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Introduction 

•  Many computational science and engineering problems 
reduce at the end to either a series of matrix or some 
form of grid operations, be it through differential, integral 
or other methods. The dimensions of the matrices or 
grids are often determined by the physical problems.  

•  Frequently in multiprocessing, these matrices or grids are 
partitioned, or domain-decomposed, so that each partition 
(or subdomain) is assigned to a process.  

•  One such example is an m x n matrix decomposed into p 
q x n submatrices with each assigned to be worked on by 
one of the p processes.  



Introduction 

•  In this case, each process represents one distinct submatrix in a 
straightforward manner. However, an algorithm might dictate that the 
matrix be decomposed into a pxq logical grid, whose elements are 
themselves each an r x s matrix. This requirement might be due to a 
number of reasons: efficiency considerations, ease in code 
implementation, code clarity, to name a few.  

•  Although it is still possible to refer to each of these pxq subdomains 
by a linear rank number, it is obvious that a mapping of the linear 
process rank to a 2D virtual rank numbering would facilitate a much 
clearer and natural computational representation.  

•  To address the needs of this and other topological layouts, the MPI 
library provides two types of topology routines: Cartesian and graph 
topologies. Only Cartesian topology and the associated routines will 
be discussed in this chapter.  



MPI Topology Routines 



Virtual Topology MPI Routines 

•  Some of the MPI topology routines are 
– MPI_CART_CREATE  
– MPI_CART_COORDS  
– MPI_CART_RANK   
– MPI_CART_SUB  
– MPI_CARTDIM_GET  
– MPI_CART_GET 
– MPI_CART_SHIFT 

•  These routines are discussed in the following 
sections. 



MPI_CART_CREATE 

•  Definition of MPI_CART_CREATE 
– Used to create Cartesian coordinate structures, of 

arbitrary dimensions, on the processes. The new 
communicator receives no cached information. 

•  The MPI_CART_CREATE routine creates a new 
communicator using a Cartesian topology. 
int MPI_Cart_create(MPI_Comm old_comm, int ndims, 

int *dim_size, int *periods, int reorder, MPI_Comm 
*new_comm) 

•  The function returns an int error flag. 



MPI_CART_CREATE 

Variable 
Name 

C Type In/Out  Description  

old_comm MPI_Comm  Input  Communicator handle  

ndims int Input  Number of dimensions 
dim_size int * Input Array of size ndims 

providing length in each 
dimension 

periods int * Input  Array of size ndims 
specifying periodicity status 
of each dimension 

reorder  int Input  whether process rank 
reordering by MPI is 
permitted 

new_comm  MPI_Comm * Output Communicator handle 



MPI_CART_CREATE 

#include "stdio.h" 
#include "mpi.h" 
MPI_Comm old_comm, new_comm; 
int ndims, reorder, periods[2], dim_size[2]; 
 
old_comm = MPI_COMM_WORLD; 
ndims = 2;  /*  2D matrix/grid */ 
dim_size[0] = 3;  /* rows */ 
dim_size[1] = 2;  /* columns */ 
periods[0] = 1;  /* row periodic (each column forms a ring) */ 
periods[1] = 0;  /* columns non-periodic */ 
reorder = 1;  /* allows processes reordered for efficiency */ 
 
MPI_Cart_create(old_comm, ndims, dim_size, periods, reorder, &new_comm); 



MPI_CART_CREATE 

•  In the above example we use 
MPI_CART_CREATE to map 
(or rename) 6 processes from 
a linear ordering (0,1,2,3,4,5) 
into a two-dimensional matrix 
ordering of 3 rows by 2 
columns ( i.e., (0,0), (0,1), ..., 
(2,1) ). 

•  Figure 8.1 (a) depicts the 
resulting Cartesian grid 
representation for the 
processes. The index pair "i,j" 
represent row "i" and column 
"j". The corresponding (linear) 
rank number is enclosed in 
parentheses. 

0,0 (0) 0,1 (1) 

1,0 (2)  1,1 (3)  

2,0 (4)  2,1 (5)  

Figure 8.1 (a). Cartesian 
Grid 



MPI_CART_CREATE 

•  With processes renamed in a 2D 
grid topology, we are able to 
assign or distribute work, or 
distinguish among the processes 
by their grid topology rather than 
by their linear process ranks. 

•  Additionally, we have imposed 
periodicity along the first 
dimension ( periods[0]=1 ), which 
means that any reference beyond 
the first or last entry of any column 
will be wrapped around cyclically. 

•  For example, row index i = -1, due 
to periodicity, corresponds to i = 2. 
Similarly, i = -2 maps onto i = 1. 
Likewise, i = 3 is the same as i = 
0.  

•  No periodicity is imposed on the 
second dimension ( periods[1]=0 ). 
Any reference to the column index 
outside of its defined range (in this 
case 0 to 1) will result in a 
negative process rank (equal to 
MPI_PROC_NULL which is -1), 
which signifies that it is out of 
range. 

•  Similarly, if periodicity was defined 
only for the column index (i.e., 
periods[0]=0; periods[1]=1), each 
row would wrap around itself.  



MPI_CART_CREATE 

•  Each of the above two 2D 
cases may be viewed 
graphically as a cylinder; the 
periodic dimension forms the 
circumferential surface while 
the non-periodic dimension 
runs parallel to the cylindrical 
axis.  

•  If both dimensions are periodic, 
the grid resembles a torus. The 
effects of periodic columns and 
periodic rows are depicted in 
Figures 8.1 (b) and (c), 
respectively. The tan-colored 
cells indicate cyclic boundary 
condition in effect. 

-1,0 (4) -1,1 (5) 

0,-1(-1) 0,0 (0) 0,1 (1) 0,2(-1) 

1,-1(-1) 1,0 (2) 1,1 (3)  1,2(-1) 

2,-1(-1) 2,0 (4) 2,1 (5) 2,2(-1) 

3,0 (0) 3,1 (1) 

Figure 8.1 (b). periods[0]=1;periods[1]=0 

-1,0 (-1) -1,1 (-1) 

0,-1(1) 0,0 (0) 0,1 (1) 0,2(0) 

1,-1(3) 1,0 (2) 1,1 (3) 1,2(2) 

2,-1(5) 2,0 (4) 2,1 (5) 2,2(4) 

3,0 (-1) 3,1 (-1) 

Figure 8.1 (c). periods[0]=0;periods[1]=1 



MPI_CART_CREATE 

•  Finally, note that while the processes are 
arranged logically as a cartesian topology, the 
processors corresponding to these processes 
may in fact be scattered physically - even within a 
shared-memory machine.  
–  If reorder is set to “1” in C, MPI may reorder the 

process ranks in the new communicator (for potential 
gain in performance due to, say, the physical 
proximities of the processes assigned).  

–  If reorder is “0” in C, the process rank in the new 
communicator is identical to its rank in the old 
communicator. 



MPI_CART_CREATE 

•  While having the processes laid out in the Cartesian 
topology help you write code that's conceivably more 
readable, many MPI routines recognize only rank number 
and hence knowing the relationship between ranks and 
Cartesian coordinates (as shown in the figures above) is 
the key to exploit the topology for computational 
advantages. In the following sections, we will discuss two 
subroutines that provide this information. They are  
–  MPI_CART_COORDS 
–  MPI_CART_RANK 



MPI_CART_CREATE 

•  Note:  
–  MPI_CART_CREATE is a collective communication function (see 

Chapter 6 - Collective Communications). It must be called by all 
processes in the group. Like other collective communication 
routines, MPI_CART_CREATE uses blocking communication. 
However, it is not required to be synchronized among processes 
in the group and hence is implementation dependent.  

–  If the total size of the Cartesian grid is smaller than available 
processes, those processes not included in the new 
communicator will return MPI_COMM_NULL.  

–  If the total size of the Cartesian grid is larger than available 
processes, the call results in error. 



MPI_CART_COORDS 

•  Definition of MPI_CART_COORDS 
– Used to translate the coordinates of the process from 

rank, the inverse of MPI_CART_RANK. 
•  The MPI_CART_COORDS routine returns the 

corresponding Cartesian coordinates of a (linear) 
rank in a Cartesian communicator.  
int MPI_Cart_coords( MPI_Comm comm, int rank, int 

maxdims, int *coords ) 
•  The function returns an int error flag. 



MPI_CART_COORDS 

Variable 
Name 

C Type In/Out  Description  

comm  MPI_Comm  Input  Communicator handle  

rank  int Input  Calling process rank  

maxdims  int Input Number of dimensions 
in cartesian topology 

coords  int * Output Corresponding 
cartesian coordinates 
of rank 



MPI_CART_COORDS 

MPI_Cart_create(old_comm, ndims, dim_size, periods, 
reorder, &new_comm);  /* creates communicator */ 

 
if(Iam == root) {   /* only want to do this on one process */ 

 for (rank=0; rank<p; rank++) { 
  MPI_Cart_coords(new_comm, rank, ndims, &coords); 
  printf("%d, %d\n ",rank, coords); 
 } 

} 



MPI_CART_COORDS 

•  In the above example, a 
Cartesian communicator 
is created first.  

•  Repeated applications of 
MPI_CART_COORDS for 
all process ranks (input) 
produce the mapping 
table, shown in Figure 8.2, 
of process ranks and their 
corresponding Cartesian 
coordinates (output).  

0,0 (0) 0,1 (1) 
 

1,0 (2) 1,1 (3) 
 

2,0 (4) 2,1 (5) 
 

Figure 8.2. Cartesian Grid 



MPI_CART_COORDS 

•  Note:  
–  This routine is the reciprocal of MPI_CART_RANK.  
– Querying for coordinates of ranks in new_comm is not 

robust; querying for an out-of-range rank results in 
error. 

•  Definition of MPI_CART_RANK 
– Used to translate logical process coordinates to the 

ranks of the process in point-to-point routines. 



MPI_CART_RANK 

•  Definition of MPI_CART_RANK 
– Used to translate logical process coordinates to the 

ranks of the process in point-to-point routines. 
•  The MPI_CART_RANK routine returns the 

corresponding process rank of the Cartesian 
coordinates of a Cartesian communicator.  
int MPI_Cart_rank( MPI_Comm comm, int *coords, int 

*rank ) 
•  The function returns an int error flag. 



MPI_CART_RANK 

Variable 
Name 

C Type In/Out  Description  

comm  MPI_Comm  Input  Cartesian 
Communicator handle  

coords int * Input  Array of size ndims 
specifying Cartesian 
coordinates  

rank int Output Process rank of 
process specified by 
its Cartesian 
coordinates, coords  



MPI_CART_RANK 

MPI_Cart_create(old_comm, ndims, dim_size, periods, reorder, 
&new_comm); 

 
if(Iam == root) {       /* only want to do this on one process */ 

 for (i=0; i<nv; i++) { 
  for (j=0; j<mv; j++)  { 
   coords[0] = i; 
   coords[1] = j; 
   MPI_Cart_rank(new_comm, coords, &rank); 
   printf("%d, %d, %d\n",coords[0],coords[1],rank); 
  } 
 } 

} 



MPI_CART_RANK 

•  Once a Cartesian communicator 
has been established, repeated 
applications of MPI_CART_RANK 
for all possible values of the 
Cartesian coordinates produce a 
correlation table of the Cartesian 
coordinates and their 
corresponding process ranks.  

•  Shown in Figure 8.3 below is the 
resulting Cartesian topology (grid) 
where the index pair "i,j" represent 
row "i" and column "j". The number 
in parentheses represents the 
rank number associated with the 
Cartesian coordinates. 

0,0 (0) 0,1 (1) 

1,0 (2) 1,1 (3) 

2,0 (4) 2,1 (5) 

Figure 8.3. Cartesian Grid 



MPI_CART_RANK 

•  Note:  
–  This routine is the reciprocal of MPI_CART_COORDS.  
– Querying for rank number of out-of-range coordinates 

along the dimension in which periodicity is not enabled 
is not safe (i.e., results in error).  



MPI_CART_SUB 

•  Definition of MPI_CART_SUB 
–  Used to partition a communicator group into subgroups when 

MPI_CART_CREATE has been used to create a Cartesian topology. 
•  The MPI_CART_SUB routine creates new communicators for 

subgrids of up to (N-1) dimensions from an N-dimensional Cartesian 
grid.  

•  Often, after we have created a Cartesian grid, we wish to further 
group elements of this grid into subgrids of lower dimensions. 
Typical operations requiring subgrids include reduction operations 
such as the computation of row sums, column extremums.  
–  For instance, the subgrids of a 2D Cartesian grid are 1D grids of the 

individual rows or columns. Similarly, for a 3D Cartesian grid, the 
subgrids can either be 2D or 1D. 

int MPI_Cart_sub( MPI_Comm old_comm, int *belongs, MPI_Comm 
*new_comm ) 

•  The function returns an int error flag. 



MPI_CART_SUB 

Variable 
Name 

C Type In/Out  Description  

old_comm MPI_Comm  Input  Cartesian 
Communicator handle  

belongs  int * Input  Array of size ndims 
specifying whether a 
dimension belongs to 
new_comm 

new_comm  MPI_Comm Output Cartesian 
Communicator handle 



MPI_CART_SUB 

•  For a 2D Cartesian grid, create subgrids of rows and columns. 
Create Cartesian topology for processes. 
/* Create 2D Cartesian topology for processes */ 
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder, 

&comm2D); 
MPI_Comm_rank(comm2D, &id2D); 
MPI_Cart_coords(comm2D, id2D, ndim, coords2D); 
/* Create 1D row subgrids */ 
belongs[0] = 0; 
belongs[1] = 1;     ! this dimension belongs to subgrid 
MPI_Cart_sub(comm2D, belongs, &commrow); 
/* Create 1D column subgrids */ 
belongs[0] = 1;      /* this dimension belongs to subgrid */ 
belongs[1] = 0; 
MPI_Cart_sub(comm2D, belongs, &commcol); 



MPI_CART_SUB 

•  Shown in Figure 8.4 (a) below is a 3-by-2 
Cartesian topology. Figure 8.4 (b) shows the 
resulting row subgrids, while Figure 8.4 (c) shows 
the corresponding column subgrids. In black, the 
first row of numbers in each cell lists the 2D 
Cartesian coordinate index pair "i,j" and the 
associated rank number. On the second row, and 
in green, are shown the 1D subgrid Cartesian 
coordinates and the subgrid rank number (in 
parentheses). Their order is counted relative to 
their respective subgrid communicator groups.  



MPI_CART_SUB 

0,0(0) 0,1(1) 0,0(0) 
0(0) 

0,1(1) 
1(1) 

0,0(0) 
0(0) 

0,1(1) 
0(0) 

1,0(2) 1,1(3) 1,0(2) 
0(0) 

1,1(3) 
1(1) 

1,0(2) 
1(1) 

1,1(3) 
1(1) 

2,0(4) 2,1(5) 2,0(4) 
0(0) 

2,1(5) 
1(1) 

2,0(4) 
2(2) 

2,1(5) 
2(2) 

Figure 8.4 
(a). 2D 
Cartesian 
Grid 

Figure 8.4 
(b). 3 Row 
Subgrids 

Figure 8.4 
(c). 2 Column 
Subgrids 



MPI_CART_SUB 

•  Note:  
–  MPI_CART_SUB is a collective routine. It must be called by all 

processes in old_comm.  
–  MPI_CART_SUB generated subgrid communicators are derived 

from Cartesian grid created with MPI_CART_CREATE.  
–  Full length of each dimension of the original Cartesian grid is 

used in the subgrids.  
–  Each subgrid has a corresponding communicator. It inherits 

properties of the parent Cartesian grid; it remains a Cartesian 
grid.  

–  It returns the communicator to which the calling process belongs.  
–  There is a comparable MPI_COMM_SPLIT to perform similar 

function.  
–  MPI_CARTDIM_GET and MPI_CART_GET can be used to 

acquire structural information of a grid (such as dimension, size, 
periodicity) 



MPI_CART_SUB 

•  Definition of MPI_CART_CREATE 
– Used to create Cartesian coordinate structures, of 

arbitrary dimensions, on the processes. The new 
communicator receives no cached information. 

•  Definition of MPI_COMM_SPLIT 
– Used to partition old_comm into separate subgroups. It 

is similar to MPI_CART_CREATE. 
•  Definition of MPI_CART_GET 

– Used to retrieve the Cartesian topology previously 
cached with "comm". 



MPI_CART_SUB Example 

•  This example demonstrates the usage of 
MPI_CART_SUB. We will work with six (6) processes.  

•  First, form a 2D (3x2) cartesian grid. Each element of this 
grid corresponds to one entry, A(i,j), of a matrix A. 
Furthermore, A(i,j) is defined as  
A(i,j) = (i+1)*10 + j + 1; i=0,1,2; j=0,1 

•  With this definition, A(0,0), for instance, has the value 11 
while A(2,1) = 32.  

•  Next, create 2 column subgrids via MPI_CART_SUB. 
Each of the subgrids is a 3x1 vector. We then let the last 
member of each column (subgrid) to gather data, A(i,j), 
from their respective members. 



MPI_CART_SUB Example 

#include "stdio.h" 
#include "mpi.h" 
void main(int argc, char *argv[])  
{ 

 int nrow, mcol, i, lastrow, p, root; 
 int Iam, id2D, colID, ndim; 
 int coords1D[2], coords2D[2], dims[2], aij[1], alocal[3]; 
 int belongs[2], periods[2], reorder; 
 MPI_Comm comm2D, commcol; 
 /* Starts MPI processes ... */ 
 MPI_Init(&argc, &argv);      /* starts 
MPI */ 
 MPI_Comm_rank(MPI_COMM_WORLD, &Iam);  /* get current 
process id */ 
 MPI_Comm_size(MPI_COMM_WORLD, &p);   /* get number of 
processes */ 



MPI_CART_SUB Example 

 nrow = 3; mcol = 2; ndim = 2; 
 root = 0; periods[0] = 1; periods[1] = 0; reorder = 1; 

 
 /* create cartesian topology for processes */ 
 dims[0] = nrow;  /* number of rows */ 
 dims[1] = mcol;  /* number of columns */ 
 MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, periods, reorder, &comm2D); 
 MPI_Comm_rank(comm2D, &id2D); 
 MPI_Cart_coords(comm2D, id2D, ndim, coords2D); 

 
 /* Create 1D column subgrids */ 
 belongs[0] = 1;  /* this dimension belongs to subgrid */ 
 belongs[1] = 0; 
 MPI_Cart_sub(comm2D, belongs, &commcol); 
 MPI_Comm_rank(commcol, &colID); 
 MPI_Cart_coords(commcol, colID, 1, coords1D); 



MPI_CART_SUB Example 

 MPI_Barrier(MPI_COMM_WORLD); 
 

 /* aij = (i+1)*10 + j + 1; 1 matrix element to each proc */ 
 aij[0] = (coords2D[0]+1)*10 + coords2D[1]+1; 

 
 if(Iam == root) { 
  printf("\n     MPI_Cart_sub example:"); 
  printf("\n 3x2 cartesian grid ==> 2 (3x1) column subgrids\n"); 
  printf("\n   Iam     2D       2D          1D       1D      aij"); 
  printf("\n  Rank   Rank     coords.     Rank  coords.\n"); 
 } 

 
 /* Last element of each column gathers elements of its own column */ 
 for ( i=0; i<=nrow-1; i++) { 
  alocal[i] = -1; 
 } 



MPI_CART_SUB Example 

 lastrow = nrow - 1; 
 MPI_Gather(aij, 1, MPI_INT, alocal, 1, MPI_INT, lastrow, commcol); 

 
 MPI_Barrier(MPI_COMM_WORLD); 

 
 printf("%6d|%6d|%6d %6d|%6d|%8d|", 
Iam,id2D,coords2D[0],coords2D[1],colID,coords1D[0]); 
 for (i=0; i<=lastrow; i++) { 
  printf("%6d ",alocal[i]); 
 } 
 printf("\n"); 

 
 MPI_Finalize();  /* let MPI finish up ...  */ 

} 



MPI_CART_SUB Example 

•  Output 
$ mpirun -np 6 ch08_cart_sub_example 
MPI_Cart_sub example: 
3x2 cartesian grid ==> 2 (3x1) column subgrids 
 

 Iam  2D      2D   1D   1D      aij 
 Rank   Rank   coords.  Rank  coords. 
 0|  0|  0  0|  0|    0|    -1    -1    -1 
 1|  1|  0  1|  0|    0|    -1    -1    -1 
 2|  2|  1  0|  1|    1|    -1    -1    -1 
 3|  3|  1  1|  1|    1|    -1    -1    -1 
 4|  4|  2  0|  2|    2|    11    21    31 
 5|  5|  2  1|  2|    2|    12    22    32 



MPI_CART_SUB Example 

•  Shown below are the two column 
subgrids resulting from the 
application of MPI_CART_SUB to 
a 3x2 cartesian grid. 

•  As before, the 2D cartesian grid 
coordinates are represented by 
the "i,j" pair of numbers, the rank 
numbers corresponding to the grid 
processes of the 2D grid are 
parenthesized and in black. 

•  The numbers below them, in 
green, are the rank numbers in the 
two respective column subgrids. 
The content of each element of 
the 2D grid is shown as ai,j.  

0,0 (0) 
a0,0(0) 

0,1 (1) 
a0,1(0) 

1,0 (2) 
a1,0(1) 

1,1 (3) 
a1,1(1) 

2,0 (4) 
a2,0(2) 

2,1 (5) 
a2,1(2) 

Figure a. 
Column Subgrids 



MPI_CARTDIM_GET 

•  Definition of MPI_CARTDIM_GET 
–  An inquiry function used to determine the number of dimensions 

of the Cartesian structure. 

•  The MPI_CARTDIM_GET routine determines the number 
of dimensions of a subgrid communicator.  

•  On occasions, a subgrid communicator may be created in 
one routine and subsequently used in another routine. If 
the dimension of the subgrid is not available, it can be 
determined by MPI_CARTDIM_GET. 
int MPI_Cartdim_get( MPI_Comm comm, int* ndims ) 

•  The function returns an int error flag. 



MPI_CARTDIM_GET 

/* create column subgrids */ 
belongs[0] = 1; 
belongs[1] = 0; 
MPI_Cart_sub(grid_comm, belongs, &col_comm); 
/* queries number of dimensions of cartesan grid */ 
MPI_Cartdim_get(col_comm, &ndims); 

Variable Name C Type In/Out  Description  

comm  MPI_Comm  Input  Cartesian communicator 
handle  

ndims  int *  Output Number of dimensions  



MPI_CARTDIM_GET 

•  On occasions, detailed information about a grid may not 
be available, as in the case where a communicator is 
created in one routine and is used in another. In such a 
situation, MPI_CARTDIM_GET may be used to find the 
dimension of the grid associated with the communicator. 
Armed with this value, additional information may be 
obtained by calling MPI_CART_GET, which is discussed 
in the next section. 

•  Definition of MPI_CART_GET 
–  Used to retrieve the Cartesian topology previously cached with 

"comm". 



MPI_CART_GET 

•  Definition of MPI_CART_GET 
–  Used to retrieve the Cartesian topology previously cached with "comm". 

•  Definition of MPI_CARTDIM_GET 
–  An inquiry function used to determine the number of dimensions of the 

Cartesian structure. 
•  The MPI_CART_GET routine retrieves properties such as periodicity 

and size of a subgrid.  
•  On occasions, a subgrid communicator may be created in one 

routine and subsequently used in another routine. If only the 
communicator is available in the latter, this routine, along with 
MPI_CARTDIM_GET, may be used to determine the size and other 
pertinent information about the subgrid. 
int MPI_Cart_get( MPI_Comm subgrid_comm, int ndims, int *dims, int 

*periods, int *coords ) 
•  The function returns an int error flag. 



MPI_CART_GET 

Variable Name C Type In/Out  Description  

subgrid_comm MPI_Comm Input  Communicator handle  

ndims int Input  Number of dimensions 
dims  int * Output Array of size ndims providing 

length in each dimension  

periods int * Output Array of size ndims specifying 
periodicity status of each 
dimension  

coords  int * Output Array of size ndims providing 
Cartesian coordinates of 
calling process  



MPI_CART_GET 

/* create Cartesian topology for processes */ 
dims[0] = nrow; 
dims[1] = mcol; 
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder, 

&grid_comm); 
MPI_Comm_rank(grid_comm, &me); 
MPI_Cart_coords(grid_comm, me, ndim, coords); 
/* create row subgrids */ 
belongs[0] = 1; 
belongs[1] = 0; 
MPI_Cart_sub(grid_comm, belongs, &row_comm); 
/* Retrieve subgrid dimensions and other info */ 
MPI_Cartdim_get(row_comm, &mdims); 
MPI_Cart_get(row_comm, mdims, dims, period, row_coords); 



MPI_CART_GET 

•  Shown in Figure 8.5 below is a 
3-by-2 Cartesian topology 
(grid) where the index pair "i,j" 
represents row "i" and column 
"j". The number in parentheses 
represents the rank number 
associated with the Cartesian 
grid.  

•  This example demonstrated 
the use of MPI_CART_GET to 
retrieve information on a 
subgrid communicator. Often, 
MPI_CARTDIM_GET needs to 
be called first since ndims, the 
dimensions of the subgrid, is 
needed as input to 
MPI_CART_GET.  

0,0 (0) 0,1 (1) 

1,0 (2) 1,1 (3) 

2,0 (4) 2,1 (5) 

Figure 8.5. Cartesian Grid 



MPI_CART_SHIFT 

•  Definition of MPI_CART_SHIFT 
–  Used to return ranks of source and destination processes for a 

following call to MPI_SENDRCV that shifts data in a coordinate 
direction in the Cartesian communicator. Specified by the 
coordinate of the shift and by the size of the negative or positive 
shift step. 

•  The MPI_CART_SHIFT routine finds the resulting source 
and destination ranks, given a shift direction and amount.  
int MPI_Cart_shift( MPI_Comm comm, int direction, int displ, int 

*source, int *dest ) 

•  The function returns an int error flag. 



MPI_CART_SHIFT 

•  Loosely speaking, MPI_CART_SHIFT is used to find two "nearby" 
neighbors of the calling process along a specific direction of an N-
dimensional Cartesian topology.  

•  This direction is specified by the input argument, direction, to 
MPI_CART_SHIFT. The two neighbors are called "source" and 
"destination" ranks, and the proximity of these two neighbors to the 
calling process is determined by the input parameter displ.  
–  If displ = 1, the neighbors are the two adjoining processes along the 

specified direction and the source is the process with the lower rank 
number, while the destination rank is the process with the higher rank.  

–  On the other hand, if displ = -1, the reverse is true. A simple code 
fragment and a complete sample code are shown below to demonstrate 
the usage. A more practical example of an application is given in 
Section “Iterative Solvers”. 



MPI_CART_SHIFT 

Variable 
Name 

C Type In/Out  Description  

comm MPI_Comm Input  Communicator handle  
direction int Input  The dimension along 

which shift is to be in 
effect  

displ  int Input Amount and sense of 
shift (<0; >0; or 0) 

source  int * Output The source of shift (a 
rank number)  

dest  int * Output The destination of shift (a 
rank number)  



MPI_CART_SHIFT 

/* create Cartesian topology for processes */ 
dims[0] = nrow;     /* number of rows     */ 
dims[1] = mcol;     /* number of columns  */ 
period[0] = 1;      /* cyclic in this direction */ 
period[1] = 0;      /* no cyclic in this direction */ 
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder, 

&comm2D); 
MPI_Comm_rank(comm2D, &me); 
MPI_Cart_coords(comm2D, me, ndim, coords); 
 
index =  0;    /* shift along the 1st index (out of 2) */ 
displ =  1;    /* shift by  1 */ 
MPI_Cart_shift(comm2D, index, displ, &source, &dest1); 



MPI_CART_SHIFT 

•  In the above example, we 
demonstrate the application of 
MPI_CART_SHIFT to obtain 
the source and destination rank 
numbers of the calling process, 
me, resulting from shifting it 
along the first direction of the 
2D Cartesian grid by one.  

•  Shown in Figure 8.6 below is a 
3x2 Cartesian topology (grid) 
where the index pair "i,j" 
represent row "i" and column 
"j". The number in parentheses 
represents the rank number 
associated with the Cartesian 
coordinates. 

0,0 (0) 0,1 (1) 

1,0 (2) 1,1 (3) 

2,0 (4) 2,1 (5) 

Figure 8.6. Cartesian Grid 



MPI_CART_SHIFT 

•  With the input as specified above and 2 as the 
calling process, the source and destination rank 
would be 0 and 4, respectively, as a result of the 
shift. Similarly, if the calling process were 1, the 
source rank would be 5 and destination rank 
would be 3. The source rank of 5 is the 
consequence of period(0) = 1. More examples 
are included in the sample code. 



MPI_CART_SHIFT 

•  Note:  
–  Direction, the Cartesian grid dimension index, has range (0, 1, ..., 

ndim-1). For a 2D grid, the two choices for direction are 0 and 1.  
–  MPI_CART_SHIFT is a query function. No action results from its 

call.  
–  A negative returned value (MPI_UNDEFINED) of source or 

destination signifies the respective value is out of bound. It also 
implies that there is no periodicity along that direction.  

–  If periodic condition is enabled along the shift direction, an out of 
bound does not result. (See sample code). 

•  Definition of MPI_UNDEFINED 
–  A flag value returned by MPI when an integer value to be 

returned by MPI is not meaningfully defined. 



MPI_CART_SHIFT Example 

•  In this example, we demonstrate the usage of 
MPI_CART_SHIFT. With six (6) active processes, a 2D 
Cartesian topology is created for these 6 processes. This 
results in a 3x2 Cartesian topology representation for the 
6 processes. 

•  Furthermore, a cyclic boundary condition is imposed 
down the rows -- but not the columns - of this 2D grid. 
Given the calling process rank number in the Cartesian 
grid communicator, upon calling MPI_CART_SHIFT the 
source and destination ranks of the calling process rank 
are returned as follows: 



MPI_CART_SHIFT Example 

1.  along the rows and a displacement of +1, the source is the rank 
above the calling rank and the destination is the rank below it.  

2.  along the rows and a displacement of -2, the source is two ranks 
above the calling rank and the destination is two ranks below it.  

3.  along the rows and a displacement of +3, the source is three ranks 
above the calling rank and the destination is three rank below it.  

4.  across the columns and a displacement of +1, the source is the 
rank to the left of the calling rank and the destination is the rank to 
the right.  

5.  across the columns and a displacement of -1, the source is the rank 
to the right of the calling rank and the destination is the rank to the 
left.  



MPI_CART_SHIFT Example 

#include "stdio.h" 
#include "mpi.h" 
void main(int argc, char *argv[])  
{ 

 int nrow, mcol, irow, jcol, Iam, me, ndim; 
 int p, ierr, root, direct, displ; 
 int source1, source2, source3, source4, source5; 
 int dest1, dest2, dest3, dest4, dest5; 

 
 int coords[2], dims[2]; 
 int periods[2], reorder; 
 MPI_Comm comm2D; 

 
 /* Starts MPI processes ... */ 
 MPI_Init(&argc, &argv);      /* starts MPI */ 
 MPI_Comm_rank(MPI_COMM_WORLD, &Iam);  /* get current process id */ 
 MPI_Comm_size(MPI_COMM_WORLD, &p);   /* get number of 
processes */ 



MPI_CART_SHIFT Example 

 nrow = 3; mcol = 2; ndim = 2; 
 root = 0; periods[0] = 1; periods[1] = 0; reorder = 1; 

 
 if (Iam == root) 
 { 
  printf("                  (         along the rows           )(   across columns     )\n"); 
  printf("                   <== +1 ==>  <== -2 ==>  <== +3 ==>  <== +1 ==>  <== -1 ==>\n"); 
  printf("   2D   Row   Col  From    To  From    To  From    To  From    To  From    To\n"); 
  printf(" Rank     i     j   Src  Dest   Src  Dest   Src  Dest   Src  Dest   Src  Dest\n"); 
 } 
 MPI_Barrier(MPI_COMM_WORLD); 

 
 /* create cartesian topology for processes */ 
 dims[0] = nrow;   /* number of rows */ 
 dims[1] = mcol;   /* number of columns */ 
 MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, periods, reorder, &comm2D); 
 MPI_Comm_rank(comm2D, &me); 
 MPI_Cart_coords(comm2D, me, ndim, coords); 



MPI_CART_SHIFT Example 

 direct = 0;  /* shift along the 1st direction (0; not 1) */ 
 displ = 1;  /* shift by  2 */ 
 MPI_Cart_shift(comm2D, direct, displ, &source1, &dest1); 
 direct = 0;  /* shift along the 1st direction */ 
 displ = -2;  /* shift by -2 */ 
 MPI_Cart_shift(comm2D, direct, displ, &source2, &dest2); 
 direct = 0;  /* shift along the 1st direction (0; not 1) */ 
 displ = 3;  /* shift by  3 */ 
 MPI_Cart_shift(comm2D, direct, displ, &source3, &dest3); 
 direct = 1;  /* shift along the 2nd direction (1; not 2) */ 
 displ = 1;  /* shift by  1 */ 
 MPI_Cart_shift(comm2D, direct, displ, &source4, &dest4); 
 direct = 1;  /* shift along the 2nd direction */ 
 displ = -1;  /* shift by -1 */ 
 MPI_Cart_shift(comm2D, direct, displ, &source5, &dest5); 

 
 printf("%5d %5d %5d %5d %5d %5d %5d %5d %5d %5d %5d %5d %5d\n", me, coords[0], 
coords[1], source1, dest1, source2, dest2, source3, dest3, source4, dest4, source5, dest5); 
 MPI_Finalize();  /* let MPI finish up ...  */ 

} 



MPI_CART_SHIFT Example 

•  Output 
–  Note that some of the returned ranks in the last four columns are negative because they are out of 

bounds and are assigned the value MPI_UNDEFINED. The value of MPI_UNDEFINED is implementation 
dependent. In this case, it is -1. 

$ mpirun -np 6 ch08_cart_shift_example 
                  (         along the rows           )(   across columns     ) 
                   <== +1 ==>  <== -2 ==>  <== +3 ==>  <== +1 ==>  <== -1 ==> 
   2D   Row   Col  From    To  From    To  From    To  From    To  From    To 
 Rank     i     j   Src  Dest   Src  Dest   Src  Dest   Src  Dest   Src  Dest 
    0     0     0     4     2     4     2     0     0    -1     1     1    -1 
    1     0     1     5     3     5     3     1     1     0    -1    -1     0 
    2     1     0     0     4     0     4     2     2    -1     3     3    -1 
    3     1     1     1     5     1     5     3     3     2    -1    -1     2 
    4     2     0     2     0     2     0     4     4    -1     5     5    -1 
    5     2     1     3     1     3     1     5     5     4    -1    -1     4 



MPI_CART_SHIFT Example 

–  The 3x2 Cartesian 
topology grid, shown in 
Figure 8.7 below, 
illustrates what 
MPI_CART_SHIFT does 
under the four different 
sets of input parameters . 
The index pair "i,j" 
represents row "i" and 
column "j". The number in 
parentheses represents 
the rank number 
associated with the 
Cartesian coordinates. 

-3,0(0) -3,0(1) 

-2,0(2) -2,1(3) 

-1,0(4) -1,1(5) 

0,-1(-1) 0,0(0) 0,1(1) 0,2(-1) 

1,-1(-1) 1,0(2) 1,1,(3) 1,2(-1) 

2,-1(-1) 2,0(4) 2,1(5) 2,2(-1) 

3,0(0) 3,1(1) 

4,0(2) 4,1,(3) 

5,0(4) 5,1(5) 

Figure 8.7. 
periods[0]=1;periods[1]=0 



Practical Applications 



Practical Applications of Virtual 
Topologies  

•  The practical applications of virtual topologies 
listed below are discussed in the following 
sections. 
– Matrix Transposition  
–  Iterative Solvers 



Matrix Transposition  

•  This section demonstrates 
the use of virtual 
topologies by way of a 
matrix transposition. The 
matrix algebra for a matrix 
transposition is 
demonstrated in the 
following example.  

•  Consider a 3 x 3 matrix A. 
This matrix is blocked into 
sub-matrices A11, A12, 
A21, and A22 as follows: [ ] [ ]3322323121
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Matrix Transposition 

•  Next, let B represent the 
transpose of A. 

•  According to Equation on 
the right, the element Bij 
is the blocked submatrix 
Aji

T. For instance, 
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Matrix Transposition 

•  The parallel algorithm is  
–  Select p and q such that the total number of processes, nprocs 

= p x q.  
–  Partition the n x m matrix into a (blocked) p x q matrix whose 

elements are themselves matrices of size (n/p) x (m/q).  
–  Perform a transpose on each of these sub-matrices. These are 

performed serially because the entire sub-matrix resides locally 
on a process. No inter-process communication is required.  

–  Formally, the p x q matrix needs to be transposed to obtain the 
final result. However, in reality this step is often not necessary. If 
you need to access the element (or sub-matrix) "p,q" of the 
transposed matrix, all you need to do is access the element 
"q,p", which has already been transposed locally. Depending on 
what comes next in the calculation, unnecessary message 
passing may be avoided. 



Matrix Transposition 

•  As an example (see Figure 8.8), a 9 x 4 matrix with 6 processes is 
defined. Next, that matrix is mapped into a 3 x 2 virtual Cartesian 
grid, i.e., p=3, q=2. Coincidentally, each element of this Cartesian 
grid is, in turn, a 3 x 2 matrix. 

•  For the physical grid, each square box represents one entry of the 
matrix. The pair of indices, "i,j", on the first row gives the global 
Cartesian coordinates, while "(p)" is the process associated with the 
virtual grid allocated by calling MPI_CART_CREATE or 
MPI_COMM_SPLIT. On the second row, aij, is the value of the 
matrix element. 

•  The 3 x 2 virtual grid is depicted on the right of Figure 8.8. Each box 
in this grid represents one process and contains one 3 x 2 
submatrix. Finally, another communicator is created for the 
transposed virtual grid with dimensions of 2 x 3. For instance, the 
element at "1,0" of the transposed virtual grid stores the value sent 
by the element at "0,1" of the virtual grid. 

i,j (p) 

aij 



Matrix Transposition 
0,0(0) 
100 

0,1(0) 
101 

0,2(1) 
102 

0,3(1) 
103 

1,0(0) 
110 

1,1(0) 
111 

1,2(1) 
112 

1,3(1) 
113 

2,0(0) 
120 

2,1(0) 
121 

2,2(1) 
122 

2,3(1) 
123 

3,0(2) 
130 

3,1(2) 
131 

3,2(3) 
132 

3,3(3) 
133 

4,0(2) 
140 

4,1(2) 
141 

4,2(3) 
142 

4,3(3) 
143 

5,0(2) 
150 

5,1(2) 
151 

5,2(3) 
152 

5,3(3) 
153 

6,0(4) 
160 

6,1(4) 
161 

6,2(5) 
162 

6,3(5) 
163 

7,0(4) 
170 

7,1(4) 
171 

7,2(5) 
172 

7,3(5) 
173 

8,0(4) 
180 

8,1(4) 
181 

8,2(5) 
182 

8,3(5) 
183 

0,0(0) 0,1(1) 

1,0(2) 1,1(3) 

2,0(4) 2,1(5) 

0,0(0) 0,1(1) 0,2(2) 

1,0(3) 1,1(4) 1,2(5) 

Virtual Grid 

Transposed Virtual Grid 

Figure 8.8. An example of the 
use of virtual topologies by way of 
a matrix transposition using a 9 x 
4 matrix with 6 processes. 



Matrix Transposition 

#include "stdio.h" 
#include "mpi.h"  /* This brings in pre-defined MPI constants, ... */ 
 
void asemble(int at[][], int ml, int nl, MPI_Comm comm, int b[][], int m, int n, int p); 
 
void main(int argc, char *argv[])  
{ 

 int n, m, nv, nl, mv, ml, i, il, iv, j, jl, jv; 
 int p, ndim, reorder, ierr; 
 int master, me, Iam, source, dest, tag; 
 int dims[2], coord[2]; 
 int period[2]; 
 int a[3][2], at[2][3], b[4][9]; 
 MPI_Status status; 
 MPI_Request req; 
 MPI_Comm grid_comm; 



Matrix Transposition 

 /* Starts MPI processes ... */ 
 MPI_Init(&argc, &argv);      /* starts MPI */ 
 MPI_Comm_rank(MPI_COMM_WORLD, &Iam); /* get current process id */ 
 MPI_Comm_size(MPI_COMM_WORLD, &p);   /* get number of processes */ 

 
 master = 0;  /* 0 is defined as the master processor */ 
 period[0] = 0; period[1] = 0;  /* no cyclic boundary in either index */ 
 tag = 0;  /* a tag is not required in this case, set it to zero */ 
 dest = 0;  /* results are sent back to master */ 

 
 n = 9; m = 4; nv = 3; mv = 2; 
 nl = n/nv; ml = m/mv; 
 ndim = 2; reorder = 1; 

 
 /* create cartesian topology for matrix */ 
 dims[0] = nv; 
 dims[1] = mv; 
 MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder, &grid_comm); 
 MPI_Comm_rank(grid_comm, &me); 
 MPI_Cart_coords(grid_comm, me, ndim, coord); 
 iv = coord[0]; 
 jv = coord[1]; 



Matrix Transposition 

 /* define local matrix according to virtual grid coordinates, (iv,jv) */ 
 for (il=0; il<nl; il++) 
 { 
  for (jl=0; jl<ml; jl++) 
  { 
   i = il + iv*nl; 
   j = jl + jv*ml; 
   a[il][jl] = i*10 + j; 
  } 
 } 

 
 printf("%d: Before Transpose:\n", Iam); 
 for (i=0; i<nl; i++) 
 { 
  for (j=0; j<ml; j++) 
  { 
   printf("%5d", a[i][j]); 
  } 
  printf("\n"); 
 } 



Matrix Transposition 

 /* perform transpose on local matrix */ 
 for (il=0; il<nl; il++) 
 { 
  for (jl=0; jl<ml; jl++) 
  { 
   at[jl][il] = a[il][jl]; 
  } 
 } 

 
 /* send "at" to Master for asembly and printing */ 
 MPI_Isend(at, ml*nl, MPI_INT, master, tag, grid_comm, &req); 

 
 /* Master asembles all local transposes into final matrix and print */ 
 if(Iam == master) { 
  asemble(at, ml, nl, grid_comm, b, m, n, p); 
  MPI_Wait(&req, &status);  /* make sure all sends done */ 
 } 
 MPI_Finalize();   /* let MPI finish up ... */ 

} 



Matrix Transposition 

void asemble(int at[2][3], int ml, int nl, MPI_Comm comm, int b[4][9], int m, int n, int p) 
{ 

 int tag, source, ierr, ndim; 
 int iv, jv, i, j, il, jl, coord[2]; 
 MPI_Status status; 
 tag = 0; 

 
 /* The Master asembles the final (transposed) matrix from local copies and print */ 
 for (source=0; source<p; source++) 
 { 
  MPI_Cart_coords(comm, source, ndim, coord); 
  MPI_Recv(at, ml*nl, MPI_INT, source, tag, comm, &status); 
  iv = coord[0]; 
  jv = coord[1]; 
  for (jl=0; jl<nl; jl++) 
  { 
   j = jl + iv*nl;   /* swap iv and jv for transpose */ 
   for (il=0; il<ml; il++) 
   { 
    i = il + jv*ml; 
    b[i][j] = at[il][jl]; 
   } 
  } 
 } 



Matrix Transposition 

 printf("\nAfter Transpose:\n"); 
 for (i=0; i<m; i++) 
 { 
  for (j=0; j<n; j++) 
  { 
   printf("%5d", b[i][j]); 
  } 
  printf("\n"); 
 } 

} 



Iterative Solvers 

•  In this example, we demonstrate an application of the 
Cartesian topology by way of a simple elliptic (Laplace) 
equation.  

•  Fundamentals: The Laplace equation, along with 
prescribed boundary conditions, are introduced. Finite 
Difference Method is then applied to discretize the PDE 
to form an algebraic system of equations. 

•  Jacobi Scheme: A very simple iterative method, known 
as the Jacobi Scheme, is described. A single-process 
computer code is shown. This program is written in 
Fortran 90 for its concise but clear array representations. 
(Parallelism and other improvements will be added to this 
code as you progress through the example.)  



Iterative Solvers 

•  Parallel Jacobi Scheme: A parallel algorithm for this problem is 
discussed. Simple MPI routines, without the invocations of Cartesian 
topology, are inserted into the basic, single-process code to form the 
parallel code. 

•  SOR Scheme: The Jacobi scheme, while simple and hence 
desirable for demonstration purposes, is impractical for "real" 
applications because of its slow convergence. Enhancements to the 
basic technique are introduced leading to the Successive Over 
Relaxation (SOR) scheme. 

•  Parallel SOR Scheme: With the introduction of a "red-black" 
algorithm, the parallel algorithm used for Jacobi is employed to 
parallelize the SOR scheme. 

•  Scalability: The performance of the code for a number of processes 
is shown to demonstrate its scalability. 



Fundamentals 

•  First, some basics. 
Equation (1) 

02

2

2

2

=
∂

∂
+

∂

∂

y
u

x
u

•  where u=u(x,y) is an unknown scalar potential 
subjected to the following boundary conditions: 
 Equation (2) 
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Fundamentals 

•  Discretize the equation numerically with centered 
difference results in the algebraic equation 
 Equation 3:  
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•  where n and n+1 denote the current and the next 
time step, respectively, while   represents 
 Equation 4: 
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Fundamentals 

•  and for simplicity, we take 

•  Note that the analytical solution for this boundary value 
problem can easily be verified to be 
 Equation (5): 

 

•  and is shown below in a contour plot with x pointing from 
left to right and y going from bottom to top.  
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Fundamentals 

Figure 8.9. Contour plot showing the analytical solution for the boundary value problem. 



Jacobi Scheme  

•  While numerical techniques abound to solve PDEs such 
as the Laplace equation, we will focus on the use of two 
iterative methods. These methods will be shown to be 
readily parallelizable, as well as lending themselves to 
the opportunity to apply MPI Cartesian topology 
introduced above. The simplest of iterative techniques is 
the Jacobi scheme, which may be stated as follows: 
1.  Make initial guess for ui,j at all interior points (i,j) for all i=1:m 

and j=1:m.  
2.  Use Equation 3 to compute un+1

i,j at all interior points (i,j).  
3.  Stop if the prescribed convergence threshold is reached, 

otherwise continue on to the next step.  
4.  un

i,j = un+1
i,j.  

5.  Go to Step 2. 



Serial Jacobi Iterative Scheme  

•  A single-process implementation of the Jacobi 
Scheme as applied to the Laplace equation is 
given below. Note that  
–  Program is written in C.  
–  System size, m, is determined at run time.  
–  Boundary conditions are handled by subroutine bc.  
–  This scheme is very slow to converge and is not used 

in practice.  
–  This example provides a starting point for later 

introduction of parallelization and convergence rate 
improvement concepts. 



sjacobi.c  

#include "solvers.h" 
 
INT main() { 
/********** MAIN PROGRAM ********************************* 
 * Solve Laplace equation using Jacobi iteration method  * 
 * Kadin Tseng, Boston University, August, 2000   * 
 *********************************************************/ 

 INT iter, m, mi, mp; 
 REAL gdel;  
 CHAR line[10]; 
 REAL **u, **un; 

 
 fprintf(OUTPUT,"Enter size of interior points, mi :"); 
 (void) fgets(line, sizeof(line), stdin); 
 (void) sscanf(line, "%d", &mi); 
 fprintf(OUTPUT,"mi = %d\n",mi); 



sjacobi.c 

 m = mi + 2;   /* interior points plus 2 b.c. points */ 
 mp = m/P; 

 
 u  = allocate_2D(m, mp);  /* allocate mem for 2D array */ 
 un = allocate_2D(m, mp); 

 
 gdel = 1.0; 
 iter = 0; 

 
 bc(m, mp, u, K, P); /* initialize and define B.C. for u */ 

 
 replicate(m, mp, u, un);   /* u = un */ 



sjacobi.c 

 while (gdel > TOL) {  /* iterate until error below threshold */ 
  iter++;    /* increment iteration counter */ 

 
  if(iter > MAXSTEPS) { 
   fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS); 
   fprintf(OUTPUT," )\n"); 
   return (0);   /* nonconvergent solution */ 
  } 

/* compute new solution according to the Jacobi scheme */ 
  update_jacobi(m, mp, u, un, &gdel); 

 
  if(iter%INCREMENT == 0) { 
   fprintf(OUTPUT,"iter,gdel: %6d, %lf\n",iter,gdel); 
  } 
 } 

 
 fprintf(OUTPUT,"Stopped at iteration %d\n",iter); 
 fprintf(OUTPUT,"The maximum error = %f\n",gdel); 

 
/* write u to file for use in MATLAB plots */ 

 write_file( m, mp, u, K, P ); 
 

 return (0); 
} 



Jacobi and SOR Iterative Scheme 
Utility Functions  

•  The following includes solvers.h, utils.h and utils.c. 
#ifndef _SOLVERS_H_INCLUDED_ 
#define _SOLVERS_H_INCLUDED_ 
 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
#define CHAR char 
#define REAL double 
#define INT  int 
 
#define OUTPUT stdout       /* output to standard out                     */ 
#define PLOT_FILE "plots"   /* output files base name                     */ 
#define INCREMENT 100       /* number of steps between convergence check  */ 
 
#define P 1                 /* define processor count for serial codes    */ 
#define K 0                 /* current thread number for serial code is 0 */ 
#define MAX_M 512           /* maximum size of indices of Array u         */ 
#define MAXSTEPS 50000      /* Maximum number of iterations               */ 
#define TOL 0.000001         /* Numerical Tolerance */ 
#define PI 3.14159265       /* pi */ 
 
#include "utils.h"          /* header file of function prototype in utils.c */ 
#endif 



Jacobi and SOR Iterative Scheme 
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#ifndef _UTILS_H_INCLUDED_ 
#define _UTILS_H_INCLUDED_ 
 
/* begin function prototyping  */ 
 
REAL **allocate_2D(int m, int n); 
REAL my_max(REAL a, REAL b); 
void init_array( INT m, INT n, REAL **a); 
void bc( INT m, INT n, REAL **a, INT k, INT p ); 
void prtarray( INT nx, INT ny, REAL **a, FILE *fd); 
INT write_file( INT m, INT n, REAL **u, INT k, INT p ); 
INT update_jacobi( INT m, INT n, REAL **u, REAL **unew, REAL *gdel); 
INT update_sor( INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack); 
INT replicate( INT m, INT n, REAL **u, REAL **ut ); 
INT transpose( INT m, INT n, REAL **u, REAL **ut ); 
void neighbors(INT k, INT p, INT UNDEFINED, INT *below, INT *above); 
 
/* end function prototyping */ 
 
#endif 



Jacobi and SOR Iterative Scheme 
Utility Functions 

/********** U T I L I T Y ************************************ 
 * Utility functions for use with the Jacobi and SOR solvers  * 
 * Kadin Tseng, Boston University, November 1999   * 
 *************************************************************/ 
#include "solvers.h" 
#include <malloc.h> 
 
REAL **allocate_2D(INT m, INT n) { 

 INT i; 
 REAL **a; 

 
 a = (REAL **) malloc((unsigned) m*sizeof(REAL*)); 

 
/* Each pointer array element points to beginning of a row with n entries*/ 

 for (i = 0; i < m; i++) { 
  a[i] = (REAL *) malloc((unsigned) n*sizeof(REAL)); 
 } 

 
 return a; 

} 
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INT write_file( INT m, INT n, REAL **u, INT k, INT p ) { 
/***************************************************** 
 * Writes 2D array ut columnwise (i.e. C convention)  * 
 * m - size of rows     * 
 * n - size of columns    * 
 * u - scratch array     * 
 * k - 0 <= k < p; = 0 for single thread code   * 
 * p - p >= 0; =1 for single thread code   * 
 *****************************************************/ 

 INT ij, i, j, per_line; 
 CHAR filename[50], file[53]; 
 FILE *fd; 

/* 
 prints u, 6 per line; used for matlab plots; 
 PLOT_FILE contains the array size and number of procs; 
 PLOT_FILE.(k+1) contains u pertaining to proc k; 
 for serial job, PLOT_FILE.1 contains full u array. 

*/ 
 

 (void) sprintf(filename, "%s", PLOT_FILE); 
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 if ( k == 0 ) { 
  fd = fopen(filename, "w"); 
  fprintf(fd, "%5d %5d %5d\n", m, n, p); 
  fclose(fd); 
 } 
 per_line = 6;  /* to print 6 per line */ 
 (void) sprintf(file, "%s.%d", filename, k); /* create output file */ 
 fd = fopen(file, "w"); 
 ij = 0; 
 for (j = 0; j < n; j++) { 
  for (i = 0; i < m; i++) { 
   fprintf(fd, "%11.4f ", u[i][j]); 
   if ((ij+1)%per_line == 0) fprintf(fd, "\n"); 
   ij++; 
  } 
 } 
 fprintf(fd, "\n"); 
 fclose(fd); 
 return (0); 

} 
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void init_array(INT m, INT n, REAL **a) { 
/********* Initialize Array ********************** 
 * Initialize array with nx rows and ny columns * 
 *************************************************/ 

 INT i, j; 
 

 for (i = 0; i < m; i++) { 
  for (j = 0; j < n; j++) { 
   a[i][j] = 0.0;    /* initialize all entries to zero */ 
  } 
 } 

} 
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void bc(INT m, INT n, REAL **u, INT k, INT p) { 
/*********** Boundary Conditions **************************************** 
 *  PDE: Laplacian u = 0;   0<=x<=1;  0<=y<=1     

  * 
 *  B.C.: u(x,0)=sin(pi*x); u(x,1)=sin(pi*x)*exp(-pi); u(0,y)=u(1,y)=0  * 
 *  SOLUTION: u(x,y)=sin(pi*x)*exp(-pi*y)      

  * 
 ************************************************************************/ 

 INT i; 
 

 init_array( m, n, u);        
  /* initialize u to 0 */ 

 
 if (p > 1) { 
  if (k == 0) { 
   for (i = 0; i < m; i++) { 
    u[i][0] = sin(PI*i/(m-1));     

 /* at y = 0; all x */ 
   } 
  } 
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  if (k == p-1) { 
   for (i = 0; i < m; i++) { 
    u[i][n-1] = sin(PI*i/(m-1))*exp(-PI); /* at y = 1; all x */ 
   } 
  } 
 } else if (p == 1) { 
  for (i = 0; i < m; i++) { 
   u[i][  0] = sin(PI*i/(m-1));   /* at y = 0; all x */ 
   u[i][n-1] = u[i][0]*exp(-PI); /* at y = 1; all x */ 
  } 
 } else { 
  printf("p is invalid\n"); 
 } 

} 
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void prtarray( INT m, INT n, REAL **a, FILE *fd) { 
/*********** Print Array *********************** 
 * Prints array "a" with m rows and n columns  * 
 * tda is the Trailing Dimension of Array a   * 
 ***********************************************/ 

 INT i, j; 
 for (i = 0; i < m; i++) { 
  for (j = 0; j < n; j++) { 
  fprintf(fd, "%8.2f", a[i][j]); 
  } 
  fprintf(fd, "\n"); 
 } 

} 
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INT update_jacobi( INT m, INT n, REAL **u, REAL **unew, REAL *del) { 
/********************************************************************** 
 * Updates u according to Jacobi method   * 
 * m   - (INPUT)  size of interior rows  * 
 * n   - (INPUT)  size of interior columns  * 
 * u   - (INPUT)  solution array   * 
 * unew  - (INPUT)  next solution array  * 
 * del  - (OUTPUT) error norm between 2 solution steps  * 
 **********************************************************************/ 

 INT i, j; 
 *del = 0.0; 
 for (i = 1; i < m-1; i++) { 
  for (j = 1; j < n-1; j++) { 
   unew[i][j] = ( u[i  ][j+1] + u[i+1][j] + 
    u[i-1][j] + u[i][j-1] )*0.25; 
   *del += fabs(unew[i][j] - u[i][j]);   /* find local max error */ 
  } 
 } 
 for (i = 1; i < m-1; i++) { 
  for (j = 1; j < n-1; j++) { 
   u[i][j] = unew[i][j]; 
  } 
 } 
 return (0); 

} 
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INT update_sor( INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack) { 
/********************************************************************** 
 * Updates u according to successive over relaxation method  * 
 * m   - (INPUT)  size of interior rows  * 
 * n   - (INPUT)  size of interior columns  * 
 * u   - (INPUT)  array   * 
 * omega  - (INPUT)  adjustable constant used to speed up convergence of SOR  * 
 * del  - (OUTPUT) error norm between 2 solution steps    * 
 * redblack - (INPUT)  either 'r' for red and 'b' for black    * 
 **********************************************************************/ 

 INT i, ib, ie, j, jb, je; 
 REAL up; 

 
 *del = 0.0; 
 if (redblack == 'r') { 

/* process RED odd points ... */ 
  jb = 1; je = n-2; ib = 1; ie = m-2; 
  for ( j = jb; j <= je; j+=2 ) { 
   for ( i = ib; i <=ie; i+=2 ) { 
    up = ( u[i][j+1] + u[i+1][j] + 
     u[i-1][j] + u[i][j-1] )*0.25; 
    u[i][j] = (1.0 - omega)*u[i][j] + omega*up; 
    *del += fabs(up-u[i][j]); 
   } 
  } 
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/* process RED even points ... */ 
  jb = 2; je = n-2; ib = 2; ie = m-2; 
  for ( j = jb; j <= je; j+=2 ) { 
   for ( i = ib; i <= ie; i+=2 ) { 
    up = ( u[i][j+1] + u[i+1][j] + 
      u[i-1][j] + u[i][j-1] )*0.25; 
    u[i][j] = (1.0 - omega)*u[i][j] + omega*up; 
    *del += fabs(up-u[i][j]); 
   } 
  } 
  return (0); 
 } else {  
  if (redblack == 'b') { 

/* process BLACK odd points ... */ 
   jb = 2; je = n-2; ib = 1; ie = m-2; 
   for ( j = jb; j <= je; j+=2 ) { 
    for ( i = ib; i <= ie; i+=2 ) { 
     up = ( u[i][j+1] + u[i+1][j] + 
      u[i-1][j] + u[i][j-1] )*0.25; 
     u[i][j] = (1.0 - omega)*u[i][j] + omega*up; 
     *del += fabs(up-u[i][j]); 
    } 
   } 
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/* process BLACK even points ... */ 
   jb = 1; je = n-2; ib = 2; ie = m-2; 
   for ( j = jb; j <= je; j+=2 ) { 
    for ( i = ib; i <= ie; i+=2 ) { 
     up = ( u[i][j+1] + u[i+1][j] + 
      u[i-1][j] + u[i][j-1] )*0.25; 
     u[i][j] = (1.0 - omega)*u[i][j] + omega*up; 
     *del += fabs(up-u[i][j]); 
    } 
   } 
   return (0); 
  } else { 
   return (1); 
  } 
 } 

} 
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INT replicate( INT m, INT n, REAL **a, REAL **b ) { 
/******************************************************** 
 * Replicates array a into array b  * 
 * m - (INPUT)  size of interior points in 1st index * 
 * n  - (INPUT)  size of interior points in 2st index * 
 * a  - (INPUT)  solution at time N    * 
 * b  - (OUTPUT) solution at time N + 1  * 
 ********************************************************/ 

 INT i, j; 
 

 for (i = 0; i < m; i++) { 
  for (j = 0; j < n; j++) { 
   b[i][j] = a[i][j]; 
  } 
 } 
 return (0); 

} 
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INT transpose( INT m, INT n, REAL **a, REAL **at ) { 
/********************************************************** 
 * Transpose a(0:m+1,0:n+1) into at(0:n+1,0:m+1)   * 
 * m  - (INPUT)  size of interior points in 1st index  * 
 * n  - (INPUT)  size of interior points in 2st index  * 
 * a   - (INPUT)  a = a(0:m+1,0:n+1)   * 
 * at  - (OUTPUT) at = at(0:n+1,0:m+1)    * 
 **********************************************************/ 

 INT i, j; 
 

 for (i = 0; i < m; i++) { 
  for (j = 0; j < n; j++) { 
   at[j][i] = a[i][j]; 
  } 
 } 
 return (0); 

} 
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void neighbors(INT k, INT p, INT UNDEFINED, INT *below, INT *above) { 
/**************************************************************** 
 * determines two adjacent threads   * 
 * k   - (INPUT)  current thread  * 
 * p   - (INPUT)  number of processes (threads)   * 
 * UNDEFINED  - (INPUT)  code to assign to out-of-bound neighbor  * 
 * below   - (OUTPUT) neighbor thread below k (usually k-1)  * 
 * above   - (OUTPUT) neighbor thread above k (usually k+1)  * 
 ****************************************************************/ 

 if(k == 0) { 
  *below = UNDEFINED;   /* tells MPI not to perform send/recv */ 
  *above = k+1; 
 } else if(k == p-1) { 
  *below = k-1; 
  *above = UNDEFINED;   /* tells MPI not to perform send/recv */ 
 } else { 
  *below = k-1; 
  *above = k+1; 
 } 

} 



Parallel Algorithm for the Jacobi 
Scheme  

•  First, to enable parallelism, the work must be divided 
among the individual processes; this is known commonly 
as domain decomposition.  

•  Because the governing equation is two-dimensional, 
typically the choice is to use a 1D or 2D decomposition.  

•  This section will focus on a 1D decomposition, deferring 
the discussion of a 2D decomposition for later.  

•  Assuming that p processes will be used, the 
computational domain is split into p horizontal strips, 
each assigned to one process, along the north-south or y-
direction. This choice is made primarily to facilitate 
simpler boundary condition (code) implementations.  



Parallel Algorithm for the Jacobi 
Scheme 

•  For the obvious reason of better load-balancing, we will 
divide the amount of work, in this case proportional to the 
grid size, evenly among the processes (m x m / p). For 
convenience, m' = m/p is defined as the number of cells 
in the y-direction for each process. Next, Equation 3 is 
restated for a process k as follows:  
 Equation 6: 

 
 

 where v denotes the local solution corresponding to the 
process k with m'=m/p.  
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Parallel Algorithm for the Jacobi 
Scheme 

•  The figure below 
depicts the grid of 
a typical process 
k, as well as part 
of the adjoining 
grids of k-1, k+1.  

Figure 8.10. The grid of a typical process k as 
well as part of adjoining grids of k-1, k+1 



Parallel Algorithm for the Jacobi 
Scheme 

•  The red cells represent process k's grid cells for which 
the solution u is sought through Equation 6. 

•  The blue cells on the bottom row represent cells 
belonging to the first row (j = 0) of cells of process k-1.  

•  The blue cells on the top row represent the last row (j = 
m') of cells of process k+1.  

•  It is important to note that the u at the blue cells of k 
belong to adjoining processes (k-1 and k+1) and hence 
must be "imported" via MPI message passing routines. 
Similarly, process k's first and last rows of cells must be 
"exported" to adjoining processes for the same reason. 



Parallel Algorithm for the Jacobi 
Scheme 

•  For i = 1 and i = m, Equation 6 again requires an extra cell beyond these 
two locations. These cells contain the prescribed boundary conditions 
(u(0,y) = u(1,y) = 0) and are colored green to distinguish them from the red 
and blue cells.  

•  Note that no message passing operations are needed for these green cells 
as they are fixed boundary conditions and are known a priori. 

•  From the standpoint of process k, the blue and green cells may be 
considered as additional "boundary" cells around it. As a result, the range of 
the strip becomes (0:m+1,0:m'+1).  

•  Physical boundary conditions are imposed on its green cells, while u is 
imported to its blue "boundary" cells from two adjoining processes. With the 
boundary conditions in place, Equation 6 can be applied to all of its interior 
points.  

•  Concurrently, all other processes proceed following the same procedure. It 
is interesting to note that the grid layout for a typical process k is completely 
analogous to that of the original undivided grid. Whereas the original 
problem has fixed boundary conditions, the problem for a process k is 
subjected to variable boundary conditions.  
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Scheme 

•  These boundary conditions can be stated 
mathematically as 
 Equation 7: 

( ) ( )

( ) ( )
( )
( ) 10;,,1j         ;0,1

10;,,1j          ;0,0

1;1,0,i          ;sin1,

1;1,0,i          ;

10;1,0,i          ;

10;1,0,i         ;

10;1,0,i          ;

0;1,0,i         ;

0;1,0,i         ;sin0,

,

,

,

1,,

1,,

1,,

1,,

1,,

,

,1

,0

1,

,0,

,0,

1,1,

,0,

1,1,

0,

−≤≤ʹ′===

−≤≤ʹ′===

−=+===

−=+==

−<<+==

−<<+==

−<<+==

=+==

=+===

+

+ʹ′

ʹ′

ʹ′

+ʹ′

ʹ′

+ʹ′

−

−

−

+

−

+

pkmyuv

pkmyuv

pkmexxuv

pkmvv

pkmvv

pkmvv

pkmvv

kmvv

kmxxuv

j
kn

j
kn

x
ii

kn

knkn

knkn

knkn

knkn

knkn

ii
kn

jm

j

mi

mii

mii

imi

mii

imi

i

…

…

…

…

…

…

…

…

…

π

π



Parallel Algorithm for the Jacobi 
Scheme 

•  Note that the interior points of u and v are related 
by the relationship 
 Equation 8: 

 
•  Note that Cartesian topology is not employed in 

this implementation but will be used later in the 
parallel SOR example with the purpose of 
showing alternative ways to solve this type of 
problems.  

10;,,1;,,1i         ;,
,/, −<<ʹ′===×+ pkmjmvu knn
jipmkji ……



Parallel Jacobi Iterative Scheme  

•  A parallel implementation of the Jacobi Scheme (based 
on a serial implementation) as applied to the Laplace 
equation is included below. Note that: 
–  System size, m, is determined at run time.  
–  Boundary conditions are handled by subroutine bc.  
–  Subroutine neighbors provides the process number ABOVE and 

BELOW the current process. These numbers are needed for 
message passing (subroutine update_bc_2). If ABOVE or 
BELOW is "-1", its at process 0 or p-1. No message passing will 
be needed in that case.  

–  Subroutine update_bc_2 updates the blue cells of current and 
adjoining processes simultaneously by MPI routine that pairs 
send and receive, MPI_Sendrecv, for subsequent iteration.  

–  Subroutine update_bc_1 can be used in place of update_bc_2 as 
an alternative message passing method  



Parallel Jacobi Iterative Scheme 

•  Subroutine printmesh may be used to print local solution for tiny 
cases (like 4x4)  

•  Pointer arrays c, n, e, w, and s point to the solution space, u. They 
are used to avoid unnecessary memory usage as well as to improve 
readability.  

•  MPI_Allreduce is used to collect global error from all participating 
processes to determine whether further interation is required. This is 
somewhat costly to do in every iteration. Can improve performance 
by calling this routine only once in a while. There is a small price to 
pay; the solution may have converged between MPI_Allreduce calls. 
See parallel SOR implementation on how to reduce MPI_Allreduce 
calls.  

•  This scheme is very slow to converge and is not used in practice. 
However, it serves to demonstrate parallel concepts.  



Parallel Jacobi Iterative Scheme  

•  A parallel implementation of the Jacobi Scheme 
(based on a serial implementation) as applied to 
the Laplace equation is included below. 



pjacobi.c 

#include "solvers.h" 
#include "mpi.h" 
 
INT main(INT argc, CHAR *argv[]) { 
/********** MAIN PROGRAM ********************************* 
 * Solve Laplace equation using Jacobi iteration method  * 
 * Kadin Tseng, Boston University, August, 2000      * 
 *********************************************************/ 

 INT iter, m, mi, mp, k, p, below, above; 
 REAL del, gdel; 
 CHAR line[80]; 
 REAL **v, **vt, **vnew; 

 
 MPI_Init(&argc, &argv);    /* starts MPI */ 
 MPI_Comm_rank(MPI_COMM_WORLD, &k); /* get current process id */ 
 MPI_Comm_size(MPI_COMM_WORLD, &p); /* get # procs from env or */ 



pjacobi.c 

 if(k == 0) { 
  fprintf(OUTPUT,"Enter size of interior points, mi :\n"); 
  (void) fgets(line, sizeof(line), stdin); 
  (void) sscanf(line, "%d", &mi); 
  fprintf(OUTPUT,"mi = %d\n",mi); 
 } 
 MPI_Bcast(&mi, 1, MPI_INT, 0, MPI_COMM_WORLD); 
 m = mi + 2;   /* total is interior points plus 2 b.c. points */ 
 mp = mi/p+2; 

 
 v  = allocate_2D(m, mp);  /* allocate mem for 2D array */ 
 vt = allocate_2D(mp, m); 
 vnew = allocate_2D(mp, m); 

 
 gdel = 1.0; 
 iter = 0; 



pjacobi.c 

 bc(m, mp, v, k, p); /* initialize and define B.C. for v */ 
 transpose(m, mp, v, vt);  /* solve for vt */ 
    /* driven by need of update_bc_2 */ 
 replicate(mp, m, vt, vnew);  /* vnew = vt */ 
 neighbors(k, p, -1, &below, &above);   /* domain borders */ 

 
 while (gdel > TOL) {  /* iterate until error below threshold */ 
  iter++;    /* increment iteration counter */ 

 
  if(iter > MAXSTEPS) { 
   fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS); 
   fprintf(OUTPUT," )\n"); 
   return (0);   /* nonconvergent solution */ 
  } 

/* compute new solution according to the Jacobi scheme */ 
  update_jacobi(mp, m, vt, vnew, &del);  /* compute new vt */ 
  if(iter%INCREMENT == 0) { 
   MPI_Allreduce( &del, &gdel, 1, MPI_DOUBLE, 
    MPI_MAX, MPI_COMM_WORLD );  /* find global max error */ 
   if( k == 0) { 
    fprintf(OUTPUT,"iter,del,gdel: %6d, %lf %lf\n",iter,del,gdel); 
   } 
  } 
  update_bc_2( mp, m, vt, k, below, above); /* update b.c. */ 
 } 



pjacobi.c 

 if (k == 0) { 
  fprintf(OUTPUT,"Stopped at iteration %d\n",iter); 
  fprintf(OUTPUT,"The maximum error = %f\n",gdel); 
 } 

 
/* write v to file for use in MATLAB plots */ 

 transpose(mp, m, vt, v); 
 write_file( m, mp, v, k, p ); 

 
 MPI_Barrier(MPI_COMM_WORLD); 

 
 free(v); free(vt); free(vnew); /* release allocated arrays  */ 

 
 return (0); 

} 



Parallel Jacobi Iterative Scheme  

•  In addition, there are two modules needed in connection with the above: 
•  Some utilities – please refer to the slides before 
•  MPI-related utilities 
/* begin MODULE mpi_module */ 
#include "solvers.h" 
#include "mpi.h" 
 
INT update_bc_2( INT mp, INT m, REAL **vt, INT k, INT below, INT above ) { 

 MPI_Status status[6];  /* SGI doesn't define MPI_STATUS_SIZE */ 
 

 MPI_Sendrecv( vt[mp-2]+1, m-2, MPI_DOUBLE, above, 0, 
                vt[0]+1, m-2, MPI_DOUBLE, below, 0, 
                MPI_COMM_WORLD, status ); 
 

 MPI_Sendrecv( vt[1]+1, m-2, MPI_DOUBLE, below, 1, 
                vt[mp-1]+1, m-2, MPI_DOUBLE, above, 1, 
                MPI_COMM_WORLD, status ); 

 return (0); 
} 
 
/* end MODULE mpi_module */ 



Successive Over Relaxation 
(SOR)  

•  While the Jacobi iteration scheme is very simple and easily 
parallelizable, its slow convergent rate renders it impractical for any 
"real world" applications. One way to speed up the convergent rate 
would be to "over predict" the new solution by linear extrapolation. 
This leads to the Successive Over Relaxation (SOR) scheme 
shown below: 
1.  Make initial guess for ui,j at all interior points (i,j).  
2.  Define a scalar wn ( 0 < wn < 2).  
3.  Apply Equation 3 to all interior points (i,j) and call it u'i,j.  
4.  un+1

i,j = wn u'i,j + (1 - wn) un
i,j. 

5.  Stop if the prescribed convergence threshold is reached, otherwise 
continue to the next step.  

6.  un
i,j = un+1

i,j.  
7.  Go to Step 2. 



Successive Over Relaxation 
(SOR) 

•  Note that in the above setting 
wn = 1 recovers the Jacobi 
scheme while wn< 1 
underrelaxes the solution. 
Ideally, the choice of wn should 
provide the optimal rate of 
convergence and is not 
restricted to a fixed constant. 
As a matter of fact, an effective 
choice of wn, known as the 
Chebyshev acceleration, is 
defined as 
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Successive Over Relaxation 
(SOR) 

•  We can further speed up 
the rate of convergence 
by using u at time level n
+1 for any or all terms on 
the right hand side of 
Equation 6 as soon as 
they become available. 
This is the essence of the 
Gauss-Seidel scheme. A 
conceptually similar red-
black scheme will be used 
here. This scheme is best 
understood visually by 
painting the interior cells 
alternately in red and 
black to yield a 
checkerboard-like pattern 
as shown in Figure 8.11.  

Figure 8.11. Checkerboard-like pattern 
depicting a parallel SOR red-black scheme.  



Successive Over Relaxation 
(SOR) 

•  By using this red-black group identification strategy and applying the five-
point finite-difference stencil to a point (i,j) located at a red cell, it is 
immediately apparent that the solution at the red cell depends only on its 
four immediate black neighbors to the north, east, west, and south (by virtue 
of Equation 6). On the contrary, a point (i,j) located at a black cell depends 
only on its north, east, west, and south red neighbors.  

•  In other words, the finite-difference stencil in Equation 6 effects an 
uncoupling of the solution at interior cells such that the solution at the red 
cells depends only on the solution at the black cells and vice versa.  

•  In a typical iteration, if we first perform an update on all red (i,j) cells, then 
when we perform the remaining update on black (i,j) cells, the red cells that 
have just been updated could be used. Otherwise, everything that we 
described about the Jacobi scheme applies equally well here; i.e., the 
green cells represent the physical boundary conditions while the solutions 
from the first and last rows of the grid of each process are deposited into 
the blue cells of respective process grids to be used as the remaining 
boundary conditions.  



Serial SOR Iterative Scheme  

•  A single-process implementation of the SOR 
Scheme as applied to the Laplace equation is 
given below. Note that  
–  Program is written in C.  
–  System size, m, is determined at run time.  
–  Boundary conditions are handled by subroutine bc.  
–  This scheme converges much more rapidly than the 

Jacobi Scheme, especially when coupled with a 
Checbyshev acceleration. 



ssor.c  

#include "solvers.h" 
INT main() { 
/***************MAIN PROGRAM ************************************* 
 * Solve Laplace equation using Successive Over Relaxation  * 
 * and Chebyshev Acceleration (see Numerical Recipe for detail) * 
 * Kadin Tseng, Boston University, August, 2000   * 
 *****************************************************************/ 

 INT m, mi, mp, iter;  CHAR line[10]; 
 REAL omega, rhoj, rhojsq, delr, delb, gdel; 
 REAL **u; 

 
 fprintf(OUTPUT,"Enter size of interior points, mi :"); 
 (void) fgets(line, sizeof(line), stdin); 
 (void) sscanf(line, "%d", &mi); 
 fprintf(OUTPUT,"mi = %d\n",mi); 

 
 m = mi + 2; 
 gdel = 1.0; iter = 0; mp = m/P; 
 rhoj = 1.0 - PI*PI*0.5/m/m; 
 rhojsq = rhoj*rhoj; 



ssor.c 

 u = allocate_2D(m, mp);   /* allocate space for 2D array u */ 
 

 bc( m, mp, u, K, P);   /* initialize and define B.C. for u */ 
 

 omega = 1.0; 
 update_sor( m, mp, u, omega, &delr, 'r'); 
 omega = 1.0/(1.0 - 0.50*rhojsq); 
 update_sor( m, mp, u, omega, &delb, 'b'); 

 
 while (gdel > TOL) {    /* iterate until error below threshold */ 
  iter++;      /* increment iteration counter */ 
  omega = 1.0/(1.0 - 0.25*rhojsq*omega); 
  update_sor( m, mp, u, omega, &delr, 'r'); 
  omega = 1.0/(1.0 - 0.25*rhojsq*omega); 
  update_sor( m, mp, u, omega, &delb, 'b'); 
  gdel = (delr + delb)*4.0; 



ssor.c 

  if(iter%INCREMENT == 0) { 
   fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega); 
  } 
  if(iter > MAXSTEPS) { 
   fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS); 
   fprintf(OUTPUT," )\n"); 
   return (0);        /* nonconvergent solution */ 
  } 
 } 

 
 fprintf(OUTPUT,"Stopped at iteration %d\n",iter); 
 fprintf(OUTPUT,"The maximum error = %f\n",gdel); 

 
/* write u to file for use in MATLAB plots */ 

 write_file( m, mp, u, K, P); 
 

 return (0); 
} 



Parallel SOR Red-black Scheme  

•  The parallel aspect of the 
Jacobi scheme can be used 
verbatim for the SOR 
scheme. Figure 8.11, as 
introduced in the previous 
section on the single-thread 
SOR scheme, may be used 
to represent the layout for a 
typical thread "k" of the 
SOR scheme. 

•  As before, the green boxes 
denote boundary cells that 
are prescribed while the 
blue boxes represent 
boundary cells whose 
values are updated at each 
iteration by way of message 
passing.   

Figure 8.11. Checkerboard-like pattern 
depicting a parallel SOR red-black 
scheme.  



Parallel SOR Red-black Scheme 

•  A multi-threaded implementation of the SOR 
Scheme as applied to the Laplace equation is 
given below. Note that  
–  Program is written in C.  
–  System size, m, is determined at run time.  
–  Boundary conditions are handled by subroutine bc.  
–  This scheme converges much more rapidly than the 

Jacobi Scheme, especially when coupled with a 
Checbyshev acceleration. 



psor.c 

#include "solvers.h" 
#include "mpi.h" 
 
INT main(INT argc, CHAR *argv[]) { 
/***************MAIN PROGRAM ************************************* 
 * Solve Laplace equation using Successive Over Relaxation   * 
 * and Chebyshev Acceleration (see Numerical Recipe for detail)  * 
 * Kadin Tseng, Boston University, August, 2000    * 
 *****************************************************************/ 

 INT iter, m, mi, mp, p, k, below, above; 
 REAL omega, rhoj, rhojsq, del, delr, delb, gdel; 
 CHAR line[80], red, black; 
 MPI_Comm grid_comm; 
 INT me, iv, coord[1], dims, periods, ndim, reorder; 
 REAL **v, **vt; 

 
 MPI_Init(&argc, &argv);    /* starts MPI */ 
 MPI_Comm_rank(MPI_COMM_WORLD, &k);  /* get current process id */ 
 MPI_Comm_size(MPI_COMM_WORLD, &p);  /* get # procs from env or */ 



psor.c 

periods = 0; ndim = 1; reorder = 0; red = 'r'; black = 'b';


if(k == 0) {
 fprintf(OUTPUT,"Enter size of interior points, mi :\n");
 (void) fgets(line, sizeof(line), stdin);
 (void) sscanf(line, "%d", &mi);
 fprintf(OUTPUT,"mi = %d\n",mi);
 m = mi + 2;    /* total is mi plus 2 b.c. points */
}
MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
mp = (m-2)/p+2;


v  = allocate_2D(m, mp);  /* allocate mem for 2D array */
vt = allocate_2D(mp, m);


gdel = 1.0;
iter = 0;
rhoj = 1.0 - PI*PI*0.5/m/m;
rhojsq = rhoj*rhoj; 



psor.c 

/* create cartesian topology for matrix */
dims = p;
MPI_Cart_create(MPI_COMM_WORLD, ndim, &dims,
   &periods, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &me);
MPI_Cart_coords(grid_comm, me, ndim, coord);
iv = coord[0];
bc( m, mp, v, iv, p);     /* set up boundary conditions */
transpose(m, mp, v, vt);  /* transpose v into vt */


replicate(mp, m, vt, v);
MPI_Cart_shift(grid_comm, 0, 1, &below, &above);


omega = 1.0;
update_sor( mp, m, vt, omega, &delr, red);
update_bc_2( mp, m, vt, iv, below, above);
omega = 1.0/(1.0 - 0.50*rhojsq);
update_sor( mp, m, vt, omega, &delb, black);
update_bc_2( mp, m, vt, iv, below, above);



psor.c 

while (gdel > TOL) {
 iter++;    /* increment iteration counter */
 omega = 1.0/(1.0 - 0.25*rhojsq*omega);

 update_sor( mp, m, vt, omega, &delr, red);
 update_bc_2( mp, m, vt, iv, below, above);

 omega = 1.0/(1.0 - 0.25*rhojsq*omega);
 update_sor( mp, m, vt, omega, &delb, black);
 update_bc_2( mp, m, vt, iv, below, above);

 if(iter%INCREMENT == 0) {
  del = (delr + delb)*4.0;

  MPI_Allreduce( &del, &gdel, 1, MPI_DOUBLE,
  MPI_MAX, MPI_COMM_WORLD);  /*  find global max error */
  if (k == 0) {

   fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega);
  }

 }
 if(iter > MAXSTEPS) {
  fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);

  fprintf(OUTPUT," )\n");
  return (1);     /* nonconvergent solution */

 }
}



psor.c 

 if (k == 0) { 
  fprintf(OUTPUT,"Stopped at iteration %d\n",iter); 
  fprintf(OUTPUT,"The maximum error = %f\n",gdel); 
 } 

 
/* write v to file for use in MATLAB plots */ 

 transpose(mp, m, vt, v);  /* transpose v into vt */ 
 write_file( m, mp, v, k, p); 

 
 MPI_Barrier(MPI_COMM_WORLD); 

 
 MPI_Finalize(); 

 
 return (0); 

} 



Scalability Plot of SOR  

•  The plot in Figure 
8.12 below shows 
the scalability of the 
MPI implementation 
of the Laplace 
equation using SOR 
on an SGI Origin 
2000 shared-
memory 
multiprocessor.  

Figure 8.12. Scalability plot using SOR on an 
SGI Origin 2000. 



END 


