
COMP 605: Introduction to Parallel Computing
Quiz 4:Module 4 Quiz: Comparing CUDA
and MPI Matrix-Matrix Multiplication

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Due: 05/12/17
Updated: May 13, 2017

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 2/15 Mary Thomas

Table of Contents

1 Quiz #4, Comparing MPI and CUDA Matrix-Matrix Multiplication
2 General Instructions
3 Comparing MPI and CUDA
4 CUDA Compiler support for doubles

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 3/15 Mary Thomas

Quiz #4, Comparing MPI and CUDA Matrix-Matrix Multiplication

Comparing an MPI and CUDA Mat-Mat-Mult

You may work with another member of the class on this project.

Objective:

Develop and test a CUDA Matrix-Matrix Multiplication code
Compare your CUDA results to MPI reference data
All input and source code can be found in /COMP605/quiz4/

Serial mat-mat-mult.c available in /COMP605/quiz4/

MPI mat-mat-mult:

you do not need to run any MPI code
you can use the reference data provided in the quiz directory
MPI version in Pacheco text, Parallel Programming with MPI, Ch7.

CUDA mat-mat-mult source code:

Your may write your own code, or modify existing code.
Working CUDA source code provided in /COMP605/quiz4/:

CUDA Toolkit (and other sources):
http://docs.nvidia.com/cuda/cuda-samples/index.html

Nitin Gupta (Nvidia developer):
http://cuda-programming.blogspot.com/2013/01/

cuda-c-program-for-matrix-addition-and.html

http://docs.nvidia.com/cuda/cuda-samples/index.html
http://cuda-programming.blogspot.com/2013/01/cuda-c-program-for-matrix-addition-and.html
http://cuda-programming.blogspot.com/2013/01/cuda-c-program-for-matrix-addition-and.html

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 4/15 Mary Thomas

General Instructions

Programming Instructions

Generate input matrices A & B from within code

All key variables and filenames read from command line

Matrix size N and allocations should be dynamic

Vary #threads/block for a given N (see Figure 2 below).

Use cuda properties to check that your matrix fits on the device and
to set the device

All jobs should be run using batch scripts

For small test cases (< 10), include logic to print out examples of A,
B, and C.

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 5/15 Mary Thomas

General Instructions

Vary the size of the matrices using square [Ni × Ni] matrices

Vary #CUDA threads: use square grid/block/thread distribution

Recall: GPU hardware limits the number of blocks per grid and the
number of threads per block

Larger problems require use of both grid and blocks

Need to control the number of threads, since they are smaller

Fix number of threads and distributed chunks along the blocks:
add<<<128,128>>>(dev_a, dev_b, dev_c);

add<<<h_N,h_N>>>(dev_a, dev_b, dev_c);

add<<<ceil(h_N/128),128>>>(dev_a, dev_b, dev_c);

add<<<(h_N+127)/128,128>>>(dev_a, dev_b, dev_c);

if maxTh == maximum number of threads per block:
add<<<(h_N+(maxTh-1))/maxTh, maxTh>>>(dev_a, dev_b, dev_c);

Compute thread index as:
tid = threadIdx .x + blockIdx .x ∗ blockDim.x ;

$tid = threadIdx.x + blockIdx.x * blockDim.x;$

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 6/15 Mary Thomas

General Instructions

Performance

keep track of what node/core you used (set the device)

Timing:

Time critical blocks (Twall) or (Tkernel)
Compare MPI CPU to GPU timings.

What is the largest #threads you were able to test? What
happened, why do think this happened

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 7/15 Mary Thomas

General Instructions

Suggestions on what to Report/Turn in for both
problems:

Create the homework directory USER/quiz/q4 with correct access
permissions.

Short lab report with comments, figures and table labels.

Explain your results for Thread and ProbSize scaling.

Include relevant tables of your test data

Evidence you ran your jobs using the batch queue (short/small job);
examples of batch scripts

Plots of key results.

A copy of your code (single spaced, two sided, two column format is
OK).

Reference key sources of information in your report and code where
applicable.

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 8/15 Mary Thomas

Comparing MPI and CUDA

Comparing MPI and CUDA

You cannot directly compare scaling for MPI #cores against CUDA
number of threads.

You can compare common run-time characteristics and variables:

All runs can have same (or close) problem sizes
All runs can be timed
Identify Toptimal for each programming model:

Toptimal is defined as the point where increasing the number of
processors or the number of threads/block no longer
significantly reduces the run-time (’turnover’ point).

Figures 1 & 2: determining Toptimal for MPI and CUDA
programming models.

Figure 3: comparison of Toptimal for the two programming models .

Figures 4-6: MPI reference data provided for this assignment.

Note: Figures are not for mat-mat-mul, so your data values may
differ, but the trends should not change.

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 9/15 Mary Thomas

Comparing MPI and CUDA

Figure 1: The figure above shows the run-time as a function of the number of
processors, for different problem sizes,using MPI. The run time decreases as the
number of cores increases, up to a limit where there is not much improvement.
In this case, Toptimal 16 cores

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 10/15 Mary Thomas

Comparing MPI and CUDA

Example Comaring MPI and CUDA

Figure 2: Twall for different Nthreads/block vs Dim. The figure above shows the
run-time as a function of the number of threads per block, for different
problem sizes, using CUDA. The run time decreases as the number of threads
per block increases, up to a limit where there is not much improvement. In this
case, Toptimal = 64 threads/block.

Source: Fall 2012: G. Pham

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 11/15 Mary Thomas

Comparing MPI and CUDA

Figure 3: Toptimal as a function of matrix size for MPI and CUDA/GPU tests.
The figure above shows that for a given problem size, Toptimal for the GPU
programming model is better that MPI. This problem is for a matrix-matrix
multiplication problem.

Source: Fall 2012: G. Pham

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 12/15 Mary Thomas

Comparing MPI and CUDA

MPI Matrix-Matrix Multiplication ref data

Cores 420 1260 1680 2520 3360 4200 5040
1 7.78E%01 2.56E+01 6.91E+01 2.34E+02 4.98E+02 1.09E+03 1.88E+03
4 1.96E%01 5.61E+00 1.37E+01 5.85E+01 1.37E+02 2.71E+02 4.66E+02
9 1.10E%01 2.35E+00 6.84E+00 2.39E+01 5.91E+01 1.25E+02 2.10E+02
16 6.28E%02 1.64E+00 3.68E+00 1.38E+01 3.30E+01 8.05E+01 1.39E+02
25 4.88E%02 1.45E+00 3.52E+00 8.23E+00 3.00E+01 6.79E+01 8.67E+01
36 9.40E%02 9.70E%01 2.43E+00 8.23E+00 2.20E+01 4.08E+01 7.58E+01
49 4.01E%02 7.08E%01 1.98E+00 4.59E+00 1.25E+01 2.49E+01 3.99E+01

Figure 4: MPI Matrix-Matrix Multiplication ref data. The Table shows the
runtime (in seconds) as a function of the number of processors for different
matrix sizes.

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 13/15 Mary Thomas

Comparing MPI and CUDA

MPI Matrix-Matrix Multiplication ref data

Figure 5: MPI Matrix-Matrix Multiplication ref data: Curves show the runtime
(in seconds) as a function of the matrix size for different number processors.

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 14/15 Mary Thomas

Comparing MPI and CUDA

MPI Matrix-Matrix Multiplication ref data

Figure 6: MPI Matrix-Matrix Multiplication ref data. The Table shows the
runtime (in seconds) as a function of the number of processors (Cores) vs
matrix size M, for matrices of dimension [MxM].

COMP 605: Quiz 4 Due: 05/12/17 Updated: May 13, 2017 15/15 Mary Thomas

CUDA Compiler support for doubles

The CUDA Compiler support for doubles: nvcc

you can install CUDA toolkit, compile code without a GPU device.

To compile use: nvcc

NOTE: CUDA does not support doubles on the device by
default: You need to add the switch ”-arch sm 13” (or a higher
compute capability) to your nvcc command:

[mthomas/dblTst]

[mthomas/dblTst]nvcc -o dblTst dblTst.cu

nvcc warning : The ’compute_10’ and ’sm_10’ architectures are

deprecated, and may be removed in a future release.

ptxas /tmp/tmpxft_00006578_00000000-5_dblTst.ptx, line 76;

warning : Double is not supported. Demoting to float

[mthomas/dblTst]

[mthomas/dblTst]

[mthomas/dblTst] nvcc -arch=sm_13 -o dblTst dblTst.cu

[mthomas/dblTst]

	Quiz #4, Comparing MPI and CUDA Matrix-Matrix Multiplication
	General Instructions
	Comparing MPI and CUDA
	CUDA Compiler support for doubles

