COMP 605: Introduction to Parallel Computing HW 2: Distributed Memory Programming with the Message Passing Interface

Mary Thomas

Department of Computer Science Computational Science Research Center (CSRC) San Diego State University (SDSU)

> Due: 03/2/17 Posted: 02/13/17 Last Update: 02/24/17

COMP 605: HW 2	Due: 03/2/17 Posted: 02/13/17 Last Update: 02/24/17	2/10 Mary Thomas
----------------	---	------------------

Table of Contents

HW #1, Problem #1: Calculation of π
 HW #2, Problem #2: Calculating Prime Numbers

COMP 605: HW 2 Due: 03/2/17 Posted: 02/13/17 Last Update: 02/24/17 3/10 Mary Thomas HW #1, Problem #1: Calculation of π

Homework #1, Problem #1: Using Numerical Integration to Estimate π

 $\pi = \frac{\textit{Circumference of a Circle}}{\textit{Diameter of a Circle}}$

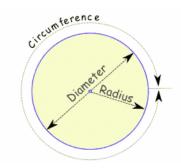
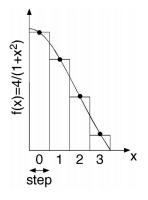



Image Source: http://www.mathsisfun.com/numbers/pi.html

Homework #1, Problem #1: Using Numerical Integration to Estimate π

- Integral representation for π $\int_{0}^{1} dx \frac{4}{1+x^{2}} = pi$
- Discretize the problem: $\Delta = 1/N$: step = $1/N_{areas}$ $x_i = (i + 0.5)\Delta(i =$ $0, \ldots, N_{areas} - 1$) $\sum_{i=0}^{N-1} \frac{4}{1+x_i^2} \Delta \cong \pi$

 π Formulae: http://en.wikipedia.org/wiki/Approximations of pi Image: http://cacs.usc.edu/education/cs596/mpi-pi.pdf

Homework #1, Problem #1: Using Numerical Integration to Estimate π

```
#include <stdio.h>
#define NAREA 1000000
void main() {
    int i; double step,x,sum=0.0,pi;
    step = 1.0/NAREA;
    for (i=0; i<NAREA; i++) {</pre>
        x = (i+0.5)*step;
        sum += 4.0/(1.0+x*x):
     }
    pi = sum*step;
    printf(PI = \%f \ printf();
}
```

Homework #1, Problem #1: Using Numerical Integration to Estimate π

- Use the method of *numerical integration* to estimate the value for π
- Note: the Numerical Integration is used to solve any function f(x)
- Design and write a parallel version to estimate π using the formula above or another approach. Explain how your formula works.
 - See the Trap example discussed in Pachecho 2011, Ch 3.
 - You can use point-to-point or collective communications.
 - You must run jobs on the queue.
 - Vary the number of areas used: $N_{areas} = 10^n$, where n = 1, 2, 3,
 - Vary the number of PEs: np = [1, 2, 4, 8, 16]
 - Time the job runs.

Mary Thomas

Homework #2, Problem #1: Using Numerical Integration to Estimate π

What to Report/Turn in:

- Estimate π to the limits of a double precision number on the student cluster
- Calculate the value for π and the error of your estimate as a function of the number or areas used
- Calculate the value for π and the error of your estimate as a function of the number or areas used
- Relevant tables of your test data
- Plot the error as a function of the number of processors and number of points.
- Plot the runtime as a function of the number of processors and number of points.
- A copy of your code (single spaced, two column format is OK).
- Reference key sources of information (Pacheco, lectures, Web,).

8/10

HW #2, Problem #2: Calculating Prime Numbers

Homework #2, Problem #2: Calculating Prime Numbers

Sieve of Eratosthenes: Basic Algorithm

- A prime number is a natural number which has exactly two distinct natural number divisors: 1 and itself.
- To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method:
 - Create list of consecutive integers from 2 through n: (2, 3, 4, ..., n).
 - Initially, let p equal 2, the first prime number.
 - Starting from p, enumerate its multiples by counting to n in increments of p, and mark them in the list (these will be 2p, 3p, 4p, etc.; the p itself should not be marked).
 - Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this new number (which is the next prime), and repeat from step 3.
 - When the algorithm terminates, all the numbers in the list that are not marked are prime.

#2, Problem #2: Calculating Prime Numbers

Homework #2, Problem #2: Calculating Prime Numbers

- Due: 03/2/17
- Calculate the number of prime numbers that exist within a defined range
- Use the Sieve of Eratosthenes approach: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
 - Consider different data distributions try cyclic distribution.
 - You can use point-to-point or collective communications.
 - You must run jobs on the queue.
 - Vary the value for: $N_{areas} = 10^n$, where n = 1, 2, 3,
 - Determine N_{max} that can be run on tuckoo.
 - Vary the number of PEs: np = [1, 2, 4, 8, 16]
 - Time the job runs

COMP 605: HW 2 Due: 03/2/17 Posted: 02/13/17 Last Update: 02/24/17 10/10 Mary Thomas HW #2. Problem #2: Calculating Prime Numbers

Homework #2, Problem #2: Calculating Prime Numbers

What to Report/Turn in:

- Explain the value you obtained for N_{max} and why it occurred.
- Plot the runtime as a function of the number of processors and number of primes.
- A copy of your code (single spaced, two column format is OK).
- Reference key sources of information (Pacheco, lectures, Web,).