
FINAL REPORT: San Diego State University
Student Cluster Competition Team: Experiences and

Observations

G. Williams˚, G. Behm˚, A. Esparza˚, V. G. Haka:, T. Nguyen˚, A. Ramos˚, B. Wright˚, J. Otto˚, C. Paolini:, M. P. Thomas˚
˚Department of Computer Science, San Diego State University

:Department of Computer Engineering, San Diego State University

Abstract—The San Diego State University Student Cluster
Competition (SCC) team participated in the SCC16 for the first
time [1]. The cluster is based on 8 Kennedy Pass processors,
for a total of 320 cores. In this competition, the team learned to
assemble the cluster from the rack up; perform all administration
tasks; MPI parallel programming; and how to profile 5 different
HPC applications. The outcome of these activities have enhanced
the students experiences of using HPC and motivated them to
solve complex problems using advanced HPC skills and facilities.
Finally, the team has been invited to contribute to a special issue
of Parallel Computing, and have been encouraged to return next
year. FROM PROPOSAL: San Diego State University proposes
to host a Student Cluster Competition (SCC) team to participate
in the SCC program for SC16. The SDSU SCC team will conduct
research experiments to examine how well the OpenHPC software
stack performs on a cluster based on the Intel Kennedy Pass
chipset. Based on 16 Kennedy Pass E5-2699 v4 processors, a
cluster with 22 cores each, for a total of 353 cores, 10 TB
of SSD storage, and an InfiniBand network was provided by
Intel, which is our project sponsor. By applying the OpenHPC
software on the cluster, the outcome of our research activities
will enhance students experiences of using HPC, motivate them to
solve complex problems using advanced HPC skills and facilities,
and provide feedback to improve the OpenHPC software stack,
which will ultimately benefit the broader HPC community.

Index Terms—HPC, parallel computing.

I. INTRODUCTION

San Diego State University has participated at Supercom-
puting for many years through papers, posters, workshops,
and the Computational Sciences Research Center (CSRC) has
hosted a research booth since 2011 [1]. Participating in the
Supercomputing Cluster Challenge [2] gives us the opportunity
to participate at SC at a much deeper level, to reach out to
our undergraduates and provide them with a richer undergrad-
uate experience, to enhance our curricula by incorporating
HPC concepts, and to contribute to the field of HPC. The
SDSU team has strong backgrounds in computer science,
computational science, parallel and HPC computing, and clus-
ter management. Our team is multidisciplinary and multi-
institutional, and consists of SDSU undergraduate students
from multiple departments (computer science, mathematics,
statistics); faculty mentors from SDSU CS, Computational
Science, Math, and Biology departments; and external part-
nerships with the San Diego Supercomputing Center (SDSC),

and several vendors, many of whom are members of the Open
HPC Community.

II. ABOUT THE BIT BENDERS TEAM

The SDSU SCC team has depth, strength, diversity, and a
sense of fun. The name of the team arose from a common love
of Futurama, and the connection that we could bend computer
bits to our will, hence the name ”Bit Benders.” Our tag line
is ”Byte our shiny metal hash” (See http://www.csrc.sdsu.edu/
sc/sc16/scc/).

The SCC Team consists of volunteers who have shown
the ability to be successful undergraduates students at SDSU.
Most have done some type of HPC/parallel computing on their
own, or through internships or online courses. Student Team
members include: Ali Esparza, Senior (CS); Tuan Nguyen,
Senior (CS); Vaughn Ganem Haka, Senior (Eng); Armando
Ramos, Sophomore (CS); Gary Williams, Senior (CS), HPL;
Briana Wright, Senior (CS).

Faculty mentors: include several SDSU faculty who sup-
ported the project through teaching, working with the students
on the cluster, or mentoring applications, including: Dr. Mary
Thomas (Project PI); Dr. Jose Castillo and Dr. James Otto
(CSRC); Dr. Chris Paolini (Engineering); Dr. Robert Edwards,
Peter Bartolli, and Steve Price (CS); and Dr. Peter Blomgren
(Math).

Vendor Partners: our partners have been committed to
working with the team, which helped ensure that the software
and hardware used is dependable and useful for the SCC
challenge. In particular, Reese Baird, Hercules Randolph, and
Karl Schulz (Intel and OpenHPC); and Dr. Pietro Cicotti (San
Diego Supercomputer Center).

III. TEAM PREPARATION

The SDSU Team will use several methods for preparing for
the competition including courses, lectures customized to the
SCC activity, hands on training in the lab using the cluster,
and application studies.

Student Preparation

The SDSU team will spend time together this Summer
working with the students to help them learn about the cluster
(building, installing and administering software, including the

OpenHPC software stack); learning about the SCC appli-
cations; participating in a series of lectures about parallel
programming models needed for the applications. Each faculty
mentor has committed to being available for at least one week
this Summer to work with the students.

The student work done in Summer and Fall will be done as
part of a research course we will set up in the Fall whereby
students can get credit and write-up their experiences as an un-
dergraduate thesis. We will also promote this effort by having
students present a poster at the CSRC Applied Computational
Science and Engineering Student Support (ACSESS)annual
meeting, to be held in May, 2017 [4].

Students have the option to take HPC courses at SDSU. Dr.
Thomas teaches two graduate level parallel computing classes,
and Drs. Shen and Whitney are starting new undergraduate
classes in the Fall: HPC Mathematics and Big Data. We intend
to add/expand undergraduate courses to include more HPC and
parallel computing topics. Dr. Cicotti will bring the team to
the San Diego Supercomputing Center for a day of tours and
lectures. Both the CSRC and SDSC have invited the team to
participate in booth activities at the meeting. Based on our
experiences at the meeting, we plan to apply for an NSF REU
grant to help fund future student activities and for an XSEDE
Campus Champion Fellowship for curriculum development.

Cluster Preparation
Dr. Otto leads the cluster support work at the CSRC, where

the machine will be hosted, and he will be available work with
Intel and students on the cluster operation. The CSRC has
offered to provide a few nodes for the students to work with
while waiting for the Intel cluster to arrive, and a lab space
where they can have hands-on access to the cluster. Once the
Intel cluster arrives, the team will work with an Intel engineer
who will travel to SDSU to help build out the cluster.

System Software Preparation
The system software preparation will focus on the

OpenHPC software suite. The OpenHPC community has of-
fered to assist our students as they learn to install and deploy
the software stack; in addition, the community will provide
with updates as needed. Our team mentors will be involved
analyzing the SCC applications and teaching the students
about them.

Applications Preparation
Team mentors will work with the team to analyze the

SCC applications, teaching them about their design and their
applications in real case studies, and working with them as
they learn to run the applications on the cluster.

The students will learn about dense linear systems, how
HPL is designed, and a little bit of history on top500 and
how HPL is used to rank supercomputers. Then, following on
the latter theme, they will learn how HPCG came about as
a complement to HPL that exercises different components of
the architecture; they will also learn how HPCG represents a
different set of workloads of great importance for the DoE and
the scientific community.

Shifting gears, we will then look at non-FLOPS oriented
applications and two very different types of parallelism. On
one end, we have the distributed password recovery that
is embarrassingly parallel, and on the other end, we have
ParConnect, which includes a graph computation and irregular
decomposition.

Finally, the students will learn about the importance of
visualization in presenting scientific data. In addition, the
students will be exposed to the challenges of analyzing and
visualizing large data sets, and the importance of designing
systems that can accommodate both computing and analysis
tasks.

IV. THE NIBBLER CLUSTER ARCHITECTURE

‚ Head node: Intel Xeon DP Broadwell-EP E5-2680 28
core server used for login access, system management,
queuing, systems, display monitor, etc.

‚ Compute nodes: Two Kennedy Pass Intel Quad board
Servers [2], for a combined total of 320 cores and nominal
peak performance of approximately 7-8 TFlops.

‚ Networking and Connectivity: The system uses both
GigE and Infiniband networks. The Ethernet network is
managed by a 24 port router, and is used as a LAN,
for managing the cluster and allowing users to access
the system via laptops. The IB interconnection network
connects the compute nodes together and is used for
computational work.

‚ Rack: all the hardware, including the interconnect fabric,
fits into an open sided 42U rack.

‚ Performance: Theoretical peak performance is appx.
11.5 TFlops for 320 cores.

‚ Power Usage: Power benchmark tests have shown that
the cluster, when running the HPL benchmark at full
capacity, is above the 3.1 KW limit of the competition.
We plan to run the benchmark and turn off 1 or 2 nodes
as required during the qualification process.

V. APPLICATION STRATEGIES

A. Team Preparation

To prepare for the SCC competition, the team met through-
out the Summer focusing on key HPC topics, including:

‚ Introduction to MPI
‚ Studied one application each week.
‚ Profiling, scaling, performance monitoring and run-time

code profiling (using tools such as gprof, MPI timers, and
Allinea DDT).

‚ OpenHPC software stack - learning which components
will work best for each app and why.

In addition to learning about the software, the team helped to
build the cluster:

‚ cluster design and and network interconnection;
‚ building the rack and installing servers and switches;
‚ installing memory, SSD drives, IB cards, etc.;
‚ connecting ethernet and infiniband networks.
We have developed strategies for running and optimizing

the applications, including:
‚ Participate in Saturday lab meetings to promote team

discussion and interactions.
‚ Assign a team lead for each application.
‚ Working with faculty mentors to choose right compilers

and environments;
‚ Profiling applications for optimization.
‚ Create an application profile/prediction summaries.
‚ Develop scripts and analysis tools for run time control and

data display including a power usage monitoring script
and a script to turn cores on/off for each node.

B. High Performance Linpack (HPL)

HPL is the most widely used benchmark for measuring a
system’s floating point computing power. It is the measure by
which the TOP500 list, a list of the fastest super-computing
clusters in the world, is bi-annually composed. HPL works
by solving a dense N by N matrix of linear equations of the
form Ax = b. The result is the total speed of computation
given in GFLOPS, or floating point operations per second. The
theoretical speed of a system can be computed on a processor
by processor basis by multiplying the speed by the specified
FLOP/cycle for the processor. The theoretical performance of
Nibbler based off of maximum performance test graphs is
around 11.5 TFLOPS.

The HPL benchmark requires a fair amount of optimization
for any given architecture. The main parameters of interests
involve the problem size, the size of partitions within the ma-
trix, and how those partitions are divided up among resources
for computation. These parameters are configured in a .dat file.
Compilation of the C++ code required additional pointers to
the BLAS and MPI libraries. Jobs were submitted through the
PBS/Torque scheduler.

Optimization on Nibbler was an iterative process. One of
the main limitations discovered early on was the amount of
RAM available per node. Some additional RAM was acquired,
but the problem size was still a primary limitation due to the
amount of data per node. Through testing, the optimal partition
size was found to be around the suggested maximum. Also the
optimal arrangement for that partition disbursement was found
to be the most square as possible given the amount of resources

Fig. 1. Speed as a function of problem size across all 320 cores of Nibbler

or processors. These two conditions supported the theory that
the best configuration was one that allowed the most local
computations before requiring communication to neighboring
partitions. Therefore, besides problem size, communication
turned out to be a limitation even with the Mellanox Infiniband
connections supporting 40Gbps transfer speeds. The graph in
Figure 1 is an example of the performance curve seen on
Nibbler.

Power also became a main interests of limitation. After
Nibbler was first connected we quickly learned the power of
HPL, as the first test across all nodes caused a power failure
within our laboratory. Power distribution was more carefully
considered before testing proceeded. The competition had a
limit of 3.12kW, which was further divided to 1560W per
monitored Geist PDU. With all 320 nodes running, we easily
exceeded our max by more than 1kW. Many ideas for power
conservation were theorized and most were tested. However it
became apparent that to meet the power requirements, at least
two nodes were going to have to be turned off completely.
With two nodes off, test were closer to the requirement and it
was assumed further power savings would be available from
other methods on the cluster as a whole.

Arrival at the competition revealed that the power require-
ments were not going to be easily met and further changes
needed to be made. The unfortunate decision to get rid of yet
another node had to be made. RAM was stripped and dispersed
among the remaining 5 compute nodes. Our theoretical peak
speed with only the 5 nodes was closer to 6.5 TFLOPS.
The official test result ended up being around 4.5 TFLOPS.
Considering the amount of tinkering that was done to meet
power requirements while still trying to take advantage of as
many resources as possible, we were satisfied with our final
result.

Nearly all of our competitors at SCC used accelerators.
With that additional boosts, their HPL results were several
orders of magnitude greater than ours. Even if we had achieved

our maximum theoretical peak speed of the complete 320
core system, we still wouldn’t have compared to some of
our competition. As such, and since scoring was done as a
percentage of the highest reported speed, we scored very low
on our final scoring for this benchmark.

Going forward it is clear that to be able to compete with
the benchmark scores at the Cluster Competition of SCC,
the use of accelerators is almost required. A change of
architecture is recommended to allow modern accelerators.
The additional power consumption would certainly lead to
minimizing the compute cores, however, the benefit from
fewer connections and the boosts from the accelerators may
be the best combination to remain competitive. A fair amount
of time was spent trying different parameter combinations for
slight improvement of the percentage of theoretical peak speed
and much was learned by the team in the process. Considering
the competition scoring was not based on the efficiency of or
even the best economical system, maximizing speed at any
cost should be the concern of future teams.

C. High Performance Conjugate Gradient (HPCG)

HPCG is a benchmarking tool used to gauge the perfor-
mance of a computer cluster. It works by solving a system
of linear equations expressed in the form of a 3-D matrix.
These linear equations can express the solution to a differential
equation or the solution to a minimization problem. A good
example of a minimization problem using conjugate gradient
would be trying to find the right geometrical configuration for
a molecule which has the minimum amount of inter-nuclear
forces between atoms of that molecule.

Once the program finishes running it outputs a set of mea-
surements which measure parameters like maximum GFLOPs,
total memory bandwidth, total memory used, run time, and
many others. These parameters are helpful for ranking the
performance of your machine. So ideally one has to give the
program the right inputs in the form of a linear system, in order
to push the machine to its limit to truly know its potential. The
inputs given to the program are the size of the 3-D dimensions
and the runtime of the application. In order to converge onto
a solution more quickly the program will run a Gaus Pre-
conditioner. This pre-conditioner will run some pre-analysis
on the linear system to reduce the problem size ahead of time.

For the competition, we were required to find the right
inputs to get the most accurate ranking of our machine. This
involved running a lot of tests on varying numbers of nodes
and on many different problem sizes. These problem sizes
ranged from 16 by 16 by 16 sized cubes all the way up to 256
by 256 by 256. We would start out by running the program on
one processing element then scale it up until we were running
it on all 320 processing elements. Since most of the data was
in a basic raw format, we also wrote python scripts to visually
plot this data and make it easier to analyze.

There was also a big learning curve in learning how all the
mathematics worked and diving into the C++ source code to
see how it was implemented. Much of the difficulties were
in understanding how memory was being allocated within

nodes and how it was being communicated to other nodes
during execution. After many tests and at times waiting on
a non-halting program, our team learned what the machines
bottleneck was. Since large cubes were being allocated on
nodes which shared a common memory pool, which required
tons of inter node communication, the memory bandwidth
turned out to be the bottleneck. So we figured out the size
that works best is a cube of 104 by 104 by 104. Using this
size during the competition, our team was able to get the fairest
evaluation of our machine without overloading the machines
memory bandwidth.

D. ParaView

ParaView is an open source visualization tool and can be
used to analyze very large datasets in parallel. Data can be
analyzed in 3D or through the built in Python batch system.
ParaView accepts a wide range of data formats and can be
used to create animations and take images of manipulated data.
The team prepared for ParaView by reading the user guide
and practicing the tutorials provided on the ParaView website
(www.paraview.org).

The team used mpirun and ParaView’s batch system, pv-
batch to take screenshots of large datasets over various time
steps. At the competition, the task given for ParaView was
to take screenshots of 100,000 stars over 2,000 time steps.
The data consisted of 2000 .dat files, each with the mass and
coordinates of 100,000 stars. First, the .dat files had to be
converted to .csv files to be compatible with ParaView. This
was accomplished with a Python script that iterated through
each of the 2000 files, paired with mpirun and pbsbatch.

Next, these .csv files were loaded into ParaView and con-
verted to .vtk files in order to allow filters to be applied to the
data and to generate a 3D representation. The Python code for
this conversion was traced and generated by ParaView using
the GUI, and that generated script was edited by the team to
iterate through the 2000 .csv files using pbsbatch and mpirun.
Then, several data filters were applied to the .vtk files, and
this Python script was generated again using ParaView, and
the team edited that script so it would iterate through the 2000
files.

Finally, the team had to take screen shots of the 100,000
stars at each of the 2000 timesteps, and this was again done
in ParaView and with mpirun/pbsbatch. These 2000 .png files
were then converted to a .gif using the convert command in
ImageMagick. Since each student had their own application,
only up to 3 students could work on ParaView at one time,
and the data conversions took up most of the time.

Once the data conversions were complete, there was very
little time to debug the scripts and figure out how to correctly
apply filters, so not all of the data was included. The bug in the
script was a warning generated by ParaView that would clog
up the batch system after iterating about 12 times and cause
it to freeze. Because of this, only 12 files could be converted
at once, and due to the 48 hour time constraint, this limited
how many files could be converted. Also, only one student
was trained on how to use ParaView filters or how to run

ParaView jobs, so the other students could not help debug this
issue. The team did not expect the ParaView application to
be a data parsing/conversion challenge. Next year, the team
should prepare by practicing parsing and converting data, and
more than one person should be fully trained per application.

E. ParConnect

In bioinformatics, DNA sequencing is the process of finding
the precise order of nucleotides in a DNA molecule. Current
generation of sequencing machine cannot identify the structure
of a whole genome at once due to the high error probability
nature. Instead, randomly small strand of the genome called
k-mers (about 100 base pairs) are sequenced separately. The
whole genome can be obtained by assembling those strands
together through the use of graph data structures and graph
algorithms. If there is a reference genome to be compared with
then the assembly process is actually a very easy problem.
Unfortunately, most assembly problems fall into the category
of de novo (from the beginning) assembly problem with
no reference genome to be compared with. In this case,
overlapping each read is necessary to assemble the original
genome. A vivid analogy is it’s easier to assemble small pieces
of a puzzle if we were given the complete puzzle picture
rather than without it. Metagenomics is the study of the genetic
material from environmental sample. Whereas single genome
sequencing as introduced earlier only deals with data from a
single organism, metagenomics sequencing has to process data
comes from many species such as an environmental sample,
which makes it inherently much more difficult.

In order to address the complexity of sequencing metage-
nomics genomes, a group of professionals from Georgia Insti-
tute of Technology came up with a new method for sequencing
metagenomics dataset. ParConnect is a bioinformatics appli-
cation that implements a parallel and distributed algorithm
presented in a paper at SC16. That paper also won the Best
Student Paper Award at SC15 Conference. The algorithm
computes the connected components in the undirected graphs
or weakly connected components in the directed graphs.

For the Student Cluster Competition at SC16, the students
were asked to replicate the same graphs and data like in
the paper. In fact, this is the first time that a reproducibility
problem were present in the competition. The goal according
to the SC committee is to acquaint students with the idea of
reproducibilty in science since it is the key component behind
the scientific method.

Before the competitions, we were given a sample dataset
which is in FASTQ format. The file takes up around 6 GB
in size. At first, we came across so many problems running
the application with the file due to the limited memory and
computing capabilities of our cluster. Fortunately, 2 datasets
(small.fastq and large.fastq) that were given during the com-
petition are much smaller than that. In addition, we didn’t take
much time to parse the data from the output text file in order
to generate all the graphs since the Python scripts for parsing
and visualization were already written before the competition
with little or no modifications at all.

The overarching requirement for the competition report is
to restate the central claims in the paper then substantiate the
claims through data and graphs. The main claim in the paper is
the parallel algorithm devised in the paper could be improved
by excluding completed partition and using load balancing. 3
variants of the algorithm (called Naive, AP, and AP LB in the
paper) are then compared for runtime performance in order to
support the claim.

First, we had to tabulate the number of edges and connected
components for both datasets. The reason is to confirm that
if others try to reproduce the results, they should know that
they are working on the same datasets. Second, we were
required to compare the Allinea Perf Report profiler’s timings
to ParConnect’s output timings and explain any differences.
From the table we can see that the timing computed from the
output file and that from Allinea Performance Report are not
the same. The difference is due to the fact that the instruction
to calculate the communication time does not take into account
all MPI subroutine call, whereas the profiler included those.

Next, we have to generate 3 graphs that show the com-
munication times and computation times over each iteration
corresponding to each algorithmic variants. There are some
aspects of these graph that are similar to the paper. For
instance, in the first and second iteration in the paper, the total
time for each starts out decently, but then for some iterations
later, those times skyrocket significantly then decreasing at a
somewhat linear speed. In our experiments, there are no cusps
like that at all. Nevertheless, the general trend that the time
will decrease as you move to the larger iteration still holds
here. Like in the graph, the communication time dominated
over the computation mostly for all iterations beside some of
the very last iterations (this is more noticeable for the AP and
AP LB graph). The reason for all these problems are probably
because the data set that was given is not big enough.

Fig. 2. Performance of the three algorithm variants for data set small.fastq,
using increasing number of processor cores.

Finally, we have to perform a strong scaling experiment on
the small dataset. The result is summarized in Fig. 2. Similar

to the paper, we can for the most part reproduce the scaling
property of the application. Nevertheless, due to many limiting
factors such as inter networking communication limitation, we
only see strong scaling from 20 cores to around 80 cores. From
around probably 90 or 100 cores, the communication time will
be larger than computation, so theres no more advantage from
parallelism anymore. One thing that we cant reproduce is the
timing improvement between the AP and AP LB. In the paper,
the AP LB consistently performed much better than the AP
variants which is not the case in our graph here.

Since we are one of the top teams from the Reproducibilty
Challenge at SC16, we were invited to submit a paper to a
special issue of the Parallel Computing journal. As a result, our
long-term goal is to work with our mentors for the next couple
of months in order to refine our writing further. Hopefully, we
would be able to get our paper accepted for publication.

F. Password Cracking

In modern web security, authentication platforms often store
passwords in a hashed representation in order to mitigate
credential loss in the occurrence of a compromised password
database. Traditionally, these hashes are the result of a pass-
word combined with a known chunk of data, a salt, used
with a cryptographic hashing algorithm. Salts prevent attackers
from using a precomputed lookup table of password hashes, a
rainbow table, to immediately decipher the original passwords.

The goal of this application in the competition was to
decipher as many of the original passwords from a list of
password hashes and their salts. As an added challenge, each
password used one of several hashing algorithms with different
computation parameters.

To cope with this diverse password set, John the Ripper
was used with a custom Celery executor and AMQP task
queue to brute-force the correct passwords. John the Ripper
is a popular and expansive password cracking application that
enabled deciphering any of the given hashes with a single
executable. Celery formed a flexible meta-architecture that
allowed dynamic execution, profiling, and termination of John
at run-time. This allowed the prioritization of the easiest
computed cryptographic hashing algorithms and the creation
of a probabilistic password-cracking model, preventing the
application from getting stuck on complex passwords. Celery
also afforded the benefit of innate performance visualization,
system-wide data persistence, and dynamic resource scaling.

In the competition, the team was given a dataset of 2.6
million password hashes each with a unique salt. The hashes
were resultant from two common hashing algorithms, MD5
and Blowfish. The initial dataset was subsequently split by
hash type and filtered into the AMQP task queue for later
consumption. Celery executors, once launched, would au-
tonomously consume each task from the queue and execute
John for the specific job. At each endpoint, metadata, including
the results of John, was stored in a Redis database with
high-persistence journaling. This setup enabled data metrics
to be analyzed from multiple workers and stages in aggregate,
creating a probabilistic model for password cracking duration

that altered the maximum runtime of John tasks. This allowed
us to adjust the platform to aim for the most quickly cracked
passwords, at the expense of discarding some computation on
hashes proven more difficult to brute-force.

To prevent Celery executors from compromising the ef-
fectiveness of other applications via unintentional resource
sharing, execution under PBS Torque was implemented at
the competition. However, this and several other last-minute
changes led to considerable difficulty in proper termination
of Celery Executors under certain scenarios, which proved
problematic on the effectiveness of the task allocation pipeline
and resulted in the node hanging and have to be restarted.
It is not clear why these issues occurred, and there was no
time during the actual competition to diagnose the problems.
Possible sources could include last minute changes in the node
memory and the infiniband network configurations, which
were done to accommodate other applications.

G. Open HPC Software Integration

Open HPC Software Integration writeup here.

H. Cluster Management

The power monitoring scripts show the outputs of the
apparent power usage for each node, using SNMP queries to
the Geist PDU. The plots also show the CPU clock speed for
every core, obtained from /proc/cpuinfo. The figures above
show the the power consumption when running the HPL
benchmark on the full system of 320 cores (left), and on a
smaller system of 220 cores (right). For the case of 320 cores,
the power usage exceeds the power limit of 3.1 KW, but stays
under the limit when the number of active cores is reduced to
220.

I. Mic. Figures from example paper

Fig. 4 shows the measured CW RF power characteristics at
10.24 GHz of a transistor biased at Vds=20V, Ids=150mA. It
delivers, on the optimum load impedance Zload “ 20` j.18Ω
and exhibit 4.8W/mm output power at 3.5dB of compression
with a PAE of 46% and an associated gain of 11.5dB.

Figure 6 shows a comparison between RF pulsed mea-
surements and simulations with this model. The transistor
is measured at Vds0=20V, Ids0=115mA (190mA/mm), on a
load impedance Zload “ p20` j18qΩ. The bias voltages are
continuous, and the RF signal, at a frequency of 10GHz, is
pulsed. Its duration is 5µs, and its period 100µs. On this
example, the RF input power equals 20dBm, corresponding

Idso(t)

t
Emission

Capture

t

−20 −15 15
70

80

90

100

Pin (dBm)

Id
so

 (
m

A
)

−10 −5 0 5 10

ΔID1

Trap free characteristic

ΔID1

Fig. 3. Representation of the mechanism induced by traps on the average
drain current.

-5 0 5 10 15 20 25-10 30

10

15

20

25

30

35

5

40

10

20

30

40

0

50

Pin (dBm)

G
a
in

 (
d
B

),
 P

o
u
t

(d
B

m
)

P
A

E
 (%

)
Pout

Gain

PAE

Fig. 4. Measurements (grey), modeling (blue) of the CW RF performances
of a 8x75µm AlInN/GaN HEMT at 10.24GHz in class AB. ZloadOPT “

p20` j.18qΩ.

approximately to 1dB of gain compression. The very large
amplitude of the current discontinuity at the moment when
RF is switched off leads to a transient current from 97mA to
115mA (i.e. the nominal bias point).

Real-time performance monitoring and visualization was
implemented using Grafana and InfluxDB, populated via the
aforementioned power monitoring scripts.

VI. CONCLUSION AND OBSERVATIONS

what went right, what went wrong. we learned a lot, we’ll
do it again. Please add any thoughts here (pros/cons/what to
do differently next year).

We will certainly shift our focus from custom-tailored so-
lutions towards refining and optimizing preexisting solutions.
Additionally, any supplemental utilities and scripts that may
be necessary should be created before the competition.

‚ Next year, the team should be prepared to parse and
convert data to their applications’ desired format and
understand the esoteric features of each application.

‚ Multiple teammates should be trained for each application
to easily divide labor and assist in problem-solving.

1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E81 1E9

0.002

0.004

0.006

0.000

0.008

Frequency (Hz)

re
al

 (
Y

(2
,2

))

1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E81 1E9

0.000

0.001

0.002

0.003

0.004

-0.001

0.005

Frequency (Hz)

im
ag

 (Y
(2

,2
))

Fig. 5. <tY22u and =tY22u. AlInN/GaN 8x75 µm HEMT measurements at
Vds “ 20V , Ids “ 120mA (grey) are compared to a simple electro-thermal
model (red) and an electro-thermal model including activated drain-lag effects
(blue)

0.02 0.04 0.06 0.08 0.10 0.12 0.140.00 0.16

0.105

0.115

0.125

0.095

0.135

Time (ms)

m
ea

n(
Id

s)
 (

A
)

Fig. 6. Measurements (grey) and modeling (blue) of the average output
current in pulsed RF signal operation at 10 GHz (5µs-100µs) with DC bias
(20V, 115 mA). The amplitude of the transient induced by detrapping when
RF is switched off is accurately modeled.

‚ Teammate scheduling and resource allocation should be
planned before the competition.

‚ Scripting ability should be emphasized, for its usefulness
in automation and problem-solving in constrained time
frames.

‚ Any supplemental software, such as visualization or log-
ging platforms, should be operational before the compe-
tition with intuitive integration endpoints.

‚ Promotional displays should be prepared prior to the
competition and contain information such as:

– Student biographies
– SDSU, CSRC (Organizational information)

– Application monitoring (Performance visualizations)
– Sponsorship information

ACKNOWLEDGMENTS

This work was made possible by a grant from Intel, who
provided the cluster, engineering support and a generous
travel grant; the OpenHPC Community; and the San Diego
State University Computational Sciences Research Center. The
authors would like to also thank members of the SDSU
Cyber Defense Team (Marcus Butler, Alexander Kirk) and
the Edwards Lab (Gheni Guerios and Daniel Cuevas) for their
help with the applications.

REFS TO BE INTEGRATED INTO BIB:

[1] Computational Science Research Center (CSRC). [Online]. http://www.csrc.sdsu.edu/
[2] SC16 Student Cluster Competition. [Online]. http://www.studentclustercompetition.us/
[3] Open HPC Community. [Online]. http://www.openHPC.community
[4] Applied Computational Science and Engineering Student Support (ACSESS). [Online]. http://www.csrc.sdsu.edu/acsess.html
[5] OpenHPC Git Hub Repository - List of Components. [Online]. https://github.com/openhpc/ohpc/tree/obs/OpenHPC_1.1_Factory/components
[6] P. Smith, D. Smith, T. Hoefler, A. Labutina and T. Overmeyer S. Harrell, "Methods of Creating Student Cluster Competition Teams," in Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, vol. 50, Salt Lake City, 2011, pp. 1-6.

REFERENCES

1 Supercomputing ’16 Student Cluster Competition. Last Accessed on
11/1/16 at http://www.studentclustercompetition.us/.

2 Detailed Specifications of the Intel Xeon E5-2600v4
Broadwell-EP Processors. Last Accessed on 11/01/16 at
https://www.microway.com/knowledge-center-articles/detailed-
specifications-of-the-intel-xeon-e5-2600v4-broadwell-ep-processors/.

