COMP 605: Introduction to Parallel Computing Homework 5: GPU/CUDA: Getting Started

Mary Thomas

Department of Computer Science Computational Science Research Center (CSRC) San Diego State University (SDSU)

> Due: 04/25/16 Posted: 04/07/16 Updated: 04/07/16

COMP 605:	Homework 5	Due: 04/25/16 Posted: 0	04/07/16 Updated: 04/07/16	2/16	Mary Thomas
Ta	ble of Conte	nts			
	HW #5: Ge	tting Started wi	ith GPU/CUDA Co	mputing	
-	• HW #5:	Getting Started:	: Hello World		
2	HW #5: Cl	JDA Tutorial Pr	oblems		
			Memcpy (Tutorial	P1)	
		myFirstKernel (/	
		•	ngle block (Tutorial	P3)	
		•	multiblock (Tutoria	,	
			ofiling (Tutorial P5	· ·	
		• •	- (/	
			ared memory (Tuto	orial Poj	
3	what to Re	port/Turn in for	both problems:		

Homework 5: Getting Started with GPU/CUDA Computing

- Read Cuda Tutorial: Volume 1
 - CUDA Programming Model Overview
 - CUDA Programming The Basics
- Do the NVIDIA Exercises found on the Tutorial Web Page:
 - Tutorial: https://developer.nvidia.com/cuda-training#1
 - Exercises: http:
 - //www.nvidia.com/content/cudazone/download/Exercises.tar
 - Instructions: http://www.nvidia.com/content/cudazone/ download/Exercise_Instructions.pdf
 or http://www-rohan.sdsu.edu/faculty/mthomas/courses/ docs/cuda/CUDA_Exercise_Instructions.pdf

3/16

COMP 605:	Homework	5	Due: 04/25/16 Posted:	04/07/16 Updated:	04/07/16	4/16	Mary Thomas
HW #5: Ge	tting Started	with GPU/C	UDA Computing				
NI	otoc						
	otes						

- Follow the instructions in the CUDA Exercise Instruction file: http://www-rohan.sdsu.edu/faculty/mthomas/courses/ docs/cuda/CUDAExercise_Instructions.pdf
- Exercise tar file can be found on tuckoo in the dir /COMP605/cuda
- There are three problem directories and 5 total problems (instructions say 6).
- Make sure you can see the nvcc compiler: /usr/local/cuda/bin/nvcc
- Remember that not all exercises will compile you will need to fix them
- Submit all jobs to the batch queue
- For the libraries, you may need to add the following line to your .bashrc file:

export LD_LIBRARY_PATH="/usr/local/cuda/lib:/usr/local/cuda/lib64:\$LD_LIBRARY_PATH"

COMP 605: Homewor	k 5 Due: 04/25/16 Pe	osted: 04/07/16 Updated: 04/07/16	5/16	Mary Thomas
HW #5: Getting Star	ted with GPU/CUDA Computing			
HW #5: Getting S	arted: Hello World			

simple_hello.cu

Get this code working so you always something that works on the GPU when things get confusing.

```
/*
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved.
* NVIDIA Corporation and its licensors retain all intellectual property and
* proprietary rights in and to this software and related documentation.
* Any use, reproduction, disclosure, or distribution of this software
* and related documentation without an express license agreement from
* NVIDIA Corporation is strictly prohibited.
*
* Please refer to the applicable NVIDIA end user license agreement (EULA)
* associated with this source code for terms and conditions that govern
 * your use of this NVIDIA software.
 *
*/
#include <stdio.h>
__global__ void kernel( void ) {
3
int main( void ) {
   kernel<<<1.1>>>():
   printf( "Hello, GPU World!\n" );
    return 0:
3
```

COMP 605:	Homework	5 D	ue: 04/25/16 Posted	: 04/07/16 Updated:	04/07/16	6/16	Mary Thomas
HW #5: G	etting Started	d with GPU/CU	DA Computing				
HW #5:	Getting Star	ted: Hello Worl					
C	ompi	ling or	n tuckoc	.sdsu.ec	lu		

[mthomas] nvcc -o simple_hello simple_hello.cu

COMP 605: Homework 5 Due: 04/25/16 Posted: 04/07/16 Updated: 04/07/16 7/16 Mary Thomas HW #5: Getting Started with GPU/CUDA Computing HW #5: Getting Started: Hello World

simple_hello batch script

#!/bin/sh
#PBS -1 nodes=node9:ppn=1
#PBS -1 simple_hello
#PBS -j oe
#PBS -r n
#PBS -q batch
cd \$PBS_0_WORKDIR

./simple_hello

COMP 605:	Homework	5 Due:	04/25/16 Posted: 04/07/16 Updated: 04/07	/16	8/16	Mary Thomas
HW #5: Ge	etting Started	with GPU/CUDA	Computing			
HW #5:	Getting Start	ed: Hello World				
si	mple_	hello o	utput			

[mthomas] !qsub qsub simple_hello.ba 6807.tuckoo.sdsu.edu										
[mthomas] qstat -a										
tuckoo.sdsu.edu:							Deeld	D14		F1
Job ID	Username	Queue	Jobname	SessID	NDS	TSK	Req'd Memory			
									-	
6807.tuckoo.sdsu	mthomas	batch	simple_hello	25347	1	0			С	00
[mthomas]										
[mthomas]										
[mthomas] cat simple	_hello.o6	807								
Hello, GPU World!										
[[mthomas]										

CUDA Tutorial Instructions

- Follow the instructions in the CUDA Exercise Instruction file: http://www-rohan.sdsu.edu/faculty/mthomas/courses/ docs/cuda/CUDA_Exercise_Instructions.pdf
- Exercise tar file can be found on tuckoo in the dir /COMP605/cuda
- CUDA tutorial contains skeletons and solutions for 6 hands-on CUDA exercises
- In each exercise (except for #5), you have to implement the missing portions of the code
 - Each problem is properly completed when you compile and run the program and get the output Correct!
- Solutions are included in the solution folder of each exercise
- Hint: most of the codes need debugging.
- When things don't make sense, run your "hello world" code.

- There are 5 parts or steps: do all of these.
- cudaMallocAndMemcpy.cu is an exercise in learning to copy between the host and the device.
- there are several "Bonus" steps in the code, do all of these.
- Provide data to support the fact that your code worked (e.g. create a simple math kernel and change the data in the memory).

COMP 605: Homework 5 Due: 04/25/16 Posted: 04/07/16 Updated: 04/07/16 11/16 Mary Thomas HW #5: CUDA Tutorial Problems HW5.P2: myFirstKernel (Tutorial P2) HWV5.P2: myFirstKernel (Tutorial P2)

- There are 3 parts or steps: do all of these.
- learn to launch kernels and set thread dimensions.
- learn about blocks, grids, and how to assign threads.

HW #5: CUDA Tutorial Problems

HW5.P3: reverseArray-single block (Tutorial P3)

HW5.P3: reverseArray-single block (Tutorial P3)

- Given an input array {a₀, a₁,..., a_{n-1}} in pointer d_a, store the reversed array {a_{n-1}, a_{n-2}, ..., a₀} in pointer d_b.
- You will implement the kernel, called __global__ void reverseArray_singleblock()
- You will launch only one thread block, to reverse an array of size N = numThreads = 256 elements
- Each thread moves a single element to reversed position:
 - Read input from d_a pointer
 - Store output in reversed location in d_b pointer

 COMP 605:
 Homework
 5
 Due:
 04/25/16
 Posted:
 04/07/16
 Updated:
 04/07/16
 13/16
 Mary Thomas

 HW #5:
 CUDA Tutorial Problems
 HW5:
 FerroresArray - multiblock (Tutorial P4)
 HW5:
 HW5:
 Due:
 04/07/16
 HW5:
 <

HW5.P4: reverseArray - multiblock (Tutorial P4)

- Given an input array {a₀, a₁,..., a_{n-1}} in pointer d_a, store the reversed array {a_{n-1}, a_{n-2}, ..., a₀} in pointer d_b.
- You will implement the kernel, called __global__ voidreverseArray_multiblock()
- You will launch multiple 256-thread blocks in order to reverse an array of size N, with N/256 blocks
- Each thread moves a single element to reversed position
 - Read input from d_a pointer
 - Store output in reversed location in d_b pointer

COMP 605: Homework 5 Due: 04/25/16 Posted: 04/07/16 Updated: 04/07/16 14/16 Mary Thomas HW #5: CUDA Tutorial Problems HWS.P5: reverseArray-profiling (Tutorial P5)

HW5.P5: reverseArray-profiling (Tutorial P5)

- The program, *cudaprof* is not installed on tuckoo.
- Instead we will insert timers around critical blocks and look for bottlenecks.
- $\bullet \ See \ code \ in \ /COMP605/cuda/setNthdsFromCmdArg \\$
- Time key blocks of the code and use that data to make improvements to your code*:
 - Run code, make table of critical timings, identify where most of the time is spent.
 - Modify code and note if there significant changes/improvements, if so, record the data
 - repeat
 - summarize
- Compare the performance of the three approaches.
- Include relevant plots and tables of data.

COMP 605: Homework 5 Due: 04/25/16 Posted: 04/07/16 Updated: 04/07/16 15/16 Mary Thomas HW #5: CUDA Tutorial Problems HW5:P6: reverseArray-shared memory (Tutorial P6) Part 6: Optimizing Array Reversal

- Goal: Get rid of incoherent loads/stores and improve performance
- Use shared memory to reverse each block
- Profile the working code
- Include relevant plots and tables of data.

What to Report/Turn in for all problems:

- Create the homework directory USER/hw/hw4 with correct access permissions.
- Short lab report with comments and output showing code state/progress as you do the different exercises.
- Images are not helpful, unless you use a terminal coloring scheme that produces contrast between the text and the background.
- Evidence you ran your jobs using the batch queue (short/small job), and examples of batch scripts
- Relevant snippets of the code as you edit/complete key steps/parts.
- Reference key sources of information in your report.