COMP 605: Introduction to Parallel Computing Lecture : CUDA Matrix-Matrix Multiplication

Mary Thomas
Department of Computer Science Computational Science Research Center (CSRC)
San Diego State University (SDSU)

Posted: 04/25/17
Last Update: 04/25/17

Table of Contents

(1) CUDA Matrix Multiplication

- Matrix-Matrix Multiplication - CUDA Approach
- CUDA MatMul Code

Matrix-Matrix Multiplication (Mat-Mat-Mult)

2D Matrix-Matrix Multiplication (Mat-Mat-Mult)

```
/* Serial_matrix_mult */
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
        C[i][j] = 0.0;
        for (k = 0; k < n; k++)
            C[i][j] = C[i][j] + A[i][k]*B[k][j];
    printf(...)
}
```

Where:
A is an [$m \times k$] matrix
B is a $[k \times n]$
C is a matrix with the dimensions [$m \times n$]

2D Matrix-Matrix Multiplication (Mat-Mat-Mult)

Definition: Let A be an [$m \times k$] matrix, and B be a be an [$k \times n$], then C will be a matrix with the dimensions $[m \times n$].

Then $A B=\left\lfloor c_{i j}\right\rfloor$, and

$$
c_{i j}=\sum_{t=1}^{k} a_{i t} b_{t j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{k 1} b_{k j}
$$

$$
=\left[\begin{array}{cccc}
c_{00} & \ldots & c_{1 j} & \ldots \\
\ldots & c_{1, n-1} \\
c_{0} & \ldots & c_{\mathrm{ij}} & \ldots \\
\ldots & c_{i, n-1} \\
c_{m-1,0} & \ldots & c_{m j} & \ldots
\end{array} c_{m-1, n-1} .[]\right.
$$

$$
c_{12}=a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}
$$

Recall: Defining GPU Threads and Blocks

- Looking at Device: Nvidia Tesla C1060
- Kernels run on GPU threads
- Grid: organized as 2D array of blocks:
- Maximum sizes of each dimension: [gridDim. $x \times$ gridDim. $\mathrm{y} \times$ gridDim.z]

$$
=(65,536 \times 65,536 \times 1) \text { blocks }
$$

- Block: 3D collection of threads
- Max threads per block: 512
- Max thread dimensions: $(512,512,64)$
[blockDim. x * blockDim.y * blockDim.z]
MaxThds/Block ≤ 1024
- threads composing a thread block must:
- execute the same kernel
- share data: issued to the same core
- Warp: group of 32 threads; min size of data processed in SIMD fashion by CUDA multiprocessor.

Source: http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview

Matrix Mult: linear mapping of a 2D matrix in C.

- CUDA does not allow run-time allocation of a 2D matrix
- C memory mapping is row - major order.
- Index for accessing matrix M in the inner loop:
$M[i \times$ width $+k]$
- Need to linearize the array in row - major order, into a vector which can be dynamic.

Memory Layout of a Matrix in C

$M_{0,0}$	$M_{1,0}$	$M_{2,0}$	$M_{3,0}$
$M_{0,1}$	$M_{1,1}$	$M_{2,1}$	$M_{3,1}$
$M_{0,2}$	$M_{1,2}$	$M_{2,2}$	$M_{3,2}$
$M_{0,3}$	$M_{1,3}$	$M_{2,3}$	$M_{3,3}$

- 1 D array, where Element[row][col] is element [row*width+col]
- Thread mapping: intx $=$ threadldx.x + blockldx. $x *$ blockDim. x;

Mapping Serial Code to Threads

Map this code:

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ;++i) \\
& \quad \text { for }(j=0 ; j<m ;++j) \\
& \quad \text { for }(k=0 ; k<p ;++k) \\
& \quad a\left[i+n^{*} j\right]+=b\left[i+n^{*} k\right] * c\left[k+p^{*} j\right] ;
\end{aligned}
$$

$a_{1,2}=b_{1,1}{ }^{*} c_{1,2}+b_{1,2} * c_{2,2}$
into this (logical) architecture:

Source: http://www.hpcwire.com/features/Compilers_and_More_ Optimizing_GPU_Kernels.html

Programming Model

Programming Model:
 Square Matrix Multiplication Example

- $\mathrm{P}=\mathrm{M}$ * N of size WIDTH x WIDTH
- Without tiling:
- One thread calculates one element of P
- M and N are loaded WIDTH times from global memory
$P=M \times N$ is a dot product
Each dot product is independent of all the others.

Matrix Mult: Serial C code (K\&H)

Calculating $P[i][j]=P[i][j]+M[i][k] \times N[k][j]$

Matrix-Multiplication Algorithm for GPU/CUDA Host.

```
void MatrixMultiplication(float* M, float* N, float* P, int Width)
{
    int size=Width * Width * sizeof(float);
    float* Md,Nd, Pd;
1. // Allocate device memory for M, N, and P
    // copy M and N to allocated device memory locations
2. // Kernel invocation code - to have the device to perform
    // the actual matrix multiplication
3. // copy P from the device memory
    // Free device matrices
}
```

Host uses CudaMalloc to allocate memory on the device globalmemory space.

Cuda Device Memory Model

- Host and device have separate memories.
- Host can only copy to/from global memory and constant memory
- cudaMalloc()
- cudaFree()
- cudaMemсру()

Matrix-Multiplication Algorithm for GPU/CUDA Host.

Host code showing cudaMalloc calls.

```
void MatrixMultiplication(float* M, float* N, float* P, int Width)
{
    int size=Width * Width * sizeof(float);
    float*Md,Nd, Pd;
1. // Transfer M and N to device memory
    cudaMalloc((void**) &Md, size);
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
    cudaMalloc((void**) &Nd, size);
    cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
    // Allocate P on the device
    cudaMalloc((void**) &Pd, size);
2. // Kerne1 invocation code - to be shown later
3. // Transfer P from device to host
    cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);
    // Free device matrices
    cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
}
```


GPU Kernel Function

David KirkNVIDIA and Wen-mel W. Hwu, UIUC

Current code only uses threadldnx, so can only use 1 block.

Kernel Invocation and Copy Results

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);
// Launch the device computation threads!
MatrixMulKernel《<<dimGrid, dimBlock>>>(d_M, d_N, d_P, Width);
// Copy back the results from device to host cudaMemcpy(P, d_P, matrix_size, cudaMemcpyDeviceToHost);
// Free up the device memory matrices
cudaFree(d_P);
cudaFree(d_M);
cudaFree(d_N);

Only One Thread Block Used

- One Block of threads compute matrix d_P
- Each thread

」 Loads a row of matrix d_M

- Loads a column of matrix d_N
- Perform one multiply and addition for each pair of d, M and d_s elements
- Computes one element of d_p

> Size of matrix limited by the number of threads allowed in a thread block

Handling Arbitrary Sized Square Matrices

Solution 1: Give Each Thread More Work

Each thread is assigned to a Tile of TILE_WIDTHxTILE_WIDTH entries

Solution 1: Give Each Thread More Work

```
__global__ void MatrixMulKernel(float* d_M,
    float* d_N;
    float* d_Pr
    int Width) {
    int start_row = threadIdx.y * TILE_WIDTH;
    int end_row = start_row + TILE_WIDTH;
    int start_col = threadIdx.x * TILE_WIDTH;
    int end_col = start_col + TILE_WIDTH;
    for (int row = start_row; row < end_row; row++) {
        for(int col = start_col; col < end_col; col++) {
            float P_val = 0;
        for (int k = 0; k < Width; ++k) {
            float M_elem = d_M[row * Width + k];
            float N_elem = d_N[k * Width + col];
                P_val += M_elem * N_elem;
            } With one block we utilize
            d_p[row*Width+col] = P_val; only one multiprocessor!
        }
    }
```


Solution 2: Use Multiple Thread Blocks

Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
- Each thread calculates one element
- Block size equal tile size
- Have each 2D thread block to compute a (TILE_WIDTH) ${ }^{2}$ submatrix (tile) of the result matrix
- Each has (TILE_WIDTH)threads
- Generate a 2D Grid of (WIDTH/TILE_WIDTH)²blocks

You still need to put a loop around the kernel call for cases where WIDTH/TILE_WIDTH is greater than max grid size (64K)!

Matrix-Multiplication Using 2×2 Block Grid

Block $(0,0)$	$\operatorname{Block}(1,0)$			
$\mathrm{P}_{0,0}$	$\mathrm{P}_{1,0}$	$\mathrm{P}_{2,0}$	$\mathrm{P}_{3,0}$	TILE_WIDTH = 2
$\mathrm{P}_{0,1}$	$\mathrm{P}_{1,1}$	$\mathrm{P}_{2,1}$	$\mathrm{P}_{3,1}$	
$\mathrm{P}_{0,2}$	$\mathrm{P}_{1,2}$	$\mathrm{P}_{2,2}$	$\mathrm{P}_{3,2}$	
$\mathrm{P}_{0,3}$	$\mathrm{P}_{1,3}$	$\mathrm{P}_{2,3}$	$\mathrm{P}_{3,3}$	
$\operatorname{Block}(0,1)$				

Matrix-Multiplication - Thread Actions

A Small Example: Multiplication

Matrix-Multiplication using multiple thread blocks

int block_size $=64$;
// Setup the execution configuration dim3 dimGrid(Width/block_size, Width/block_size); dim3 dimBlock(block_size, block_size);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(d_M, d_N, d_P, Width);

Size of matrix limited by the number of threads allowed on a device

Matrix-Multiplication using multiple thread blocks

```
__global
void MatrixMulKernel(float* d_M,
            float* d_N,
            float* d_Pr
            int Width) {
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    float P_val = 0;
    for (int k = 0; k < Width; ++k) {
        float M_elem = d_M[row * Width + k];
        float N_elem = d_N[k * Width + col];
        P_val += M_elem * N_elem;
    }
    d_p[row*Width+col] = P_val;
}
```


Combining the Two Solutions

Combining the Two Solutions

```
_global__ void MatrixMulKernel(float* d_M,
    float* d_N,
    float* d_P,
    int Width) {
    int start_row = blockDim.y * blockIdx.y + threadIdx.y * TILE_WIDTH;
    int end_row = start_row + TILE_WIDTH;
    int start_col = blockDim.x * blockIdx.x + threadIdx.x * TILE_WIDTH;
    int end_col = start_col + TILE_WIDTH;
    for (int row = start_row; row < end_row; row++) {
        for(int col = start_col; col < end_col; col++) {
            float P_val = 0;
            for (int k = 0; k < Width; ++k) {
                        float M_elem = d_M[row * Width + k];
                        float N_elem = d_N[k * Width + col];
                        P_val += M_elem * N_elem;
            }
            d_p[row*Width+col] = P_val;
        }
    }
}
```


Transparent Scalability

- Hardware is free to assign blocks to any processor at any time, given the resources
- A kernel scales across any number of parallel processors
- When less resources are available, hardware will reduce the number of blocks run in parallel (compare right with left block assignment below)

G80 Example: Executing Thread Blocks

G80 Example: Thread Scheduling

- Each Block is executed as 32-thread Warps
- An implementation decision, not part of the CUDA programming model
- Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
- Each Block is divided into 256/32 = 8 Warps
- There are 8 * 3 = 24 Warps

G80 Example: Thread Scheduling (Cont.)

- SM implements zero-overhead warp scheduling
- Effectively provides for latency hiding (memory waits, etc.)
- At any time, only one of the warps is executed by SM
- Warps whose next instruction has its operands ready for consumption are eligible for execution
- Eligible Warps are selected for execution on a prioritized scheduling policy
- All threads in a warp execute the same instruction when selected

G80 Block Granularity Considerations

- For Matrix Multiplication using multiple blocks, should I use $8 \mathrm{X} 8,16 \mathrm{X} 16$ or 32 X 32 blocks?
- For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM! This will lead to under-utilization (bad for latency hiding).
- For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule.
- For 32X32, we have 1024 threads per Block. Not even one can fit into an SM!

