COMP 605: Introduction to Parallel Computing Homework 3: Characterizing 1D MPI Communication

Mary Thomas

Department of Computer Science Computational Science Research Center (CSRC) San Diego State University (SDSU)

> Due: 03/16/17 Posted: 02/13/17 Updated: 03/16/17

COMP 605:	Homework 3	Due: 03/16/17 Posted: 02/13/17 Updated: 03/16/17	2/11	Mary Thomas

Table of Contents

HW3 P1: MPI Communications: "Ping-Pong" and "Ping-Exchange"
 HW3, P2: MPI Communications: "Ring"

- 3 General Instructions
 - General Test Case Instructions
 - Calculating BandWidth (BW) and latency
 - Statistical Methods

HW3 P1: MPI Comms: Ping-Pong

In this project we will characterize and time how long it takes for two PE's pass a message packets of difference sizes back and forth to each other.

For both problems you will use:

- *point-to-point* comm routines: *MPI_Send* and *MPI_Recv*.
- *collective* comm routine: *MPI_Send_Recv*.
- You will be given test code (or download some other reference code), and modify it to suit the requirements specified below.
- See lectures on Performance and MPI Communications.

COMP 605:	Homework 3	Due: 03/16/17 Posted: 02/13/17 Updated: 03/16/17	4/11	Mary Thomas
HW3 P1:	MPI Communications:	"Ping-Pong" and "Ping-Exchange"		

Timing MPI Messages - Ping-Pong Algorithm

TimeStep	P ₀	Ρ1
t ₀	MPI_Send message to P1	WAITS for message from P0
^t 1	WAITS for message from P_1	MPI_Recv message from P0
t2	WAITS for message from P_1	MPI_Send message to P0
t ₃	MPI_Recv message from P0	

System has $sz = comm_sz = 2$ Processors numbered $[P_1, P_2]$

Img source: http://htor.inf.ethz.ch/research/datatypes/ddtbench/benchmark_expl.png

HW3 P1: MPI Comms: Ping-Pong & Ping-Exch Code

- For all problems:
 - Message is an array of doubles, of size based on packet size if 10^N .
 - Process a packet size N from command line argument
 - Packet Size is gradually increased until a bandwidth limit (max) is reached.
- For all problems, choose test codes located in */COMP605/hw3/* on tuckoo, or another equivalent code (include URLs/ references).
 - P1a: Use point-to-point comm routines: MPI_Send and MPI_Recv.
 - P1b: Use point-to-poin comm routine: MPI_SendRecv.
- You will have to modify the code:
 - to eliminate STDIO input(no scanf)
 - $\bullet\,$ remove hard coded dimensions, instead use dynamic allocation based on $N\,$
 - handle errors, etc.

HW3, P2: Comms: Ring

In this project we will characterize and time how long it takes for a group of PE's to pass a message packet around the entire group.

- For all problems:
 - Message is an array of doubles, of size based on packet size if 10^N .
 - Process a packet size N from command line argument
 - Packet Size is gradually increased until a bandwidth limit (max) is reached.
- For all problems, choose test codes located in */COMP605/hw3/* on tuckoo, or another equivalent code.
 - P1a: Use point-to-point comm routines, MPI_Send and MPI_Recv.
 - P1b: Use point-to-point comm routine, MPI_SendRecv.

Timing MPI Messages - Ring Algorithm

System has sz = comm_sz processors numbered: P₀, P₁, P_{r-1}, P_r, P_{r+1}, ...P_{sz-1}
P₀ sends msg to P₁ P₀ waits for msg from P_{sz-1} ... P_r waits for msg from P_{r-1}

 P_r rcvs msg, sends msg to P_{r+1}

 P_{sz-1} sends to P_0 P_{sz-1} waits for msg from P_{sz-2}

8 Processors arranged in a ring

COMP 605:	Homework 3	Due: 03/16/17	Posted: 02/13/17 Upda	ated: 03/16/17	8/11	Mary Thomas	
General Inst	tructions						
General	General Test Case Instructions						
Ge	eneral Tes	t Case	Instruction	ons			

- All tests should be run for the following conditions:
 - Number of PEs: [2, 4, 8, 16]
 - Packet Sizes = 10^n , where n = [1, 2, ..., 8].
 - Test for double data types
 - Timing Statistics: no need to do more than 5 runs.
- Report should include:
 - Measurements of elapsed times and Bandwidth statistics (see below under General Instructions).
 - Theoretical prediction of run-times.
 - Estimate the time per point required for your calculation (using T_{ser}) and predict how long your runs should take.
 - Calculate Bandwidth (see below under General Instructions).
 - Calculate the startup time or latency.
 - Table of data for data runs: Packet Size, BW, Timing, & Stats
 - Plot(s) of the BW as a function of Packet Size, #PEs.
 - Additional items in General Instructions (below).

Description: This homework involves measuring the performance of MPI Communications.

- All code must be run on the student cluster as batch jobs.
- For each problem, create a homework directory for each problem in your home directory:

/home/605/accountname/hw/hw3/p1

/home/605/accountname/hw/hw3/p2

- You may work with copies of source codes, located on the student cluster in the directory */COMP605/hw3* or find another source. Be sure to reference your code.
- Add timing diagnostics where needed.
- Report should Include: code; a few examples of batch scripts, and relevant results; tables; plots; stats; comments.

General Instructions

COMP 605:

Calculating BandWidth (BW) and latency

Homework 3

Calculating BandWidth (BW) and latency

- Latency is the time needed to start the message (beginning)
- BW is the rate observed for large messages.
- Units typically Mega or Giga Bytes per second (e.g. GByte/sec)
- Estimate packet size per send or recv
- Estimate the number of sends or recvs you are counting
- Units: are you calculating BITS/sec, or BYTES/second? Convert packet size accordingly
- Units: what are your timer units?
- Example estimation: Ping-pong:

$$BW \begin{bmatrix} a \\ b \end{bmatrix} \cong \frac{(\#exchanges)*packetSize[floats]*size[1floats]}{rawTime[\musec]}$$
$$\cong 2 * \frac{[exchanges]*10^6[floats]*32[bits/floats]}{3 \times 10^{-3}[seconds]}$$
$$\cong 21 \times 10^9 \frac{bits}{second} * \frac{1Byte}{8bits}$$
$$\cong 2.67 \times 10^9 \frac{Bytes}{second}$$
$$\cong 2.67 \frac{GBytes}{second}$$

COMP 605:	Homework 3	Due: 03/16/17 Posted: 02/13/17 Updated: 03/16/17	11/11	Mary Thomas
General Ins	structions			
Statistic	al Methods			
St	atistical	Methods		

Run times on any computer are not reproducible, hence, it is important to analyze the distribution of a codes' run times, and not just take one measurement.

- Standard statistical variables used to describe the distribution of the data include:
 - Max/Min (maximum/minium values)
 - Mean (average value)
 - Median (central value)
 - Variance (variance)
 - StandardDeviation (σ) of the timings.
- To test your codes:
 - Run and time critical blocks
 - Vary key parameters (packet or problem sizes, number of processors, etc.).
 - Calculate the statistics at run-time.
- Refs:

http://reference.wolfram.com/language/tutorial/BasicStatistics.html
http://edl.nova.edu/secure/stats/