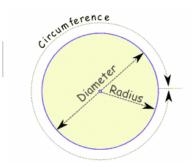
COMP 605: Introduction to Parallel Computing Homework 6: GPU/CUDA Programming: Calculating PI and Prime Numbers.

Mary Thomas

Department of Computer Science Computational Science Research Center (CSRC) San Diego State University (SDSU)

> Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017

COMP 605:	Homework 6	Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017	2/11	Mary Thomas


Table of Contents

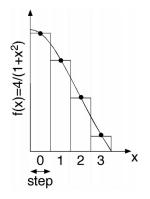
HW #6, P1: Using Numerical Integration to Estimate π
 HW #6, P2: Calculating Prime Numbers
 What to Report/Turn in for both problems:
 CUDA Compiler support for doubles

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 3/11 Mary Thomas HW #6, P1: Using Numerical Integration to Estimate π

HW #6, P1: Using Numerical Integration to Estimate

 π

$$\pi = \frac{\text{Circumference of a Circle}}{\text{Diameter of a Circle}}$$


Image Source: http://www.mathsisfun.com/numbers/pi.html

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 4/11 Mary Thomas HW #6. P1: Using Numerical Integration to Estimate π

HW #6, P1: Using Numerical Integration to Estimate

 π

- Integral representation for π $\int_0^1 dx \frac{4}{1+x^2} = pi$
- Discretize the problem: $\Delta = 1/N : step = 1/N_{areas}$ $x_i = (i + 0.5)\Delta(i = 0, \dots, N_{areas} - 1)$ $\sum_{i=0}^{N-1} \frac{4}{1+x_i^2}\Delta \cong \pi$

 π Formulae: http://en.wikipedia.org/wiki/Approximations_of_pilmage: http://cacs.usc.edu/education/cs596/mpi-pi.pdf

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 5/11 Mary Thomas HW #6. P1: Using Numerical Integration to Estimate π

HW #6, P1: Using Numerical Integration to Estimate

π

```
#include <stdio.h>
#define NAREA 1000000
void main() {
    int i; double step,x,sum=0.0,pi;
    step = 1.0/NAREA;
    for (i=0; i<NAREA; i++) {</pre>
        x = (i+0.5)*step;
        sum += 4.0/(1.0+x*x):
     }
    pi = sum*step;
    printf(PI = \%f \ printf();
}
```

 $\begin{array}{cccc} \text{COMP 605:} & \text{Homework} & 6 & \text{Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017} & 6/11 & \text{Mary Thomas} \\ \text{HW \#6, P1: Using Numerical Integration to Estimate π} \end{array}$

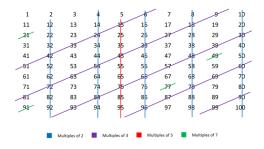
HW #6, P1: Instructions

- Write a CUDA program that uses *numerical integration* to estimate π .
- Find a reference value for π to the limits of a double precision number.
- Estimate π to the limits of a double precision number.
- Calculate the value for π as a function of the number or areas used and number of threads.
- Calculate the error of your estimate: $Err = \pi_{ref} \pi_{measured}$
- Use double precision for all calculations and outputs.

HW #6, P1: Instructions (cont.)

- Parse all key variables from the command line.
- Run the jobs using the batch queue
- ProbSize Scaling:
 - Choose N_{areas} to allow scaling from appx 10^3 to $> 10^7$ or greater.
- Thread scaling:
 - Vary the total number of threads on the GPU Device.
 - Vary the total number of threads by changing the number of threads-per-block and blocks-per-grid (e.g.):

int threadsperblock=atoi(argv[1]); /* read num thds from command line */
blocksPerGrid = imin(32, (N+threadsPerBlock-1) / threadsPerBlock);
add<<<blocksPerGrid,threadsPerBlock>>(dev_a, dev_b, dev_c);


- What is the max number of total threads you can use and why?
- Time the job runs to check that you getting the proper scaling.

HW #6, P2: Calculating Prime Numbers

COMP 605

HW #6, P2: Calculating Prime Numbers

- Develop a CUDA-based version of the Sieve of Eratosthenes approach to calculate all the prime numbers below some number N.
- Determine $N = [1, 2, 3, ..., N_{max}]$ that can run on your device.
- Run jobs using the batch queue.

Img Src: http://mathworld.wolfram.com/SieveofEratosthenes.html

HW #6, P2: Instructions (cont.)

- Parse all key variables from the command line.
- Run the jobs using the batch queue
- ProbSize Scaling:
 - $\, \bullet \,$ Choose ${\it N_{areas}}$ to allow scaling from appx $10^3 \mbox{ to } > \mbox{ } 10^7 \mbox{ or greater}.$
- Thread scaling: vary the total number of threads (*Thds*_{total}) on the GPU Device:
 - Vary *Thds*_{total} by changing the number of threads-per-block and blocks-per-grid:

int threadsperblock=atoi(argv[1]); /* read num thds from command line */
blocksPerGrid = imin(32, (N+threadsPerBlock-1) / threadsPerBlock);
add<<<blocksPerGrid,threadsPerBlock>>(dev_a, dev_b, dev_c);

- What is the max number of total threads you can use and why?
- Time the job runs to check that you getting the proper scaling.

What to Report/Turn in for both problems:

What to Report/Turn in for both problems:

- Create the homework directory USER/hw/hw5 with correct access permissions.
- Short lab report with comments, figures and table labels.
- Explain your results for Thread and ProbSize scaling.
- Include relevant tables of your test data
- Evidence you ran your jobs using the batch queue (short/small job); examples of batch scripts
- Plot the runtime as a function of the number of threads and probsize.
- A copy of your code (single spaced, two sided, two column format is OK).
- Reference key sources of information *in your report and code* where applicable.

Homework 6 CUDA Compiler support for doubles

COMP 605:

The CUDA Compiler support for doubles: nvcc

- you can install CUDA toolkit, compile code without a GPU device.
- To compile use: nvcc
- NOTE: CUDA does not support doubles on the device by **default:** You need to add the switch "-arch sm_13" (or a higher compute capability) to your nvcc command:

[mthomas/db]Tst] [mthomas/db]Tst]nvcc -o db]Tst db]Tst.cu nvcc warning : The 'compute_10' and 'sm_10' architectures are deprecated, and may be removed in a future release. ptxas /tmp/tmpxft_00006578_0000000-5_dblTst.ptx, line 76; warning : Double is not supported. Demoting to float [mthomas/db]Tst]

[mthomas/dblTst] [mthomas/dblTst] nvcc -arch=sm 13 -o dblTst dblTst.cu [mthomas/dblTst]