gAll/2 may be used wherever some/2 or all/2

may be used with operational semantics. The ‘g’ prefix stands for global.

gAll Vars Goal
(Non-logical).
Operationally : same as all Vars Goal, except that the scope of variables in Vars is
not restricted to Goal .

gSome Vars Goal
(Non-logical).
Operationally : same as some Vars Goal, except that the scope of the variables in Vars
is not restricted to Goal .

4.3.2. Cut
Cut is used to restrict the search tree. Cut is highly dangerous, and should be avoided

wherever possible; the constructs described in this chapter supersede most of the current uses of
cut.

!
(Non-logical).
Operationally : the cut operation. It succeeds, but on backtracking it fails, and everything
fails up to and including the most recent ancestor which is not ,, ; or –>; that is, no
subgoals to the left of ! are retried. If the ! is within an ;, no further branches within ;
are tried and ; fails. If the ! is within call/1 then call/1 fails. Otherwise, no more
clauses of the predicate containing ! are tried, and the predicate fails. Other uses of ! are
undefined, the behaviour of ! is not defined if it occurs in the condition of –>, and !
should not be used in conjunction with quantifiers (§4.2.2), negation, implication and
related constructs (§4.2.3), aggregates (§4.2.4), or predicates which may delay.

Cut can be used to implement many of the unsafe features of Prolog such as \+, \=, ==
and var/1. It should be used as sparingly as possible.

4.3.3. Non-logical Constructs
The predicates described in this section are unsafe counterparts of some of the predicates

described in §4.2. Although they are occasionally useful, they should be avoided.

\+ Goal
(Non-logical).
Operationally : similar to not/1, but there are no quantifiers and the call never delays. If
Goal fails then \+ Goal succeeds, and if Goal succeeds then \+ Goal fails. The result
is meaningless if Goal succeeds and binds any variables, or succeeds with some calls
delayed.

36

Semantics - Non-declarative Constructs

Cond −> Goal
(Non-logical).
Operationally : similar to if Cond then Goal but (unlike if–then) there are no
quantifiers, the call never delays, and Cond is never retried. If Cond succeeds then Goal1
is called; otherwise, –> succeeds. Note that most other Prolog systems have

Cond –> Then fail if Cond fails.1

Cond −> Goal1 ; Goal2
(Non-logical).
Operationally : similar to if Cond then Goal1 else Goal2 but (unlike
if–then–else) there are no quantifiers, the call never delays and Cond is never retried.
If Cond succeeds then Goal1 is called; otherwise Goal2 is called.

once Goal
(Non-logical).
Operationally : finds the first solution (if any) to Goal . Similar to call((Goal, !)).

setof(Term, Goal, Set)
(Non-logical).
Operationally : similar to solutions/3 but unsafe. The notation Vars^Goal is used
instead of some Vars Goal. If there are no solutions to Goal , setof/3 fails. Local
variables are allowed in answers, which are sorted with compare/3. In the cases in which
solutions/3 succeeds with delayed inequalities, setof/3 fails.

bagof(Term, Goal, Bag)
(Non-logical).
Operationally : same as setof/3 except that Bag is not sorted and duplicates are not
removed.

findall(Term, Goal, Set)
(Non-logical).
Similar to solutions/3 but unsafe, Set is not sorted, duplicates are not removed, and
Set = [] if there are no solutions to Goal . There are never any delayed calls. Also
similar to bagof/3, but there are no local variables.

countall(Goal, Count)
(Non-logical).
Countall/2 is an efficient equivalent to findall(1,Goal,L),length(L,Count)
and is thus similar to sum(1,Goal,Goal,Count) but unsafe. The answers to Goal
are not sorted and duplicates are not removed. There are never any delayed calls.

1There is a justification for this otherwise weird behaviour,

but it’s so arcane that NU-Prolog does it the logical way.

37

Semantics - Non-declarative Constructs

Vars ^ Goal
Operationally : the same as call(Goal). Used in setof/3 and bagof/3 to indicate
existential quantification.

38

CHAPTER 5

SYSTEM PREDICATES

This chapter contains of descriptions of the system predicates supplied with the NU-Prolog
system. Some of these descriptions include a when declaration for that predicate. However,
because most predicates are defined recursively, the when declaration is only a partial indication of
the instantiation required before the predicate can be tried. For example, isList/1, which has the
when declaration ?– isList(List) when List, will not complete until the length of the
list is known; that is, until the tail of the list has been instantiated to [].

Some system predicates of other Prolog systems are described in the compatibility library.

5.1. Predicates which Succeed or Fail

fail
Always fails.

repeat
Always succeeds, even on backtracking.

true
Succeeds. On backtracking, it fails.

39

System - Conditional Predicates

5.2. Predicates for Conditional Compilation or Loading

initializing
True only at load time. During compilation, when initializing/0 is false, any ‘?–’
goals encountered in the source will be executed. These goals are also collected together
into an initialization block which is executed at load time, at which point
initializing/0 is true.

muprolog
Fails. Useful for conditional compilation of clauses which are MU-Prolog dependent.

nuprolog
Succeeds (does nothing). Useful for conditional compilation of clauses which are NU-
Prolog dependent.

option(Value)
option(Value) is false, except during compilation for Values set by the –F flag to nc .

pure(Functor, Arity)
True, during compile time, if the predicate with Functor and Arity is pure. See
predicateProperty/3.

?− useIf Goal
?− useElse
?− useEnd

UseIf/1, useElse/0 and useEnd/0 allow conditional compilation of clauses. Goal , in
which each subgoal must be a system predicate, is called; if it fails the clauses between the
next matching useElse/0 and useEnd/0 are compiled instead of the clauses between the
useIf/1 and the useElse/0. If there is no matching useElse/0, clauses between the
useIf/1 and useEnd/0 are only compiled if Goal succeeds. Note that useIf/1
controls the compilation of whole clauses. These goals may be nested.

40

System - Interpreter Predicates

5.3. Interpreter Predicates
These predicates are usually called from the top level of the interpreter np , rather than being

part of programs.

5.3.1. Examining the Program State

listing
listing Predicate
listing [Predicate1,...,Predicaten]

(Non-logical).
Print all dynamic predicate definitions, or print all dynamic definitions of Predicate (or
Predicate1, . . . , Predicate n), where Predicate is specified by functor or functor/arity.

man Functor
man [Functor1,...,Functorn]

(Non-logical).
Print information about all system and library predicates with Functor . This information is
identical to that in the NU-Prolog Reference Manual; therefore, some information about
individual predicates − such as that given at the start of a section − will not be displayed
by this command.

5.3.2. Examining and Controlling the Execution State

abort
(Non-logical).
Aborts execution of the current goal and returns to the top level of the program. In np this
is the top level of the interpreter. In a compiled program it is main/1, or the predicate
specified by the –e option.

ancestors(Anc)
(Non-logical).
Anc is unified with a list of interpreted ancestor goals of the current clause starting with
the parent goal and ending with the oldest accessible ancestor. Ancestors of compiled
goals are not accessible.

break
(Non-logical)
Causes a new invocation of the top-level of the interpreter. The previous computation is
resumed when this has finished. Break levels are named with ascending integers. The
top-level is level 0.

breakLevel(N)
N is the current break level number. See break/0.

41

System - Interpreter Predicates

catch(Goal, Result)
(Non-logical).
Catch/2 calls Goal after arranging to receive any abnormal returns from throw/1 via
Result . In the absence of such a return, it is equivalent to call(Goal).

commandNumber(N)
N is the current history list command number. See h/0.

depth(N)
(Non-logical).
N is the number of ancestors of the current call, counting only interpreted predicate calls
up to and not including the first ancestor, if any, which is a compiled predicate.

maxDepth(N)
(Non-logical).
Set the maximum number of nested interpreted calls to N . Calls beyond this cause a trap
to the debugger.

Currently only available in trace mode.

prompt
Called by the interpreter to print the interpreter prompt. Can be defined by the user.
Currently defined by:

prompt :–
breakLevel(B),
commandNumber(C),
(B = 0,

printf(user, ‘‘%d?– ’’, [C])
; B > 0,

printf(user, ‘‘[%d] %d?– ’’, [B, C])
).

restart
(Non-logical).
Aborts execution of the current goal and returns to the top level of the program. In np this
is the top level of the interpreter. In a compiled program it is main/1, or the predicate
specified by the –e option. Same as abort/0.

subGoalOf(S)
(Non-logical).
Equivalent to ancestors(A), member(S,A).

As with ancestors, this only works for interpreted goals.

42

System - Interpreter Predicates

throw(Result)
(Non-logical).
Throw/1 cause an abnormal return from within a catch/2. It works backwards up the
stack of ancestor goals until a catch/2 is found, the second argument of which unifies
with Result . This unification is performed and execution continues from the catch/2. If
there is no matching catch/2 then an abort/0 is performed.

Throw/1 does not remove choice-points.

It is not a good idea to throw variables because these cannot be distinguished from a
normal return.

The main use of catch/2 and throw/1 is in reporting errors.

5.3.3. Debugging Predicates
NU-Prolog provides a fairly standard, procedure-box-control-flow based debugger. The

execution of predicates may be examined as they are called, exited, redone, or failed, and as they
delay or wake.

Debugging is controlled by the debug mode which is a flag with the possible values of off,
debug, or trace. The flag is manipulated by the debug/0, nodebug/0, trace/0, and
notrace/0 predicates. Along with other information, it is displayed by debugging/0.

In debug mode, only those predicates which have spypoints set on them are examined.
Spypoints are set and removed by spy/1 and nospy/1. Nospyall/0 removes all spy points.
The presence of a spypoint has no effect on the execution of a predicate if debugging is off.

In trace mode, the execution of all interpreted goals is examined as well as spypoints.
There is no way to trace compiled code.

Debug mode is the default. Finer control of the debugger is provided by leash/1,
spyCondition/3, and leashCondition/3.

When a predicate is being debugged, the debugger takes control at each ‘‘port’’ connecting it
to its caller and displays a line of the form
XY (Number) Depth Port: Goal ?
Number is a unique integer identifying this particular call, Depth is the number of ancestors of the
call since the last compiled predicate, Port is one of call, delay, wake, redo, exit or fail,
and Goal is the call being run. X is the character * if this is a spypoint and blank otherwise. Y is
the character > if this port was reached by skipping (see the s option below), and X otherwise.

For each goal and port reached that is not unleashed, the debugger pauses for instruction from
the user. A line is read from user_input and its first character used to select one of the following
actions. Some of these use the rest of the line as arguments, but most discard it.

<cr>Creep. Execution continues without debugging until the next port is reached. This is
equivalent to switching temporarily to trace mode.

+ Set spypoint. A spypoint is set on the current procedure.

– Remove spypoint. Any spypoint on the current procedure is removed.

@ Single command. Reads a term (terminated by a ‘.’) from the terminal and executes it with
debugging off.

= Debugging. This calls debugging/0.

< n Set debugger print depth. The debugger prints goals only to a certain depth. The initial value
is 10, but this option can be used to alter it. No value, or one of 0, removes the limit
completely.

43

System - Interpreter Predicates

| Pipe. The debugger calls spyHook(info(Number, Depth, Port), Goal), where
Number is the current call number, Depth is its depth, Port is the port the debugger has
stopped at, and Goal is the current goal. This is mainly useful for interfacing to user-supplied
meta-debuggers.

? Help. Prints a table of these options.

a Abort. This calls abort/0, causing a return to the top-level.

b Break. This calls break/0, giving a new invocation of the top-level command interpreter.
The debugger resumes control on exit from this invocation.

c Creep. Execution continues without debugging until the next port is reached. This is
equivalent to switching temporarily to trace mode.

d Display. Writes the current goal at the terminal using display/1.

f Fail. Force execution to the fail port of the current goal.

f n Fail earlier call. Force execution to the fail port of goal number n . If goal number n is no
longer accesible, execution is moved to the fail port of the first goal after it that is.

g Print ancestors. Prints the ancestors of the current goal using print with the current debugger
depth limit. Only ancestors which were called while the debugger was on are printed and then
only if they were called by interpreted code or are spypoints.

g n Print some ancestors. Like g, except that at most n ancestors are printed.

h Help. Prints a table of these options.

l Leap. Execution continues without debugging until the next spypoint port is reached. This is
equivalent to switching temporarily to debug mode.

n Nodebug. Turns debugging off until execution returns to the interpreter top-level, at which
time debugging mode resumes its original value. To turn off debugging permanently use
nodebug/0 at the top-level.

p Print. Writes the current goal at the terminal using print/3. The current debugger
maximum print depth is used to truncate the goal. It can be set with the < option.

r Redo. Returns execution to the call or wake port of the current goal. At either of these it
has no effect. The execution state will be similar to that when the goal was called, but side-
effects such as database and i/o predicates are not undone.

r n Redo earlier call. Returns execution to the call or wake port of goal number n . If goal
number n is no longer accesible, execution is moved to the call or wake port of the first
goal after it that is.

s Skip. Execution continues without debugging until the current goal’s exit or fail port is
reached. This is equivalent to switching debug mode temporarily to off. At delay, exit,
or fail ports, skip is equivalent to creep. Currently, skip’s behavior at call or wake ports
is different from that at redo ones. At the former ports, all debugging activity is suppressed,
preventing the keeping of records of sub-goals called. At the latter, sub-goals which have
already been recorded by the debugger remain, but are not displayed.

w Write. Writes the current goal at the terminal using write/1.

debug
(Non-logical).
Enter debug mode by setting the debugging flag to debug. This is done
automatically by spy/1 if debugging is off. See trace/0 and prologFlag/3.

44

System - Interpreter Predicates

debugging
(Non-logical).
Lists all current spypoints and information about debugging options.

leash(Mode)
(Non-logical).
Leash/1 controls the behaviour of the debugger when it traces a goal. By default, the
debugger stops at all ports it traces and asks the user to instruct it on how to continue, but
a call to leash/1 with a list of port names can be used to tell it to stop only at the listed
ports. Other ports are still printed, and execution still stops at any predicates with
spypoints on them. Leash(all) restores leashing to the default.

leashCondition(Goal, Port, Condition)
LeashCondition/3 is a hook for the user to alter the leashing behaviour of the
debugger. Clauses asserted to it can be used to over-ride the leashing mode currently in
force. If leashCondition(Goal, Port, Condition) succeeds for a particular
Goal and Port being traced, then the truth or falsity of Condition determines whether the
debugger stops after printing Goal .

LeashCondition/3 has no effect on spypoints.

nodebug
(Non-logical).
Set the debugging flag to off. This doesn’t remove any spy points − it only causes
them to be ignored. See prologFlag/3.

nospy Predicate
nospy [Predicate1,...,Predicaten]

(Non-logical).
Removes any spypoints on Predicate (or Predicate1,...,Predicaten), where Predicate is
specified by functor or functor/arity. If no arity is specified all predicates with the given
functor have their spypoints removed. See spy/1.

nospyall
(Non-logical).
Remove all spypoints.

notrace
(Non-logical).
Set debugging flag to off.

45

System - Interpreter Predicates

spy Predicate
spy [Predicate1,...,Predicaten]

(Non-logical).
Places a spypoint on Predicate (or Predicate1,...,Predicaten), where Predicate is specified
by functor or functor/arity. If no arity is specified all predicates with the given functor are
spied on. It is not possible to place spypoints on system predicates. See nospy/1.

Spy/1 turns on debugging if it is currently off.

spyCondition(Goal, Port, Condition)
SpyCondition/3 is a hook for the user to alter the behaviour of the debugger at
spypoints. Its use is similar to leashCondition/3, but spyCondition/3 determines
whether the spypoint port reached is displayed at all. If
spyCondition(Goal, Port, Condition) succeeds for a particular Goal and Port
being debugged, then the truth or falsity of Condition determines whether the debugger
displays the port.

SpyCondition/3 has no effect on tracing.

spyHook(Info, Goal)
SpyHook/2 is a hook to enable the user to pass a goal being debugged to a user-defined
predicate. The | option to the debugger calls
spyHook(info(Number, Depth, Port), Goal), where Number is the unique
call number, Depth the number of ancestor calls, Port is the port at which the debugger
has stopped, and Goal is the goal being debugged. Control returns to the debugger after
spyHook/2 completes.

trace
(Non-logical)
Set debugging flag to trace mode.

46

System - Terms and Lists

5.4. Terms and Lists
The predicates in this section are used for examination and manipulation of terms. The non-

logical predicates should be avoided where possible.

5.4.1. Manipulating Lists
The predicates in this section are defined recursively, so that they may partly proceed before

delaying. They are designed so that they may be called safely with any pattern of instantiation. If
there is a when declaration on an argument which is a list, the length of the list must be known
before the predicate can be completely solved.

append(List1, List2, JoinList) when List1 or JoinList
JoinList is List 2 appended to List 1 . Fails if the first argument is not a list.

delete(Element, List, Rest) when List or Rest
Rest is List with the first element matching Element deleted. On backtracking, the next
appropriate element is chosen instead. Fails if List or Rest are not lists.

isList(Term) when Term
Term is a list. Delays until Term is instantiated and the length of Term is known, that is,
its tail has been instantiated to [].

keySort(List, Result)
keySort(Order, List, Result)

Result is List sorted by Key , where elements of List are in the form Key −Value . Order is
either + (ascending) or – (descending). compare/3 is used for comparison of terms.
These predicates do not remove duplicates.

length(List, N) when List or N
List has length N . Either List or N may be variables; if they are both variables, the call
delays. Fails if List is not a list.

member(Element, List) when List
Element is a member of List . On backtracking, gets another member of List matching
Element .

member(Element, List, SubList) when List
Element is a member of List and SubList is the tail of List beginning with Element . On
backtracking, gets another member of List , and another SubList , matching Element . Same
as

SubList = Element._, append(_, SubList, List).

47

System - Terms and Lists

merge(List1, List2, NewList) when List1 and List2
Sorted List 1 and sorted List 2 are merged, removing duplicates, to give NewList .
Undefined if either List1 or List 2 is not sorted, and will delay until these lists are
sufficiently instantiated.

multiKeySort(Keys, Term, List, SortedList)
Each element of List is of the form Term . Keys is a list of terms; multiKeySort/4
applies a stable sort to List using the last element of Keys , then the second-last element,
and so on. Term is successively unified with each element of List , binding variables in the
current Key . List of Elements is then transformed into a list of the form Key −Element ,
which can be sorted with keySort /3, where order is determined by the top-level (unary)
functor of each Key . Default is ascending, +(X) is an explicit way of saying ascending on
X and –(X) is descending on X. MultiKeySort/4 does not remove duplicates.

notMember(NotElement, List) when List
NotElement is not a member of List . This is done by requiring that
NotElement ∼= Element for each Element of List . This is only the same as
not member(NotElement, List) if NotElement and List are ground.

perm(List1, List2) when List1 or List2
List List 2 is a permutation of list List 1 . On backtracking, perm/2 returns another
permutation. If the elements of the input list were not unique, some of the permutations
will be identical. Fails if either argument is not a list.

reverse(ForwList, BackList) when ForwList or BackList
List BackList is the reverse of list ForwList . The time is proportional to O(n), where n
is the length of either list. Fails if either argument is not a list.

sort(List, SortedList) when List
(Non-logical).
Sort List into SortedList , removing duplicates, where List is a list of arbitrary terms. The
system predicate compare/3 is used for term comparison. Delays until List is sufficiently
instantiated.

sorted(List)
?– sorted([]) when ever.
?– sorted(_Head.Tail) when Tail.

List is sorted under the non-logical ordering of terms. List may contain duplicates.

suffix(List, Suffix) when List
Suffix is successively unified to all of the possible suffixes of List , starting with List and
shrinking to the empty list. Same as append(_, Suffix, List). Fails if Suffix
won’t unify with some suffix of List.

48

System - Terms and Lists

5.4.2. Examining Characters

isAlnum(Char) when Char
ASCII code Char is alphanumeric. Delays until Char is instantiated.

isAlpha(Char) when Char
ASCII code Char is alphabetic. Delays until Char is instantiated.

isAscii(Char) when Char
Integer Char is between 1 and 127. Delays until Char is instantiated.

isAsciiL(String) when ground(String)
String is a list of Ascii characters (see isAscii/1). Delays until String is ground.

isCntrl(Char) when Char
Char is an ASCII code for a control character, that is integer Char is between 1 and 32.
Delays until Char is instantiated.

isDigit(Char) when Char
ASCII code Char is a digit. Delays until Char is instantiated.

isLower(Char) when Char
ASCII code Char is lowercase alphabetic. Delays until Char is instantiated.

isPrint(Char) when Char
ASCII code Char is a printable character (ASCII codes 9, 10, 12, 13, 32 to 126). Delays
until Char is instantiated.

isPrintL(String) when ground(String)
String is a list of printable characters (see isPrint/1). Delays until String is ground.

isUpper(Char) when Char
ASCII code Char is uppercase alphabetic. Delays until Char is instantiated.

5.4.3. Examining Terms

arg(N, Term, SubTerm) when N and Term
The N th argument of term Term is SubTerm ; it will delay if N or Term are variables. If
N is less than 1, or greater than the arity of Term , arg/3 fails.

atom(Term)
(Non-logical).
Term is an atom; if Term is currently a variable it fails. See isAtom/1.

49

System - Terms and Lists

atomic(Term)
(Non-logical).
Term is an atom or a number; if Term is currently a variable it fails. See isAtomic/1.

atomToString(Atom, String) when Atom or ground(String)
String is the list of ASCII codes in the name of Atom , an atom. If Atom is a variable, and
String is not ground, it delays. Fails if the arguments are not of an appropriate type. See
also name/2.

compound(Term)
(Non-logical).
Term is a compound term, that is, not a constant or variable. See isCompound/1.

cons(Term)
(Non-logical).
The top-level functor in Term is ‘.’ (cons). Fails if Term is currently a variable. See
isCons/1.

const(Term)
(Non-logical).
Term is a constant; if Term is currently a variable it fails. See isConst/1.

duplicate(Term1, Term2)
(Meta-logical).
Term 2 is a copy of Term1 with different variables but the same internal bindings.

float(Term)
(Non-logical).
Term is a float. If Term is currently a variable it fails. See isFloat/1.

functor(Term, Functor, Arity) when Term or Functor and Arity
Term has Functor and Arity . Delays until Term or both Functor and Arity are not
variables. If Term is a constant, Functor will unify with Term and Arity will be 0.

ground(Term)
(Meta-logical).
Term is currently ground, that is, contains no variables.

integer(Term)
(Non-logical).
Term is an integer. If Term is currently a variable it fails. See isInt/1.

50

System - Terms and Lists

intToAtom(Integer, Atom) when Integer or Atom
Integer is converted to Atom , or Atom to Integer . The name of Atom is the decimal
representation of integer. If both arguments are variables, intToAtom/2 delays. Fails if
an argument is instantiated to a term of the wrong type.

intToString(Int, String) when Int or ground(String)
String is the list of ASCII codes of the digits in the decimal representation of Int . If Int is
a variable, and String is not ground, it delays. Fails if the arguments are not of an
appropriate type (cf. name/2).

isAtom(Term) when Term
Term is an atom. Delays until Term is instantiated.

isAtomic(Term) when Term
Term is an atom or a number. Delays until Term is instantiated.

isCompound(Term) when Term
Term is a compound term, that is, not a constant. Delays until Term is instantiated.

isCons(Term) when Term
The top-level functor in Term is ‘.’ (cons). Delays until Term is instantiated.

isConst(Term) when Term
Term is a constant. Delays until Term is instantiated.

isExpression(Term) when ground(Term)
Term is a valid arithmetic expression. Delays until Term is ground.

isFloat(Term) when Term
Term is a float. Delays until Term is instantiated.

isInt(Term) when Term
Term is an integer. Delays until Term is instantiated.

isNumber(Term) when Term
Term is a number. Delays until Term is instantiated.

isTerm(Term) when Term
Term is a compound term, that is, not a constant. Delays until Term is instantiated.

For compatibility reasons, IsCompound/1 is should be used in preference to IsTerm/1.

51

System - Terms and Lists

listOfVars(Term, Vars)
(Meta-logical).
Vars is a list of the variables occurring in Term .

name(Atom, List) when Atom or ground(List)
List is the list of ASCII codes in the print name of Atom , an atom. If Atom is a variable,
or List is not ground, it delays. Fails if the arguments are not of an appropriate type. See
also atomToString/2.

nonvar(Term)
(Meta-logical).
Term is not currently a variable. See var/1.

number(Term)
(Non-logical).
Term is an number. If Term is currently a variable it fails. See isNumber/1.

occurs(SubTerm, Term)
(Non-logical).
Tests for identity (with ==) between SubTerm , a variable or constant, and some subterm of
Term . Does not bind SubTerm if it is a variable.

term(Term)
(Non-logical).
Term is a compound term, that is, not a constant or variable. See isTerm/1.

For compatibility reasons, Compound/1 is should be used in preference to Term/1.

termToString(Term, String)
termToString(Flags, Term, String)

(Non-logical).
Converts Term to String in prefix format (or as specified by Flags) with atoms quoted as
necessary. Does not convert String to Term . Possible Flags settings are as for
writev/2. See sread/2.

Term =.. List
List is the functor of Term followed by the arguments of Term . The call delays if Term is
a variable or the head of List is not instantiated and the length of List is not known. Fails
if Term is an integer.

var(Term)
(Meta-logical).
Term is currently a variable. See nonvar/1.

52

System - Terms and Lists

waitedOn(Term, Vars)
(Non-logical).
Vars is a list of variables in Term on which some goals may be delayed.

5.4.4. Modifying Terms
Normally, Prolog terms are built once and modified only by further instantiation. There are

times, usually in the implementation of other reasoning systems, where modifying an existing term
directly rather than creating a copy of it encorporating the modification provides enough benefit in
clarity of implementation or performance to be worth while. Be warned that programs using the
facilities in this section can be very hard to debug and are often not significantly faster than pure
versions.

setarg(N, Term, SubTerm)
The N th argument of term Term is replaced with SubTerm . setarg/3 fails if N or Term
are unbound. If N is less than 1, or greater than the arity of Term , setarg/3 fails.

Not all NU-Prolog terms can be modified with setarg/3. The main class of user-visible
objects that setarg/3 won’t work on is the internal character string type. setarg/3 fails if it
cannot perform the replacement.

5.4.5. Comparison of Terms
Logical term comparison observes the following standard ordering:

(1) Variables are equal if they are identical.

(2) Numbers are ordered numerically, with integers less than their floating-point equivalents.
Atoms are ordered lexicographically.

(3) Numbers are less than atoms.

(4) If term X has arity smaller than Y , it is smaller.

(5) Term X is less than term Y if the functor of X is lexicographically less than the functor of Y ,
and X and Y are equal under conditions (1) to (4).

(6) Term X is less than term Y if an argument of X is less than the corresponding argument of Y ,
and X , Y and their preceeding arguments are equal under conditions (1) to (5).

Non-logical term comparison is defined by extending the logical ordering with the following
ordering for variables:

(1a) Two distinct variables have an ordering based on the local implementation.

(1b) A variable is less than a non-variable.

Programmers should use termCompare/3 rather than the non-logical compare/3 or the @<
family of comparison predicates.

Term1 = Term2
Term 1 equals Term2 ; that is, Term 1 and Term 2 are unified.

Term1 \= Term2
(Non-logical).
Term 1 and Term 2 do not unify; the same as \+ Term1 = Term2. Similar to ∼= but,
unlike ∼=, there are no quantifiers and the call never delays. See ∼=.

53

System - Terms and Lists

Term1 == Term2
(Non-logical).
Term 1 and Term 2 are identical; that is, they can be unified without binding any variables.

Term1 \== Term2
(Non-logical).
Term 1 and Term 2 are not identical. For example, A \== B would succeed if A and B
were distinct variables.

Term1 @< Term2
(Non-logical).
Term 1 is before Term2 in the non-logical ordering of terms. See termCompare/3.

Term1 @> Term2
(Non-logical).
Term 1 is after Term2 in the non-logical ordering of terms. See termCompare/3.

Term1 @=< Term2
(Non-logical).
Term 1 is before or equal to Term2 in the non-logical ordering of terms.

Term1 @>= Term2
(Non-logical).
Term 1 is equal to or after Term2 in the non-logical ordering of terms.

termCompare(Comp, Term1, Term2)
Logical term comparison. Comp is <, = or > if term Term1 is before, equivalent to, or
after term Term2 respectively, in the standard ordering for terms. Delays until Term1 and
Term 2 are instantiated enough for comparison to be made under the standard ordering, that
is, until any further instantiation would not change the ordering already determined. Fails
if Comp will not unify with <, = or >.

compare(Comp, Term1, Term2)
(Non-logical).
Comp is <, = or > if Term 1 is before, equivalent to or after Term2 respectively, in the
non-logical ordering of terms. Fails if Comp will not unify with <, = or >. See
termCompare/3.

54

System - Arithmetic Predicates

5.5. Arithmetic Operators and Predicates
The predicates in this section deal with numbers and arithmetic expressions. Arithmetic

expressions may contain numbers, variables bound to arithmetic expressions, strings of length one
(which are considered to have the integer value of the ASCII code of the character) and arithmetic
operators. Logical expressions evaluate to 1 (true) or 0 (false). All predicates which use
arithmetic expressions delay until all variables in the expression(s) are bound. Expressions may
delay unnecessarily, such as 0 and X, which may delay until X is ground before failing.
Overflow is not detected in arithmetic.

Arithmetic is performed to implementation-determined precisions which may be determined
with the predicate arithmeticPrecision/3. Note that arithmetic may be more accurate when
compiled than interpreted.

5.5.1. Arithmetic Operators
The operators in this section are not predicates; they are expressions which are only evaluated

when they occur as an argument to the arithmetic predicates described in the next section. Some
of these operators correspond to arithmetic predicates which may evaluate expressions. Integers are
converted to floats when necessary, but not vice versa.

maxint
The maximum integer representable by Prolog. Evaluated only when it occurs as an
argument to an arithmetic predicate.

minint
The minimum integer representable by Prolog. Evaluated only when it occurs as an
argument to an arithmetic predicate.

pi
The number pi. Evaluated only when it occurs as an argument to an arithmetic predicate.

N + M
N plus M . Evaluated only when it occurs as an argument to an arithmetic predicate.

N − M
N minus M . Evaluated only when it occurs as an argument to an arithmetic predicate.

N * M
N times M . Evaluated only when it occurs as an argument to an arithmetic predicate.

N / M
N divided by M performed in floating-point. Evaluated only when it occurs as an
argument to an arithmetic predicate. The result is always a float.

55

System - Arithmetic Predicates

N // M
N divided by M performed in integer arithmetic. Evaluated only when it occurs as an
argument to an arithmetic predicate. Evaluation fails with a warning message if either
argument evaluates to a float.

N mod M
N modulo M . Evaluated only when it occurs as an argument to an arithmetic predicate.
Evaluation fails with a warning message if either argument evaluates to a float.

N ** M
N to the power of M , where M ≥ 0 or N < 0 and M is equal to a (negative) integer.
Evaluated only when it occurs as an argument to an arithmetic predicate. The result is
always a float.

sin(X)
The sine of X . Evaluated only when it occurs as an argument to an arithmetic predicate.
The result is always a float.

cos(X)
The cosine of X . Evaluated only when it occurs as an argument to an arithmetic predicate.
The result is always a float.

tan(X)
The tangent of X . Evaluated only when it occurs as an argument to an arithmetic
predicate. The result is always a float.

asin(X)
The arcsine of X . Evaluated only when it occurs as an argument to an arithmetic predicate.
The result is always a float.

acos(X)
The arccosine of X . Evaluated only when it occurs as an argument to an arithmetic
predicate. The result is always a float.

atan(X)
The arctangent of X . Evaluated only when it occurs as an argument to an arithmetic
predicate. The result is always a float.

atan2(X, Y)
atan2(X , Y). Evaluated only when it occurs as an argument to an arithmetic predicate.
The result is always a float.

56

System - Arithmetic Predicates

exp(X)
E to the power X . Evaluated only when it occurs as an argument to an arithmetic
predicate. The result is always a float.

log(X)
The natural logarithm of X . Evaluated only when it occurs as an argument to an arithmetic
predicate. The result is always a float.

log10(X)
The base 10 logarithm of X . Evaluated only when it occurs as an argument to an
arithmetic predicate. The result is always a float.

sqrt(X)
The square root of X . Evaluated only when it occurs as an argument to an arithmetic
predicate. The result is always a float.

integer(X)
The nearest integer to X between X and zero. Evaluated only when it occurs as an
argument to an arithmetic predicate.

float(X)
The floating-point equivalent of X . Evaluated only when it occurs as an argument to an
arithmetic predicate. The result is always a float.

round(X)
The floating-point representation of the integer nearest to X . Evaluated only when it
occurs as an argument to an arithmetic predicate. The result is always a float.

N /\ M
N bitwise and’ed with M . Evaluated only when it occurs as an argument to an arithmetic
predicate. Evaluation fails with a warning message if either argument evaluates to a float.

N \/ M
N bitwise or’ed with M . Evaluated only when it occurs as an argument to an arithmetic
predicate. Evaluation fails with a warning message if either argument evaluates to a float.

N ^ M
N bitwise exclusive or’ed with M . Evaluated only when it occurs as an argument to an
arithmetic predicate. Evaluation fails with a warning message if either argument evaluates
to a float.

N << M
N shifted left M positions. Evaluated only when it occurs as an argument to an arithmetic
predicate. Evaluation fails with a warning message if either argument evaluates to a float.

57

System - Arithmetic Predicates

N >> M
N arithmetically shifted right M positions. Evaluated only when it occurs as an argument
to an arithmetic predicate. Evaluation fails with a warning message if either argument
evaluates to a float.

+ N
N . Evaluated only when it occurs as an argument to an arithmetic predicate.

− N
Minus N . Evaluated only when it occurs as an argument to an arithmetic predicate.

\ N
Bitwise complement of N . Evaluated only when it occurs as an argument to an arithmetic
predicate. Evaluation fails with a warning message if the argument evaluates to a float.

not N
Logical complement of N . Equivalent to comparing N with zero. Evaluated only when it
occurs as an argument to an arithmetic predicate.

N < M
Evaluates to 1 if N is less than M , and to 0 otherwise. Evaluated only when it occurs as
an argument to an arithmetic predicate.

N =< M
Evaluates to 1 if N is less than or equal to M , and to 0 otherwise. Evaluated only when it
occurs as an argument to an arithmetic predicate.

N > M
Evaluates to 1 if N is greater than M , and to 0 otherwise. Evaluated only when it occurs
as an argument to an arithmetic predicate.

N >= M
Evaluates to 1 if N is greater than or equal to M , and to 0 otherwise. Evaluated only
when it occurs as an argument to an arithmetic predicate.

N =:= M
Evaluates to 1 if the values of arithmetic expressions N and M are equal, and to 0
otherwise. Evaluated only when it occurs as an argument to an arithmetic predicate.

N =\= M
Evaluates to 1 if the values of arithmetic expressions N and M are not equal, and to 0
otherwise. Evaluated only when it occurs as an argument to an arithmetic predicate.

58

System - Arithmetic Predicates

N and M
Evaluates to 1 if N and M are both non-zero, and to 0 otherwise. Evaluated only when it
occurs as an argument to an arithmetic predicate.

N or M
Evaluates to 1 if either N or M is non-zero, and to 0 otherwise. Evaluated only when it
occurs as an argument to an arithmetic predicate.

5.5.2. Arithmetic Predicates
The predicates in this section are the only predicates which will evaluate arithmetic

expressions; some of them correspond to operators which may be evaluated. Except where
indicated otherwise, these predicates fail on backtracking, and if one of their arguments is not a
suitable number or arithmetic expression will print a warning and fail when all the arguments
become ground. Errors of this type are detected at compile time if possible.

N < M when ground(N) and ground(M)
Succeeds if the value of arithmetic expression N is less than the value of arithmetic
expression M . Prints a message and fails if an argument is bound to a ground term that is
not a number or arithmetic expression.

N =< M when ground(N) and ground(M)
Succeeds if the value of arithmetic expression N is less than or equal to the value of
arithmetic expression M . Prints a message and fails if an argument is bound to a ground
term that is not a number or arithmetic expression.

N > M when ground(N) and ground(M)
Succeeds if the value of arithmetic expression N is greater than the value of arithmetic
expression M . Prints a message and fails if an argument is bound to a ground term that is
not a number or arithmetic expression.

N >= M when ground(N) and ground(M)
Succeeds if the value of arithmetic expression N is greater than or equal to the value of
arithmetic expression M . Prints a message and fails if an argument is bound to a ground
term that is not a number or arithmetic expression.

N =:= M when ground(N) and ground(M)
Succeeds if the values of arithmetic expressions N and M are equal. Prints a message and
fails if an argument is bound to a ground term that is not a number or arithmetic
expression.

N =\= M when ground(N) and ground(M)
Succeeds if the value of arithmetic expressions N and M are not equal. Prints a message
and fails if an argument is bound to a ground term that is not a number or arithmetic
expression.

59

System - Arithmetic Predicates

N and M when ground(N) and ground(M)
Arithmetic expressions N and M are both non-zero. Prints a message and fails if an
argument is bound to a ground term that is not a number or arithmetic expression.

between(N, M, I) when N and M or I
Similar to N =< I, I =< M, but if I is a variable it is successively unified to all of the
integers between N and M inclusively. N and M must be numbers, they may not be
expressions.

divides(N, M, Div, Mod) when N and (M or Div and Mod) or M and Div and Mod
N / M = Div , N mod M = Mod . If N , M , Div , and Mod are not sufficiently instantiated
the call will delay. The arguments must be integers or variables, they can not be
expressions or floats.

N or M when ground(N) and ground(M)
Either or both of the arithmetic expressions N and M are non-zero. Prints a message and
fails if an argument is bound to a ground term that is not a number or arithmetic
expression.

I is N when ground(N)
Arithmetic expression N evaluates to I , a variable or integer. It delays if N contains an
unbound variable, so is/2 can only be used in one direction, unlike plus/3. Similar to
conventional arithmetic assignment in C . Prints a message and fails if the second
argument is bound to a ground term that is not a number or arithmetic expression, or if the
first argument is not a number.

iota(N, M, I) when N and M or I
Similar to N =< I, I =< M, but if I is a variable it is successively unified to all of the
integers between N and M inclusively. N and M must be numbers, they may not be
expressions. For compatibility, iota/3 has been renamed between/3.

maxint(N)
N is the largest integer possible in the system (maxint). The smallest is −N − 1. Fails
if N won’t unify with maxint.

plus(N, M, Sum) when N and M or N and Sum or M and Sum
N + M = Sum . If more than one argument is a variable, it will delay. If two are integers,
then the third will be calculated. The arguments should not be expressions.

random(Num)
Num is a random integer in the range 0 to maxint (see maxint/1).

60

System - Arithmetic Predicates

times(N, M, Prod) when N and M or N and Prod or M and Prod
N * M = Prod . If more than one argument is a variable, it will delay. If two are
integers, then the third will be calculated. The arguments should not be expressions or
floats.

61

System - I/O Predicates

5.6. I/O Predicates
These predicates are related to input and output. All input and output is via streams. The

standard streams are user_input, user_output and user_error. The first two can be
referred to as user where the context makes clear which stream is intended. In addition, is
always a current input stream and a current output stream. I/O predicates which do not have a
stream as an argument refer to the current stream. Initially, these are user_input and
user_output, but they may be changed without affecting the standard streams. All I/O
predicates are non-logical.

Stream identifiers may be manipulated in any way desired. In particular, they may be asserted
and retracted. The three standard identifiers are always valid, but attempts to use other stream
identifiers, the streams of which have been closed, will fail with an error message.

Predicates which have single characters as their argument, such as put/1 and get/1, assume
that the character is an ASCII code, not an atom or expression. writev/2 gives users the option
of printing strings as sequences of characters or as a list of ASCII codes. The ASCII code for a
character Char is equivalent to 0'Char. The only characters which may appear as Char are
symbol characters, printable characters, white space and escape sequences. Character classes are
described in Appendix 7.

5.6.1. Stream Management Predicates

absoluteFileName(RelFile, AbsFile)
Given a valid file name RelFile , AbsFile is bound to the absolute file name corresponding
to it. If RelFile .nl exists then it is chosen in preference to RelFile .

characterCount(Stream, Chars)
(Non-logical).
Unifies Chars with the number of characters that have been read or written on Stream . A
stream has characterCount 0 before any characters are transfered.

Re-positioning Stream with fseek/3 invalidates the counter.

clearIOError(Stream)
(Non-logical).
Used to reset any error flags on Stream , including end-of-file. Prints a warning and fails if
Stream is not a currently open stream.

close(Stream)
(Non-logical).
Closes Stream . Stream must be obtained from a previous call to open/3 or any similar
predicate. For compatibility, this predicate also accepts an atom representing a filename as
its argument, in which case it closes a (possibly arbitrary) stream associated with that file.

If Stream cannot be closed a fatal error will be generated, unless file errors have been
turned off with prologFlag/3, in which case the call fails. Prints a warning and fails if
Stream is not a currently open stream.

If user_input or user_output are closed, they are immediately re-opened on the
terminal. If the user attempts to close user_error, a warning will be printed and the
call will fail.

62

System - I/O Predicates

currentInput(Stream)
(Non-logical).
Stream is unified with the current input stream. Fails if Stream will not unify with the
current input stream.

currentOutput(Stream)
(Non-logical).
Stream is unified with the current output stream. Fails if Stream will not unify with the
current output stream.

currentStream(File, Mode, Stream)
(Non-logical).
Stream is a currently open stream on File , where Mode is either read, write or
append. On backtracking, currentStream/3 finds all suitable streams. Fails if
Stream will not unify with a currently open stream of the appropriate type.

The three standard input streams are ignored by this predicate.

fileErrors
(Non-logical).
Resets fileErrors flag to on. See prologFlag/3.

fseek(Stream, Offset, Whence)
(Non-logical).
Moves the file-pointer associated with Stream to a new position specified by Offset
relative to Whence . Whence is one of beginning, current, or end, referring to the
beginning of the file Stream is open on, the current position in the file of Stream , or the
end of the file. The exact meaning of Offset is operating system dependent, but is usually
the signed number of bytes to move from Whence . The only completely reliable way to
determine an offset is to get it from ftell/2.

Stream must be obtained from a previous call to open/3 or any similar predicate. Only
streams open to files can be re-positioned. For compatibility, this predicate also accepts an
atom representing a filename as its argument, in which case it re-positions a (possibly
arbitrary) stream associated with that file.

If Stream cannot be re-positioned a fatal error will be generated, unless file errors have
been turned off with prologFlag/3, in which case the call fails. Prints a warning and
fails if Stream is not a currently open stream.

63

System - I/O Predicates

ftell(Stream, Offset)
(Non-logical).
Offset is the current position with respect to beginning of the file-pointer associated
with Stream . The exact meaning of Offset is operating system dependent, but is usually
the number of bytes from the beginning of the file.

Stream must be obtained from a previous call to open/3 or any similar predicate. Offset
is only meaningful for streams open on files. For compatibility, this predicate also accepts
an atom representing a filename as its argument, in which case it gives the position of a
(possibly arbitrary) stream associated with that file.

Prints a warning and fails if Stream is not a currently open stream.

lineCount(Stream, Lines)
(Non-logical).
Unifies Lines with the number of lines that have been read or written on Stream . The first
line on a stream is numbered 1.

Re-positioning Stream with fseek/3 invalidates the counter.

linePosition(Stream, LinePosition)
(Non-logical).
Unifies LinePosition with the number of characters read or written since the last new-line
on Stream . The first character on a line is numbered 0.

Re-positioning Stream with fseek/3 invalidates the counter.

noFileErrors
(Non-logical).
Sets fileErrors flag to off. See prologFlag/3.

open(File, Mode, Stream)
(Non-logical).
File is an atom specifying a filename. Mode is one of the atoms read (for input),
write (for writing on new files) and append (for adding to an existing file). If open/3
succeeds, Stream is unified with the resulting input stream. If File cannot be opened in
the specified Mode , a fatal error is generated unless the fileErrors flag is set to off
(see prologFlag/3), in which case the call fails. Fails if Stream cannot be unified with
the stream returned by open/3.

openNullStream(Stream)
(Non-logical).
Stream is unified with a null output stream. Output to this stream is discarded. Fails if
Stream will not unify with a currently open null stream.

setInput(Stream)
(Non-logical).
Set current input to Stream . Prints warning and fails if Stream is not a currently open
input stream.

64

System - I/O Predicates

setOutput(Stream)
(Non-logical).
Set current output to Stream . Prints warning and fails if Stream is not a currently open
output stream.

sourceFile(File)
sourceFile(Pred, Arity, File)

True if File is a user-loaded source file, or if Pred /Arity is a predicate in the file File . On
backtracking, finds another appropriate predicate or file.

streamEof(Stream)
(Non-logical).
Succeeds if the end of file has been seen on Stream .

streamPosition(Stream, OldPosition, NewPosition)
(Non-logical).
Unifies OldPosition with an object describing the current position of Stream and re-
positions it to NewPosition . Positions are internal objects whose representation is
implementation dependent. The only valid way to create one is with
streamPosition/3. StreamPosition/3 fails if NewPosition is not a valid position,
though the check is so placed that the idiom
streamPosition(Stream, Position, Position) finds the current position and
leaves it unchanged.

To move to a random position in a file, try fseek/3.

5.6.2. Input Predicates
The predicates in this section read from current input (or the given stream) either characters,

or terms terminated by a period and white space. At end-of-file, either –1 (character input) or the
atom end_of_file (term input) is returned.

If the Stream argument to any of the following predicates is not a currently open stream, a
warning will be printed and the predicate will fail.

isEof(Term)
Equivalent to nonvar(Term), Term = end_of_file, but portable. Does not catch
end-of-file marker from character input. If Term is a variable, isEof/1 fails.

eof(Term)
Equivalent to Term = end_of_file, but portable. Does not catch end-of-file marker
from character input. If Term is a variable, eof/1 succeeds.

65

System - I/O Predicates

get(Char)
get(Stream, Char)

(Non-logical).
Reads ASCII characters from the current input stream (or Stream) and returns Char , the
ASCII code for the first character read which has ASCII code greater than 32. If there are
no such characters, Char is unified with –1. If end-of-file was reached by a previous call
to an input predicate on this stream, a fatal error is generated. Fails if Char will not unify
with the character read.

get0(Char)
get0(Stream, Char)

(Non-logical).
Char is the ASCII code for the next character to be read from the current input stream (or
Stream). At end-of-file Char is unified with −1. If end-of-file was reached by a previous
call to an input predicate on that stream, a fatal error is generated. Fails if Char will not
unify with the character read.

getl(Line)
getl(Stream, Line)

(Non-logical).
Line is a list of the ASCII codes of the next characters to be read from the current input
stream (or Stream) up to and including the next new-line character. If end-of-file is
reached before a new-line Line will not have a new-line as its last character. If end-of-file
was reached by a previous call to an input predicate on that stream, a fatal error is
generated. Fails if Line will not unify with the line read.

66

System - I/O Predicates

getToken(Token, Type)
getToken(Stream, Token, Type)

(Non-logical).
Read the next NU-Prolog Token of Type from the current input stream (or Stream). Type
is an atom.

Token Type

[] end_of_file
VarName var
Atom atom
QAtom quoted
Number number
String string
End end
ASCII junk

where VarName is a string representing the name of a variable, Atom is any atom, QAtom
is an atom that was quoted, Number is a number, String is a string, End is ’. ’ — the
token returned when the end of a term is encountered, and ASCII is a character code not
amongst the unescaped permitted characters listed in Appendix 7.

Left parentheses are tokenized as the atom ' (' with type atom if they are not immediately
preceded by a token that could serve as an operator. Periods followed by whitespace (the
term terminator) tokenize as . , also with type atom. Both can be distinguished from the
quoted atom appearing in input by their type.

getTokenList(Tokens)
getTokenList(Stream, Tokens)

(Non-logical).
Reads NU-Prolog token and type pairs from the current input stream (or Stream) using
getToken/2 until a term terminator or end of file is encountered. Any term terminator
read is discarded, the tokens and types read are consed together as pairs and a list made of
them.

read(Term)
read(Stream, Term)

(Non-logical).
Read a NU-Prolog Term , terminated by a period and white space, from the current input
stream (or Stream). If read/1 finds a token sequence terminated by a full stop, but that
token sequence cannot be parsed as a term using the normal rules of Prolog syntax and the
current operator declarations, it reports a syntax error and skips that token sequence. It
keeps on skipping tokens sequences until it finds one that it can parse. It never skips well
formed terms. If Term contains variables these are distinct from variables not in the term.
At end-of-file, read/1 and read/2 return the atom end_of_file. Fails if Term will
not unify with the term that is read.

67

System - I/O Predicates

readTerm(Term, NameList, VarList)
readTerm(Stream, Term, NameList, VarList)

(Non-logical).
Read Term from the standard input stream (or Stream) as for read/1 or read/2. VarList
is bound to a list of the variables in Term . NameList is bound to a list of the names of the
variables represented as strings; variables called ‘_’ (underscore) are not included in
NameList or VarList . Fails if Term , NameList or VarList won’t unify with the terms
returned by readTerm/3 or readTerm/4.

read1(Term)
read1(Stream, Term)

(Non-logical).
Read a NU-Prolog Term , terminated by a period and white space, from the current input
stream (or Stream). If Term contains variables these are distinct from variables not in the
term. At end-of-file, read1/1 and read1/2 return the atom end_of_file. Unlike
read/1 and read/2, read1/1 and read1/2 print a warning and fail if a syntax error is
encountered. Fails if Term will not unify with the term that is read.

read1Term(Term, NameList, VarList)
read1Term(Stream, Term, NameList, VarList)

(Non-logical).
Read a term Term from the standard input stream (or Stream) as for read1/1 or
read1/2. VarList is bound to a list of the variables in Term . NameList is bound to a list
of the names of the variables represented as strings; variables called ‘_’ (underscore) are
not included in NameList or VarList . Fails if Term , NameList or VarList won’t unify
with the terms returned by read1Term/3 or read1Term/4.

see(File)
(Non-logical).
Switches current input to either the file or stream specified by File . If File is a stream,
but not a currently open input stream, an error is given. If File is an atom then it is
treated as a file; if there are no open input streams associated with that file then one is
opened. If there are more than one, an arbitrary one is chosen as current input. If File is
neither a stream nor an atom see/1 fails.

seeing(Stream)
(Non-logical).
Stream is unified with the current input stream. Same as currentInput(Stream).

seen
(Non-logical).
Closes the current input stream, which reverts to user_input.

68

System - I/O Predicates

skip(Bound)
skip(Stream, Bound)

(Non-logical).
Reads characters from the current input stream (or Stream) until character Bound appears
or end-of-file is reached. If Bound is a list, then characters are read until a member of
Bound is found; Bound should therefore be a list of ASCII codes. If Bound is neither of
these things, it will read characters until end-of-file is reached.

sread(String, Term)
(Non-logical).
Parse String to give Term . Fails if String is not a valid term. Unlike input to read/1,
the term in String should not be terminated with a period.

sreadTerm(String, Term, NameList, VarList)
(Non-logical).
Parse String yielding Term as for sread/2, where NameList and VarList are a list of the
names of the variables, and a list of the variables, in Term , respectively. Variables named
‘_’ are not included in NameList or VarList . Fails if String is not a valid term. Unlike
input to read/1, the term in String should not be terminated with a period.

tokenize(StringIn, Token, Type, StringOut)
tokenize(String, Tokens)

(Non-logical).
Tokenize/4 reads the first Token with Type , from StringIn , leaving any unread
characters in StringOut . Tokenize/2 converts all of String into a list of Token.Type
pairs. Tokens and types are as described for getToken/3. Fails if any argument is of an
inappropriate type.

tread(TokenList, Term)
(Non-logical).
Parse TokenList , a list of token and type pairs such as that produced by
getTokenList/1, to give Term . Fails if TokenList is not a valid term. Unlike input to
read/1, the term in TokenList should not be terminated with a term terminator.

treadTerm(TokenList, Term, NameList, VarList)
(Non-logical).
Parse TokenList yielding Term as for tread/2, where NameList and VarList are a list of
the names of the variables, and a list of the variables, in Term , respectively. Variables
named ‘_’ are not included in NameList or VarList . Fails if TokenList is not a valid term.
Unlike input to read/1, the term in TokenList should not be terminated with a term
terminator.

ttyget(Char)
(Non-logical).
Read the next printable character from user_input. Same as
get(user_input, Char).

69

System - I/O Predicates

ttyget0(Char)
(Non-logical).
Read a character from user_input. Same as get0(user_input, Char).

ttyskip(Bound)
(Non-logical).
Reads characters from user_input until character Bound appears, or end-of-file is
reached. If Bound is a list, then characters are read until a member of Bound is found.
Same as skip(user_input, Bound).

5.6.3. Output Predicates
If the Stream argument to any of the following predicates is not a currently open output

stream, a warning will be printed and the predicate will fail. All of the predicates in this section
fail on backtracking.

display(Term)
display(Stream, Term)

(Non-logical).
Write Term on the current output stream (or Stream) in prefix format. Similar to
writev/2 (or writev/3).

flushOutput(Stream)
(Non-logical).
Flush the specified output Stream , causing any buffered output to appear immediately.

70

System - I/O Predicates

format(Format, Arguments)
format(Stream, Format, Arguments)

(Non-logical).
Format/2,3 is a general formatted output routine. It takes a list of Arguments and a
Format , a string or atom, describing how they are to be printed. Output is either to the
current output or to Stream .

Format is composed of characters to be printed and of format control directives that cause
the printing of one or more of the Arguments . The format controls are character sequences
of the form ∼nc where c is one of the format control characters listed below and n is an
optional small integer controlling precision, repetition, radix, or fill character. N can be
specified as either a decimal number, the character * which causes the number to be
supplied by the next unprocessed argument, or ’x meaning the ASCII code of the single
character x . The formats that take a numeric argument have defaults if it is absent.

Format reports an error if the type of the argument given does not match that expected by
the format. Formats expecting numeric arguments evaluate them.

The format control characters are

∼a Print the argument, and atom, without quotes.

∼nc Print the character specified by the ASCII code given by the argument n times. N defaults to
one.

∼ne Print the argument, a floating point number, in exponential notation with one digit before the
decimal point and n digits after it. N defaults to six.

∼nE This is similar to ∼e, but the letter E rather than e is used to indicate the exponent.

∼nf Print the argument, a floating point number, in fixed-point notation with and n digits after the
decimal point. N defaults to six. If n is zero, the decimal point is omitted.

∼ng Print the argument, a floating point number, in either exponential or fixed-point notation,
depending on which is smaller. At most n significant digits are printed. N defaults to six.

∼nG This is similar to ∼g, but the letter E rather than e is used to indicate the exponent.

∼nd Print the argument, an integer, as a decimal number. If n is not zero, a decimal point is
inserted n digits from the right-hand side. N defaults to zero.

∼nD This is similar to ∼d, but commas are inserted to group the integer part of the number printed.

∼nr Print the argument, an integer, as a number in radix n using the digits 0−9 and the letters
a−z. This gives valid radixes in the range two to 36. N defaults to eight.

∼nR This is similar to ∼r, but it uses A−Z rather than a−z.

∼ns Print the first n characters of the argument, a string. Strings shorter than n are padded with
spaces on the left. N defaults to the length of the string.

∼i Ignore the argument.

∼k Pass the argument to writeCanonical/1.

∼p Pass the argument to print/1.

∼q Pass the argument to writeq/1.

∼w Pass the argument to write/1.

∼∼ Print one ∼.

∼nn Print n newlines. N defaults to one.

∼N Print a newline if not at the beginning of a line, and nothing otherwise.

71

System - I/O Predicates

∼n | Set a tab at the n th character on the current line. N defaults to the current line position.

∼n+ Set a tab at n characters on from the last one. N defaults to eight.

∼nt Establish a fill position with fill character n in the current line being printed. When the space
between two tabs is not filled by explicitly written characters, fill characters are inserted at the
fill positions to make up the difference. N defaults to 32 (ASCII space).

nl
nl(Stream)

(Non-logical.) A newline is printed on the current output stream (or Stream). Same as
put(0'\n).

portraycl(Clause)
(Non-logical).
Write Clause with atoms quoted where necessary, and parentheses inserted where
necessary to represent precedence. A term written with portraycl/1 can always be read
as a syntactically correct term by the NU-Prolog parser if a ‘‘.’’ and some white space is
appended to it.

portraygoals(Goal)
(Non-logical).
Write Goal with atoms quoted where necessary, and parentheses inserted where necessary
to represent precedence. A term written with portraygoals/1 can always be read as a
syntactically correct term by the NU-Prolog parser if a ‘‘.’’ and some white space is
appended to it.

print(Term)
print(Stream, Term)
print(Stream, Term, Depth)
print(Stream, Term, Depth, Prec)

(Non-logical).
Print Term on the current output (or on Stream). If Depth is given then sub-terms of
Term nested deeper than Depth are printed as the atom **depth*bound**. The
elements of a list are treated as of the same depth. If Prec is given then parentheses are
placed around Term if needed to make it parse as an argument of an operator of
precedence Prec . If the user has defined portray/1, this is called. If portray(Term)
fails or does not exist, write(Term) is called. Print is used by the debugger to
display goals and by the interpreter top-level to show answers.

72

System - I/O Predicates

printf(Format, List)
printf(Stream, Format, List)

(Non-logical).
List is printed with Format on the current output stream (or Stream). List is a list of
strings, constants and integers. Format is a NU-Prolog string specifying the appearance of
the output, where the conventions used are similar to printf in the C programming
language. The types of the elements of List should match the format string; if the types do
not match, the behaviour will be determined by the local implementation of C .

For strings and atoms, the format %s is used. %ns may be used to print a string or atom in
a right-justified (left-justified if n is negative) field of width n . If the string or atom is
longer than n characters, the overflow will be printed to the right of the field. %n .ms may
be used to print m characters of a string in a right-justified (left-justified if n is negative)
field of width n .

The format %c is used for characters (small positive integers in NU-Prolog). %nc may be
used to print a right-justified (left-justified if n is negative) character in a field of width n .

The format %d is for decimal output of integers. The formats %nd and %n .md also apply,
where n and m are as for the format for strings and atoms. Similarly, the formats %o and
%x are for octal and hexadecimal output of integers.

Printf is not portable. Use the more flexible format/2,3 instead.

put(Char)
put(Stream, Char)

(Non-logical).
The character given by the ASCII code Char is written on the current output stream (or
Stream).

putl(String)
putl(Stream, String)

(Non-logical).
The characters given by the list of ASCII codes in String is written on the current output
stream (or Stream).

sformat(Format, Arguments, String)
Sformat/3 is similar to format/2 but collects the formatted data in String .

For the purposes of ∼N and ∼| , sformat/3 assumes that the formatting is being done at
the beginning of a line.

The ∼p option is not yet implemented.

Sformat/3 reports an error if the type of the argument given does not match that
expected by the format.

73

System - I/O Predicates

tab(N)
tab(Stream, N)

(Non-logical).
Writes N spaces on the current output stream (or Stream). Fails if N is not a non-negative
integer.

tell(File)
(Non-logical).
Switches current output to the file (or stream) specified by File . If File is a stream, but
not a currently open output stream, an error is given. If File is an atom then it is treated
as a filename; if there are no open output streams associated with that file, one is opened;
if there are more than one appropriate streams, an arbitrary one is chosen. If File is
neither a stream nor an atom, tell/1 fails.

telling(Stream)
(Non-logical).
Stream is unified with the current output stream. Same as
current_output(Stream).

told
(Non-logical).
Closes the current output stream, which reverts to user_output.

ttyflush
(Non-logical).
Same as flush(user_output).

ttynl
(Non-logical).
A newline is printed on user_output. Same as nl(user_output).

ttyput(Char)
(Non-logical).
Write a character on user_output. Same as put(user_output, Char).

ttytab(N)
(Non-logical).
Writes N spaces on user_output. Same as tab(user_output, N).

74

System - I/O Predicates

write(Term)
write(Stream, Term)

(Non-logical).
Writes term Term on the current output stream (or Stream), taking into consideration
current operator declarations. Same as
writev([list, string, noquote, ops], Term)
and
writev(Stream, [list, string, noquote, ops], Term)
This implies that lists of integers for which isPrint/1 is true will be printed as strings.
If numberVars/3 is used to ground Term before writing, terms of the form $VAR(N)
will be printed as if they were variables, unless the flag vars is set to off; see
prologFlag/3.

Prints message, but succeeds, if Stream is not a valid stream.

writeln(Term)
writeln(Stream, Term)

(Non-logical).
Writes term Term on the current output stream (or Stream) followed by a newline. Same
as
write(Term), nl
and
write(Stream, Term), nl(Stream)
If numberVars/3 is used to ground Term before writing, terms of the form $VAR(N)
will be printed as if they were variables, unless the flag vars is set to off; see
prologFlag/3.

Prints message, but succeeds, if Stream is not a valid stream.

writeCanonical(Term)
writeCanonical(Stream, Term)

(Non-logical).
Writes term Term on the current output stream (or Stream) in a form in which it can be
read back by read/1. Terms are written in prefix notation, lists are written using the
functor . and atom [], and atoms, and thus functors, are quoted if necessary.
WriteCanonical does not print sub-terms of the form $VAR(N) as variables.

Same as
writev([cons, nostring, quote, prefix], Term)
and
writev(Stream, [cons, nostring, quote, prefix], Term),
but with the vars flag turned off.

Provided that the value of the characterEscapes flag is unchanged and that a period
and a space are appended, terms written with writeCanonical can be read back with
read.

Prints message, but succeeds, if Stream is not a valid stream.

75

System - I/O Predicates

writeq(Term)
writeq(Stream, Term)

(Non-logical).
Writes term Term on the current output stream (or Stream), taking into consideration
current operator declarations, and quoting atoms (and therefore functors) where necessary.
Same as
writev(Term, [list, string, quote, ops])
and
writev(Stream, Term, [list, string, quote, ops]).
This implies that lists of integers for which isPrint/1 is true will be printed as strings.
If numberVars/3 is used to ground Term before writing, terms of the form $VAR(N)
will be printed as if they were variables, unless the flag vars is set to off; see
prologFlag/3.

Prints message, but succeeds, if Stream is not a valid stream.

writev(Flags, Term)
writev(Stream, Flags, Term)

(Non-logical).
Writes Term on the current output stream (or Stream), taking into consideration the list of
Flags , which should be ground, or a warning will be printed and the predicate will fail.
Possible values of Flags (first value is default) are

list (cons) Write lists using [] (or .) notation.
string (nostring) Write strings using double quotes (or as list of integers). The

default writes lists of integers for which isPrint/1 is true as strings.
noquote (quote) Write atoms and functors without quotes (or use quotes when

necessary).
quoteall (noquoteall) Write all atoms and functors with quotes (or use the setting of

quote flag).
ops (prefix) Take account of operator declarations (or use prefix notation).
base = r Write integers in base 2 ≤ r ≤ 36. Floats are always written in

decimal.
prec = p Place parentheses around Term if it is written in operator form with

precedence greater than p.

Values in Flags other than those defined above are ignored; where both options are absent,
the default is taken. If numberVars/3 is used to ground Term before writing, terms of
the form $VAR(N) will be printed as if they were variables, unless the flag vars is set to
off; see prologFlag/3.

Prints message, but succeeds, if Stream is not a valid stream.

76

System - Database Predicates

5.7. Database Predicates
Predicates may be either static or dynamic. Static (or compiled) predicates cannot

be manipulated. Dynamic predicates can be changed by adding or deleting individual clauses (for
example, with assert/1 and retract/1); whereas static predicates can be only changed by
redefining the whole predicate, (for example, with consult/1 or load/1). By default, predicates
are static.

Dynamic predicates may be either in the internal database or the external database. To make
an internal database predicate Functor /Arity dynamic:

(1) If Functor /Arity is defined in a file which will be compiled or consulted, declare
dynamic Functor/Arity before the definition appears in the source.

(2) If Functor /Arity is created by assertions only, then the first call to assert/1, asserta/1 or
assertz/1 will make Functor /Arity dynamic.

Dynamic predicates do not have implicit quantification.

5.7.1. Loading and Saving Programs
The predicates in this section handle the loading and saving of files. Filenames are given as

atoms or strings, so that if they contain ‘.’, or other non-alphanumeric characters, they should be
quoted. Character classes are described in Appendix 7.

consult(File)
(Non-logical).
File is consulted. The extension .nl or .pl is appended to File if required. If File is
library(Lib), Lib is looked for in the NU-Prolog and user-defined libraries. If File is
a list of files, then each is consulted in turn. All clauses and definite clause grammar rules
in the file are added to the internal database and goals are executed. Predicates defined in
File supersede predicates which are already defined. Goals are written in the form
?– goal.

ensureLoaded(File)
(Non-logical).
Ensure that File has been loaded. If File is a list, ensureLoaded/1 is applied to each
member.

lib File
(Non-logical).
Load File from the NU-Prolog library or from one of the user-libraries defined by
libraryDirectory/1. The extension .no is appended to File if required. Predicate
definitions in File supersede predicates which are already defined. The NU-Prolog library
directory may be changed with prologFlag/3.

77

System - Database Predicates

libdirectory(File)
File is either the atom whose name is the UNIX directory where the NU-Prolog library
resides, or the result of libraryDirectory(File). The system searches for libraries
in the order given by libraryDirectory/1 followed by the NU-Prolog library.

The location of the NU-Prolog library may be changed with prologFlag/3.

libraryDirectory(Dir)
User-defined predicate listing any library directories to be searched when files are loaded
by lib/1 or with the library(File) convention by consult/1, load/1, or ./2. Dir
is an atom whose name is a UNIX directory where a user library resides.

load(File)
(Non-logical).
Load File . File is searched for with the extensions .no, .nl, nothing, or .pl and the first
found is loaded or consulted as appropriate. The extension .no is appended to File if
required. If File is library(Lib), Lib is looked for in the NU-Prolog and user-defined
libraries. Predicate definitions in File supersede predicates which are already defined.
Same as [File].

[File1,...,Filen]
(Non-logical).
Load the list File 1, . . . , File n of object files. The extension .no is appended if required.
If Filei is library(Libi), Libi is looked for in the NU-Prolog and user-defined
libraries. Same as load(File1),...,load(Filen). New predicate definitions
supersede predicates which are already defined.

5.7.2. Property List Predicates
The following predicates are used in accessing and updating property lists of atoms. In all

cases, Key must be ground, Prop an arbitrary term, and Atom must be ground. If it is not, a
warning is printed and the predicates fail.

addprop(Atom, Key, Prop)
(Non-logical).
Adds the pair <Key , Prop> to the end of the property list of Atom . Atom and Key must
be ground, or a warning is printed and addprop/3 fails. Same as
addpropz(Atom, Key, Prop).

addprop(Atom, Key, Prop, Reference)
(Non-logical).
Same as addprop/3, but gives a Reference to the property added. Equivalent as
addpropz(Atom, Key, Prop, Reference).

78

System - Database Predicates

addpropa(Atom, Key, Prop)
(Non-logical).
Adds the pair <Key , Prop> to the beginning of the property list of Atom . Atom and Key
must be ground, or a warning is printed and addpropa/3 fails.

addpropa(Atom, Key, Prop, Reference)
(Non-logical).
Same as addpropa/3, but gives a Reference to the property added.

addpropz(Atom, Key, Prop)
(Non-logical).
Adds the pair <Key , Prop> to the end of the property list of Atom . Atom and Key must
be ground, or a warning is printed and addpropz/3 fails.

addpropz(Atom, Key, Prop, Reference)
(Non-logical).
Same as addpropz/3, but gives a Reference to the property added.

getprop(Atom, Key, Prop)
(Non-logical).
Unifies <Key , Prop> with each of the properties of Atom . Atom must be ground, or a
warning is printed and getprop/3 fails.

getprop(Atom, Key, Prop, Reference)
(Non-logical).
Same as getprop/3, but gives a Reference to the property returned.

properties(Atom, Key, PropList)
(Non-logical).
PropList is a list of all properties with Key in the property list of Atom . Atom must be
ground, or a warning is printed and properties/3 fails.

putprop(Atom, Key, Prop)
(Non-logical).
If Key does not already appear in the property list of Atom , add <Key , Prop > ; otherwise,
replace the first existing property associated with Key by Prop . Atom and Key must be
ground, or a warning is printed and putprop/3 fails.

putprop(Atom, Key, Prop, Reference)
(Non-logical).
Same as putprop/3, but gives a Reference to the property changed.

79

System - Database Predicates

remprop(Atom, Key)
(Non-logical).
Remove all the properties of Atom with Key . Atom must be ground or a warning is
printed and remprop/2 fails. Same as remprop(Atom, Key, _).

remprop(Atom, Key, Prop)
(Non-logical).
Remove all the properties of Atom with Key which unify with Prop . Atom must be
ground or a warning is printed and remprop/3 fails.

5.7.3. Accessing and Updating Dynamic Predicates
The predicates in this section are used in accessing and updating the database of dynamic

clauses stored in the internal or external databases.

abolish(Pred, Arity)
(Non-logical).
All information about Pred /Arity is removed from the database. It is an error for Pred not
to be an atom, Arity not to be an integer, or for Pred /Arity to be a system predicate.

assert(Clause)
(Non-logical).
If Clause − a rule or fact − is about an external database predicate, add Clause to the
appropriate external database. Otherwise, add Clause to the end of the appropriate
predicate definition in the internal database. If the predicate definition is not dynamic, it is
removed and made dynamic by the call to assert/1. Same as assertz/1, for internal
databases.

assert(Clause, Reference)
(Non-logical).
Same as assert/1, but gives a Reference to Clause . Does not apply to external
databases.

asserta(Clause)
(Non-logical).
Add Clause at the start of the appropriate predicate definition in the internal database. If
the predicate definition is not dynamic, it is removed and made dynamic by the call to
asserta/1.

asserta(Clause, Reference)
(Non-logical).
Same as asserta/1, but gives a Reference to Clause . Does not apply to external
databases.

80

System - Database Predicates

assertz(Clause)
(Non-logical).
Add Clause to the end of the appropriate predicate definition in the internal database. If
the predicate definition is not dynamic, it is removed and made dynamic by the call to
assert/1.

assertz(Clause, Reference)
(Non-logical).
Same as assertz/1, but gives a Reference to Clause . Does not apply to external
databases.

clause(Head, Body)
(Non-logical).
There is a clause in the internal database with Head and Body ; the body of a unit clause is
the atom true. On backtracking, finds another matching Head and Body .

clause(Head, Body, Reference)
(Non-logical).
Same as clause/2, but gives a Reference to clause with Head and Body . If Reference is
given, then Head and Body are unified with the clause specified by Reference .

clauses(Functor, Arity, ClauseList)
(Non-logical).
ClauseList is a list of all clauses in the internal database whose head has Functor and
Arity .

dynamic Functor/Arity
dynamic [F1/A1,...,Fn/An]

(Non-logical).
Remove any previous definition of predicate Functor /Arity (or F1/A 1,...,Fn /An), and
declare Functor /Arity (or F1/A 1,...,Fn /An) to be dynamic.

erase(Reference)
(Non-logical).
The dynamic clause with Reference is removed from the internal database. If no such
clause exists then erase/1 fails.

instance(Reference, Term)
(Non-logical).
Term is most general instance of the property given by Reference .

instance(Reference, Key, Term)
(Non-logical).
Term is most general instance of the property given by Reference . Key specifies which
key the property has been stored under (see putprop/3).

81

System - Database Predicates

record(Key, Term, Ref)
(Non-logical).
Term is recorded in the internal database as the last item attached to Key , which must be
instantiated. Ref is a database reference to the recorded Term . If Key is a term, only the
principle functor is significant, so that p(a) represents the same key as p(1), but a
different key from p(c, d). Same as recordz/3.

recorda(Key, Term, Ref)
(Non-logical).
Term is recorded in the internal database as the first item attached to Key , which must be
instantiated. Ref is a database reference to the recorded Term . If Key is a term, only the
principle functor is significant, so that p(a) represents the same key as p(1), but a
different key from p(c, d).

recorded(Key, Term)
(Non-logical).
Term has been recorded in the internal database against Key , which must be instantiated.
On backtracking, recorded/2 will find further matching terms. If Key is a term, only
the principle functor is significant, so that p(a) represents the same key as p(1), but a
different key from p(c, d).

recorded(Key, Term, Ref)
(Non-logical).
Term with database reference Ref has been recorded in the internal database against Key ,
which must be instantiated. If Key is a term, only the principle functor is significant, so
that p(a) represents the same key as p(1), but a different key from p(c, d).

recordz(Key, Term, Ref)
(Non-logical).
Term is recorded in the internal database as the last item attached to Key, which must be
instantiated. Ref is a database reference to the recorded Term . If Key is a term, only the
principle functor is significant, so that p(a) represents the same key as p(1), but a
different key from p(c, d). Same as record/3.

retract(Clause)
(Non-logical).
The first clause that matches Clause is removed from the internal (or an external) database.
On backtracking, the next matching clause is removed.

retractall(Head)
(Non-logical).
Retracts all clauses whose heads match Head .

retractall(Functor, Arity)
(Non-logical).
Retracts all clauses where the head has Functor and Arity .

82

System - External Databases

5.8. Predicates for External Databases
This section describes the predicates available for using external databases to store NU-Prolog

predicates. Database predicates behave in the same way as ordinary NU-Prolog predicates with the
following restrictions. The order of the clauses cannot be controlled by the programmer.
Concurrent reading and writing of external database predicates is not well defined in NU-Prolog.
Sometimes it is necessary to add a cut to avoid these problems. For example, in the subgoal
p(X), assert(p(Y)), the call to p(X) is still active for reading when assert/1 is called.
If ‘!’ is called after the subgoal p(X), the system terminates that database access, and assert/1
can be called safely.

5.8.1. Creating and Using External Databases
A NU-Prolog deductive database consists of a number of database relations and another rules

file which may contain other predicate definitions. A relation can be defined to have any of the
available indexing schemes using the parameter scheme; possible values for scheme are: dsimc
- this is the default value, (dynamic superimposed coding, described in §5.8.1), simc (static
superimposed coding, 5.8.2), sql (UNIFY, 5.8.3) and rule (compiled rules, 5.8.4). Each of
these indexing schemes has various parameters, which are described in the subsequent sections.
(Note, some of the following predicates do not apply to the sql indexing schemes because sql
relations can be created from UNIFY.)

dbBackup(Db, File)
(Non-logical).
File is a backup copy of database Db (using the UNIX utility tar (1)). Use
dbRestore/2 to restore a database which has been backed up.

dbCons(Db)
(Non-logical).
Deductive database Db is consulted. All predicates in the database become accessible and
the rules file is consulted. These predicates replace any existing relations with the same
functor and arity. Any changes to the database relations, such as with assert/1, update
the disc file and are therefore permanent. Changes to predicates defined in the rules file,
like changes to normal predicates, are lost at the end of the prolog session.

dbCreate(Db)
(Non-logical).
An empty database named Db is created. Db must be an atom. A UNIX directory of that
name is created and files within it will be used to store all information held in the
database. Fails if unable to create database.

dbDefine(Db, Functor, Arity)
dbDefine(Db, Functor, Arity, [Parameter1 = Value1,...])

(Non-logical).
Creates a predicate in the external database Db with Functor and Arity , which can be used
to reference the predicate from within Prolog programs. The first form is for use from the
top-level of the interpreter, and interactively asks the user about various parameters. In the
second form, the values of zero or more parameters can be specified; if a parameter is not
specified a default value is assumed.

83

System - External Databases

dbParam(Db, Functor, Arity, Parameter = Value)
(Non-logical).
The current value of Parameter for predicate Functor /Arity in Db is Value .

dbRestore(Db, File)
(Non-logical).
Db is restored from File . File must have been created using dbBackup/2.

dbRules(Db, File)
(Non-logical).
Adds File of rules to database Db . The previous rules file is overwritten.

dbUndefine(Db, Functor, Arity)
(Non-logical).
Removes the predicate with Functor /Arity from database Db .

5.8.2. Dynamic Superimposed Codeword Databases
A predicate which is defined as a dsimc predicate using dbDefine can only store ground

unit clauses (facts). The order in which facts are stored is determined by the hashing scheme, not
the user. Queries containing more than one dsimc predicate can be optimized using
dsimcQuery/1. This uses the superjoin optimization [Thom86], which is automatically applied
when using the ‘:’ syntax from the toplevel of the interpreter.

For dsimc, parameters include:

avrec average record length (default is 8 * arity)
nrec initial number of records
segsize segment size (default is 4096)
ndata number of data files (default is 1)
nr number of records per segment

(default computed from segsize and avrec)
lc number of records per segment

(default computed by nr * 0.8)
br total number of bits in record codewords

(default computed from nr, segsize and avrec)
bs total number of bits in segment codewords

(default computed by segsize / 4)
kr number of bits set in record codewords

(default is 11)
ks number of bits set in segment codewords

(default computed from bs and nr)
ur number of bits to use to determine matching records

(default is kr)
us number of bits to use to determine matching segments

(default is ks)
template template

The larger the descriptors, the better the retrieval performance, as fewer ‘‘false matches’’ (which
the Prolog unification routine has to filter out) will be retrieved. Of course, larger descriptors
require more storage. The number of bits which are set also controls the accuracy of hashing, but

84

System - External Databases

it is expensive to set more bits, and the chance of generating false segment matches increases as
more bits are set and overlayed in the segment descriptor. The greater the number of bits used
(us, ur), the more accurate the hash, but more time is needed to test for a greater number of bits.

Template takes the same form as the predicate would take when used in the program in
prefix format, but each element in the template is a tuple describing properties of the corresponding
argument to the predicate. Each element in template has the form Flag:Nbits:Mask.

Flag must take the value g, which means that only ground values will be stored in that field.

Nbits indicates relatively how many bits to use for this field in the superimposed codewords.
These values are normalized by the database system. A field which is often used in queries should
be assigned a value which is much larger than the value for a field which is used more rarely. The
value can be 0, which means that the value in the field is never considered when retrieving data
from the database.

Mask specifies how much weight is to be associated with the field in clustering records within
the database.

To determine which segment should hold a new record, the system ANDs the cluster mask
with a hash value for the corresponding field. The results for all fields are then OR’ed together to
generate the segment number.

To clarify things a bit, consider the following example of a predicate describing an arc in a
graph. Each record in this predicate looks like connect(arc_id, node1, node2), where
arc_id is a unique identifying number for an arc. There are going to be around 30000 facts in
this database, and each fact will be around 20 characters long, so using optimisation formulas the
following set of parameters can be derived:

br bs kr ks ur us nr nseg ndata avrec
47 13934 10 3 10 3 237 96 1 20

Since the most common type of query to be asked on this predicate involves finding an arc_id,
given the two nodes, then more bits of the codeword should be allocated to the second and third
arguments. The first field is an uninteresting value which is never used in queries, and hence
Nbits is relatively unimportant, and has not many bits set in the cluster mask. The other two fields
are equally likely to be used in a query and have the same relatively high Nbits value, and the
same number of bits in the cluster mask. The initial g:0:0 represents the functor, and should
always have this value; it is required by the system merely for the sake of completeness.

connect(arc_id, node
1
, node

2
)

g:0:0(g:2:2040,g:8:4d9b,g:8:9224)

dsimcQuery(Query)
Query is a NU-Prolog query to be optimized using the superjoin algorithm and reordering.

5.8.3. Static Superimposed Codeword Databases
Simc databases [Rama86] can contain unit clauses which need not be ground.

For simc, parameters include:

85

System - External Databases

avrec average record length (default is 8 * arity)
nrec maximum number of records
segsize segment size (default is 4096)
ndata number of data files (default is 1)
nr number of records per segment

(default computed from segsize and avrec)
nseg number of segments

(default computed by nrec / nr)
br total number of bits in record codewords

(default computed from nr, segsize and avrec)
bs total number of bits in segment codewords

(default computed from nr, nseg and ks)
kr number of bits set in record codewords

(default is 11)
ks number of bits set in segment codewords

(default is 4)
ur number of bits to use to determine matching records

(default is kr)
us number of bits to use to determine matching segments

(default is ks)
template template

Template is the same as for dsimc except Flag indicates whether or not variables are to be
stored in this field; this permits optimisation of database access time. A value of g for the Flag
means that only ground values will be stored in that field whereas v means that it may be used to
store variables.

5.8.4. UNIFY Databases
NU-Prolog includes an interface for communication via pipes with UNIFY, so that data stored

in UNIFY databases can be accessed and modified from NU-Prolog [Zobe86]. To use this
interface, no modifications need to be made to UNIFY, except that it must be forced to flush
standard output after printing a prompt. This ensures that NU-Prolog can always detect the end of
a stream of answers. The depth of a recursive program which makes queries on a UNIFY database
is strongly governed by the number of pipes the system can have open at any time; on AT&T’s
System V UNIX, the limit is seven UNIFY processes.

The database schema of UNIFY databases cannot be modified from within NU-Prolog; as
UNIFY provides only an interactive, screen-oriented method for defining database schemas, it is
not possible to use dbDefine/3 to set up the schemas. The UNIX command

initdb database

where database is the UNIX pathname of the UNIFY database, will create some small files that
are used by NU-Prolog when communicating with UNIFY. This command must be given each
time the UNIFY schema is modified.

A number of levels of access to UNIFY databases from NU-Prolog are provided, permitting
users to choose between SQL queries in which the returned values are bound to Prolog variables,
and using a Prolog-like syntax; the former being more efficient, the latter being more
straightforward for the NU-Prolog user. In addition, a method is provided for giving a group of
Prolog predicates to the interface, to be compiled into a single SQL query. There is also a
preprocessor which transforms NU-Prolog predicates into the more efficient low-level predicates.

86

System - External Databases

The interface will map predicates, in which the functor is the name of a UNIFY relation and
the arity is the number of attributes of that relation, into SQL queries, and pass them to UNIFY.
NU-Prolog always attempt to transform the binding of a ground term into the appropriate type for
that attribute before passing it to UNIFY.

sqlQuery(Database, PredList)
Database is the name of the UNIFY database to be accessed. PredList is a list of Prolog
predicates. These may be either database predicates, of the form given in the previous
section, or arithmetic comparisons such as A < B or 12 * Qty >= Supply. This list
is compiled into a single SQL query which is passed to UNIFY.

UNIFY Databases may be modified with the predicates assert/1, retract/1 and
retractall/1, where the usage for these predicates is as for internal databases. The only
difference in behaviour to that of internal databases is that the argument to assert/1 must be
ground, and that it is difficult to implement retract/1 efficiently. The SQL command delete
is similar to retractall/1 in Prolog, but there is no direct equivalent to retract/1. To
implement retract/1 correctly, it is necessary to issue two queries; the first finds bindings for
any variables in the argument, and the second performs the deletion. It is therefore very expensive
to use retract/1 and backtracking to delete a number of predicates.

The predicates in this section provide low-level communication between NU-Prolog and
UNIFY. These would be most useful for defining views on databases, which can be done more
efficiently in SQL than in Prolog syntax, where a number of UNIFY processes and extensive
backtracking might be required to describe the view.

sqlModify(Database, Query)
Database is the database to which the query is being given. Query is a string representing
a database update expressed in SQL.

sqlAccess(Database, Vars, Query)
Database is the database to which the query is being given. Vars is a list of variables for
which Query will get bindings. Query is a string representing an arbitrary UNIFY SQL
query (without the ‘/’ terminator). On backtracking,
sqlAccess(Database, Vars, Query) will get new bindings for Vars . If the list
of variables does not match the number of attributes returned from UNIFY, this predicate
will fail expensively, retrieving each set of bindings from UNIFY and failing because they
can’t be unified with Vars . If some of the Vars are already bound, any tuple returned
from UNIFY with a value which does not match the binding will be thrown away. If any
or all of Vars is ground, Query is optimized. NU-Prolog always attempts to transform the
binding of a ground variable into the appropriate type before passing it to UNIFY.

The NU-Prolog system includes a preprocessor, available as the –U option to nc , which
examines NU-Prolog programs for UNIFY database predicates and conjunctive groups of database
predicates, and translates them into the more efficient sqlAccess/3 format before compilation.
This avoids expensive reparsing at each invocation of the predicate.

This preprocessor is most useful if applied as an optimizer to a tested program, rather than
applied repeatedly to software under development. This preprocessor could be integrated with
program and query optimizers, thus generating more efficient SQL queries.

UNIFY provides no user-level locking primitives. Therefore, transactions cannot be defined
for Prolog queries on UNIFY databases while other users have direct access to UNIFY.

87

System - External Databases

5.8.5. Compiled Rule databases
rule databases allowed compiled NU-Prolog predicates to be accessed using the external

mechanism. rule databases have no additional parameters.

88

System - Miscellaneous Predicates

5.9. Miscellaneous Predicates

currentAtom(Atom)
currentAtom(Module, Atom)

(Non-logical).
Atom is an atom in the module user (or Module).

currentModule(Module)
(Non-logical).
Module is the current module. Currently, only the module user exists. All atoms and
predicates defined in this manual are in this module.

currentOp(Precedence, Type, Op)
(Non-logical).
Op is an operator of specified Type and Precedence . Fails if any of the arguments is of an
inappropriate type. See §3.8.

currentPredicate(Name, Arity)
currentPredicate(Module, Name, Arity)

(Non-logical).
Name /Arity is the name of a predicate in the module user (or Module).

expandTerm(Term1, Term2)
If the user has defined a predicate termExpansion/2, this is called and expandTerm/2
commits to its first translation of Term 1 . Otherwise, if Term1 is a definite clause grammar
rule expandTerm/2 translates it into Term2 , an ordinary NU-Prolog clause, failing if the
rule is not well-formed. If Term1 is not a definite clause grammar rule, expandTerm/2
translates it to itself.

Definite clause grammars are explained in Appendix 2.

termExpansion(Term1, Term2)
User defined translation of Term1 to Term2 used by expandTerm/2

libraryPredicate(Library, Predicate)
libraryPredicate(Library, Functor, Arity)

True if Predicate (or Functor /Arity) is a predicate in Library . On backtracking, finds
another appropriate predicate. See predicateProperty/3.

nonlogicalPredicate(Predicate)
nonlogicalPredicate(Functor, Arity)

True if Predicate (or Functor /Arity) is a nonlogical system predicate. These do not
include library predicates. On backtracking, finds another appropriate predicate. See
predicateProperty/3.

89

System - Miscellaneous Predicates

numberVars(Term, N, M) when N
(Non-logical).
Instantiate all variables in Term to a term of the form $VAR(Num). N must be an integer.
After the call, all Num values will in the range from N to M − 1. Fails if N is not an
integer or if M − N is not equal to the number of variables in Term . See varNumbers/2
and prologFlag/3.

op(Precedence, Type, Op)
(Non-logical).
Declares Op , an atom or list of atoms, to be an operator with specified Type and
Precedence . It is possible to declare Op as only one unary and/or one binary operator. If
Op is declared as both a unary and binary operator, both must have the same precedence.
See §3.8.

phrase(Phrase, TokenList)
Phrase/2 is the usual way of calling definite clause grammar rules. TokenList is parsed
as a phrase of the type Phrase , which may be either a non-terminal for which grammar
rules are already defined or, in general, the body of a grammar rule. In any case, Phrase
must be non-variable.

predicateProperty(Name, Arity, Property)
The predicate with Name and Arity has Property . Current properties are built_in,
compiled, dynamic, database, library, pure and system.

Of these built_in and system are equivalent − both are included for compatibility with
other systems.

prologFlag(Flag, Value)
(Non-logical).
Enquires about the Value of Flag

90

System - Miscellaneous Predicates

prologFlag(Flag, Value1, Value2)
(Non-logical).
Change Value1 of Flag to Value 2 . If Value1 and Value2 are identical, prologFlag/3
fails without changing the value of Flag .

Flag Default Value Other Values

characterEscapes on off
debugging debug off
fileErrors off on
libdirectory system dependent filename
optimizeQuery off on
redefinitionWarning on off
vars on off

CharacterEscapes controls expansion of character escapes (defined in Appendix 7) on
input. Debugging controls whether or not spy-points (described in §5.3) are in effect.
When fileErrors is on, failure to open or close a file results in an error message and a
call to abort/0. Libdirectory specifies the name of the NU-Prolog library directory.
OptimizeQuery controls whether queries to the top level database query facility will be
affected by various query transformations (re-ordering, superjoin, etc.).
RedefinitionWarning controls the printing of warnings when system predicates are
redefined. When vars is on, terms of the form $VAR(N) are printed as variable names.

statistics
(Non-logical).

statistics(Statistics)
(Non-logical).
Provides statistics about NU-Prolog’s use of resources. Statistics is a list of elements of
the form Name=Value where Name is an atom and Value is a list of numbers. Values of
Name include

memory [total memory, 0]
program [total program space allocated, 0]
global [global stack in use, global stack free]
local [local stack in use, local stack free]
trail [trail stack in use, trail stack free]
utime [cpu time used, cpu time used since last

call to statistics]
stime [system cpu time used, system cpu time used

since last call to statistics]
time sum of utime and stime

Times are given in milliseconds, and sizes in bytes. The exact definitions of some of these
quantities may vary from machine to machine.

systemPredicate(Predicate)
systemPredicate(Functor, Arity)

True if Predicate (or Functor /Arity) is a system predicate. These do not include library
predicates. On backtracking, finds another appropriate predicate.

91

System - Miscellaneous Predicates

varNumbers(TermIn, TermOut)
(Non-logical).
TermOut is TermIn with all terms of the form $VAR(Num), where Num is an integer,
replaced by variables. Two $VAR(Num) terms with the same Num will be bound to the
same variable. See numberVars/3.

92

System - UNIX Predicates

5.10. Predicates for Accessing the UNIX Operating System

access(Path, Mode)
(Non-logical). UNIX only.
Checks the given Path (an atom or string) for accessibility according to Mode , an inclusive
binary or of the numbers 2’100 (test for read permission), 2’010 (test for write permission),
2’001 (test for execute permission). Fails if access is denied.

cd(Dir)
chdir(Dir)

(Non-logical). UNIX only.
Make Dir (an atom or string) the current working directory. Fails if the user does not have
execute permission on Dir .

chmod(Path, Mode)
(Non-logical). UNIX only.
Change access permissions on Path (an atom or string) to be Mode . Mode is constructed
by or’ing together some combination of the following:

8’4000 set user ID on execution
8’2000 set group ID on execution
8’1000 save text image after execution
8’0400 read by owner
8’0200 write by owner
8’0100 execute (search on directory) by owner
8’0070 read, write, execute (search) by group
8’0007 read, write, execute (search) by others

Fails if the user is not the owner of Path (and is not root).

csh
(Non-logical). UNIX only.
Invokes the UNIX shell csh . The NU-Prolog process is suspended until the shell process
terminates. See sh/0.

directory(Dir, Files)
(Non-logical). UNIX only.
Files is a list of the filenames in directory Dir (an atom or string). Fails if the user can
not read Dir .

environ(Environment)
UNIX only.
Get the user’s UNIX Environment , a list of pairs of the form Name=Value where Name
is an atom and Value is a string.

93

System - UNIX Predicates

exec(Program, Arguments)
(Non-logical). UNIX only. Transfer control from NU-Prolog to another program.
Program is the name of a file to be executed and Arguments is a list of arguments,
including argument number zero, to be handed to Program . Exec/2 fails if it is unable to
run Program . If Program is not an absolute pathname, the environment variable PATH is
searched for a directory containing Program .

exit(Code)
(Non-logical).
The NU-Prolog process terminates with Code , an integer. Code is made available to the
parent process.

fork
fork(Pid)

(Non-logical). UNIX only.
Creates another NU-Prolog process, with the same core image. The only difference is that
the call to fork/0 in the parent process succeeds but the call in the child process fails.
Pid is unified to the process id of the child; if Pid will not unify with this id, fork/1 will
fail in the parent, but the child will still be created. Care must be taken to ensure the two
processes do not compete for user_input or other open files.

fork(Pid, Read, Write)
(Non-logical). UNIX only.
Like fork/1, but in the parent Read and Write are streams connected to the standard
output and standard input of the child respectively.

getenv(Name, Value)
UNIX only.
Get the Value (a string) of environment variable Name (an atom). Fails if Name is not an
environment variable. If Name is a variable, alternative <Name , Value> pairs are retrieved
on backtracking.

getegid(Id)
UNIX only.
Id is the effective group ID of the current process.

getgid(Id)
UNIX only.
Id is the real group ID of the current process.

getgroups(Groups)
UNIX only.
Groups is a list of integers representing the current group access list of the user process.

94

System - UNIX Predicates

getlogin(Login)
UNIX only.
Login is the users login ID.

getpid(Pid)
UNIX only.
Pid is the process ID of the current process.

getppid(Pid)
UNIX only.
Pid is the process ID of the parent of the current process.

getpw(Name, PwEnt)
UNIX only.
Name is a user name (an atom or string) or a user ID (an integer) for which PwEnt is the
password entry. PwEnt is a list of elements of the form Name=Value, where Name is an
atom and Value is a string. Values of Name include name, passwd, uid, gid, gecos,
dir and shell. Fails if Name is not a valid user name or user ID.

getuid(Uid)
UNIX only.
Uid is the users real user ID.

geteuid(Uid)
UNIX only.
Uid is the users effective user ID.

getwd(Dir)
(Non-logical). UNIX only.
Dir is the current working directory pathname.

hostname(Host)
Host is the name of the machine on which NU-Prolog is running.

kill(Pid, Signal)
(Non-logical). UNIX only.
Send Signal to the process with Pid . Signal may be either a signal name (an atom) or a
signal number (an integer). Fails if Signal is not valid, or was not sent successfully.
Valid signals are described in Appendix 9.

link(Name1, Name2)
(Non-logical). UNIX only.
A hard link to Name1 is created with Name2 . Fails if either argument is not an atom or
string, or if the user does not have appropriate permissions.

95

System - UNIX Predicates

mkdir(Dir)
(Non-logical). UNIX only.
Make a new directory Dir (an atom or string). Fails if the user does not have the
appropriate permissions.

rename(Old, New)
(Non-logical). UNIX only.
The link named Old takes the name New . Both must be atoms or strings. Under UNIX
system V, both must be files; under Berkeley UNIX, they may also be directories. Fails if
the user does not have appropriate permissions.

rmdir(Dir)
(Non-logical). UNIX only.
Remove the directory Dir (an atom or string). Fails if the user does not have appropriate
permissions, or if the directory is not empty.

sh
(Non-logical). UNIX only.
Invokes the UNIX shell sh . The NU-Prolog process is suspended until the shell process
terminates. See csh/0.

signal(Signal, Action)
(Non-logical) UNIX only.
Set Action for Signal . Signal may be either a signal name (an atom) or a signal number
(an integer); these are listed in Appendix 9. Action is either the functor of a predicate with
arity of 3 which will be called on Signal , or one of the atoms ignore or default.
Three possible default Actions are provided: $break, which calls break/0. $exit, to
exit on Signal ; and $ignore, to ignore Signal . The default for a keybourd interrupt is
$break. ignore and default provide the UNIX behaviors of SIG_IGN and
SIG_DFL respectively.

If the user defines a predicate of arity 3 with functor Action , the arguments given to that
predicate on Signal will be the break level, the signal number, and the number of signals
pending, respectively. If Signal is not supported under the user’s version of UNIX, the
effect of using signal/2 is undefined.

sleep(Seconds)
UNIX only.
Sleep for Seconds (an integer). Fails if Seconds is not ground.

96

System - UNIX Predicates

stat(Path, Status)
(Non-logical). UNIX only.
Status is information about a file or directory Path (an atom or string). Read, write and
execute permission on Path are not required, but all directories in the pathname must be
reachable or the call will fail. Status is a list of elements of the form Name=Value
where Name is an atom and Value is an integer. Values of Name include

ino this inode’s number
mode protection
nlink number of hard links
uid uid of owner
dev device type
gid group id of owner
size total size of file
atime last access time of file
mtime last modify time of file
ctime last status change of file
blocks number of blocks allocated (BSD UNIX only)

system(Command)
(Non-logical). UNIX only.
Calls the UNIX shell sh with Command , a string or atom, as a command line. Fails if
Command is of an inappropriate type.

system(Command, Status)
(Non-logical) UNIX only.
Command , a string or atom, is passed to UNIX for execution, and Status is bound to the
exit status returned. Fails if Command is of an inappropriate type or if Status is already
bound to something that does not unify with the exit status returned.

system(Program, Arguments, Status)
(Non-logical). UNIX only. Program is the name of an file to be executed and Arguments
is a list of arguments, including argument number zero, to be handed to Program . If
Program is not an absolute pathname, the enviroment variable PATH is searched for a
directory containing Program . The Program and Arguments are passed to UNIX for
execution (cf. exec/2) and Status is bound to the exit status returned. Fails if either
Program or Arguments are of an inappropriate type or if Status is already bound to
something that does not unify with the exit status returned.

time(Time)
(Non-logical). UNIX only.
Time is the decoded current time. It is a list of elements of the form Name=Value,
where Name is an atom and Value is an integer. Values of Name are year, month
(Value is 1..12), date (Value is 1..31), day (values are the atoms Mon, ... , Sun), hour,
minute and second.

97

System - UNIX Predicates

time(When, Time)
(Non-logical). UNIX only.
Time is the decoded version of the timestamp When. It is a list of elements of the form
Name=Value, where Name is an atom and Value is an integer. Values of Name are
year, month (Value is 1..12), date (Value is 1..31), day (values are the atoms Mon, ...
, Sun), hour, minute and second.

truncate(File, Length)
(Non-logical). UNIX only.
File is truncated to be Length characters, or left alone if already shorter. Fails if the user
does not have appropriate permissions.

umask(Umask)
(Non-logical). UNIX only.
Set default file creation mask to Umask . The low-order nine bits of the umask are used
whenever a file is created to clear corresponding bits in the file’s access mode. The default
umask is 8’022. See chmod/2.

unlink(Path)
(Non-logical). UNIX only.
Remove the entry for Path (an atom or string) from its directory. Fails if the user does not
have the appropriate permissions.

wait(Pid, Status)
(Non-logical). UNIX only.
User process waits until one of its child processes terminates or a signal is received. Pid
is bound to the process id of the terminating process, Status to its exit status.

98

System - Foreign Function Interface

5.11. Foreign Function Interface
On machines in which it is implemented, the foreign function interface allows NU-Prolog to

load and execute functions written in other languages. Currently only C and languages with
similar calling conventions are supported, but adding calling interfaces for languages such as Pascal
and FORTRAN should not be difficult. The interface is available only on machines running a
Berkeley flavour of UNIX, and not always then. The primary requirement is support for the –A
incremental loading option to /bin/ld. At the time of writing it is known to run on Sun-3s, Sun-4s,
Encores and VAXes.

The files containing foreign functions and the individual functions are described by giving
clauses for the predicates foreignFile/2 and foreign/[2,3] respectively. These clauses are
loaded into a running NU-Prolog and loadForeignFiles/2 called with a list of files and a list
of libraries to load. After loading, the NU-Prolog predicates specified by the foreign/[2,3]
clauses are connected to the foreign functions named in the foreignFile/2 clauses. The
descriptive predicates may then be abolished if desired.

Parameters are passed to and from NU-Prolog according to the specifications given in
foreign/[2,3]. Each parameter or return value of the foreign function is specified as one of
+(X), –(X), or [–(X)], where X is one of integer, float, single, double, atom,
term, pointer, or string. Integer, float, atom, and term indicate that a NU-Prolog
object of that type will be passed one way or the other across the interface. On the Prolog side of
the interface, single and double are synonyms for float, but they may be different types on
the foreign function side. See the table below. Both atom and string represent atoms in NU-
Prolog, but are represented differently in the foreign language. A pointer is a NU-Prolog
representation of a machine memory address. The only pointer objects that can be seen by a user
of NU-Prolog are those returned over the foreign function interface, and their only use is to be
given to other foreign functions. NU-Prolog checks that arguments are of their specified type and
causes the foreign call to fail silently if any are not.

The +(X) arguments are values to be supplied by NU-Prolog to the foreign function and must
be bound when the function is called. The –(X) arguments are places for values to be returned by
the function and are unified with whatever the function stores to that parameter. Optionally, there
may be a single argument of the form [–(X)] which is unified with the return value of the
function.

The NU-Prolog types that can be passed and their corresponding C types are given in the table
below. The C types Word and Object are defined in public.h which is part of the NU-Prolog
library and should be included in any C programs that use the interface. Integer, float,
single, and double are passed in the obvious fashion, with Prolog integers being converted to
floating point if passed to a +float, +single, or +double argument; atom is passed as an
integer index into an internal NU-Prolog table of atoms; string as the print-name of the atom
passed; pointer as the address that was used to make it; and term as itself. Functions to
manipulate atom, pointer and term arguments are provided by public.h.

A common source of confusion is the string parameter type. It is used to pass the print-
name of a Prolog atom as a C (char *), and return a C (char *) as a Prolog atom. It cannot be
used to pass a Prolog list of character codes.

Arguments of the form –(X) are passed as the address of a suitably sized area of memory for
the foreign function to store to. The results of a call to a foreign function are undefined if no
value is stored in the addresses passed for –(X) arguments, or if the function has a [–(X)]
argument but does not return a value.

If a function has no [–(X)] argument its return value will be ignored.

99

System - Foreign Functions Interface

Prolog C________________________

+integer Word
+float double
+single float
+double double
+atom Word
+term Object
+string char *
+pointer char *
-integer Word *
-float double *
-single float *
-double double *
-atom Word *
-term Object *
-string char **
-pointer char **
[-integer] return Word
[-float] return double
[-single] return float
[-double] return double
[-atom] return Word
[-term] return Object
[-string] return char *
[-pointer] return char *________________________





























































































foreign(Function, Language, Specification)
foreign(Function, Specification)

Foreign/3, and the shorthand foreign/2 which is equivalent to foreign/3 with
Language c, are used to declare the way in which NU-Prolog calls functions loaded with
the foreign function interface. Note that foreign/[2,3] merely define a table. The
predicate is never called.

Function is the name of the function as it is given in Language , Language is the language
in which the function is written, and Specification is a term
F(Arg1, Arg2,..., ArgN) where the NU-Prolog predicate F/N is to be connected to
Function according to the Argi. The Argi of the form +(X) or –(X) are passed to the
foreign function in the order in which they appear. The optional argument of the form
[–(X)] is unified with the function’s return value.

Currently, the only language supported is c.

100

System - Foreign Function Interface

foreignFile(FileName, Functions)
ForeignFile/2 is used to declare the functions that will be loaded from a file of foreign
functions by loadForeignFiles/2. FileName is the name of a file and Functions is a
list of names of functions defined in that file that are to be connected to NU-Prolog
predicates. Functions that are not to be called directly from NU-Prolog should not be
listed. Like foreign/[2,3], foreignFile/2 merely defines a table. It is never
called.

loadForeignFiles(Files, Libraries)
Load a list of Files containing functions written in another programming language,
resolving undefined symbols in the list of Libraries . The functions to be loaded are
determined by looking in foreignFile/2 and their language and interface in
foreign/[2,3].

Any libraries appropriate to the language of the foreign functions are loaded automatically.
Others should be given their full names such as ‘‘/usr/lib/libm.a’’.

Loading foreign functions is much more complicated than loading a .no file and may take
some considerable time.

101

102

CHAPTER 6

LIBRARY PREDICATES

This chapter describes predicates available in the NU-Prolog library. A library provides each
of the predicates listed under lib_name and is loaded with the predicate lib lib_name.
Normally, this predicate would be used as a goal such as

?– lib lib_name.

Some of these descriptions include a when declaration for that predicate. However, because
most predicates are defined recursively, the when declaration is only a partial indication of the
instantiation required before the predicate can be completely executed.

103

Library - Compatibility

6.1. Compatibility
To load the predicates in the compatibility library use the subgoal lib compat. The

predicates in this library provide compatibility with some other Prolog systems. There are,
however, usually more predicates in the library than are documented here.

current_atom(Atom)
current_atom(Module, Atom)

(Non-logical).
Atom is an atom in the module user (or Module). Same as currentAtom/2.

current_input(Stream)
(Non-logical).
Stream is unified with current input stream. Fails if Stream has previously been bound to
something that is not a currently open input stream. Same as currentInput/1.

current_op(Precedence, Type, Op)
(Non-logical).
Op is an operator of specified Type and Precedence . Fails if any of the arguments is of an
inappropriate type. Same as currentOp/3.

current_output(Stream)
(Non-logical).
Stream is unified with the current output stream. Fails if Stream has previously been
bound to something that is not a currently open output stream. Same as
currentOutput/1.

current_predicate(Functor, Term)
(Non-logical).
Functor is the name of a user-defined predicate and Term is the most general term
corresponding to that predicate.

current_stream(File, Mode, Stream)
(Non-logical).
Stream is a currently open stream on File , where Mode is either read, write or
append. On backtracking, current_stream/3 finds all suitable streams. Fails if
Stream has previously been bound to something that is not a currently open stream of the
appropriate type. Same as currentStream/3.

false
Same as fail/0.

fileerrors
(Non-logical).
Resets fileErrors flag to on. See prologFlag/3. Same as fileErrors/0.

104

Library - Compatibility

flush_output(Stream)
(Non-logical).
Flush the specified output Stream . Same as flushOutput/1.

gc
Enable garbage collection (actually do nothing).

gcguide(Parameter, Old, New)
Change garbage collection or memory management parameter for Parameter from Old
value to New value (actually do nothing).

gnot(Vars, Goal) when ground(Vars)
(Non-logical).
Generalized negation of Goal . Delays until all of the variables in term Vars are ground,
then negates Goal . Superseded by not some V Goal, where V is a term containing
the variables in Goal that are not in Vars .

halt
(Non-logical).
Exit from NU-Prolog.

incore(Goal).
Same as call(Goal).

nofileerrors
(Non-logical).
Sets fileErrors flag to off. See prologFlag/3. Same as noFileErrors.

nogc
Disable garbage collection (actually does nothing).

otherwise
Same as true/0. Useful for layout of programs which use –>.

predicate_property(Skeleton, Property)
The predicate the functor and arity of which are those of the term Skeleton has Property .
Same as functor(Skeleton, Functor, Arity),
predicateProperty(Functor, Arity, Property).

prolog_flag(Flag, Value1, Value2)
(Non-logical).
Same as PrologFlag/3.

105

Library - Compatibility

putatom(Term)
putatom(Stream, Term)

(Non-logical).
Term is printed on the current output stream (or Stream).

set_input(Stream)
(Non-logical).
Set current input to Stream . Prints warning and fails if Stream is not a currently open
input stream. Same as SetInput/1.

set_output(Stream)
(Non-logical).
Set current output to Stream . Prints warning and fails if Stream is not a currently open
output stream. Same as setOutput/1.

subgoal_of(Goal)
(Non-logical)
Current goal is a subgoal of Goal. Same as ancestors(L), member(Goal, L).

NOT YET IMPLEMENTED.

trimcore
Release free space from data areas. Automatically called from command level of
interpreter.

106

Library - Ordered Sets

6.2. Ordered Sets
To load the predicates in the ordered sets library use the subgoal lib osets. This module

provides predicates which manipulate sets as represented by ordered lists with no duplicates. The
ordering is defined by termCompare/3. The benefit of the ordered representation is that the
elementary set operations can be done in time proportional to the sum of the argument sizes, rather
than the product. The behaviour of these predicates is not well defined if an unsorted list, or a list
with duplicates, is given as argument where a set is expected.

This library was adapted from code written by Richard O’Keefe. All of the predicates in this
library fail on backtracking.

addElement(Elem, Set1, Set2) when Elem and Set1
True when Set1 and Set2 are sets represented as ordered lists and
Set2 = Set1 ∪ {Elem}. Delays until Elem and Set1 are instantiated.

delElement(Elem, Set1, Set2) when Elem and Set1
True when Set1 and Set2 are sets represented as ordered lists and
Set2 = Set1 \ {Elem}. Delays until Elem and Set1 are instantiated.

disjoint(Set1, Set2) when Set1 and Set2
True when the two ordered sets have no element in common. Delays until they are
instantiated.

intersect(Set1, Set2) when Set1 and Set2
True when the two ordered sets have at least one element in common. Delays until they
are instantiated.

intersect(Set1, Set2, Intersection) when Set1 and Set2
True when Intersection is the ordered representation of Set1 ∩ Set2, provided that both
sets are ordered. Delays until Set1 and Set2 are instantiated.

listToSet(List, Set) when List
True when Set is a list consisting of the ordered, sorted elements of List with duplicates
removed. Delays until List is instantiated.

setMember(Element, Set) when Element and Set
True when Element is a member of Set . Takes advantage of Set being sorted, examining
only the part of Set that is smaller than Element . Delays until both are instantiated.

setEq(Set1, Set2)
True when the two arguments represent the same set.

subset(Set1, Set2) when Set1 and Set2
True when every element of ordered Set1 appears in ordered Set2 .

107

Library - Ordered Sets

subtract(Set1, Set2, Difference) when Set1 and Set2
True when Difference contains all and only the elements of ordered Set1 which are not in
ordered Set2 . Delays until Set 1 and Set2 are instantiated.

symdiff(Set1, Set2, Diff) when Set1 and Set2
True when Diff is the symmetric difference of Set1 and Set2 , delays until they are
instantiated.

union(Set1, Set2, Union) when Set1 and Set2
True when Union is the union of ordered sets Set1 and Set2 . When something occurs in
both sets, only one copy is kept. Delays until Set 1 and Set2 are instantiated.

108

Library - Debugging

6.3. Debugging
To load the predicates in the debugging library use the subgoal lib debug. The predicates

in this library provide a common set of predicates useful for debuggers of various types.

6.3.1. Initializing the debugging environment

dConsult(File)
dConsult([File1, File2, ...])

(Non-logical).
Like consult/1 but clauses are saved in the debugging area and do not effect other code.

dLoad(File)
dLoad([File1, File2, ...])

(Non-logical).
Same as dConsult/1, but if an up to date File.no exists, it is also loaded.

processGoal(File, Goal, NameList, VarList)
(Non-logical).
This user defined predicate will be used for goal processing if defined when a file is being
dConsulted. The ’?-’ is stripped off before processGoal is called. If this call fails, the
goal will be stored as usual. n.b. when, dynamic, pure and operator declarations are
separately handled.

6.3.2. Accessing the debugging environment

dPred(F, A)
(Non-logical).
A procedure with functor F and arity A exists in the debugging area.

dPreds(FNList)
(Non-logical).
FNList is the list of procedures in the debugging area, in the form [F 1/A 1,F 2/A 2,...] .

dClause(F, A, Clause)
(Non-logical).
Clause is a clause of procedure F /A in th debugging area. All clauses are represented by
terms of the form cl((Head:–Body),NameList,VarList) where NameList and
VarList are as in readTerm/3. F and/or A may be variables.

dClauses(F, A, ClauseList)
(Non-logical).
ClauseList is the list of clauses (in cl/3 format) of the predicate F /A . F and/or A may be
variables.

109

Library - Debugging

dFile(F, A, File)
(Non-logical).
Predicate F /A has been loaded from File (where File is not ’@’).

dGoal(File, Goal)
(Non-logical).
Goal is a goal in the debugging area, read from File .

dGoals(GoalList)
dGoals(File, GoalList)

(Non-logical).
GoalList is the list of goals in the debugging area from File , or all goals.

dDec(F, A, DType, Dec)
(Non-logical).
Dec is a declaration of type DType for procedure F /A .

dDecs(F, A, DType, DecList)
(Non-logical).
DecList is the list of declarations of type DType for procedure F /A .

dProp(F, A, PType, Prop)
(Non-logical).
Prop is a property of type PType for procedure F /A .

dProps(F, A, PType, PropList)
(Non-logical).
PropList is the list of properties of type PType for procedure F /A .

dDCall(F, A, CF, CA)
(Non-logical).
Predicate F /A has a call to CF /CA in the body of one of its clauses.

dDCalls(F, A, FNList)
(Non-logical).
FNList is the list of procedures directly called by procedure F /A .

dDAncs(F, A, Preds)
(Non-logical).
Preds are the predicates which call F /A directly.

110

Library - Debugging

dICall(F, A, CF, CA)
(Non-logical).
Predicate F /A calls CF /CA , possibly indirectly via other procedures. F and A must be
instantiated.

dICalls(F, A, FNList)
(Non-logical).
FNList is the list of procedures called (possibly indirectly) by procedure F /A .

dGoalDCall(G, F, A)
(Non-logical)
F /A is called directly by goal.

dGoalICall(G, F, A)
(Non-logical)
F /A is called (possibly indirectly) by goal.

6.3.3. Manipulting the debugging environment

dAddPred(F, A)
dAddPred(F, A, File)

(Non-logical).
Assert the existence of F /A in the debugging environment. dAddPred/3 asserts the
existence of F /A and associates it with File . Fails if F /A is associated with another file.

dAddPreds(Predicates)
dAddPreds(Predicates, File)

(Non-logical).
Assert the existence of all the predicates [F 1/A 1,F 2/A 2,...] in Predicates in the debugging
environment. dAddPreds/3 asserts the existence of the predicates and associates them
with File , or fails if any is already associated with a different file.

dAbolishPred(F, A)
(Non-logical).
Remove F /A and all associated information from the debugging environment.

dAbolishPreds(Preds)
(Non-logical).
Remove the predicates [F 1/A 1,F 2/A 2,...] in Preds and all associated information from the
debugging environment.

dAddClause(Clause)
(Non-logical).
Adds Clause (in cl/3 format) to the end of a procedure.

111

Library - Debugging

dAddClauses(List)
(Non-logical).
Add a list of clauses (in cl/3 format) to the end of a procedure.

dRmClause(F, A, Clause)
(Non-logical).
Removes a clause from the procedure F /A .

dRmClauses(F, A)
(Non-logical).
Removes all clauses from the procedure F /A .

dAddGoal(File, Goal)
(Non-logical).
Adds Goal to the debugging area. Goal is considered to have come from File . For
example dAddGoal(user,goal(assert(count(0)),[],[])).

dAddGoals(File, GoalList)
(Non-logical).
Adds a list of goals to the debugging area, considered to have come from File .

dRmGoal(File, Goal)
(Non-logical).
Removes Goal read from File from the debugging area.

dRmGoals
dRmGoals(File)

(Non-logical).
Removes all goals from File from the debugging area, or all goals.

dAddDec(F, A, DType, Dec)
(Non-logical).
Adds a declaration Dec of type DType to procedure F /A . For example
dAddDec(len,2,type,len(list,int)).

dAddDecs(F, A, DType, DecList)
(Non-logical).
Adds a list of declarations DecList of type DType to procedure F /A .

dRmDec(F, A, DTyp, Dec)
(Non-logical).
Removes declaration Dec of type DType from procedure F /A .

112

Library - Debugging

dRmDecs(F, A)
dRmDecs(F, A, DType)

(Non-logical).
Removes all declarations of type DType from procedure F /A , or all declarations.

dAddProp(F, A, PType, Prop)
(Non-logical).
Adds a property Prop of type PType to procedure F /A . For example
dAddProp(perm,2,direct_calls,[append/3,delete/3]).

dAddProps(F, A, PType, PropList)
(Non-logical).
Adds a list of properties PropList of type PType to procedure F /A .

dPutProp(F, A, PType, Prop)
(Non-logical).
Puts a property Prop of type PType with procedure F /A . For example
dPutProp(perm,2,direct_calls,[append/3,delete/3]).

dRmProp(F, A, PType, Prop)
(Non-logical).
Removes Prop of type PType from procedure F /A .

dRmProps(F, A)
dRmProps(F, A, PType)

(Non-logical).
Removes all properties of type PType from procedure F /A , or all properties.

6.3.4. Miscellaneous

dEdit(Pred, Arity)
(Non-logical).
Revise the file containing the definition of Pred/Arity, positioning the cursor
appropriately.

dListing
(Non-logical).
List the predicates currently in the debugger. This is analogous to listing/0.

dPortraycl(Clause)
(Non-logical).
Clause is a clause in cl/3 format and is output with its original variable names via
portraycl.

113

Library - Curses

6.4. Curses
This library provides access to the Unix curses library. (Screen updating with ‘‘optimal’’

cursor movement).

This library depends on the availability of the foreign function loading facility of NU-Prolog.
It also depends on the local curses library. Users are advised to look at relevant curses
doccumentation.

Use is as similar to curses use from C as is practicable. Functions with return values have an
extra argument, and functions which return error conditions in C will fail. "mv" variants of output
predictes are provided where they exist in the C curses package. Predicates which do not have a
window argument operate on the standard screen.

printw and scanw and are not provided, instead window forms of write writev and
format are available. Addch, addstr, getch, and getstr remain. _putchar and
getcap are not provided.

6.4.1. Access to Global Variables
Variables provided in curses to describe the terminal environment are accessed through the

following predicates.

curscr(Win)
(Non-logical).
Win is a window descriptor for curscr.

stdscr(Win)
(Non-logical).
Win is a window descriptor for stdscr.

def_term(Type)
(Non-logical).
Type is an atom bound to the default terminal type.

my_term(Flag)
(Non-logical).
Returns Flag , an integer true(1) or false(0), if Flag is a variable or sets Flag if Flag is
ground. If true, use the terminal type in def_type regardless of terminal type.

lines(LINES)
(Non-logical)
Binds LINES to the number of lines on the terminal if LINES is a variable. Sets the
number of lines to be LINES if LINES is bound. Fails if LINES is not an integer.

cols(COLS)
(Non-logical)
Binds COLS to the number of lines on the terminal if COLS is a variable. Sets the
number of lines to be COLS if COLS is bound. Fails if COLS is not an integer.

114

Library - Curses

err(ERR)
ERR is an integer returned by curses when things fail. In NU-Prolog, such calls fail.

ok(OK)
OK is the curses constant OK which is returned by some functions which may fail.

6.4.2. Output Predictes

addch(Ch)
(Non-logical).
Add Ch to stdscr at current (y ,x) co-ordinates

waddch(Win, Ch)
(Non-logical).
Ch is the ASCII code of a character to be printed at the current cursor position. Win is a
window descriptor, returned by newwin, subwin, stdscr et al. The current (y ,x) co-
ordinates are updated. Fails if it would cause the screen to scroll illegally.

addstr(Str)
(Non-logical)
Same as stdscr(Win),waddstr(Win,Str).

waddstr(Win, Str)
(Non-logical).
Writes a string on the window at the current cursor positions. Fails if this would cause
illegal scrolling. (Will print as much as it can.)

box(Win, Vert, Hor)
(Non-logical).
Draws a box around the window using the characters corresponding to the ASCII codes of
Vert and Hor for drawing the vertical and horizontal lines respectively.

clear
(Non-logical)
Clears stdscr to blanks. Will cause the screen to be cleared on the next refresh. Moves the
current (y ,x) co-ordinates to (0, 0).

wclear(Win)
(Non-logical).
Clears the entire window to blanks. Will cause screen to be cleared on the next refresh.
Moves the current (y ,x) co-ordinates to (0, 0).

115

Library - Curses

clearok(Scr, Boolf)
(Non-logical).
Boolf is true (1) or false (0). Sets the clear flag for the screen Scr . Causes a clear-screen
on the next refresh if true or prevents one if false. Unlike clear does not alter the contents
of the screen.

clrtobot
(Non-logical).
Clears stdscr to the bottom. Has no ‘‘mv’’ variant.

wclrtobot(Win)
(Non-logical).
Clears to the bottom of the window. Has no ‘‘mv’’ variant.

clrtoeol
(Non-logical).
Clears to the end of the current line on stdscr . Has no ‘‘mv’’ variant.

wclrtoeol(Win)
(Non-logical).
Clears to the end of the line on Win . Has no ‘‘mv’’ variant.

delch
(Non-logical).
Delete the character at the current (y ,x) co-ordinates on stdscr , moving all remaining
characters to the left. The rightmost character becomes a blank.

wdelch(Win)
(Non-logical).
Delete the character at the current (y ,x) co-ordinates, moving all remaining characters to
the left. The rightmost character becomes a blank.

deleteln
(Non-logical).
Delete the current line on stdscr . Remaining lines move up and the bottom line becomes
blank.

wdeleteln(Win)
(Non-logical).
Delete the current line. Remaining lines move up and the bottom line becomes blank.

erase
(Non-logical).
Erase stdscr without setting clear flag. Has no ‘‘mv’’ variant.

116

Library - Curses

werase(Win)
(Non-logical).
Erase the window without setting clear flag. Has no ‘‘mv’’ variant.

flushok(Win, Boolf)
(Non-logical).
Boolf is true(1) or false(0). Normally, refresh flushes stdout when it is finished.
flushok controls this.

formatw(Format, Args)
formatw(Win, Format, Args)

(Non-logical).
Replaces printw. Same as format/2 and format/3, with the window Win (or stdscr)
replacing a stream.

insch(C)
(Non-logical).
C is the ASCII code of a character to be inserted at the current (y ,x) co-ordinates on
stdscr . Characters after it shift to the right, the last character disappears. Fails if it would
cause the screen to scroll illegally.

winsch(Win, C)
(Non-logical).
C is the ASCII code of a character to be inserted at the current (y ,x) co-ordinates.
Characters after it shift to the right, the last character disappears. Fails if it would cause the
screen to scroll illegally.

insertln
(Non-logical).
Insert a line above the current one on stdscr . Every line below is shifted down and the
bottom line disappears. The current line becomes blank and the current (y ,x) co-ordinates
are not altered. Has no ‘‘mv’’ variant.

winsertln(Win)
(Non-logical).
Insert a line above the current one. Every line below is shifted down and the bottom line
disappears. The current line becomes blank and the current (y ,x) co-ordinates are not
altered. Has no ‘‘mv’’ variant.

move(Y, X)
(Non-logical).
Change the current (y ,x) co-ordinates of stdscr to (Y ,X) . Fails if it would cause the
screen to scroll illegally.

117

Library - Curses

wmove(Win, Y, X)
(Non-logical).
Change the current (y ,x) co-ordinates to (Y ,X) . Fails if it would cause the screen to scroll
illegally.

nlw
nlw(Win)

(Non-logical).
Outputs a newline on the window.

overlay(Win1, Win2)
(Non-logical).
Overlay window 1 on window 2. This is non-destructive: blanks on window 1 are
untouched on window two.

overwrite(Win1, Win2)
(Non-logical).
Overwrite window 1 on wondow 2. Blanks on window 1 become blanks on window two.

refresh
(Non-logical).
Synchronize the terminal screen with the desired window. Fails if this would cause the
screen to scroll illegally. In this case, a partial update will be done.

wrefresh(Win)
(Non-logical).
Synchronize the terminal screen with the desired window. Fails if this would cause the
screen to scroll illegally. In this case, a partial update will be done.

As a special case, if wrefresh() is called with curscr the screen is cleared and redrawn as
it is currently. Useful for redrawing corrupted screens.

standout
(Non-logical).
Put stdscr in standout mode.

standend
(Non-logical).
End standout mode on stdscr .

wstandout(Win)
(Non-logical).
Put Win in standout mode.

118

Library - Curses

wstandend(Win)
(Non-logical).
End standout mode for Win .

writew(Term)
writew(Win, Term)

(Non-logical).
Same as write/2, write/3, but with Win a window not a stream.

writelnw(Term)
writelnw(Win, Term)

(Non-logical).
Same as writeln/2, writeln/3, but with Win a window not a stream.

writevw(Flags, Term)
writevw(Win, Flags, Term)

(Non-logical).
Same as writev/2, writev/3, but with Win a window not a stream.

6.4.3. Input Predicates

cbreak
(Non-logical).
Put the terminal in cbreak mode.

nocbreak
(Non-logical).
End cbreak mode.

crmode
(Non-logical).
(Obsolete) Equivalent to cbreak.

nocrmode
(Non-logical).
(Obsolete) Equivalent to nocbreak.

echo
(Non-logical).
Turn terminal echoing on.

noecho
(Non-logical).
Sets the termianal not to echo characters.

119

Library - Curses

getch(Ch)
(Non-logical).
Gets a character from the terminal and (if necessary) echos it on stdscr . Fails if it would
cause the screen to scroll illegally.

wgetch(Win, Ch)
(Non-logical).
Gets a character from the terminal and (if necessary) echos it on the window. Fails if it
would cause the screen to scroll illegally.

getstr(Win, Str)
(Non-logical).
Gets a string from the terminal and returns it as the atom Str . Fails if it would cause the
screen to scroll illegally.

wgetstr(Win, Str)
(Non-logical).
Gets a string from the terminal and returns it as the atom Str . Repeated calls are made to
getstr hence echoing etc. are the same. Fails if it would cause the screen to scroll
illegally.

raw
(Non-logical).
Set the terminal to raw mode.

noraw
(Non-logical).
Unset the terminal from raw mode.

6.4.4. Miscellaneous Predicates

baudrate(Baudrate)
Returns the output baud rate of the terminal.

delwin(Win)
(Non-logical).
Relieves the window of the burden of existence. Does not attend to subwindows, although
these become invalid. Do your own housekeeping!

endwin
(Non-logical).
Finish up window routines before exit. Restores the terminal to the state previous to that
when initscr (or gettmode and setterm) were called. Should always be called
before exiting.

120

Library - Curses

erasechar(Ch)
Ch is the ASCII code of the terminal erase character.

getyx(Win, Y, X)
(Non-logical).
Returns the current (Y ,X) co-ordinates for Win .

inch(Ch)
(Non-logical).
Ch is the ASCII code of the character at the current (y ,x) co-ordinates of stdscr .

winch(Win, Ch)
(Non-logical).
Ch is the ASCII code of the character at the current (y ,x) co-ordinates.

initscr
(Non-logical).
Initialize the screen routines. This must be called before any screen routines. Fails if
enough memory cannot be allocated.

killchar(Ch)
Ch is the ASCII code of the line kill character for the terminal.

leaveok(Win, Boolf)
(Non-logical).
Sets the boolean flag for leaving the cursor after the last change. If true (Boolf = 1) the
cursor will be left after the last update on the terminal, and the current (y, x) co-ordinates
changed accordingly. If false (Boolf = 0), the cursor will be moved to the current (y, x)
co-ordinates. Initially false.

longname(Name)
Name is an atom bound to the long name of the terminal described by the termcap entry.

fullname(Name)
Name is an atom bound to the longest name of the terminal described by the termcap
entry.

mvwin(Win, Y, X)
(Non-logical).
Move the home position of Win to (Y ,X) . Fails if this would move some or all of the
window off the screen. For subwindows, fails if an attempt is made to move off its main
window. If a main window is moved, all its subwindows are also moved.

121

Library - Curses

newwin(Lines, Cols, BeginY, BeginX)
(Non-logical)
Create a new window with Lines and Cols , starting at position (BeginY ,BeginX) . If either
Lines of Cols is zero, that dimension wil be set to (LINES − BeginY) or (COLS −
BeginX) respectively. Thus to get a new window of demensions LINES x COLS , use
newwin(0,0,0,0).

nlon
(Non-logical).
Turn newline/carriage return mapping on. Equivalent to curses nl.

nonl
(Non-logical).
Unset the terminal from newline/carriage return mapping.

scrollok(Win, Boolf)
(Non-logical).
Set the scroll flag for the given window. True = 1, False = 0. Initial value is scrolling not
allowed (False).

touchline(Win, Y, StartX, EndX)
(Non-logical).
Similar to touchwin on a single line. Marks the first change for the given line to be
StartX , if it is before the first change mark, and the last change mark to be EndX if it is
after the last change mark.

touchoverlap(Win1, Win2)
(Non-logical).
Touch the window Win 2 in the area which overlaps Win 1. If there is no overlap, no
changes are made.

touchwin(Win)
(Non-logical).
Make it appear that evey location on the window has changed. Usually only needed with
overlapping windows.

subwin(Win, Lines, Cols, BeginX, BeginY, NewWin)
(Non-logical).
Similar to newwin. Any change made to either window in the area covered by the
subwindow will be made on both windows. BeginY and BeginX are relative to the overall
screen, not Win .

unctrl(Ch, Str)
Str is an atom bound to a string representation of the ASCII code Ch . Control characters
become their upper case equivalents preceeded by ‘‘^’’. Other letters stay as they are.

122

Library - Curses

6.4.5. Details

gettmode
(Non-logical).
Get the ttystats. Normally done by initscr.

mvcur(LastY, LastX, NewY, NewX)
(Non-logical).
Moves the terminal’s cursor from (LastY ,LastX) to (NewY ,NewX) in approximately
optimal fashion. When using the screen routines, this should not be called by the user,
move and refresh should be used instead, so the routines know what’s going on.

scroll(Win)
(Non-logical).
Scroll the window up one line. Not normally used by the user.

savetty
(Non-logical).
Save the current tty characteristic flags. Performed automatically by initscr.

resetty
(Non-logical).
Resetty restores the tty characteristic flags to what savetty stored. Performed
automatically by endwin.

setterm(Name)
(Non-logical).
Set the terminal characteristics to those of the terminal named Name . Normally called by
initscr.

tstp
(Non-logical).
Save the current tty state and put the terminal to sleep. When the process gets restarted, it
restores the tty state and calls wrefresh(curscr). Initscr sets the signal SIGSTP
to trap to this routine.

123

APPENDIX 1
Example NU-Prolog Programs

Declarative Constructs

Example 1
The following predicate is true when Person takes no computer science courses; it will delay

until Person is ground.

no_cs(Person) :–
all Unit not takes(Person, cs, Unit).

Example 2
Flatten lists of lists (of lists ...) into a single list.

?– flatten([], _) when ever.
?– flatten(A._, _) when A.
flatten([], []).
flatten([].A, B) :–

flatten(A, B).
flatten((A.B).C, D) :–

flatten(A.B.C, D).
flatten(A.B, A.C) :–

A ∼= [],
A ∼= _._, % Implicit quantifiers.
flatten(B, C).

The expression A ∼= _._ is equivalent to all X.Y A ∼= X.Y.

Example 3
A and B are connected in a graph. If A and B are ground, only one path is considered.

connected(A, B) :–
some Path path(A, B, Path).

Example 4

A is a subset of B , where sets are represented as lists; this only works as a test under the current
implementation of all/2.

?- pure subset/2.
subset(A, B) :–

all E member(E, A) => member(E, B).

Example 5
Return value(s) Val of Key in an association list AssocL ; if Key is not present, add it to the

list, giving NewAssocL .

124

lookup(Key, Val, AssocL, NewAssocL) :–
(if some V member(Key-V, AssocL) then

Val = V, % V is quantified
NewAssocL = AssocL

else
NewAssocL = (Key-Val).AssocL

).

Example 6
termCompare/3 is a logical term comparison predicate using compare/3. if delays until

Term 1 and Term 2 are identical or don’t unify. If they don’t unify, compare/3 will act logically.

termCompare(C, Term1, Term2) :–
if Term1 = Term2 then

C = (=)
else

compare(C, Term1, Term2).

When Declarations

Example 7
?– append(A, B, C) when A or C.
append([], A, A).
append(A.B, C, A.D) :–

append(B, C, D).
This specifies that append/3 may be called when either the first or third arguments are
nonvariables. Thus ?– append([X, 2], [3], Y). and ?– append(X, Y, [1, 2, 3]).
would proceed, whereas ?– append(X, [3], Y). would delay immediately and
?– append(1.X, [3], Y). would delay at the first recursive call until X or Y are not variables.

Example 8
?– sorted([]) when ever.
?– sorted(A.B) when A and B.
sorted([]).
sorted([A]).
sorted(A.B.C) :–

A =< B,
sorted(B.C).

This specifies that sorted/1 may be called when its argument is the empty list or a list
constructor with both the head and the tail being nonvariables. Thus ?– sorted([]). and
?– sorted(1.2.X). would proceed, whereas ?– sorted(X). and ?– sorted(1.X). would
delay.

Example 9

125

?– safeNot(C) when ground(C).
safeNot(C) :–

call(C),
!,
fail.

safeNot(C).
This specifies that safeNot/1 may be called when its argument is ground (that is, contains no
variables, even in subterms). Thus ?– safeNot(sorted([1, 3, 2])). would proceed,
whereas ?– safeNot(sorted([1, 3, 2 | X])). would delay.

Aggregate Functions
The following example was given by Naish [Nais84] and illustrates the use of solutions/3.

Example 10
Consider the following program:

drinks(tim, tea).
drinks(tim, milk).
drinks(tim, beer).

drinks(joe, tea).
drinks(joe, wine).

In the following queries, all variables in the goal are local.

?- solutions(P, drinks(P, tea), S).
S = [joe, tim].

?- solutions(P, drinks(P, wine), S).
S = [joe].

?- solutions(D, some P drinks(P, D), S).
S = [beer, milk, tea, wine].

When there are global variables in the goal – P in the following example – solutions/3 can
have several answers. The global variables will be bound by solutions/3 if they are bound by
the goal inside solutions/3. There may also be other answers with delayed inequalities. These
answers can often be avoided by forcing the set to have at least one element.

% ... assuming that P would not be implicitly locally
% quantified in the following query ...

?- solutions(D, drinks(P, D), S).
S = [beer, milk, tea], P = tim ;
S = [tea, wine], P = joe ;
S = [], P ∼= tim, P ∼= joe.

where P ∼= tim represents a delayed inequality.

Solutions/3 can also be called recursively (note the use of the term PF.PR, to ensure the
set has at least one element)

?- solutions(D – (PF.PR), solutions(P, drinks(P, D), PF.PR), S).
S = [beer–[tim], milk–[tim], tea–[joe, tim], wine–[joe]].

The delayed inequalities may also contain multiple variables and universal quantifiers:

126

?- solutions(_, some Y X = f(Y), []).
all Y1 X ∼= f(Y1).

?- solutions(_, X = f(Y), []).
X ∼= f(Y).

In all of the above examples, setof/3 would return the same answers as solutions/3,
except that in the cases with delayed inequalities setof/3 would fail, and the notation Var^Goal
is used instead of some Var Goal.

Example 11
The following are examples of queries, some of which use aggregate functions, which may be

given to the top level of the interpreter.

?– R : min(T, member(T, [6, 2, 4]), R).

2

?– R : max(T, member(T, [pear, X, orange]), R), X = apple.

pear

?– : count(T, member(T, [pear, apple, orange, pear]), 3).

Yes

?– R : sum(S*3, T, member(T/S,
[orange/10, pear/100, apple/1, apple/1, apple/1000]), R).

3333

?– A/B sorted A, –B : member(A/B, [2/3, 4/5, 2/6]).

2/6
2/3
4/5

Example 12
The following example queries are derived from Sections 7.3 and 7.4 (Built-in Functions and

Update Operations) of the [Date81]. The examples refer to a simple supplier/part database
consisting of three relations: s(Supplier, Name, Status, City),
part(Part, Name, Colour, Weight, City), sp(Supplier, Part, Quantity), and
two rules to access the key fields: s(Supplier), p(Part).

7.3.1 Get the total number of suppliers.

C : count(S, s(S), C).

7.3.2 Get the total number of suppliers currently supplying parts.

C : count(S, sp(S, _, _), C).

127

7.3.3 Get the number of shipments for part p2.

C : count(S, sp(S, p2, _), C).

7.3.4 Get the total quantity of part p2 supplied.

Sum : sum(Qty, S, sp(S, p2, Qty), Sum).

7.3.5 Get supplier numbers for suppliers with status value less than the current maximum
status value in s/4.

S : s(S, _, St, _), St < Max, max(St1, s(_, _, St1, _), Max).

7.3.6 For each part supplied, get the part number and the total quantity supplied of that part.

P, Sum : p(P), sum(Qty, S, sp(S, P, Qty), Sum).

7.3.7 Get part numbers for all parts supplied by more than one supplier.

P : p(P), count(S, sp(S, P, _), C), C > 1.

7.3.8 For all parts such that the total quantity supplied is greater than 300 excluding from the
total all shipments for which the quantity is less than or equal to 200), get the part
number and the maximum quantity of the part supplied; and order the result by
descending part number within those maximum quantity values.

P, MQ sorted MQ, -P :
p(P),
sum(Q, S, (sp(S, P, Q), Q > 200), Sum),
Sum > 300,
max(Q1, sp(_, P, Q1), MQ).

7.4.1 Change the colour of part p2 to yellow, increase its weight by 5, and set its city to
"unknown" (null).

update C to yellow, W to W1, City to null in p(p2, _, C, W, City)
where W1 is W + 5.

7.4.2 Double the status of all suppliers in london.

update S to S1 in s(_, _, S, london) where S1 is 2 * S.

7.4.3 Set the quantity to zero for all suppliers in london.

update Q to 0 in sp(S, _, Q) where s(S, _, _, london).

7.4.4 Change the supplier number for s2 to s9.

update S to s9 in s(S, _, _, _) where S = s2.
update S to s9 in sp(S, _, _) where S = s2.

7.4.5 Add part p7 (name washer, colour grey, weight 2, city athens) to table p.

insert p(p7, washer, grey, 2, athens).

7.4.6 Table temp has one column. Enter into temp, part numbers for all parts supplied by
supplier s2.

insert temp(P) where sp(s2, P, _).

7.4.7 Delete supplier s1.

128

delete s(s1, _, _, _).

7.4.8 Delete all shipments.

delete sp(_, _, _).

7.4.9 Delete all shipments from suppliers in london and also the suppliers concerned.

delete sp(S, _, _) where s(S, _, _, london).
delete s(_, _, _, london).

129

APPENDIX 2
Definite Clause Grammars

Definite clause grammars (DCGs) are a powerful class of grammar that extend context-free
grammars (CFGs) by allowing nonterminals to be compound terms, and by permitting sequences of
calls to predicates to be embedded in productions [Pere80]. The notation for DCGs allows a more
concise parser specification than would otherwise be possible in NU-Prolog, while still making the
constructs of NU-Prolog available. DCGs productions are converted to NU-Prolog clauses by a
preprocessor, available as the –D option to nc .

Using DCG notation, a CFG production has the form:

nonterminal ––> item1, . . . ,itemn.

where a nonterminal is a NU-Prolog atom, and each itemi is a nonterminal or a sequence of
terminals. A sequence of terminals is written as a list, where a terminal is an arbitrary term. A
null sequence is written as the empty list. Some examples of CFG productions are:

full_statement ––> [].

full_statement ––> label, debugging, statement.

label ––> [label(L), ':'].

The ––> operator indicates to the preprocessor the presence of a DCG production. The second
production above can be read as ‘‘full_statement can take the form of a label, followed by
debugging, followed by a statement’’.

A DCG production takes an input list of terminals and ‘consumes’, from the front of the list, a
sequence of terminals that fits its specification. Its output is those terminals remaining. To
translate a DCG production into a NU-Prolog clause, each nonterminal is associated with a
predicate of the same name with arguments for the input and output lists mentioned above. Thus
the translated form of the previous examples would be:

full_statement(SIn, SIn).
full_statement(SIn, SOut) :-

label(SIn, SOut1),
debugging(SOut1, SOut2),
statement(SOut2, SOut).

label(label(L).‘:’.SOut, SOut).
(The . form of list notation is used in the example translations for clarity.) Hence, the DCG
notation hides the two arguments that all predicates corresponding to nonterminals must have.

In extending the notation described above to that of full DCGs, nonterminals may be
compound terms. Where this is the case, the corresponding predicates in the translation will have
arguments in addition to the input and output arguments; the input and output arguments will
always appear last. For example:

const_declaration(const(I, N)) – –>
[ident(I), ’=’, number(N)].

becomes:

const_declaration(const(I, N), ident(I).’=’.number(N).SOut, SOut).

To permit sequences of calls to predicates to be embedded in a production, an item may be a

130

sequence of calls enclosed in braces, for example:

declaration_check(type(I)) – –>
[],
{

writeln(’Declaration check’),
defined(I)

}.

The DCG preprocessor allows for these items by not expanding subgoals enclosed in braces. This
additional notation gives DCGs general programming power.

The following DCG production and its translation, defining a Pascal-style for statement,
demonstrate the power of the DCG notation.

statement – –>
[for], variable(Type), {enumerable(Type)},
[‘:=’], expression(Type),
([to] ; [downto]), expression(Type), [do],

statement.

This becomes:

statement(for.SIn, SOut) :-
variable(Type, SIn, SIn1),
enumerable(Type),
SIn1 = ’:=’.SIn2,
expression(Type, SIn2, SOut1),
(

SOut1 = to.SIn3
;

SOut1 = downto.SIn3
),
expression(Type, SIn3, do.SIn4),
statement(SIn4, SOut).

A well known parsing ambiguity is that associated with the else part of a Pascal-style
if–then–else statement. The requirement that an else be associated with the syntactically
closest unmatched if–then is achieved below through the simple application of the NU-Prolog
if–then–else construct. The NU-Prolog if–then–else precludes the association of an
else with the wrong if–then, even on backtracking. Parentheses distinguish the use of the
terminals if, then and else from their NU-Prolog usage.

statement – –>
[(if)], expression(boolean), [(then)],

statement,
if [(else)] then

statement.

This becomes:

131

statement((if).SIn, SOut) :-
expression(boolean, SIn, (then).SIn1),
statement(SIn1, SOut1),
(if SOut1 = (else).SIn2 then

statement(SIn2, SOut)
else

SOut1 = SOut
).

Two predefined unary non-terminals that can be used in DCG productions are append and =.
After preprocessing, they will function as calls to the standard nuprolog append/3 and as ternary
unification ‘=(S,S,S).’ respectively. The first of these is useful for prepending to the input list
(instead of the usual consuming), the second for examining the input list (ie. look ahead). The
output of the preprocessor may be optimized for these non-terminals, as demonstrated by the
example of append given later.

Finally, a further form of DCG production is allowed that permits an output terminal list that
is longer than that provided as input. The left-hand side of a production may be augmented with a
sequence of terminals to be prepended to the output list. This extended output terminal list will be
parsed normally by productions invoked later with the extended list as input.

The productions that follow, in conjunction with the definition of full_statement given
above, would allow the use of the keyword debug to indicate statements that can be turned off or
on for debugging purposes. The production defining the if statement can then handle this
construct, with only the definition of a boolean $debug being required.

debugging, [(if), identifier($debug), (then)] – –> [debug].
debugging – –> [].

can be expressed equivalently as

debugging – –> [debug], append([(if), identifier($debug), (then)]).
debugging – –> [].

Either of these will be translated to

debugging(debug.SIn, (if).identifier($debug).(then).SIn).
debugging(SIn, SIn).

132

APPENDIX 3
Using the NU-Prolog Compiler

Using nc is like using the C compiler, cc . For example, consider a program which consists
of three files, ex.nl, infer.nl, util.nl. An executable image of this program, ex, could be
produced by using the command

nc -o ex ex.nl infer.nl util.nl
Alternatively, this could be done in stages:

nc -c ex.nl
nc -c infer.nl
nc -c util.nl
nc -o ex ex.no infer.no util.no

It is simplest to use cake (1)† to compile this program. If make (1) is to be used, it is necessary to
explicitly state a rule for the dependency between .nl and .no files at the head of the Makefile.
A suitable Makefile for the program would be:

NC=/usr/bin/nc
NIT=/usr/bin/nit

.SUFFIXES: .nl .ns .no

.nl.no: ; $(NC) -c $*.nl

.nl.ns: ; $(NC) -S $*.nl

SRCS= ex.nl infer.nl util.nl
OBJS= ex.no infer.no util.no

ex: $(OBJS)
$(NC) -o ex $(OBJS)

nit: $(OBJS)
$(NIT) $(OBJS) > nits

A suitable Cakefile for the program would be

#define MAIN ex
#define FILES ex infer util

#include <Nuprolog>
#include <Main>

Once the object file is generated, it is executed by typing its name, possibly followed by some
command line arguments for the program. These arguments will be made available to the entry
predicate as a list of atoms. For example:

./ex a /mip/db c

will invoke the ex program with the goal main([npm, a, '/mip/db', c]).

† cake (1) was written by Zoltan Somogyi (zs@cs.mu.oz.au) and is distributed with NU-Prolog.

133

APPENDIX 4
Porting MU-Prolog Programs to NU-Prolog

This Appendix describes changes which should be made to MU-Prolog programs when
porting them to NU-Prolog.

(1) If a predicate definition is to be modified, declare it as dynamic/1. For example, if the
predicate p/1 is to be modified, the MU-Prolog definition

p(a).

should be replaced by

?– dynamic p/1.
p(a).

(2) The names of the safe and unsafe negation predicates have been changed.

MU-Prolog NU-Prolog________________________________

safe ∼ not
unsafe not, \+ \+________________________________




















∼ is not supported by NU-Prolog.

(3) Some MU-Prolog predicates, such as wflags/1, will never be implemented, but the
functionality is given by other predicates.

(4) Most MU-Prolog library predicates, such as append/3 and ground/1, have been built into
NU-Prolog.

(5) Some MU-Prolog predicates exist but under different names. Using the library compat may
solve this problem.

(6) wait declarations have been superseded by when declarations. Although they are not
functionally equivalent, it is usually easy to replace a given wait declaration by a when
declaration.

134

APPENDIX 5
Using DSIMC Databases

The predicates and parameters for manipulating dsimc databases are described fully in
section 5.8. The purpose of this section is to work through the process of setting up a simple
database using the predicates described in that section. This should provide a good basis for
understanding precisely what needs to be done to use external dsimc databases with NU-Prolog.

Consider a database describing a network of computers such as the UUCP network. A model
of this network will describe entities such as nodes and connections. Let us say that we use two
relations to model the network: node and connection.

The node relation contains the (unique) network name of the computer, and a brief
description of the location of the machine†. This can be implemented as a Prolog predicate
node/2, containing such facts as:

node(mulga, "Computer Science, Melbourne University, Australia").
node(munnari, "Computer Science, Melbourne University, Australia").
node(seismo, "Centre for Seismic Studies, Virginia, USA").

The connection relation contains the names of the nodes at either end, and a cost; we
assume that this will denote a one way connection, and that if communication is possible in the
other direction there will be a separate entry, possibly with a different cost. This can be
implemented as a Prolog predicate conn/3, containing facts such as:

conn(munnari, seismo, 150).
conn(munnari, mulga, 10).

Before we assign parameters to a relation, we must determine the various properties of the
relation:

* It is useful if we know approximately how large an average record will be for a given relation,
that is, how many characters will be required to store the values of the fields and field
separators. If records are very large, then we might wish to increase the sizes of segments
from the default value of 4096, to allow at least 50 records per segment (remembering that
around half of the segment space is occupied by index descriptors and record pointers). It is
also useful to know approximately how many facts there are likely to be in each relation.

* We should have some idea of the types of queries which are going to be asked on the relation.
For example, it is highly likely that we will be asking for a list of all sites which are
connected to a given site and so we will generally have the first field specified in a query on
the conn/3 relation. It is far less likely that we will ask for all sites which have a given cost,
and so we would expect the cost field of the conn/3 relation to be infrequently specified in
queries.

Let us suppose that the average site name is 7 characters long, and the average site description
is 40 characters long. Then the average node record will require 50 characters to store (7 for the

† Note that the descriptive information is precisely that – descriptive. As currently organised, it can
play no ‘‘active’’ role in queries on the database. If we wanted to use the location information, for example
to partition nodes geographically, we would impose a more rigid structure on the location and probably allo-
cate new fields for the specific components such as country, state, organisation, depart-
ment, giving, for example, node(seismo,Centre for Seismic
Studies,virginia,usa).

135

site name, 40 for the description, plus a comma to separate the fields and two quotes around the
description). If the average cost is a four-digit number, then conn records will require 20
characters (14 for two site names, 4 for the cost value, and 2 commas to separate the fields).
Assuming that there are around 10000 sites (therefore 10000 node records), and that each site is
connected to 10 others, then there will be around 100,000 conn records.

The following program (annotated with line numbers) will set up the database with parameters
derived from the above considerations:

01: %
02: % Create a network database and initialise the relations,
03: %
04:
05: main(_.[]) :-
06: writeln(’usage: creatdb database’),
07: exit(1).
08: main(_.DB.[]) :-
09: (dbCons(DB) ->
10: ($ondisc(DB, node(_, _), _) ->
11: dbUndefine(DB, word, 2)
12:),
13: ($ondisc(DB, conn(_, _, _), _) ->
14: dbUndefine(DB, letter, 3)
15:),
16: ;
17: dbCreate(DB)
18:),
19: dbDefine(DB, node, 2,
20: [scheme=dsimc,
23: avrec=50,
24: nrec=10000,
25: template="g:0:0(g:1:7fffffff,g:0:0)"]),
26: dbDefine(DB, conn, 3,
27: [scheme=dsimc,
28: avrec=20,
29: nrec=100000,
30: template="g:0:0(g:8:29228922,g:4:12892289,g:1:44545454)"]).
31: main(_) :-
32: writeln(’Problems creating database/relation’).

Note that the program requires one argument on the command line which is the name of the
database (line 10). On line 11, we attempt to open the database, in case it already exists; if the
dbCons fails, then we assume that it doesn’t and try to create it (line 19). On lines 12 and 15 we
are testing whether the relations node and conn already exist; if they do, then we delete their
existing definitions with dbUndefine (lines 13 and 16). The parameters for the node relation
(lines 22-24) have been explained above, but we note here that the template (line 25), is set up to
indicate that we will never use the second field for indexing. We have designed the template for
the conn relation on the basis that we are very likely to ask queries using the first field (weight:8),
occasionally using the second field (weight:4), and very rarely using the cost field (weight:1). The
g values in the template fields indicate that the corresponding fields are always ground, which is
the only sensible value for a DSIMC database.

136

APPENDIX 6
Reserved Predicate Names

The following predicate names have been reserved for future use.

apply
count countIf countIfNot
delete deleteIf deleteIfNot deleteDuplicates
find findIf findIfNot
funcall
lambda
mapcar mapcars maplist maplists
mapcon mapcons mapcan mapcans
notrace
position positionIf positionIfNot pred
reduce
type

137

APPENDIX 7
Permitted Characters

SYMBOL CHARACTERS
These include: + - * / ~ < = > ‘ ∼ : . ? @ # &

PRINTABLE CHARACTERS
These include graphic characters and white space characters.

Graphic characters
ASCII codes 33 to 126

White space
ASCII code 9 (horizontal tab)
ASCII code 10 (new line)
ASCII code 12 (form feed)
ASCII code 13 (carriage return)
ASCII code 32 (space)

PERMITTED CHARACTERS
Permitted characters are characters which may appear in the text of strings or atoms (subject
to rules concerning quoting). These include the printable characters or an escape sequence:

Escape Sequence Character___

\b Backspace
\c Ignore up to but not including next graphic character
\d Delete
\e Escape
\f Form feed
\n New line
\r Carriage return
\s Space
\t Tab
\v Vertical Tab
\octal_string Character given by one to three octal digits
\~char Control character with ASCII code of char mod 32
\non-printable Ignore non-printable character
\other Character other___




























































PrologFlag/3 may be used to turn off character escapes, so that the only escape sequence
recognised is repeated single quotes (in quoted atoms) and repeated double quotes (in strings). All
other sequences are taken literally.

A complete list of ASCII characters follows.

138

__
ASCII Graphic and Octal Other
Code (Non-Graphic) Escape Escape

Characters Sequence Sequences__

0 () \0 \~@
1 () \1 \~A
2 () \2 \~B
3 () \3 \~C
4 () \4 \~D
5 () \5 \~E
6 () \6 \~F
7 () \7 \~G

8 (Backspace) \10 \~H or \b
9 (Horizontal tab) \11 \~I or \t

10 (Newline) \12 \~J or \n
11 (Vertical tab) \13 \~K or \v
12 (Form feed) \14 \~L or \f
13 (Carriage return) \15 \~M or \r
14 () \16 \~N
15 () \17 \~O

16 () \20 \~P
17 () \21 \~Q
18 () \22 \~R
19 () \23 \~S
20 () \24 \~T
21 () \25 \~U
22 () \26 \~V
23 () \27 \~W

24 () \30 \~X
25 () \31 \~Y
26 () \32 \~Z
27 (Escape) \33 \~[or \e
28 () \34 \~
29 () \35 \~]
30 () \36 \~~
31 () \37 \~_

__








































































































































































































































































139

ASCII Graphic and Octal Other
Code (Non-Graphic) Escape Escape

Characters Sequence Sequences___

32 (Space) \40 \s
33 ! \41
34 " \42
35 # \43
36 $ \44
37 % \45
38 & \46
39 ’ \47

40 (\50
41) \51
42 * \52
43 + \53
44 , \54
45 - \55
46 . \56
47 / \57

48 0 \60
49 1 \61
50 2 \62
51 3 \63
52 4 \64
53 5 \65
54 6 \66
55 7 \67

56 8 \70
57 9 \71
58 : \72
59 ; \73
60 < \74
61 \= \75
62 > \76
63 ? \77

___








































































































































































































































































140

ASCII Graphic and Octal Other
Code (Non-Graphic) Escape Escape

Characters Sequence Sequences___

64 @ \100
65 A \101
66 B \102
67 C \103
68 D \104
69 E \105
70 F \106
71 G \107

72 H \110
73 I \111
74 J \112
75 K \113
76 L \114
77 M \115
78 N \116
79 O \117

80 P \120
81 Q \121
82 R \122
83 S \123
84 T \124
85 U \125
86 V \126
87 W \127

88 X \130
89 Y \131
90 Z \132
91 [\133
92 \ \134
93] \135
94 ~ \136
95 _ \137

___








































































































































































































































































141

ASCII Graphic and Octal Other
Code (Non-Graphic) Escape Escape

Characters Sequence Sequences___

96 ‘ \140
97 a \141
98 b \142
99 c \143

100 d \144
101 e \145
102 f \146
103 g \147

104 h \150
105 i \151
106 j \152
107 k \153
108 l \154
109 m \155
110 n \156
111 o \157

112 p \160
113 q \161
114 r \162
115 s \163
116 t \164
117 u \165
118 v \166
119 w \167

120 x \170
121 y \171
122 z \172
123 { \173
124 | \174
125 } \175
126 ~ \176
127 (Delete) \177 \d

___








































































































































































































































































142

APPENDIX 8
Standard Operator Declarations

?– op(1200, xfx, (:-)).
?– op(1200, xfx, (––>)).
?– op(1200, fx, (?-)).
?– op(1200, fx, (:-)).
?– op(1180, fx, (useIf)).
?– op(1175, fx, (:)).
?– op(1175, xfx, (:)).
?– op(1175, xfx, where).
?– op(1175, fy, insert).
?– op(1175, fy, delete).
?– op(1175, fy, update).
?– op(1172, xfx, (in)).
?– op(1171, xf, (sorted)).
?– op(1171, xfx, (sorted)).
?– op(1170, xfy, (else)).
?– op(1160, fx, (if)).
?– op(1150, fy, dynamic).
?– op(1150, xfx, (then)).
?– op(1150, fy, pure).
?– op(1100, xfy, (;)).
?– op(1100, fx, (type)).
?– op(1050, xfy, (–>)).
?– op(1000, xfy, (’,’)).
?– op(980, xfx, (to)).
?– op(950, fxy, some).
?– op(950, fxy, gSome).
?– op(950, fxy, gAll).
?– op(950, fxy, all).
?– op(920, xfy, =>).
?– op(920, xfy, <=>).
?– op(920, xfy, <=).
?– op(900, xfx, when).
?– op(900, fy, man).
?– op(900, fy, wait).
?– op(900, fy, spy).
?– op(900, fy, once).
?– op(900, fy, not).
?– op(900, fy, nospy).
?– op(900, fy, ls).
?– op(900, fy, listing).
?– op(900, fy, lib).
?– op(900, fy, \+).
?– op(900, fy, (~)).
?– op(740, xfy, or).
?– op(720, xfy, and).
?– op(700, xfx, ∼=).

?– op(700, xfx, is).
?– op(700, xfx, \==).
?– op(700, xfx, \=).
?– op(700, xfx, @>=).
?– op(700, xfx, @=<).
?– op(700, xfx, @>).
?– op(700, xfx, @<).
?– op(700, xfx, >=).
?– op(700, xfx, >).
?– op(700, xfx, =\=).
?– op(700, xfx, ==).
?– op(700, xfx, =<).
?– op(700, xfx, =:=).
?– op(700, xfx, =..).
?– op(700, xfx, =).
?– op(700, xfx, <).
?– op(600, xfy, ’.’).
?– op(500, yfx, \/).
?– op(500, yfx, /\).
?– op(500, yfx, –).
?– op(500, yfx, +).
?– op(500, fx, \).
?– op(500, fx, (–)).
?– op(500, fx, (+)).
?– op(400, yfx, >>).
?– op(400, yfx, <<).
?– op(400, yfx, //).
?– op(400, yfx, /).
?– op(400, yfx, *).
?– op(300, xfx, mod).
?– op(300, xfy, **).
?– op(200, xfy, ’^’).

143

APPENDIX 9
Signals

The following are the signal names and numbers that can be used in conjunction with
signal/2. If the signal is not supported under the user’s version of UNIX, the effect of using
signal/2 is undefined.

Signal name Signal number Effect___
sighup 1 Hangup
sigint 2 Interrupt (rubout)
sigquit 3 Quit (ASCII FS)
sigill 4 Illegal instruction (not reset when caught)
sigtrap 5 Trace trap (not reset when caught)
sigiot 6 IOT instruction
sigemt 7 EMT instruction
sigfpe 8 Floating point exception
sigkill 9 Kill (cannot be caught or ignored)
sigbus 10 Bus error
sigsegv 11 Segmentation violation
sigsys 12 Bad argument to system call
sigpipe 13 Write on a pipe with no one to read it
sigalrm 14 Alarm clock
sigterm 15 Software termination signal from kill___
















































































144

APPENDIX 10
Bugs and Limitations of NU-Prolog

There are a number of known bugs and limitations to the NU-Prolog system (these are
commonly called ‘‘features’’). Some of these may be eliminated in the future; others are technical
or theoretical problems which cannot be eliminated.

Limitations of Call/1
Quantification of variables

If a variable name occurs in separate scopes, it will refer to the same variable, and is a
programming error.

Uniquely occurring variables are not quantified, so that, for example, call(not p(_)) will
delay.

Undefined Predicates
System predicates which are defined at compile time, but not otherwise, may cause nc to print

‘‘undefined predicate’’. This also applies to user-defined predicates which occur in goals in NU-
Prolog source.

Occur Check
The unification algorithm used by NU-Prolog does not make the ‘‘occur check’’.

nit
nit does not know about old-fashioned quantification, that is, of the form V^Goal.

Floundering
Floundering in stand alone programs is not reported.

Bugs in Manual
NU-Prolog is under constant development. Parts of the manual, including this Appendix, may

contain errors. Theoretical considerations preclude a guarantee that the preceding sentences, or this
sentence, is correct.

145

REFERENCES

146

Index of NU-Prolog Predicates

!
(Non-logical) cut .. 36

Vars ^ Goal
Existential quantification for setof/3 and bagof/3 .. 38

N ^ M
N bitwise exclusive or’ed with M .. 57

N * M
N times M .. 55

N ** M
N to the power of M .. 56

N + M
N plus M .. 55

+ N
Plus N ... 58

Formula1, Formula2
conjunction; Formula1 and Formula2 are true .. 29

Nonterminal − −> Expression
statement in a definite clause grammar .. 29

Cond −> Goal
(Non-logical) if Cond then Goal ... 37

Cond −> Goal1 ; Goal2
(Non-logical) if Cond then Goal1 else Goal2 ... 37

[File1,...,Filen]

(Non-logical) load the list of object files ... 78
N / M

N divided by M .. 55
N // M

N divided by M .. 56
N /\ M

N bitwise and’ed with M ... 57
?− Goal
?− : Goal
?− Vars : Goal
?− Vars sorted : Goal
?− Vars sorted Keys ... : Goal

Goal is a goal to be interpreted .. 9
Head :− Body

predicate definition ... 29
Formula1 ; Formula2

disjunction; Formula1 or Formula2 is true ... 29

N < M
N < M ... 58

N < M
arithmetic expression N < arithmetic expression M .. 59

N << M
N shifted left M positions .. 57

3

Index

Formula2 <= Formula1
all Vars Formula2 <= Formula1

Formula2 is implied by Formula1 .. 31

Formula1 <=> Formula2
all Vars Formula1 <=> Formula2

Formula1 and Formula2 are equivalent .. 31

Term1 = Term2
Term1 is unified with Term2 .. 53

N =:= M
N = M ... 58

N =:= M
arithmetic expressions N and M are equal ... 59

N =< M
N =< M .. 58

N =< M
arithmetic expression N ≤ arithmetic expression M .. 59

Term1 == Term2
(Non-logical) Term1 and Term2 are identical .. 54

Formula1 => Formula2
all Vars Formula1 => Formula2

Formula1 implies Formula2 .. 31

N =\= M
N ∼= M .. 58

N =\= M
arithmetic expressions N and M are not equal .. 59

Term =.. List
List is the functor of Term followed by the arguments of Term 52

N > M
N > M ... 58

N > M
arithmetic expression N > arithmetic expression M .. 59

N >= M
N >= M .. 58

N >= M
arithmetic expression N arithmetic expression M .. 59

N >> M
N shifted right M positions .. 58

?− Formula
Formula is a goal to be solved ... 29

Term1 @< Term2
(Non-logical) Term1 Term2 in non-logical ordering .. 54

Term1 @=< Term2
(Non-logical) Term1 ≤ Term2 in non-logical ordering .. 54

Term1 @> Term2
(Non-logical) Term1 Term2 in non-logical ordering .. 54

Term1 @>= Term2
(Non-logical) Term1 ≥ Term2 in non-logical ordering .. 54

45 Line 11634 -- Illegal nested keep |k

Index

N − M
N minus M ... 55

− N
Minus N ... 58

\ N
bitwise complement of N ... 58

\+ Goal
(Non-logical) negation .. 36

N \/ M
N bitwise or’ed with M .. 57

Term1 \= Term2
(Non-logical) Term1 and Term2 do not unify .. 53

Term1 \== Term2
(Non-logical) Term1 and Term2 are not identical .. 54

abolish(Pred, Arity)
(Non-logical) Remove all information about Pred/Arity. .. 80

abort
(Non-logical) return to top level .. 41

absoluteFileName(RelFile, AbsFile)
AbsFile is the absolute file name corresponding to RelFile .. 62

access(Path, Mode)
(Non-logical) test for access permissions on Path ... 93

acos(X)
acos(X) ... 56

addElement(Elem, Set1, Set2)

[osets] Set2 = Set1 ∪ {Elem} ... 107

addch(Ch)
[curses] add Ch to stdscr at current (y, x) co-ordinates ... 115

addprop(Atom, Key, Prop)
(Non-logical) adds <Key, Prop> to the end of property list of Atom 78

addprop(Atom, Key, Prop, Reference)
(Non-logical) adds <Key, Prop> to the end of property list of Atom 78

addpropa(Atom, Key, Prop)
(Non-logical) puts <Key, Prop> at the start of property list of Atom 79

addpropa(Atom, Key, Prop, Reference)
(Non-logical) puts <Key, Prop> at the start of property list of Atom 79

addpropz(Atom, Key, Prop)
(Non-logical) adds <Key, Prop> to the end of property list of Atom 79

addpropz(Atom, Key, Prop, Reference)
(Non-logical) adds <Key, Prop> to the end of property list of Atom 79

addstr(Str)
[curses] writes Str on stdscr at the current (y, x) co-ordinates .. 115

all Vars Formula
universal quantification; for all Vars, Formula is true ... 30

ancestors(Anc)
(Non-logical) get a list of ancestor goals for the current clause .. 41

N and M
N and M ... 59

N and M
arithmetic expressions N and M are both non-zero ... 60

append(List1, List2, JoinList)

Index

JoinList is List2 appended to List1 ... 47

arg(N, Term, SubTerm)

Nth argument of Term is SubTerm .. 49
asin(X)

asin(X) .. 56
assert(Clause)

(Non-logical) add Clause to database .. 80
assert(Clause, Reference)

(Non-logical) add Clause to internal database, giving Reference 80
asserta(Clause)

(Non-logical) add Clause to start of internal database ... 80
asserta(Clause, Reference)

(Non-logical) add Clause to start of internal database, giving Reference 80
assertz(Clause)

(Non-logical) add Clause to end of internal database .. 81
assertz(Clause, Reference)

(Non-logical) add Clause to end of internal database, giving Reference 81
atan(X)

atan(X) .. 56
atan2(X, Y)

atan2(X, Y) ... 56
atom(Term)

(Non-logical) .. 49
atomToString(Atom, String)

String is the list of characters in Atom .. 50
atomic(Term)

(Non-logical) Term is currently an atom or a number .. 50
bagof(Term, Goal, Bag)

(Non-logical) Bag is a list of Terms where Goal is true ... 37
baudrate(Baudrate)

[curses] Baudrate is the baudrate of the terminal .. 120
between(N, M, I)

I is an integer between N and M inclusively ... 60
box(Win, Vert, Hor)

[curses] (Non-logical) draw box around window .. 115
break

(Non-logical) get a new invocation of np .. 41
breakLevel(N)

N is the current break level number .. 41
Formula
call(Formula)

call the subgoal Formula .. 29

call(Term, Arg1, Arg2)
call(Term, Arg1, Arg2, Arg3)
call(Term, Arg1, Arg2, Arg3, Arg4)
call(Term, Arg1, Arg2, Arg3, Arg4, Arg5)
call(Term, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)

call Term concatenated with Args ... 29
catch(Goal, Result)

(Non-logical) set up a call frame for an abnormal return .. 42

Index

cbreak
[curses] (Non-logical) set terminal to cbreak mode ... 119

cd(Dir)
chdir(Dir)

(Non-logical) make Dir the current working directory .. 93
characterCount(Stream, Chars)

(Non-logical) count characters on Stream .. 62
chmod(Path, Mode)

(Non-logical) change permissions on Path .. 93
clause(Head, Body)

(Non-logical) there is a clause in internal database with Head and Body 81
clause(Head, Body, Reference)

(Non-logical) Reference to clause in internal database with Head and Body 81
clauses(Functor, Arity, ClauseList)

(Non-logical) ClauseList from internal database with Functor/Arity 81
clear

[curses] (Non-logical) clear stdscr to blanks .. 115
clearIOError(Stream)

(Non-logical) reset error flags on I/O Stream .. 62
clearok(Scr, Boolf)

[curses] (Non-logical) Set clear flag for the screen Scr ... 116
close(Stream)

(Non-logical) close i/o Stream ... 62
clrtobot

[curses] (Non-logical) clear stdscr from current (y, x) to the bottom 116
clrtoeol

[curses] (Non-logical) clear stdscr to end of current line .. 116
cols(COLS)

[curses] (Non-logical) accesses curses variable COLS .. 114
commandNumber(N)

N is the current history list command number .. 42
compare(Comp, Term1, Term2)

(Non-logical) compare Term1 and Term2 in non-logical ordering 54

compound(Term)
(Non-logical) Term is currently a compound term .. 50

cons(Term)
(Non-logical) the top-level functor in Term is ‘.’ ... 50

const(Term)
(Non-logical) Term is currently a constant .. 50

consult(File)
(Non-logical) add clauses in File to internal database and execute goals 77

cos(X)
cos(X) ... 56

count(Term, Formula, Result)
Result is the number of distinct instantiations of Term by Formula 33

countall(Goal, Count)
[countall] (Non-logical) Count is the number of times Goal returns 37

crmode
[curses] (Non-logical) (obsolete) same as cbreak .. 119

csh
(Non-logical) invoke UNIX shell csh .. 93

Index

currentAtom(Atom)
currentAtom(Module, Atom)

(Non-logical) Atom is currently a atom ... 89
currentInput(Stream)

(Non-logical) Stream is the current input stream ... 63
currentModule(Module)

(Non-logical) Module is the current module ... 89
currentOp(Precedence, Type, Op)

(Non-logical) Op is an operator of Type and Precedence ... 89
currentOutput(Stream)

(Non-logical) Stream is the current output stream ... 63
currentPredicate(Name, Arity)
currentPredicate(Module, Name, Arity)

(Non-logical) Name is currently a predicate in Module with Arity 89
currentStream(File, Mode, Stream)

(Non-logical) Stream is a currently open stream on File with Mode 63
current_atom(Atom)
current_atom(Module, Atom)

[compat] (Non-logical) Atom is currently a atom ... 104
current_input(Stream)

[compat] (Non-logical) Stream is the current input stream ... 104
current_op(Precedence, Type, Op)

[compat] (Non-logical) Op is an operator of Type and Precedence 104
current_output(Stream)

[compat] (Non-logical) Stream is the current output stream ... 104
current_predicate(Functor, Term)

[compat] (Non-logical) Functor is currently a predicate with most general Term 104
current_stream(File, Mode, Stream)

[compat] (Non-logical) Stream is a currently open stream on File with Mode 104
curscr(Win)

[curses] (Non-logical) Win is a window descriptor for curscr .. 114
dAbolishPred(F, A)

[debugging] remove F/A and all associated information from the debugging environment 111
dAbolishPreds(Preds)

[debugging] remove Preds and all associated information from the debugging environment 111
dAddClause(Clause)

[debugging] adds Clause in cl/3 format to the end of a procedure 111
dAddClauses(List)

[debugging] add a list of clauses (in cl/3 format) to the end of a procedure 112
dAddDec(F, A, DType, Dec)

[debugging] adds a declaration of type DType to procedure F/A 112
dAddDecs(F, A, DType, DecList)

[debugging] add a list of declarations of type DType to procedure F/A 112
dAddGoal(File, Goal)

[debugging] Adds Goal to the debugging area .. 112
dAddGoals(File, GoalList)

[debugging] Adds a list of goals to the debugging area .. 112
dAddPred(F, A)
dAddPred(F, A, File)

[debugging] assert the existence of F/A in the debugging environment 111
dAddPreds(Predicates)
dAddPreds(Predicates, File)

Index

[debugging] assert the existence of Predicates in the debugging environment 111
dAddProp(F, A, PType, Prop)

[debugging] Adds a property Prop of type PType to procedure F/A 113
dAddProps(F, A, PType, PropList)

[debugging] Adds a list of properties PropList of type PType to procedure F/A 113
dClause(F, A, Clause)

[debugging] Clause is a clause of F/A in cl/3 format ... 109
dClauses(F, A, ClauseList)

[debugging] ClauseList is the list of clauses (in cl/3 format) of the predicate F/A. 109
dConsult(File)
dConsult([File1, File2, ...])

[debugging] load NU-Prolog source file File into the debbuging environment 109
dDAncs(F, A, Preds)

[debugging] Preds are the predicates which call F/A directly ... 110
dDCall(F, A, CF, CA)

[debugging] Predicate F/A has a call to CF/CA in the body of one of its clauses 110
dDCalls(F, A, FNList)

[debugging] FNList is the list of procedures directly called by procedure F/A 110
dDec(F, A, DType, Dec)

[debugging] Dec is a declaration of type DType for procedure F/A 110
dDecs(F, A, DType, DecList)

[debugging] DecList is the list of declarations of type DType for procedure F/A 110
dEdit(Pred, Arity)

[debugging] ... 113
dFile(F, A, File)

[debugging] F/A was loaded from File .. 110
dGoal(File, Goal)

[debugging] Goal is a goal in the debugging area ... 110
dGoalDCall(G, F, A)

[debugging] F/A is directly called by goal .. 111
dGoalICall(G, F, A)

[debugging] F/A is called by goal (possibly indirectly) .. 111
dGoals(GoalList)
dGoals(File, GoalList)

[debugging] GoalList is the list of goals in the debugging area from File, or all goals ... 110
dICall(F, A, CF, CA)

[debugging] Predicate F/A calls CF/CA, possibly indirectly via other procedures 111
dICalls(F, A, FNList)

[debugging] FNList is the list of procedures called (possibly indirectly) by procedure F/A 111
dListing

[debugging] List the predicates currently in the debugger .. 113
dLoad(File)
dLoad([File1, File2, ...])

[debugging] same as dConsult/1 but if File.no exists it is loaded also 109
dPortraycl(Clause)

[debugging] Clause is a clause in cl/3 format and is output with portraycl 113
dPred(F, A)

[debugging] F/A exists in the debugging area ... 109
dPreds(FNList)

[debugging] FNList is the list of predicates in the debugging area in the form [F1/A1. F2/A2, ...] 109
dProp(F, A, PType, Prop)

[debugging] Prop is a property of type PType for procedure F/A 110

Index

dProps(F, A, PType, PropList)
[debugging] PropList is the list of properties of type PType for procedure F/A 110

dPutProp(F, A, PType, Prop)
[debugging] Puts a property Prop of type PType with procedure F/A 113

dRmClause(F, A, Clause)
[debugging] removes Clause from the debugging environment .. 112

dRmClauses(F, A)
[debugging] removes all clauses from the procedure F/A ... 112

dRmDec(F, A, DTyp, Dec)
[debugging] remove declaration Dec from procedure F/A .. 112

dRmDecs(F, A)
dRmDecs(F, A, DType)

[debugging] remove all declarations from procedure F/A ... 113
dRmGoal(File, Goal)

[debugging] Removes Goal from the debugging area ... 112
dRmGoals
dRmGoals(File)

[debugging] Removes goals from the debugging area ... 112
dRmProp(F, A, PType, Prop)

[debugging] Removes Prop of type PType from procedure F/A 113
dRmProps(F, A)
dRmProps(F, A, PType)

[debugging] Removes properties from procedure F/A ... 113
dbBackup(Db, File)

(Non-logical) File is a backup copy of database Db ... 83
dbCons(Db)

(Non-logical) consult deductive database Db .. 83
dbCreate(Db)

(Non-logical) create empty database Db .. 83
dbDefine(Db, Functor, Arity)
dbDefine(Db, Functor, Arity, [Parameter1 = Value1,...])

(Non-logical) create predicate in external database Db with Functor and Arity 83
dbParam(Db, Functor, Arity, Parameter = Value)

(Non-logical) current Value of Parameter for Functor in Db .. 84
dbRestore(Db, File)

(Non-logical) Db is restored from File .. 84
dbRules(Db, File)

(Non-logical) adds File of rules to Db ... 84
dbUndefine(Db, Functor, Arity)

(Non-logical) remove predicate with Functor from Db ... 84
debug

(Non-logical) enter debug mode .. 44
debugging

(Non-logical) list current spypoints .. 45
def_term(Type)

[curses] (Non-logical) Type is default terminal type ... 114
delElement(Elem, Set1, Set2)

[osets] Set2 = Set2 \ {Elem} .. 107

delch
[curses] (Non-logical) delete the character at current (y, x) on stdscr 116

?− delete Predicates where Goal

Index

delete Predicates from database ... 9
delete(Element, List, Rest)

Rest is List with a element matching Element deleted .. 47
deleteln

[curses] (Non-logical) delete current line on stdscr ... 116
delwin(Win)

[curses] (Non-logical) delete the window Win .. 120
depth(N)

(Non-logical) N is the number of ancestors of the current call ... 42
directory(Dir, Files)

Files in UNIX directory Dir ... 93
disjoint(Set1, Set2)

[osets] ordered sets have no element in common .. 107
display(Term)
display(Stream, Term)

(Non-logical) write Term on output stream in prefix format .. 70
divides(N, M, Div, Mod)

Div = N / M and Mod = N mod M ... 60
dsimcQuery(Query)

(Non-logical) retrieve bindings for Query from DSIMC database 85
duplicate(Term1, Term2)

(Meta-logical) Term2 is a copy of Term1 .. 50

dynamic Functor/Arity
dynamic [F1/A1,...,Fn/An]

(Non-logical) declare a dynamic predicate ... 81
?− e
?− e N

edit and execute goal N .. 8
echo

[curses] (Non-logical) set terminal to echo mode .. 119
endwin

[curses] (Non-logical) finish window routines ... 120
ensureLoaded(File)

(Non-logical) ensure File have been loaded .. 77
environ(Environment)

get UNIX environment ... 93
eof(Term)

Term = end_of_file .. 65
erase(Reference)

(Non-logical) dynamic clause Reference is removed from internal database 81
erase

[curses] (Non-logical) erase stdscr to blanks ... 116
erasechar(Ch)

[curses] Ch is the ASCII code of the terminal erase character .. 121
err(ERR)

[curses] value of curses constant ERR ... 115
exec(Program, Arguments)

execute Program with Arguments .. 94
exit(Code)

(Non-logical) NU-Prolog process terminates with Code ... 94
exp(X)

Index

exp(X) ... 57
expandTerm(Term1, Term2)

translate Term1 to Term2 using termExpansion/2 .. 89

fail
always fail .. 39

false
[compat] fail ... 104

fileErrors
(Non-logical) turn on file error messages .. 63

fileerrors
[compat] (Non-logical) turn on file error messages ... 104

findall(Term, Goal, Set)
[findall] (Non-logical) Set is a list of Terms where Goal is true 37

float(Term)
(Non-logical) Term is currently an float .. 50

float(X)
float(X) ... 57

flushOutput(Stream)
(Non-logical) flush output Stream ... 70

flush_output(Stream)
[compat] (Non-logical) flush output Stream .. 105

flushok(Win, Boolf)
[curses] (Non-logical) Set flushok flag to true(1) or false(0) .. 117

foreign(Function, Language, Specification)
foreign(Function, Specification)

Declare the way in which a foreign function is to be called ... 100
foreignFile(FileName, Functions)

Declare the foreign functions to be loaded from a file .. 101
fork
fork(Pid)

(Non-logical) fork another NU-Prolog process with the same core image 94
fork(Pid, Read, Write)

(Non-logical) fork another NU-Prolog process with the same core image 94
format(Format, Arguments)
format(Stream, Format, Arguments)

(Non-logical) formatted output ... 71
formatw(Format, Args)
formatw(Win, Format, Args)

[curses] (Non-logical) window version of format .. 117
Variable Formula
freeze(Variable, Formula)

wait until Variable is instantiated then call the subgoal Formula 35
fseek(Stream, Offset, Whence)

(Non-logical) re-position i/o Stream .. 63
ftell(Stream, Offset)

(Non-logical) determine the current position of i/o Stream ... 64
fullname(Name)

[curses] Name is the longest name of the terminal in the termcap entry 121
functor(Term, Functor, Arity)

Term has Functor and Arity ... 50
gAll Vars Goal

Index

(Non-logical) universal quantification; for all Vars, Formula is true 36
gSome Vars Goal

(Non-logical) existential quantification; for some Vars, Formula is true 36
gc

[compat] Enable garbage collection ... 105
gcguide(Parameter, Old, New)

[compat] Change garbage collection or memory management Parameter 105
get(Char)
get(Stream, Char)

(Non-logical) Char is ASCII code of first printable character from input 66
get0(Char)
get0(Stream, Char)

(Non-logical) Char is ASCII code of next character from input 66
getToken(Token, Type)
getToken(Stream, Token, Type)

(Non-logical) read the next NU-Prolog Token of Type from the input 67
getTokenList(Tokens)
getTokenList(Stream, Tokens)

(Non-logical) read the next NU-Prolog term’s worth of tokens from the input 67
getch(Ch)

[curses] (Non-logical) gets a character from the terminal ... 120
getegid(Id)

Id is the effective group ID of the current process .. 94
getenv(Name, Value)

get Value of environment variable Name .. 94
geteuid(Uid)

Uid is the users effective user ID .. 95
getgid(Id)

Id is the real group ID of the current process .. 94
getgroups(Groups)

Groups is the group access list of the user process ... 94
getl(Line)
getl(Stream, Line)

(Non-logical) Line is list of ASCII codes of next line from input 66
getlogin(Login)

Login is the users login ID .. 95
getpid(Pid)

Pid is the process ID of the current process .. 95
getppid(Pid)

Pid is the process ID of the parent of the current process .. 95
getprop(Atom, Key, Prop)

(Non-logical) unifies <Key, Prop> with each of the properties of Atom 79
getprop(Atom, Key, Prop, Reference)

(Non-logical) unifies <Key, Prop> with each of the properties of Atom 79
getpw(Name, PwEnt)

PwEnt is password entry of Name ... 95
getstr(Win, Str)

[curses] (Non-logical) gets a string form the terminal ... 120
gettmode

[curses] (Non-logical) get the ttystats .. 123
getuid(Uid)

Uid is the users real user ID .. 95

Index

getwd(Dir)
(Non-logical) Dir is the current working directory pathname ... 95

getyx(Win, Y, X)
[curses] (Non-logical) get the current (y, x) co-ordinates for Win 121

gnot(Vars, Goal)
[compat] (Non-logical) generalized negation of Goal .. 105

ground(Term)
(Non-logical) Term is currently ground ... 50

?− h
print history list .. 8

halt
[compat] (Non-logical) exit from NU-Prolog .. 105

hostname(Host)
Host is the name of the host machine ... 95

if Cond then Formula
if some Vars Cond then Formula

selection .. 32
if Cond then Formula1 else Formula2
if some Vars Cond then Formula1 else Formula2

selection .. 32
inch(Ch)

[curses] (Non-logical) get character at the current (y, x) co-ordinates of stdscr 121
incore(Goal).

[compat] call Goal .. 105
initializing

true only at load time ... 40
initscr

[curses] (Non-logical) initialize screen routines ... 121
insch(C)

[curses] (Non-logical) insert character C at current (y, x) co-ordinates of stdscr 117
?− insert Predicates where Goal

insert into database ... 9
insertln

[curses] (Non-logical) insert a line above the current one on stdscr 117
instance(Reference, Term)

(Non-logical) Term is most general instance of property given by Reference 81
instance(Reference, Key, Term)

(Non-logical) Term is most general instance of property given by Reference 81
intToAtom(Integer, Atom)

Integer is converted to/from Atom ... 51
intToString(Int, String)

String is the list of digit characters in Int .. 51
integer(Term)

(Non-logical) Term is currently an integer .. 50
integer(X)

integer(X) ... 57
intersect(Set1, Set2)

[osets] Set1 ∩ Set2 is not empty .. 107

intersect(Set1, Set2, Intersection)

[osets] Intersection = Set1 ∩ Set2 .. 107

iota(N, M, I)

Index

I is an integer between N and M inclusively ... 60
I is N

Arithmetic expression N evaluates to I .. 60
isAlnum(Char)

Char is alphanumeric .. 49
isAlpha(Char)

Char is alphabetic ... 49
isAscii(Char)

Char is an ASCII character .. 49
isAsciiL(String)

String is a list of Ascii characters .. 49
isAtom(Term)

Term is an atom ... 51
isAtomic(Term)

Term is an atom or a number .. 51
isCntrl(Char)

Char is a control character ... 49
isCompound(Term)

Term is a compound term .. 51
isCons(Term)

top-level functor in Term is ‘.’ (cons) ... 51
isConst(Term)

Term is a constant (an atom or integer) ... 51
isDigit(Char)

Char is a digit ... 49
isEof(Term)

Term = end_of_file .. 65
isExpression(Term)

Term is a valid arithmetic expression .. 51
isFloat(Term)

Term is an float .. 51
isInt(Term)

Term is an integer .. 51
isList(Term)

Term is a list .. 47
isLower(Char)

Char is lowercase ... 49
isNumber(Term)

Term is an number ... 51
isPrint(Char)

Char is printable ... 49
isPrintL(String)

String is printable ... 49
isTerm(Term)

Term is a compound term .. 51
isUpper(Char)

Char is uppercase ... 49
keySort(List, Result)
keySort(Order, List, Result)

Result is sorted List ... 47
kill(Pid, Signal)

(Non-logical) set Signal to process with Pid ... 95

Index

killchar(Ch)
[curses] Ch is the ASCII code of the line kill character for the terminal 121

leash(Mode)
(Non-logical) set leashing mode .. 45

leashCondition(Goal, Port, Condition)
hook for user-control of leashing in the debugger ... 45

leaveok(Win, Boolf)
[curses] (Non-logical) set the boolean flag leaveok to true(1) or false(0) 121

length(List, N)
List has length N .. 47

lib File
(Non-logical) load File from a library ... 77

libdirectory(File)
File is pathname of a NU-Prolog library ... 78

libraryDirectory(Dir)
Dir is pathname of a user library ... 78

libraryPredicate(Library, Predicate)
libraryPredicate(Library, Functor, Arity)

Predicate (or Functor/Arity) is a predicate in Library ... 89
lineCount(Stream,

(Non-logical) count lines on Stream .. 64
linePosition(Stream,

(Non-logical) count characters on current line on Stream ... 64
lines(LINES)

[curses] (Non-logical) accesses curses variable LINES ... 114
link(Name1, Name2)

(Non-logical) a hard link to Name1 is created with Name2 ... 95

listOfVars(Term, Vars)
(Non-logical) Vars is a list of the variables occurring in Term .. 52

listToSet(List, Set)
[osets] Set is list of ordered sorted elements of List with duplicates removed 107

listing
listing Predicate
listing [Predicate1,...,Predicaten]

(Non-logical) list dynamic predicate definitions .. 41
load(File)

(Non-logical) load object File .. 78
loadForeignFiles(Files, Libraries)

Load functions and libraries written in another programming language 101
log(X)

log(X) ... 57
log10(X)

log10(X) ... 57
longname(Name)

[curses] Name is the long name of the terminal in the termcap entry 121
man Functor
man [Functor1,...,Functorn]

(Non-logical) print information on system/library predicates with Functor 41
max(Term, Formula, Result)

Result is maximum instantiation of Term by Formula .. 33
maxDepth(N)

Index

(Non-logical) N is maximum number of nested calls .. 42
maxint

maxint ... 55
maxint(N)

N is the largest integer possible in the system .. 60
member(Element, List)

Element is a member of List .. 47
member(Element, List, SubList)

Element is a member of List and SubList is the tail of List after Element 47
merge(List1, List2, NewList)

Sorted List1 and sorted List2 are merged to give NewList .. 48

min(Term, Formula, Result)
Result is minimum instantiation of Term by Formula .. 34

minint
minint ... 55

mkdir(Dir)
(Non-logical) make a new directory Dir .. 96

N mod M
N modulo M ... 56

move(Y, X)
[curses] (Non-logical) move the cursor on stdscr to (y, x) .. 117

multiKeySort(Keys, Term, List, SortedList)
sort List of elements of form Term using Keys .. 48

muprolog
fail .. 40

mvcur(LastY, LastX, NewY, NewX)
[curses] (Non-logical) move the terminal’s cursor from (Y, X) to (NY, NX) 123

mvwin(Win, Y, X)
[curses] (Non-logical) move the home positon of Win to (Y, X) 121

my_term(Flag)
[curses] (Non-logical) flag whether to use default terminal type 114

name(Atom, List)
List is the list of characters in Atom ... 52

newwin(Lines, Cols, BeginY, BeginX)
[curses] (Non-logical) create a new window .. 122

nl
nl(Stream)

write a newline ... 72
nlon

[curses] (Non-logical) set/unset <RETURN> to <LINE-FEED> mapping 122
nlw
nlw(Win)

[curses] (Non-logical) window version of nl ... 118
noFileErrors

(Non-logical) turn off file error messages .. 64
nocbreak

[curses] (Non-logical) reset the terminal from cbreak mode ... 119
nocrmode

[curses] (Non-logical) (obsolete) same as nocbreak .. 119
nodebug

(Non-logical) turn off debugging ... 45

Index

noecho
[curses] (Non-logical) stop the terminal echoing characters .. 119

nofileerrors
[compat] (Non-logical) turn off file error messages .. 105

nogc
[compat] disable garbage collection ... 105

nonl
[curses] (Non-logical) stop <RETURN> to <LINE-FEED> mapping 122

nonlogicalPredicate(Predicate)
nonlogicalPredicate(Functor, Arity)

Predicate (or Functor/Arity) is a nonlogical system predicate ... 89
nonvar(Term)

(Non-logical) Term is not currently a variable .. 52
noraw

[curses] (Non-logical) unset the terminal from raw mode ... 120
nospy Predicate
nospy [Predicate1,...,Predicaten]

(Non-logical) removes any spypoints on predicates with Functor 45
nospyall

(Non-logical) remove all spypoints .. 45
not Formula
all Vars not Formula
not (some Vars Formula)

negation .. 30
not N

logical complement of N .. 58
notMember(NotElement, List)

NotElement is not a member of List ... 48
notrace

(Non-logical) turn off debugging ... 45
?− N

repeat goal N .. 8
number(Term)

(Non-logical) Term is currently an number ... 52
numberVars(Term, N, M)

(Non-logical) give variables in Term numbers in the range from N to M-1 90
nuprolog

true for NU-Prolog ... 40
occurs(SubTerm, Term)

(Non-logical) Term contains SubTerm .. 52
ok(OK)

[curses] value of curses constant OK ... 115
once Goal

(Non-logical) find only first solution ... 37
op(Precedence, Type, Op)

(Non-logical) declares Op to be an operator with Type and Precedence 90
open(File, Mode, Stream)

(Non-logical) open File in Mode with resulting Stream .. 64
openNullStream(Stream)

(Non-logical) Stream is unified with a null output stream .. 64
option(Value)

Index

true during compilation if Value has been set by the -F flag to nc 40
N or M

N or M .. 59
N or M

either or both of the arithmetic expressions N and M are non-zero 60
otherwise

[compat] succeed .. 105
overlay(Win1, Win2)

[curses] (Non-logical) overlay window 1 on window 2 .. 118
overwrite(Win1, Win2)

[curses] (Non-logical) overwrite window 1 on window 2 ... 118
perm(List1, List2)

List2 is a permutation of List1 .. 48

phrase(Phrase, TokenList)
Phrase is the parsing of TokenList according to the current dcgs 90

pi
pi ... 55

plus(N, M, Sum)
integers N + M = Sum ... 60

portraycl(Clause)
(Non-logical) write Clause in a suitable format ... 72

portraygoals(Goal)
(Non-logical) write Goal in a suitable format .. 72

predicateProperty(Name, Arity, Property)
Name/Arity is a system or library predicate .. 90

predicate_property(Skeleton, Property)
[compat] Functor/Arity is a system or library predicate .. 105

print(Term)
print(Stream, Term)
print(Stream, Term, Depth)
print(Stream, Term, Depth, Prec)

(Non-logical) print Term on the current output ... 72
printf(Format, List)
printf(Stream, Format, List)

(Non-logical) formatted print ... 73
processGoal(File, Goal, NameList, VarList)

[debugging] user defined goal processing .. 109
prologFlag(Flag, Value)

(Non-logical) enquires about the Value of Flag .. 90
prologFlag(Flag, Value1, Value2)

(Non-logical) change Value1 of Flag to Value2 ... 91

prolog_flag(Flag, Value1, Value2)

[compat] (Non-logical) change Value1 of Flag to Value2 ... 105

prompt
print system prompt ... 42

properties(Atom, Key, PropList)
(Non-logical) PropList is list of properties of Atom with given Key 79

?− pure Functor/Arity
define a predicate as purely declarative ... 27

pure(Functor, Arity)
predicate with Functor and Arity is pure ... 40

Index

put(Char)
put(Stream, Char)

(Non-logical) write Char on output .. 73
putatom(Term)
putatom(Stream, Term)

[compat] (Non-logical) Term is printed on output .. 106
putl(String)
putl(Stream, String)

(Non-logical) write String on output .. 73
putprop(Atom, Key, Prop)

(Non-logical) replace <Key, Prop> for Atom .. 79
putprop(Atom, Key, Prop, Reference)

(Non-logical) replace <Key, Prop> for Atom .. 79
?− r Hist

restore history list ... 8
random(Num)

Num is a random integer in the range 0 to maxint ... 60
raw

[curses] (Non-logical) set the terminal to raw mode ... 120
read(Term)
read(Stream, Term)

(Non-logical) read a Term from input ... 67
read1(Term)
read1(Stream, Term)

(Non-logical) read a Term from input ... 68
read1Term(Term, NameList, VarList)
read1Term(Stream, Term, NameList, VarList)

(Non-logical) read a Term from input with NameList and VarList 68
readTerm(Term, NameList, VarList)
readTerm(Stream, Term, NameList, VarList)

(Non-logical) read a Term from input with NameList and VarList 68
record(Key, Term, Ref)

(Non-logical) Ref refers to Term asserted as last attached to Key 82
recorda(Key, Term, Ref)

(Non-logical) Ref refers to Term asserted as first attached to Key 82
recorded(Key, Term)

(Non-logical) Term is in the database as last attached to Key .. 82
recorded(Key, Term, Ref)

(Non-logical) Ref refers to Term in the database as last attached to Key 82
recordz(Key, Term, Ref)

(Non-logical) Ref refers to Term asserted as last attached to Key 82
refresh

[curses] (Non-logical) synchronize the terminal screen with stdscr 118
remprop(Atom, Key)

(Non-logical) remove all properties of Atom with Key .. 80
remprop(Atom, Key, Prop)

(Non-logical) remove all properties of Atom with Key which unify with Prop 80
rename(Old, New)

(Non-logical) the link named Old takes the name New .. 96
repeat

(Non-logical) always succeeds, even on backtracking ... 39
resetty

Index

[curses] (Non-logical) recover the state of the tty characteristic flags 123
restart

(Non-logical) return to top level .. 42
retract(Clause)

(Non-logical) remove Clause from database .. 82
retractall(Head)

(Non-logical) remove all clauses whose heads match Head .. 82
retractall(Functor, Arity)

(Non-logical) remove all clauses where head has Functor/Arity 82
reverse(ForwList, BackList)

BackList is the reverse of ForwList ... 48
revise
revise(File)
revise(Pred)

(Non-logical) revise program by recompilation ... 18
rmdir(Dir)

(Non-logical) remove the directory Dir ... 96
round(X)

round(X) ... 57
?− s Hist

save history list .. 9
savetty

[curses] (Non-logical) save the current state of the tty characteristic flags 123
scroll(Win)

[curses] (Non-logical) scroll the window Win up one line ... 123
scrollok(Win, Boolf)

[curses] (Non-logical) set scrolok flag for window Win ... 122
see(File)

(Non-logical) switch current input to File ... 68
seeing(Stream)

(Non-logical) Stream is the current input stream ... 68
seen

(Non-logical) close the current input stream, which reverts to user_input 68
setEq(Set1, Set2)

[osets] Set1 is same as Set2 .. 107

setInput(Stream)
(Non-logical) set current input to Stream .. 64

setMember(Element, Set)
[osets] Element is a member of Set ... 107

setOutput(Stream)
(Non-logical) set current output to Stream .. 65

set_input(Stream)
[compat] (Non-logical) set current input to Stream ... 106

set_output(Stream)
[compat] (Non-logical) set current output to Stream ... 106

setarg(N, Term, SubTerm)

Nth argument of Term is replaced with SubTerm .. 53
setof(Term, Goal, Set)

(Non-logical) Set is a list of Term where Goal is true .. 37
setterm(Name)

[curses] (Non-logical) set the terminal characteristics to those of Name 123

Index

sformat(Format, Arguments, String)
(Non-logical) formatted output to a string ... 73

sh
(Non-logical) invoke UNIX shell sh .. 96

signal(Signal, Action)
(Non-logical) set Action for Signal .. 96

sin(X)
sin(X) .. 56

skip(Bound)
skip(Stream, Bound)

(Non-logical) reads characters from input until character Bound appears 69
sleep(Seconds)

sleep for Seconds ... 96
solutions(Term, Formula, Set)
solutions(Term, some Vars Formula, Set)

Set is a sorted list of Terms where Formula is true .. 33
some Vars Formula

existential quantification; for some Vars, Formula is true .. 30
sort(List, SortedList)

(Non-logical) sort List into SortedList ... 48
sorted(List)

List is sorted ... 48
sourceFile(File)
sourceFile(Pred, Arity, File)

File is a loaded source file (containing Pred/Arity) ... 65
spy Predicate
spy [Predicate1,...,Predicaten]

(Non-logical) place a spypoint on Predicate .. 46
spyCondition(Goal, Port, Condition)

hook for user-control of spypoints ... 46
spyHook(Info, Goal)

hook for user-access to debugging goals ... 46
sqlAccess(Database, Vars, Query)

(Non-logical) give optimised Query to UNIFY database to bind Vars 87
sqlModify(Database, Query)

(Non-logical) modify UNIFY Database with Query .. 87
sqlQuery(Database, PredList)

(Non-logical) retrieve bindings for PredList from UNIFY Database 87
sqrt(X)

sqrt(X) .. 57
sread(String, Term)

(Non-logical) parse String to give Term .. 69
sreadTerm(String, Term, NameList, VarList)

(Non-logical) parse String yielding Term, NameList and VarList 69
standend

[curses] (Non-logical) end standout mode ... 118
standout

[curses] (Non-logical) put stdscr in standout mode ... 118
stat(Path, Status)

(Non-logical) Status is information about Path ... 97
statistics

Index

(Non-logical) print NU-Prolog’s use of resources ... 91
statistics(Statistics)

(Non-logical) Statistics is information about resources used ... 91
stdscr(Win)

[curses] (Non-logical) Win is a window descriptor for stdscr ... 114
streamEof(Stream)

(Non-logical) Stream is at end of file .. 65
streamPosition(Stream, OldPosition, NewPosition)

(Non-logical) move Stream to a new position, returning the old position 65
subGoalOf(S)

(Non-logical) S is an ancestor of the current goal ... 42
subgoal_of(Goal)

[compat] NYI. (Non-logical) current goal is a subgoal of Goal .. 106
subset(Set1, Set2)

[osets] Set1 is a subset of Set2 ... 107

subtract(Set1, Set2, Difference)

[osets] Difference is Set1 less elements of Set2 ... 108

subwin(Win, Lines, Cols, BeginX, BeginY, NewWin)
[curses] (Non-logical) create a new subwindow .. 122

suffix(List, Suffix)
Suffix is a suffix List ... 48

sum(Summand, Term, Formula, Result)
Result is the sum of the instantiations of Summand ... 34

symdiff(Set1, Set2, Diff)

[osets] Diff is the symmetric difference of Set2 and Set1 .. 108

system(Command)
(Non-logical) call the UNIX shell sh with Command ... 97

system(Command, Status)
(Non-logical) Command is executed under UNIX and exit Status returned 97

system(Program, Arguments, Status)
execute Program with Arguments and return exit Status .. 97

systemPredicate(Predicate)
systemPredicate(Functor, Arity)

Predicate (or Functor/Arity) is a system predicate .. 91
tab(N)
tab(Stream, N)

(Non-logical) write N spaces ... 74
tan(X)

tan(X) ... 56
tell(File)

(Non-logical) switches current output to File .. 74
telling(Stream)

(Non-logical) Stream is current output stream ... 74
term(Term)

(Non-logical) Term is currently a compound term .. 52
termCompare(Comp, Term1, Term2)

logical term comparison ... 54
termExpansion(Term1, Term2)

translation of Term1 to Term2 used by expandTerm/2 .. 89

termToString(Term, String)

Index

termToString(Flags, Term, String)
(Non-logical) converts Term to String ... 52

throw(Result)
(Non-logical) unwind the stack until a matching catch/2 is found 43

time(Time)
(Non-logical) Time is the current time .. 97

time(When, Time)
(Non-logical) Time is the decoded form of When .. 98

times(N, M, Prod)
integers N * M = Prod ... 61

tokenize(StringIn, Token, Type, StringOut)
tokenize(String, Tokens)

(Non-logical) read one or more Tokens and Types from a String 69
told

(Non-logical) closes the current output stream which reverts to user_output 74
touchline(Win, Y, StartX, EndX)

[curses] (Non-logical) mark line as changed ... 122
touchoverlap(Win1, Win2)

[curses] (Non-logical) mark overlap of window Win2 as changed 122
touchwin(Win)

[curses] (Non-logical) mark the window Win as completely changed 122
trace

(Non-logical) turn on trace mode ... 46
tread(TokenList, Term)

(Non-logical) parse TokenList to give Term ... 69
treadTerm(TokenList, Term, NameList, VarList)

(Non-logical) parse TokenList yielding Term, NameList and VarList 69
trimcore

[compat] release free space from data areas .. 106
true

succeed ... 39
truncate(File, Length)

(Non-logical) File is truncated to be at most Length characters 98
tstp

[curses] (Non-logical) save the current ttystate and put the process to sleep 123
ttyflush

(Non-logical) flush(user_output) .. 74
ttyget(Char)

(Non-logical) get(user_input, Char) ... 69
ttyget0(Char)

(Non-logical) same as get0(user_input, Char) ... 70
ttynl

(Non-logical) nl(user_output) ... 74
ttyput(Char)

(Non-logical) put(user_output, Char) ... 74
ttyskip(Bound)

(Non-logical) skip(user_input, Bound) ... 70
ttytab(N)

(Non-logical) tab(user_output, N) .. 74
umask(Umask)

(Non-logical) set default file creation mask to Umask .. 98
unctrl(Ch, Str)

Index

[curses] (Non-logical) get string representation of Ch ... 122
union(Set1, Set2, Union)

[osets] Union = Set1 union Set2 ... 108

unlink(Path)
(Non-logical) Remove the entry for Path from its directory ... 98

?− update Var1 to Term1, ... in Predicates where Goal

update database ... 10
?− useIf Goal
?− useElse
?− useEnd

conditional compilation .. 40
var(Term)

(Non-logical) Term is currently a variable .. 52
varNumbers(TermIn, TermOut)

(Non-logical) TermOut is TermIn with terms $VAR(Num) replaced by variables 92
waddch(Win, Ch)

[curses] (Non-logical) add Ch to the window Win at current (y, x) 115
waddstr(Win, Str)

[curses] (Non-logical) add Str to the window Win at the current (y, x) 115
wait(Pid, Status)

(Non-logical) wait until process Pid terminates with Status ... 98
waitedOn(Term, Vars)

(Non-logical) Vars is a list of variables on which goals may be delayed 53
wclear(Win)

[curses] (Non-logical) clear window Win to blanks .. 115
wclrtobot(Win)

[curses] (Non-logical) clear the window win from the current (y, x) to the bottom 116
wclrtoeol(Win)

[curses] (Non-logical) clear the current line of the window Win to the end 116
wdelch(Win)

[curses] (Non-logical) delete the character at the current (y, x) on the window Win 116
wdeleteln(Win)

[curses] (Non-logical) delete the current line of the window Win 116
werase(Win)

[curses] (Non-logical) erase the window Win ... 117
wgetch(Win,

[curses] (Non-logical) get a character from the window Win ... 120
wgetstr(Win, Str)

[curses] (Non-logical) get a string from the window Win ... 120
?- Head when Body

when declaration for a predicate .. 35
winch(Win, Ch)

[curses] (Non-logical) get the character at the current (y, x) co-ordinates of Win 121
winsch(Win, C)

[curses] (Non-logical) insert the character C at the current (y, x) co-ordinates of Win 117
winsertln(Win)

[curses] (Non-logical) insert a line above the current one on the window Win 117
wmove(Win, Y, X)

[curses] (Non-logical) change the current (y, x) co-ordinates of window Win to (Y, X) . 118
wrefresh(Win)

[curses] (Non-logical) synchronize the terminal screen with the window Win 118

Index

write(Term)
write(Stream, Term)

(Non-logical) write a Term on output .. 75
writeCanonical(Term)
writeCanonical(Stream, Term)

(Non-logical) write a Term on output so that it can be read back in 75
writeln(Term)
writeln(Stream, Term)

(Non-logical) write a Term followed by a newline on output ... 75
writelnw(Term)
writelnw(Win, Term)

[curses] (Non-logical) window vesions of writeln/2, writeln/3 ... 119
writeq(Term)
writeq(Stream, Term)

(Non-logical) write a Term on output using operator declarations 76
writev(Flags, Term)
writev(Stream, Flags, Term)

(Non-logical) write a Term on output using Flags .. 76
writevw(Flags,
writevw(Win, Flags, Term)

[curses] (Non-logical) window vesions of writev/2, writev/3 .. 119
writew(Term)
writew(Win, Term)

[curses] (Non-logical) window vesions of write/2, write/3 ... 119
wstandend(Win)

[curses] (Non-logical) end standout mode for Win ... 119
wstandout(Win)

[curses] (Non-logical) enter standout mode for Win ... 118
Term1 ∼= Term2
all Vars Term1 ∼= Term2

not equals ... 31

