
COMP 605: Introduction to Parallel Computing
Homework 6: GPU/CUDA Programming:

Calculating PI and Prime Numbers.

Mary Thomas

Department of Computer Science
Computational Science Research Center (CSRC)

San Diego State University (SDSU)

Due: 04/27/17
Posted: 04/25/17

Updated: May 9, 2017

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 2/11 Mary Thomas

Table of Contents

1 HW #6, P1: Using Numerical Integration to Estimate π
2 HW #6, P2: Calculating Prime Numbers
3 What to Report/Turn in for both problems:
4 CUDA Compiler support for doubles

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 3/11 Mary Thomas

HW #6, P1: Using Numerical Integration to Estimate π

HW #6, P1: Using Numerical Integration to Estimate
π

π = Circumference of a Circle
Diameter of a Circle

Image Source: http://www.mathsisfun.com/numbers/pi.html

http://www.mathsisfun.com/numbers/pi.html

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 4/11 Mary Thomas

HW #6, P1: Using Numerical Integration to Estimate π

HW #6, P1: Using Numerical Integration to Estimate
π

Integral representation for π∫ 1

0
dx 4

1+x2 = pi

Discretize the problem:
∆ = 1/N : step = 1/Nareas

xi = (i + 0.5)∆(i =
0, . . . ,Nareas − 1)∑N−1

i=0
4

1+x2
i

∆ ∼= π

π Formulae: http://en.wikipedia.org/wiki/Approximations_of_pi
Image: http://cacs.usc.edu/education/cs596/mpi-pi.pdf

http://en.wikipedia.org/wiki/Approximations_of_pi
http://cacs.usc.edu/education/cs596/mpi-pi.pdf

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 5/11 Mary Thomas

HW #6, P1: Using Numerical Integration to Estimate π

HW #6, P1: Using Numerical Integration to Estimate
π

#include <stdio.h>

#define NAREA 10000000

void main() {

int i; double step,x,sum=0.0,pi;

step = 1.0/NAREA;

for (i=0; i<NAREA; i++) {

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

pi = sum*step;

printf(PI = %f\n,pi);

}

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 6/11 Mary Thomas

HW #6, P1: Using Numerical Integration to Estimate π

HW #6, P1: Instructions

Write a CUDA program that uses numerical integration
to estimate π.

Find a reference value for π to the limits of a
double precision number.

Estimate π to the limits of a double precision number.

Calculate the value for π as a function of the number or areas used
and number of threads.

Calculate the error of your estimate: Err = πref − πmeasured

Use double precision for all calculations and outputs.

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 7/11 Mary Thomas

HW #6, P1: Using Numerical Integration to Estimate π

HW #6, P1: Instructions (cont.)

Parse all key variables from the command line.

Run the jobs using the batch queue

ProbSize Scaling:

Choose Nareas to allow scaling from appx 103 to > 107 or greater.

Thread scaling:

Vary the total number of threads on the GPU Device.
Vary the total number of threads by changing the number of
threads-per-block and blocks-per-grid (e.g.):

int threadsperblock=atoi(argv[1]); /* read num thds from command line */
blocksPerGrid = imin(32, (N+threadsPerBlock-1) / threadsPerBlock);
add<<<blocksPerGrid,threadsPerBlock>>(dev_a, dev_b, dev_c);

What is the max number of total threads you can use and why?

Time the job runs to check that you getting the proper scaling.

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 8/11 Mary Thomas

HW #6, P2: Calculating Prime Numbers

HW #6, P2: Calculating Prime Numbers

Develop a CUDA-based
version of the Sieve of
Eratosthenes approach to
calculate all the prime
numbers below some
number N.

Determine
N = [1, 2, 3, ..,Nmax] that
can run on your device.

Run jobs using the batch
queue.

Img Src: http://mathworld.wolfram.com/SieveofEratosthenes.html

http://mathworld.wolfram.com/SieveofEratosthenes.html

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 9/11 Mary Thomas

HW #6, P2: Calculating Prime Numbers

HW #6, P2: Instructions (cont.)

Parse all key variables from the command line.

Run the jobs using the batch queue

ProbSize Scaling:

Choose Nareas to allow scaling from appx 103 to > 107 or greater.

Thread scaling: vary the total number of threads (Thdstotal) on the
GPU Device:

Vary Thdstotal by changing the number of threads-per-block and
blocks-per-grid:

int threadsperblock=atoi(argv[1]); /* read num thds from command line */
blocksPerGrid = imin(32, (N+threadsPerBlock-1) / threadsPerBlock);
add<<<blocksPerGrid,threadsPerBlock>>(dev_a, dev_b, dev_c);

What is the max number of total threads you can use and why?

Time the job runs to check that you getting the proper scaling.

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 10/11 Mary Thomas

What to Report/Turn in for both problems:

What to Report/Turn in for both problems:

Create the homework directory USER/hw/hw5 with correct access
permissions.

Short lab report with comments, figures and table labels.

Explain your results for Thread and ProbSize scaling.

Include relevant tables of your test data

Evidence you ran your jobs using the batch queue (short/small job);
examples of batch scripts

Plot the runtime as a function of the number of threads and
probsize.

A copy of your code (single spaced, two sided, two column format is
OK).

Reference key sources of information in your report and code where
applicable.

COMP 605: Homework 6 Due: 04/27/17 Posted: 04/25/17 Updated: May 9, 2017 11/11 Mary Thomas

CUDA Compiler support for doubles

The CUDA Compiler support for doubles: nvcc

you can install CUDA toolkit, compile code without a GPU device.

To compile use: nvcc

NOTE: CUDA does not support doubles on the device by
default: You need to add the switch ”-arch sm 13” (or a higher
compute capability) to your nvcc command:

[mthomas/dblTst]

[mthomas/dblTst]nvcc -o dblTst dblTst.cu

nvcc warning : The ’compute_10’ and ’sm_10’ architectures are

deprecated, and may be removed in a future release.

ptxas /tmp/tmpxft_00006578_00000000-5_dblTst.ptx, line 76;

warning : Double is not supported. Demoting to float

[mthomas/dblTst]

[mthomas/dblTst]

[mthomas/dblTst] nvcc -arch=sm_13 -o dblTst dblTst.cu

[mthomas/dblTst]

	HW #6, P1: Using Numerical Integration to Estimate
	HW #6, P2: Calculating Prime Numbers
	What to Report/Turn in for both problems:
	CUDA Compiler support for doubles

