
Virtual Topologies

Introduction

•  Many computational science and engineering problems
reduce at the end to either a series of matrix or some
form of grid operations, be it through differential, integral
or other methods. The dimensions of the matrices or
grids are often determined by the physical problems.

•  Frequently in multiprocessing, these matrices or grids are
partitioned, or domain-decomposed, so that each partition
(or subdomain) is assigned to a process.

•  One such example is an m x n matrix decomposed into p
q x n submatrices with each assigned to be worked on by
one of the p processes.

Introduction

•  In this case, each process represents one distinct submatrix in a
straightforward manner. However, an algorithm might dictate that the
matrix be decomposed into a pxq logical grid, whose elements are
themselves each an r x s matrix. This requirement might be due to a
number of reasons: efficiency considerations, ease in code
implementation, code clarity, to name a few.

•  Although it is still possible to refer to each of these pxq subdomains
by a linear rank number, it is obvious that a mapping of the linear
process rank to a 2D virtual rank numbering would facilitate a much
clearer and natural computational representation.

•  To address the needs of this and other topological layouts, the MPI
library provides two types of topology routines: Cartesian and graph
topologies. Only Cartesian topology and the associated routines will
be discussed in this chapter.

MPI Topology Routines

Virtual Topology MPI Routines

•  Some of the MPI topology routines are
– MPI_CART_CREATE
– MPI_CART_COORDS
– MPI_CART_RANK
– MPI_CART_SUB
– MPI_CARTDIM_GET
– MPI_CART_GET
– MPI_CART_SHIFT

•  These routines are discussed in the following
sections.

MPI_CART_CREATE

•  Definition of MPI_CART_CREATE
– Used to create Cartesian coordinate structures, of

arbitrary dimensions, on the processes. The new
communicator receives no cached information.

•  The MPI_CART_CREATE routine creates a new
communicator using a Cartesian topology.
int MPI_Cart_create(MPI_Comm old_comm, int ndims,

int *dim_size, int *periods, int reorder, MPI_Comm
*new_comm)

•  The function returns an int error flag.

MPI_CART_CREATE

Variable
Name

C Type In/Out Description

old_comm MPI_Comm Input Communicator handle

ndims int Input Number of dimensions
dim_size int * Input Array of size ndims

providing length in each
dimension

periods int * Input Array of size ndims
specifying periodicity status
of each dimension

reorder int Input whether process rank
reordering by MPI is
permitted

new_comm MPI_Comm * Output Communicator handle

MPI_CART_CREATE

#include "stdio.h"
#include "mpi.h"
MPI_Comm old_comm, new_comm;
int ndims, reorder, periods[2], dim_size[2];

old_comm = MPI_COMM_WORLD;
ndims = 2; /* 2D matrix/grid */
dim_size[0] = 3; /* rows */
dim_size[1] = 2; /* columns */
periods[0] = 1; /* row periodic (each column forms a ring) */
periods[1] = 0; /* columns non-periodic */
reorder = 1; /* allows processes reordered for efficiency */

MPI_Cart_create(old_comm, ndims, dim_size, periods, reorder, &new_comm);

MPI_CART_CREATE

•  In the above example we use
MPI_CART_CREATE to map
(or rename) 6 processes from
a linear ordering (0,1,2,3,4,5)
into a two-dimensional matrix
ordering of 3 rows by 2
columns (i.e., (0,0), (0,1), ...,
(2,1)).

•  Figure 8.1 (a) depicts the
resulting Cartesian grid
representation for the
processes. The index pair "i,j"
represent row "i" and column
"j". The corresponding (linear)
rank number is enclosed in
parentheses.

0,0 (0) 0,1 (1)

1,0 (2) 1,1 (3)

2,0 (4) 2,1 (5)

Figure 8.1 (a). Cartesian
Grid

MPI_CART_CREATE

•  With processes renamed in a 2D
grid topology, we are able to
assign or distribute work, or
distinguish among the processes
by their grid topology rather than
by their linear process ranks.

•  Additionally, we have imposed
periodicity along the first
dimension (periods[0]=1), which
means that any reference beyond
the first or last entry of any column
will be wrapped around cyclically.

•  For example, row index i = -1, due
to periodicity, corresponds to i = 2.
Similarly, i = -2 maps onto i = 1.
Likewise, i = 3 is the same as i =
0.

•  No periodicity is imposed on the
second dimension (periods[1]=0).
Any reference to the column index
outside of its defined range (in this
case 0 to 1) will result in a
negative process rank (equal to
MPI_PROC_NULL which is -1),
which signifies that it is out of
range.

•  Similarly, if periodicity was defined
only for the column index (i.e.,
periods[0]=0; periods[1]=1), each
row would wrap around itself.

MPI_CART_CREATE

•  Each of the above two 2D
cases may be viewed
graphically as a cylinder; the
periodic dimension forms the
circumferential surface while
the non-periodic dimension
runs parallel to the cylindrical
axis.

•  If both dimensions are periodic,
the grid resembles a torus. The
effects of periodic columns and
periodic rows are depicted in
Figures 8.1 (b) and (c),
respectively. The tan-colored
cells indicate cyclic boundary
condition in effect.

-1,0 (4) -1,1 (5)

0,-1(-1) 0,0 (0) 0,1 (1) 0,2(-1)

1,-1(-1) 1,0 (2) 1,1 (3) 1,2(-1)

2,-1(-1) 2,0 (4) 2,1 (5) 2,2(-1)

3,0 (0) 3,1 (1)

Figure 8.1 (b). periods[0]=1;periods[1]=0

-1,0 (-1) -1,1 (-1)

0,-1(1) 0,0 (0) 0,1 (1) 0,2(0)

1,-1(3) 1,0 (2) 1,1 (3) 1,2(2)

2,-1(5) 2,0 (4) 2,1 (5) 2,2(4)

3,0 (-1) 3,1 (-1)

Figure 8.1 (c). periods[0]=0;periods[1]=1

MPI_CART_CREATE

•  Finally, note that while the processes are
arranged logically as a cartesian topology, the
processors corresponding to these processes
may in fact be scattered physically - even within a
shared-memory machine.
–  If reorder is set to “1” in C, MPI may reorder the

process ranks in the new communicator (for potential
gain in performance due to, say, the physical
proximities of the processes assigned).

–  If reorder is “0” in C, the process rank in the new
communicator is identical to its rank in the old
communicator.

MPI_CART_CREATE

•  While having the processes laid out in the Cartesian
topology help you write code that's conceivably more
readable, many MPI routines recognize only rank number
and hence knowing the relationship between ranks and
Cartesian coordinates (as shown in the figures above) is
the key to exploit the topology for computational
advantages. In the following sections, we will discuss two
subroutines that provide this information. They are
–  MPI_CART_COORDS
–  MPI_CART_RANK

MPI_CART_CREATE

•  Note:
–  MPI_CART_CREATE is a collective communication function (see

Chapter 6 - Collective Communications). It must be called by all
processes in the group. Like other collective communication
routines, MPI_CART_CREATE uses blocking communication.
However, it is not required to be synchronized among processes
in the group and hence is implementation dependent.

–  If the total size of the Cartesian grid is smaller than available
processes, those processes not included in the new
communicator will return MPI_COMM_NULL.

–  If the total size of the Cartesian grid is larger than available
processes, the call results in error.

MPI_CART_COORDS

•  Definition of MPI_CART_COORDS
– Used to translate the coordinates of the process from

rank, the inverse of MPI_CART_RANK.
•  The MPI_CART_COORDS routine returns the

corresponding Cartesian coordinates of a (linear)
rank in a Cartesian communicator.
int MPI_Cart_coords(MPI_Comm comm, int rank, int

maxdims, int *coords)
•  The function returns an int error flag.

MPI_CART_COORDS

Variable
Name

C Type In/Out Description

comm MPI_Comm Input Communicator handle

rank int Input Calling process rank

maxdims int Input Number of dimensions
in cartesian topology

coords int * Output Corresponding
cartesian coordinates
of rank

MPI_CART_COORDS

MPI_Cart_create(old_comm, ndims, dim_size, periods,
reorder, &new_comm); /* creates communicator */

if(Iam == root) { /* only want to do this on one process */

 for (rank=0; rank<p; rank++) {
 MPI_Cart_coords(new_comm, rank, ndims, &coords);
 printf("%d, %d\n ",rank, coords);
 }

}

MPI_CART_COORDS

•  In the above example, a
Cartesian communicator
is created first.

•  Repeated applications of
MPI_CART_COORDS for
all process ranks (input)
produce the mapping
table, shown in Figure 8.2,
of process ranks and their
corresponding Cartesian
coordinates (output).

0,0 (0) 0,1 (1)

1,0 (2) 1,1 (3)

2,0 (4) 2,1 (5)

Figure 8.2. Cartesian Grid

MPI_CART_COORDS

•  Note:
–  This routine is the reciprocal of MPI_CART_RANK.
– Querying for coordinates of ranks in new_comm is not

robust; querying for an out-of-range rank results in
error.

•  Definition of MPI_CART_RANK
– Used to translate logical process coordinates to the

ranks of the process in point-to-point routines.

MPI_CART_RANK

•  Definition of MPI_CART_RANK
– Used to translate logical process coordinates to the

ranks of the process in point-to-point routines.
•  The MPI_CART_RANK routine returns the

corresponding process rank of the Cartesian
coordinates of a Cartesian communicator.
int MPI_Cart_rank(MPI_Comm comm, int *coords, int

*rank)
•  The function returns an int error flag.

MPI_CART_RANK

Variable
Name

C Type In/Out Description

comm MPI_Comm Input Cartesian
Communicator handle

coords int * Input Array of size ndims
specifying Cartesian
coordinates

rank int Output Process rank of
process specified by
its Cartesian
coordinates, coords

MPI_CART_RANK

MPI_Cart_create(old_comm, ndims, dim_size, periods, reorder,
&new_comm);

if(Iam == root) { /* only want to do this on one process */

 for (i=0; i<nv; i++) {
 for (j=0; j<mv; j++) {
 coords[0] = i;
 coords[1] = j;
 MPI_Cart_rank(new_comm, coords, &rank);
 printf("%d, %d, %d\n",coords[0],coords[1],rank);
 }
 }

}

MPI_CART_RANK

•  Once a Cartesian communicator
has been established, repeated
applications of MPI_CART_RANK
for all possible values of the
Cartesian coordinates produce a
correlation table of the Cartesian
coordinates and their
corresponding process ranks.

•  Shown in Figure 8.3 below is the
resulting Cartesian topology (grid)
where the index pair "i,j" represent
row "i" and column "j". The number
in parentheses represents the
rank number associated with the
Cartesian coordinates.

0,0 (0) 0,1 (1)

1,0 (2) 1,1 (3)

2,0 (4) 2,1 (5)

Figure 8.3. Cartesian Grid

MPI_CART_RANK

•  Note:
–  This routine is the reciprocal of MPI_CART_COORDS.
– Querying for rank number of out-of-range coordinates

along the dimension in which periodicity is not enabled
is not safe (i.e., results in error).

MPI_CART_SUB

•  Definition of MPI_CART_SUB
–  Used to partition a communicator group into subgroups when

MPI_CART_CREATE has been used to create a Cartesian topology.
•  The MPI_CART_SUB routine creates new communicators for

subgrids of up to (N-1) dimensions from an N-dimensional Cartesian
grid.

•  Often, after we have created a Cartesian grid, we wish to further
group elements of this grid into subgrids of lower dimensions.
Typical operations requiring subgrids include reduction operations
such as the computation of row sums, column extremums.
–  For instance, the subgrids of a 2D Cartesian grid are 1D grids of the

individual rows or columns. Similarly, for a 3D Cartesian grid, the
subgrids can either be 2D or 1D.

int MPI_Cart_sub(MPI_Comm old_comm, int *belongs, MPI_Comm
*new_comm)

•  The function returns an int error flag.

MPI_CART_SUB

Variable
Name

C Type In/Out Description

old_comm MPI_Comm Input Cartesian
Communicator handle

belongs int * Input Array of size ndims
specifying whether a
dimension belongs to
new_comm

new_comm MPI_Comm Output Cartesian
Communicator handle

MPI_CART_SUB

•  For a 2D Cartesian grid, create subgrids of rows and columns.
Create Cartesian topology for processes.
/* Create 2D Cartesian topology for processes */
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder,

&comm2D);
MPI_Comm_rank(comm2D, &id2D);
MPI_Cart_coords(comm2D, id2D, ndim, coords2D);
/* Create 1D row subgrids */
belongs[0] = 0;
belongs[1] = 1; ! this dimension belongs to subgrid
MPI_Cart_sub(comm2D, belongs, &commrow);
/* Create 1D column subgrids */
belongs[0] = 1; /* this dimension belongs to subgrid */
belongs[1] = 0;
MPI_Cart_sub(comm2D, belongs, &commcol);

MPI_CART_SUB

•  Shown in Figure 8.4 (a) below is a 3-by-2
Cartesian topology. Figure 8.4 (b) shows the
resulting row subgrids, while Figure 8.4 (c) shows
the corresponding column subgrids. In black, the
first row of numbers in each cell lists the 2D
Cartesian coordinate index pair "i,j" and the
associated rank number. On the second row, and
in green, are shown the 1D subgrid Cartesian
coordinates and the subgrid rank number (in
parentheses). Their order is counted relative to
their respective subgrid communicator groups.

MPI_CART_SUB

0,0(0) 0,1(1) 0,0(0)
0(0)

0,1(1)
1(1)

0,0(0)
0(0)

0,1(1)
0(0)

1,0(2) 1,1(3) 1,0(2)
0(0)

1,1(3)
1(1)

1,0(2)
1(1)

1,1(3)
1(1)

2,0(4) 2,1(5) 2,0(4)
0(0)

2,1(5)
1(1)

2,0(4)
2(2)

2,1(5)
2(2)

Figure 8.4
(a). 2D
Cartesian
Grid

Figure 8.4
(b). 3 Row
Subgrids

Figure 8.4
(c). 2 Column
Subgrids

MPI_CART_SUB

•  Note:
–  MPI_CART_SUB is a collective routine. It must be called by all

processes in old_comm.
–  MPI_CART_SUB generated subgrid communicators are derived

from Cartesian grid created with MPI_CART_CREATE.
–  Full length of each dimension of the original Cartesian grid is

used in the subgrids.
–  Each subgrid has a corresponding communicator. It inherits

properties of the parent Cartesian grid; it remains a Cartesian
grid.

–  It returns the communicator to which the calling process belongs.
–  There is a comparable MPI_COMM_SPLIT to perform similar

function.
–  MPI_CARTDIM_GET and MPI_CART_GET can be used to

acquire structural information of a grid (such as dimension, size,
periodicity)

MPI_CART_SUB

•  Definition of MPI_CART_CREATE
– Used to create Cartesian coordinate structures, of

arbitrary dimensions, on the processes. The new
communicator receives no cached information.

•  Definition of MPI_COMM_SPLIT
– Used to partition old_comm into separate subgroups. It

is similar to MPI_CART_CREATE.
•  Definition of MPI_CART_GET

– Used to retrieve the Cartesian topology previously
cached with "comm".

MPI_CART_SUB Example

•  This example demonstrates the usage of
MPI_CART_SUB. We will work with six (6) processes.

•  First, form a 2D (3x2) cartesian grid. Each element of this
grid corresponds to one entry, A(i,j), of a matrix A.
Furthermore, A(i,j) is defined as
A(i,j) = (i+1)*10 + j + 1; i=0,1,2; j=0,1

•  With this definition, A(0,0), for instance, has the value 11
while A(2,1) = 32.

•  Next, create 2 column subgrids via MPI_CART_SUB.
Each of the subgrids is a 3x1 vector. We then let the last
member of each column (subgrid) to gather data, A(i,j),
from their respective members.

MPI_CART_SUB Example

#include "stdio.h"
#include "mpi.h"
void main(int argc, char *argv[])
{

 int nrow, mcol, i, lastrow, p, root;
 int Iam, id2D, colID, ndim;
 int coords1D[2], coords2D[2], dims[2], aij[1], alocal[3];
 int belongs[2], periods[2], reorder;
 MPI_Comm comm2D, commcol;
 /* Starts MPI processes ... */
 MPI_Init(&argc, &argv); /* starts
MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &Iam); /* get current
process id */
 MPI_Comm_size(MPI_COMM_WORLD, &p); /* get number of
processes */

MPI_CART_SUB Example

 nrow = 3; mcol = 2; ndim = 2;
 root = 0; periods[0] = 1; periods[1] = 0; reorder = 1;

 /* create cartesian topology for processes */
 dims[0] = nrow; /* number of rows */
 dims[1] = mcol; /* number of columns */
 MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, periods, reorder, &comm2D);
 MPI_Comm_rank(comm2D, &id2D);
 MPI_Cart_coords(comm2D, id2D, ndim, coords2D);

 /* Create 1D column subgrids */
 belongs[0] = 1; /* this dimension belongs to subgrid */
 belongs[1] = 0;
 MPI_Cart_sub(comm2D, belongs, &commcol);
 MPI_Comm_rank(commcol, &colID);
 MPI_Cart_coords(commcol, colID, 1, coords1D);

MPI_CART_SUB Example

 MPI_Barrier(MPI_COMM_WORLD);

 /* aij = (i+1)*10 + j + 1; 1 matrix element to each proc */
 aij[0] = (coords2D[0]+1)*10 + coords2D[1]+1;

 if(Iam == root) {
 printf("\n MPI_Cart_sub example:");
 printf("\n 3x2 cartesian grid ==> 2 (3x1) column subgrids\n");
 printf("\n Iam 2D 2D 1D 1D aij");
 printf("\n Rank Rank coords. Rank coords.\n");
 }

 /* Last element of each column gathers elements of its own column */
 for (i=0; i<=nrow-1; i++) {
 alocal[i] = -1;
 }

MPI_CART_SUB Example

 lastrow = nrow - 1;
 MPI_Gather(aij, 1, MPI_INT, alocal, 1, MPI_INT, lastrow, commcol);

 MPI_Barrier(MPI_COMM_WORLD);

 printf("%6d|%6d|%6d %6d|%6d|%8d|",
Iam,id2D,coords2D[0],coords2D[1],colID,coords1D[0]);
 for (i=0; i<=lastrow; i++) {
 printf("%6d ",alocal[i]);
 }
 printf("\n");

 MPI_Finalize(); /* let MPI finish up ... */

}

MPI_CART_SUB Example

•  Output
$ mpirun -np 6 ch08_cart_sub_example
MPI_Cart_sub example:
3x2 cartesian grid ==> 2 (3x1) column subgrids

 Iam 2D 2D 1D 1D aij
 Rank Rank coords. Rank coords.
 0| 0| 0 0| 0| 0| -1 -1 -1
 1| 1| 0 1| 0| 0| -1 -1 -1
 2| 2| 1 0| 1| 1| -1 -1 -1
 3| 3| 1 1| 1| 1| -1 -1 -1
 4| 4| 2 0| 2| 2| 11 21 31
 5| 5| 2 1| 2| 2| 12 22 32

MPI_CART_SUB Example

•  Shown below are the two column
subgrids resulting from the
application of MPI_CART_SUB to
a 3x2 cartesian grid.

•  As before, the 2D cartesian grid
coordinates are represented by
the "i,j" pair of numbers, the rank
numbers corresponding to the grid
processes of the 2D grid are
parenthesized and in black.

•  The numbers below them, in
green, are the rank numbers in the
two respective column subgrids.
The content of each element of
the 2D grid is shown as ai,j.

0,0 (0)
a0,0(0)

0,1 (1)
a0,1(0)

1,0 (2)
a1,0(1)

1,1 (3)
a1,1(1)

2,0 (4)
a2,0(2)

2,1 (5)
a2,1(2)

Figure a.
Column Subgrids

MPI_CARTDIM_GET

•  Definition of MPI_CARTDIM_GET
–  An inquiry function used to determine the number of dimensions

of the Cartesian structure.

•  The MPI_CARTDIM_GET routine determines the number
of dimensions of a subgrid communicator.

•  On occasions, a subgrid communicator may be created in
one routine and subsequently used in another routine. If
the dimension of the subgrid is not available, it can be
determined by MPI_CARTDIM_GET.
int MPI_Cartdim_get(MPI_Comm comm, int* ndims)

•  The function returns an int error flag.

MPI_CARTDIM_GET

/* create column subgrids */
belongs[0] = 1;
belongs[1] = 0;
MPI_Cart_sub(grid_comm, belongs, &col_comm);
/* queries number of dimensions of cartesan grid */
MPI_Cartdim_get(col_comm, &ndims);

Variable Name C Type In/Out Description

comm MPI_Comm Input Cartesian communicator
handle

ndims int * Output Number of dimensions

MPI_CARTDIM_GET

•  On occasions, detailed information about a grid may not
be available, as in the case where a communicator is
created in one routine and is used in another. In such a
situation, MPI_CARTDIM_GET may be used to find the
dimension of the grid associated with the communicator.
Armed with this value, additional information may be
obtained by calling MPI_CART_GET, which is discussed
in the next section.

•  Definition of MPI_CART_GET
–  Used to retrieve the Cartesian topology previously cached with

"comm".

MPI_CART_GET

•  Definition of MPI_CART_GET
–  Used to retrieve the Cartesian topology previously cached with "comm".

•  Definition of MPI_CARTDIM_GET
–  An inquiry function used to determine the number of dimensions of the

Cartesian structure.
•  The MPI_CART_GET routine retrieves properties such as periodicity

and size of a subgrid.
•  On occasions, a subgrid communicator may be created in one

routine and subsequently used in another routine. If only the
communicator is available in the latter, this routine, along with
MPI_CARTDIM_GET, may be used to determine the size and other
pertinent information about the subgrid.
int MPI_Cart_get(MPI_Comm subgrid_comm, int ndims, int *dims, int

*periods, int *coords)
•  The function returns an int error flag.

MPI_CART_GET

Variable Name C Type In/Out Description

subgrid_comm MPI_Comm Input Communicator handle

ndims int Input Number of dimensions
dims int * Output Array of size ndims providing

length in each dimension

periods int * Output Array of size ndims specifying
periodicity status of each
dimension

coords int * Output Array of size ndims providing
Cartesian coordinates of
calling process

MPI_CART_GET

/* create Cartesian topology for processes */
dims[0] = nrow;
dims[1] = mcol;
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder,

&grid_comm);
MPI_Comm_rank(grid_comm, &me);
MPI_Cart_coords(grid_comm, me, ndim, coords);
/* create row subgrids */
belongs[0] = 1;
belongs[1] = 0;
MPI_Cart_sub(grid_comm, belongs, &row_comm);
/* Retrieve subgrid dimensions and other info */
MPI_Cartdim_get(row_comm, &mdims);
MPI_Cart_get(row_comm, mdims, dims, period, row_coords);

MPI_CART_GET

•  Shown in Figure 8.5 below is a
3-by-2 Cartesian topology
(grid) where the index pair "i,j"
represents row "i" and column
"j". The number in parentheses
represents the rank number
associated with the Cartesian
grid.

•  This example demonstrated
the use of MPI_CART_GET to
retrieve information on a
subgrid communicator. Often,
MPI_CARTDIM_GET needs to
be called first since ndims, the
dimensions of the subgrid, is
needed as input to
MPI_CART_GET.

0,0 (0) 0,1 (1)

1,0 (2) 1,1 (3)

2,0 (4) 2,1 (5)

Figure 8.5. Cartesian Grid

MPI_CART_SHIFT

•  Definition of MPI_CART_SHIFT
–  Used to return ranks of source and destination processes for a

following call to MPI_SENDRCV that shifts data in a coordinate
direction in the Cartesian communicator. Specified by the
coordinate of the shift and by the size of the negative or positive
shift step.

•  The MPI_CART_SHIFT routine finds the resulting source
and destination ranks, given a shift direction and amount.
int MPI_Cart_shift(MPI_Comm comm, int direction, int displ, int

*source, int *dest)

•  The function returns an int error flag.

MPI_CART_SHIFT

•  Loosely speaking, MPI_CART_SHIFT is used to find two "nearby"
neighbors of the calling process along a specific direction of an N-
dimensional Cartesian topology.

•  This direction is specified by the input argument, direction, to
MPI_CART_SHIFT. The two neighbors are called "source" and
"destination" ranks, and the proximity of these two neighbors to the
calling process is determined by the input parameter displ.
–  If displ = 1, the neighbors are the two adjoining processes along the

specified direction and the source is the process with the lower rank
number, while the destination rank is the process with the higher rank.

–  On the other hand, if displ = -1, the reverse is true. A simple code
fragment and a complete sample code are shown below to demonstrate
the usage. A more practical example of an application is given in
Section “Iterative Solvers”.

MPI_CART_SHIFT

Variable
Name

C Type In/Out Description

comm MPI_Comm Input Communicator handle
direction int Input The dimension along

which shift is to be in
effect

displ int Input Amount and sense of
shift (<0; >0; or 0)

source int * Output The source of shift (a
rank number)

dest int * Output The destination of shift (a
rank number)

MPI_CART_SHIFT

/* create Cartesian topology for processes */
dims[0] = nrow; /* number of rows */
dims[1] = mcol; /* number of columns */
period[0] = 1; /* cyclic in this direction */
period[1] = 0; /* no cyclic in this direction */
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder,

&comm2D);
MPI_Comm_rank(comm2D, &me);
MPI_Cart_coords(comm2D, me, ndim, coords);

index = 0; /* shift along the 1st index (out of 2) */
displ = 1; /* shift by 1 */
MPI_Cart_shift(comm2D, index, displ, &source, &dest1);

MPI_CART_SHIFT

•  In the above example, we
demonstrate the application of
MPI_CART_SHIFT to obtain
the source and destination rank
numbers of the calling process,
me, resulting from shifting it
along the first direction of the
2D Cartesian grid by one.

•  Shown in Figure 8.6 below is a
3x2 Cartesian topology (grid)
where the index pair "i,j"
represent row "i" and column
"j". The number in parentheses
represents the rank number
associated with the Cartesian
coordinates.

0,0 (0) 0,1 (1)

1,0 (2) 1,1 (3)

2,0 (4) 2,1 (5)

Figure 8.6. Cartesian Grid

MPI_CART_SHIFT

•  With the input as specified above and 2 as the
calling process, the source and destination rank
would be 0 and 4, respectively, as a result of the
shift. Similarly, if the calling process were 1, the
source rank would be 5 and destination rank
would be 3. The source rank of 5 is the
consequence of period(0) = 1. More examples
are included in the sample code.

MPI_CART_SHIFT

•  Note:
–  Direction, the Cartesian grid dimension index, has range (0, 1, ...,

ndim-1). For a 2D grid, the two choices for direction are 0 and 1.
–  MPI_CART_SHIFT is a query function. No action results from its

call.
–  A negative returned value (MPI_UNDEFINED) of source or

destination signifies the respective value is out of bound. It also
implies that there is no periodicity along that direction.

–  If periodic condition is enabled along the shift direction, an out of
bound does not result. (See sample code).

•  Definition of MPI_UNDEFINED
–  A flag value returned by MPI when an integer value to be

returned by MPI is not meaningfully defined.

MPI_CART_SHIFT Example

•  In this example, we demonstrate the usage of
MPI_CART_SHIFT. With six (6) active processes, a 2D
Cartesian topology is created for these 6 processes. This
results in a 3x2 Cartesian topology representation for the
6 processes.

•  Furthermore, a cyclic boundary condition is imposed
down the rows -- but not the columns - of this 2D grid.
Given the calling process rank number in the Cartesian
grid communicator, upon calling MPI_CART_SHIFT the
source and destination ranks of the calling process rank
are returned as follows:

MPI_CART_SHIFT Example

1.  along the rows and a displacement of +1, the source is the rank
above the calling rank and the destination is the rank below it.

2.  along the rows and a displacement of -2, the source is two ranks
above the calling rank and the destination is two ranks below it.

3.  along the rows and a displacement of +3, the source is three ranks
above the calling rank and the destination is three rank below it.

4.  across the columns and a displacement of +1, the source is the
rank to the left of the calling rank and the destination is the rank to
the right.

5.  across the columns and a displacement of -1, the source is the rank
to the right of the calling rank and the destination is the rank to the
left.

MPI_CART_SHIFT Example

#include "stdio.h"
#include "mpi.h"
void main(int argc, char *argv[])
{

 int nrow, mcol, irow, jcol, Iam, me, ndim;
 int p, ierr, root, direct, displ;
 int source1, source2, source3, source4, source5;
 int dest1, dest2, dest3, dest4, dest5;

 int coords[2], dims[2];
 int periods[2], reorder;
 MPI_Comm comm2D;

 /* Starts MPI processes ... */
 MPI_Init(&argc, &argv); /* starts MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &Iam); /* get current process id */
 MPI_Comm_size(MPI_COMM_WORLD, &p); /* get number of
processes */

MPI_CART_SHIFT Example

 nrow = 3; mcol = 2; ndim = 2;
 root = 0; periods[0] = 1; periods[1] = 0; reorder = 1;

 if (Iam == root)
 {
 printf(" (along the rows)(across columns)\n");
 printf(" <== +1 ==> <== -2 ==> <== +3 ==> <== +1 ==> <== -1 ==>\n");
 printf(" 2D Row Col From To From To From To From To From To\n");
 printf(" Rank i j Src Dest Src Dest Src Dest Src Dest Src Dest\n");
 }
 MPI_Barrier(MPI_COMM_WORLD);

 /* create cartesian topology for processes */
 dims[0] = nrow; /* number of rows */
 dims[1] = mcol; /* number of columns */
 MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, periods, reorder, &comm2D);
 MPI_Comm_rank(comm2D, &me);
 MPI_Cart_coords(comm2D, me, ndim, coords);

MPI_CART_SHIFT Example

 direct = 0; /* shift along the 1st direction (0; not 1) */
 displ = 1; /* shift by 2 */
 MPI_Cart_shift(comm2D, direct, displ, &source1, &dest1);
 direct = 0; /* shift along the 1st direction */
 displ = -2; /* shift by -2 */
 MPI_Cart_shift(comm2D, direct, displ, &source2, &dest2);
 direct = 0; /* shift along the 1st direction (0; not 1) */
 displ = 3; /* shift by 3 */
 MPI_Cart_shift(comm2D, direct, displ, &source3, &dest3);
 direct = 1; /* shift along the 2nd direction (1; not 2) */
 displ = 1; /* shift by 1 */
 MPI_Cart_shift(comm2D, direct, displ, &source4, &dest4);
 direct = 1; /* shift along the 2nd direction */
 displ = -1; /* shift by -1 */
 MPI_Cart_shift(comm2D, direct, displ, &source5, &dest5);

 printf("%5d %5d %5d %5d %5d %5d %5d %5d %5d %5d %5d %5d %5d\n", me, coords[0],
coords[1], source1, dest1, source2, dest2, source3, dest3, source4, dest4, source5, dest5);
 MPI_Finalize(); /* let MPI finish up ... */

}

MPI_CART_SHIFT Example

•  Output
–  Note that some of the returned ranks in the last four columns are negative because they are out of

bounds and are assigned the value MPI_UNDEFINED. The value of MPI_UNDEFINED is implementation
dependent. In this case, it is -1.

$ mpirun -np 6 ch08_cart_shift_example
 (along the rows)(across columns)
 <== +1 ==> <== -2 ==> <== +3 ==> <== +1 ==> <== -1 ==>
 2D Row Col From To From To From To From To From To
 Rank i j Src Dest Src Dest Src Dest Src Dest Src Dest
 0 0 0 4 2 4 2 0 0 -1 1 1 -1
 1 0 1 5 3 5 3 1 1 0 -1 -1 0
 2 1 0 0 4 0 4 2 2 -1 3 3 -1
 3 1 1 1 5 1 5 3 3 2 -1 -1 2
 4 2 0 2 0 2 0 4 4 -1 5 5 -1
 5 2 1 3 1 3 1 5 5 4 -1 -1 4

MPI_CART_SHIFT Example

–  The 3x2 Cartesian
topology grid, shown in
Figure 8.7 below,
illustrates what
MPI_CART_SHIFT does
under the four different
sets of input parameters .
The index pair "i,j"
represents row "i" and
column "j". The number in
parentheses represents
the rank number
associated with the
Cartesian coordinates.

-3,0(0) -3,0(1)

-2,0(2) -2,1(3)

-1,0(4) -1,1(5)

0,-1(-1) 0,0(0) 0,1(1) 0,2(-1)

1,-1(-1) 1,0(2) 1,1,(3) 1,2(-1)

2,-1(-1) 2,0(4) 2,1(5) 2,2(-1)

3,0(0) 3,1(1)

4,0(2) 4,1,(3)

5,0(4) 5,1(5)

Figure 8.7.
periods[0]=1;periods[1]=0

Practical Applications

Practical Applications of Virtual
Topologies

•  The practical applications of virtual topologies
listed below are discussed in the following
sections.
– Matrix Transposition
–  Iterative Solvers

Matrix Transposition

•  This section demonstrates
the use of virtual
topologies by way of a
matrix transposition. The
matrix algebra for a matrix
transposition is
demonstrated in the
following example.

•  Consider a 3 x 3 matrix A.
This matrix is blocked into
sub-matrices A11, A12,
A21, and A22 as follows: [] []3322323121

23

13
12

2221

1211
11

2221

1211

333231

232221

131211

;

;

aAaaA
a
a

A
aa
aa

A

where

AA
AA

aaa
aaa
aaa

A

==

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

Matrix Transposition

•  Next, let B represent the
transpose of A.

•  According to Equation on
the right, the element Bij
is the blocked submatrix
Aji

T. For instance,

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

=⎥
⎦

⎤
⎢
⎣

⎡
=

TT

TT

T

T

AA
AA

AA
AA

A
BB
BB

B

2212

2111

2221

1211

2221

1211

⎥
⎦

⎤
⎢
⎣

⎡
==

32

31
2112 a

a
AB T

Matrix Transposition

•  The parallel algorithm is
–  Select p and q such that the total number of processes, nprocs

= p x q.
–  Partition the n x m matrix into a (blocked) p x q matrix whose

elements are themselves matrices of size (n/p) x (m/q).
–  Perform a transpose on each of these sub-matrices. These are

performed serially because the entire sub-matrix resides locally
on a process. No inter-process communication is required.

–  Formally, the p x q matrix needs to be transposed to obtain the
final result. However, in reality this step is often not necessary. If
you need to access the element (or sub-matrix) "p,q" of the
transposed matrix, all you need to do is access the element
"q,p", which has already been transposed locally. Depending on
what comes next in the calculation, unnecessary message
passing may be avoided.

Matrix Transposition

•  As an example (see Figure 8.8), a 9 x 4 matrix with 6 processes is
defined. Next, that matrix is mapped into a 3 x 2 virtual Cartesian
grid, i.e., p=3, q=2. Coincidentally, each element of this Cartesian
grid is, in turn, a 3 x 2 matrix.

•  For the physical grid, each square box represents one entry of the
matrix. The pair of indices, "i,j", on the first row gives the global
Cartesian coordinates, while "(p)" is the process associated with the
virtual grid allocated by calling MPI_CART_CREATE or
MPI_COMM_SPLIT. On the second row, aij, is the value of the
matrix element.

•  The 3 x 2 virtual grid is depicted on the right of Figure 8.8. Each box
in this grid represents one process and contains one 3 x 2
submatrix. Finally, another communicator is created for the
transposed virtual grid with dimensions of 2 x 3. For instance, the
element at "1,0" of the transposed virtual grid stores the value sent
by the element at "0,1" of the virtual grid.

i,j (p)

aij

Matrix Transposition
0,0(0)
100

0,1(0)
101

0,2(1)
102

0,3(1)
103

1,0(0)
110

1,1(0)
111

1,2(1)
112

1,3(1)
113

2,0(0)
120

2,1(0)
121

2,2(1)
122

2,3(1)
123

3,0(2)
130

3,1(2)
131

3,2(3)
132

3,3(3)
133

4,0(2)
140

4,1(2)
141

4,2(3)
142

4,3(3)
143

5,0(2)
150

5,1(2)
151

5,2(3)
152

5,3(3)
153

6,0(4)
160

6,1(4)
161

6,2(5)
162

6,3(5)
163

7,0(4)
170

7,1(4)
171

7,2(5)
172

7,3(5)
173

8,0(4)
180

8,1(4)
181

8,2(5)
182

8,3(5)
183

0,0(0) 0,1(1)

1,0(2) 1,1(3)

2,0(4) 2,1(5)

0,0(0) 0,1(1) 0,2(2)

1,0(3) 1,1(4) 1,2(5)

Virtual Grid

Transposed Virtual Grid

Figure 8.8. An example of the
use of virtual topologies by way of
a matrix transposition using a 9 x
4 matrix with 6 processes.

Matrix Transposition

#include "stdio.h"
#include "mpi.h" /* This brings in pre-defined MPI constants, ... */

void asemble(int at[][], int ml, int nl, MPI_Comm comm, int b[][], int m, int n, int p);

void main(int argc, char *argv[])
{

 int n, m, nv, nl, mv, ml, i, il, iv, j, jl, jv;
 int p, ndim, reorder, ierr;
 int master, me, Iam, source, dest, tag;
 int dims[2], coord[2];
 int period[2];
 int a[3][2], at[2][3], b[4][9];
 MPI_Status status;
 MPI_Request req;
 MPI_Comm grid_comm;

Matrix Transposition

 /* Starts MPI processes ... */
 MPI_Init(&argc, &argv); /* starts MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &Iam); /* get current process id */
 MPI_Comm_size(MPI_COMM_WORLD, &p); /* get number of processes */

 master = 0; /* 0 is defined as the master processor */
 period[0] = 0; period[1] = 0; /* no cyclic boundary in either index */
 tag = 0; /* a tag is not required in this case, set it to zero */
 dest = 0; /* results are sent back to master */

 n = 9; m = 4; nv = 3; mv = 2;
 nl = n/nv; ml = m/mv;
 ndim = 2; reorder = 1;

 /* create cartesian topology for matrix */
 dims[0] = nv;
 dims[1] = mv;
 MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder, &grid_comm);
 MPI_Comm_rank(grid_comm, &me);
 MPI_Cart_coords(grid_comm, me, ndim, coord);
 iv = coord[0];
 jv = coord[1];

Matrix Transposition

 /* define local matrix according to virtual grid coordinates, (iv,jv) */
 for (il=0; il<nl; il++)
 {
 for (jl=0; jl<ml; jl++)
 {
 i = il + iv*nl;
 j = jl + jv*ml;
 a[il][jl] = i*10 + j;
 }
 }

 printf("%d: Before Transpose:\n", Iam);
 for (i=0; i<nl; i++)
 {
 for (j=0; j<ml; j++)
 {
 printf("%5d", a[i][j]);
 }
 printf("\n");
 }

Matrix Transposition

 /* perform transpose on local matrix */
 for (il=0; il<nl; il++)
 {
 for (jl=0; jl<ml; jl++)
 {
 at[jl][il] = a[il][jl];
 }
 }

 /* send "at" to Master for asembly and printing */
 MPI_Isend(at, ml*nl, MPI_INT, master, tag, grid_comm, &req);

 /* Master asembles all local transposes into final matrix and print */
 if(Iam == master) {
 asemble(at, ml, nl, grid_comm, b, m, n, p);
 MPI_Wait(&req, &status); /* make sure all sends done */
 }
 MPI_Finalize(); /* let MPI finish up ... */

}

Matrix Transposition

void asemble(int at[2][3], int ml, int nl, MPI_Comm comm, int b[4][9], int m, int n, int p)
{

 int tag, source, ierr, ndim;
 int iv, jv, i, j, il, jl, coord[2];
 MPI_Status status;
 tag = 0;

 /* The Master asembles the final (transposed) matrix from local copies and print */
 for (source=0; source<p; source++)
 {
 MPI_Cart_coords(comm, source, ndim, coord);
 MPI_Recv(at, ml*nl, MPI_INT, source, tag, comm, &status);
 iv = coord[0];
 jv = coord[1];
 for (jl=0; jl<nl; jl++)
 {
 j = jl + iv*nl; /* swap iv and jv for transpose */
 for (il=0; il<ml; il++)
 {
 i = il + jv*ml;
 b[i][j] = at[il][jl];
 }
 }
 }

Matrix Transposition

 printf("\nAfter Transpose:\n");
 for (i=0; i<m; i++)
 {
 for (j=0; j<n; j++)
 {
 printf("%5d", b[i][j]);
 }
 printf("\n");
 }

}

Iterative Solvers

•  In this example, we demonstrate an application of the
Cartesian topology by way of a simple elliptic (Laplace)
equation.

•  Fundamentals: The Laplace equation, along with
prescribed boundary conditions, are introduced. Finite
Difference Method is then applied to discretize the PDE
to form an algebraic system of equations.

•  Jacobi Scheme: A very simple iterative method, known
as the Jacobi Scheme, is described. A single-process
computer code is shown. This program is written in
Fortran 90 for its concise but clear array representations.
(Parallelism and other improvements will be added to this
code as you progress through the example.)

Iterative Solvers

•  Parallel Jacobi Scheme: A parallel algorithm for this problem is
discussed. Simple MPI routines, without the invocations of Cartesian
topology, are inserted into the basic, single-process code to form the
parallel code.

•  SOR Scheme: The Jacobi scheme, while simple and hence
desirable for demonstration purposes, is impractical for "real"
applications because of its slow convergence. Enhancements to the
basic technique are introduced leading to the Successive Over
Relaxation (SOR) scheme.

•  Parallel SOR Scheme: With the introduction of a "red-black"
algorithm, the parallel algorithm used for Jacobi is employed to
parallelize the SOR scheme.

•  Scalability: The performance of the code for a number of processes
is shown to demonstrate its scalability.

Fundamentals

•  First, some basics.
Equation (1)

02

2

2

2

=
∂

∂
+

∂

∂

y
u

x
u

•  where u=u(x,y) is an unknown scalar potential
subjected to the following boundary conditions:
 Equation (2)

()
()
() 1y0 0),1(,0

1x0)sin(1,
1x0)sin(0,

≤≤==

≤≤=

≤≤=
−

yuyu
enxxu

nxxu
x

Fundamentals

•  Discretize the equation numerically with centered
difference results in the algebraic equation
 Equation 3:

mjmi
uuuu

u
nnnn

n
ji

jijijiji ,,1;,,1;
4

1,1,,1,11
, …… ==

+++
≅

−+−++

•  where n and n+1 denote the current and the next
time step, respectively, while represents
 Equation 4:

n
jiu ,1−

()
()()yjxiu

mjmiyxuu
n

ji
nn

ji

ΔΔ−=

=== −−

,1

,,1;,,1;,1,1 ……

Fundamentals

•  and for simplicity, we take

•  Note that the analytical solution for this boundary value
problem can easily be verified to be
 Equation (5):

•  and is shown below in a contour plot with x pointing from
left to right and y going from bottom to top.

1
1
+

=Δ=Δ
m

yx

() () 10;10;sin, ≤≤≤≤= − yxexyxu xyπ

Fundamentals

Figure 8.9. Contour plot showing the analytical solution for the boundary value problem.

Jacobi Scheme

•  While numerical techniques abound to solve PDEs such
as the Laplace equation, we will focus on the use of two
iterative methods. These methods will be shown to be
readily parallelizable, as well as lending themselves to
the opportunity to apply MPI Cartesian topology
introduced above. The simplest of iterative techniques is
the Jacobi scheme, which may be stated as follows:
1.  Make initial guess for ui,j at all interior points (i,j) for all i=1:m

and j=1:m.
2.  Use Equation 3 to compute un+1

i,j at all interior points (i,j).
3.  Stop if the prescribed convergence threshold is reached,

otherwise continue on to the next step.
4.  un

i,j = un+1
i,j.

5.  Go to Step 2.

Serial Jacobi Iterative Scheme

•  A single-process implementation of the Jacobi
Scheme as applied to the Laplace equation is
given below. Note that
–  Program is written in C.
–  System size, m, is determined at run time.
–  Boundary conditions are handled by subroutine bc.
–  This scheme is very slow to converge and is not used

in practice.
–  This example provides a starting point for later

introduction of parallelization and convergence rate
improvement concepts.

sjacobi.c

#include "solvers.h"

INT main() {
/********** MAIN PROGRAM *********************************
 * Solve Laplace equation using Jacobi iteration method *
 * Kadin Tseng, Boston University, August, 2000 *
 ***/

 INT iter, m, mi, mp;
 REAL gdel;
 CHAR line[10];
 REAL **u, **un;

 fprintf(OUTPUT,"Enter size of interior points, mi :");
 (void) fgets(line, sizeof(line), stdin);
 (void) sscanf(line, "%d", &mi);
 fprintf(OUTPUT,"mi = %d\n",mi);

sjacobi.c

 m = mi + 2; /* interior points plus 2 b.c. points */
 mp = m/P;

 u = allocate_2D(m, mp); /* allocate mem for 2D array */
 un = allocate_2D(m, mp);

 gdel = 1.0;
 iter = 0;

 bc(m, mp, u, K, P); /* initialize and define B.C. for u */

 replicate(m, mp, u, un); /* u = un */

sjacobi.c

 while (gdel > TOL) { /* iterate until error below threshold */
 iter++; /* increment iteration counter */

 if(iter > MAXSTEPS) {
 fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);
 fprintf(OUTPUT,")\n");
 return (0); /* nonconvergent solution */
 }

/* compute new solution according to the Jacobi scheme */
 update_jacobi(m, mp, u, un, &gdel);

 if(iter%INCREMENT == 0) {
 fprintf(OUTPUT,"iter,gdel: %6d, %lf\n",iter,gdel);
 }
 }

 fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
 fprintf(OUTPUT,"The maximum error = %f\n",gdel);

/* write u to file for use in MATLAB plots */

 write_file(m, mp, u, K, P);

 return (0);
}

Jacobi and SOR Iterative Scheme
Utility Functions

•  The following includes solvers.h, utils.h and utils.c.
#ifndef _SOLVERS_H_INCLUDED_
#define _SOLVERS_H_INCLUDED_

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define CHAR char
#define REAL double
#define INT int

#define OUTPUT stdout /* output to standard out */
#define PLOT_FILE "plots" /* output files base name */
#define INCREMENT 100 /* number of steps between convergence check */

#define P 1 /* define processor count for serial codes */
#define K 0 /* current thread number for serial code is 0 */
#define MAX_M 512 /* maximum size of indices of Array u */
#define MAXSTEPS 50000 /* Maximum number of iterations */
#define TOL 0.000001 /* Numerical Tolerance */
#define PI 3.14159265 /* pi */

#include "utils.h" /* header file of function prototype in utils.c */
#endif

Jacobi and SOR Iterative Scheme
Utility Functions

#ifndef _UTILS_H_INCLUDED_
#define _UTILS_H_INCLUDED_

/* begin function prototyping */

REAL **allocate_2D(int m, int n);
REAL my_max(REAL a, REAL b);
void init_array(INT m, INT n, REAL **a);
void bc(INT m, INT n, REAL **a, INT k, INT p);
void prtarray(INT nx, INT ny, REAL **a, FILE *fd);
INT write_file(INT m, INT n, REAL **u, INT k, INT p);
INT update_jacobi(INT m, INT n, REAL **u, REAL **unew, REAL *gdel);
INT update_sor(INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack);
INT replicate(INT m, INT n, REAL **u, REAL **ut);
INT transpose(INT m, INT n, REAL **u, REAL **ut);
void neighbors(INT k, INT p, INT UNDEFINED, INT *below, INT *above);

/* end function prototyping */

#endif

Jacobi and SOR Iterative Scheme
Utility Functions

/********** U T I L I T Y ************************************
 * Utility functions for use with the Jacobi and SOR solvers *
 * Kadin Tseng, Boston University, November 1999 *
 ***/
#include "solvers.h"
#include <malloc.h>

REAL **allocate_2D(INT m, INT n) {

 INT i;
 REAL **a;

 a = (REAL **) malloc((unsigned) m*sizeof(REAL*));

/* Each pointer array element points to beginning of a row with n entries*/

 for (i = 0; i < m; i++) {
 a[i] = (REAL *) malloc((unsigned) n*sizeof(REAL));
 }

 return a;

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT write_file(INT m, INT n, REAL **u, INT k, INT p) {
/***
 * Writes 2D array ut columnwise (i.e. C convention) *
 * m - size of rows *
 * n - size of columns *
 * u - scratch array *
 * k - 0 <= k < p; = 0 for single thread code *
 * p - p >= 0; =1 for single thread code *
 ***/

 INT ij, i, j, per_line;
 CHAR filename[50], file[53];
 FILE *fd;

/*
 prints u, 6 per line; used for matlab plots;
 PLOT_FILE contains the array size and number of procs;
 PLOT_FILE.(k+1) contains u pertaining to proc k;
 for serial job, PLOT_FILE.1 contains full u array.

*/

 (void) sprintf(filename, "%s", PLOT_FILE);

Jacobi and SOR Iterative Scheme
Utility Functions

 if (k == 0) {
 fd = fopen(filename, "w");
 fprintf(fd, "%5d %5d %5d\n", m, n, p);
 fclose(fd);
 }
 per_line = 6; /* to print 6 per line */
 (void) sprintf(file, "%s.%d", filename, k); /* create output file */
 fd = fopen(file, "w");
 ij = 0;
 for (j = 0; j < n; j++) {
 for (i = 0; i < m; i++) {
 fprintf(fd, "%11.4f ", u[i][j]);
 if ((ij+1)%per_line == 0) fprintf(fd, "\n");
 ij++;
 }
 }
 fprintf(fd, "\n");
 fclose(fd);
 return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

void init_array(INT m, INT n, REAL **a) {
/********* Initialize Array **********************
 * Initialize array with nx rows and ny columns *
 ***/

 INT i, j;

 for (i = 0; i < m; i++) {
 for (j = 0; j < n; j++) {
 a[i][j] = 0.0; /* initialize all entries to zero */
 }
 }

}

Jacobi and SOR Iterative Scheme
Utility Functions

void bc(INT m, INT n, REAL **u, INT k, INT p) {
/*********** Boundary Conditions **
 * PDE: Laplacian u = 0; 0<=x<=1; 0<=y<=1

 *
 * B.C.: u(x,0)=sin(pi*x); u(x,1)=sin(pi*x)*exp(-pi); u(0,y)=u(1,y)=0 *
 * SOLUTION: u(x,y)=sin(pi*x)*exp(-pi*y)

 *
 **/

 INT i;

 init_array(m, n, u);
 /* initialize u to 0 */

 if (p > 1) {
 if (k == 0) {
 for (i = 0; i < m; i++) {
 u[i][0] = sin(PI*i/(m-1));

 /* at y = 0; all x */
 }
 }

Jacobi and SOR Iterative Scheme
Utility Functions

 if (k == p-1) {
 for (i = 0; i < m; i++) {
 u[i][n-1] = sin(PI*i/(m-1))*exp(-PI); /* at y = 1; all x */
 }
 }
 } else if (p == 1) {
 for (i = 0; i < m; i++) {
 u[i][0] = sin(PI*i/(m-1)); /* at y = 0; all x */
 u[i][n-1] = u[i][0]*exp(-PI); /* at y = 1; all x */
 }
 } else {
 printf("p is invalid\n");
 }

}

Jacobi and SOR Iterative Scheme
Utility Functions

void prtarray(INT m, INT n, REAL **a, FILE *fd) {
/*********** Print Array ***********************
 * Prints array "a" with m rows and n columns *
 * tda is the Trailing Dimension of Array a *
 ***/

 INT i, j;
 for (i = 0; i < m; i++) {
 for (j = 0; j < n; j++) {
 fprintf(fd, "%8.2f", a[i][j]);
 }
 fprintf(fd, "\n");
 }

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT update_jacobi(INT m, INT n, REAL **u, REAL **unew, REAL *del) {
/**
 * Updates u according to Jacobi method *
 * m - (INPUT) size of interior rows *
 * n - (INPUT) size of interior columns *
 * u - (INPUT) solution array *
 * unew - (INPUT) next solution array *
 * del - (OUTPUT) error norm between 2 solution steps *
 **/

 INT i, j;
 *del = 0.0;
 for (i = 1; i < m-1; i++) {
 for (j = 1; j < n-1; j++) {
 unew[i][j] = (u[i][j+1] + u[i+1][j] +
 u[i-1][j] + u[i][j-1])*0.25;
 del += fabs(unew[i][j] - u[i][j]); / find local max error */
 }
 }
 for (i = 1; i < m-1; i++) {
 for (j = 1; j < n-1; j++) {
 u[i][j] = unew[i][j];
 }
 }
 return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT update_sor(INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack) {
/**
 * Updates u according to successive over relaxation method *
 * m - (INPUT) size of interior rows *
 * n - (INPUT) size of interior columns *
 * u - (INPUT) array *
 * omega - (INPUT) adjustable constant used to speed up convergence of SOR *
 * del - (OUTPUT) error norm between 2 solution steps *
 * redblack - (INPUT) either 'r' for red and 'b' for black *
 **/

 INT i, ib, ie, j, jb, je;
 REAL up;

 *del = 0.0;
 if (redblack == 'r') {

/* process RED odd points ... */
 jb = 1; je = n-2; ib = 1; ie = m-2;
 for (j = jb; j <= je; j+=2) {
 for (i = ib; i <=ie; i+=2) {
 up = (u[i][j+1] + u[i+1][j] +
 u[i-1][j] + u[i][j-1])*0.25;
 u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
 *del += fabs(up-u[i][j]);
 }
 }

Jacobi and SOR Iterative Scheme
Utility Functions

/* process RED even points ... */
 jb = 2; je = n-2; ib = 2; ie = m-2;
 for (j = jb; j <= je; j+=2) {
 for (i = ib; i <= ie; i+=2) {
 up = (u[i][j+1] + u[i+1][j] +
 u[i-1][j] + u[i][j-1])*0.25;
 u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
 *del += fabs(up-u[i][j]);
 }
 }
 return (0);
 } else {
 if (redblack == 'b') {

/* process BLACK odd points ... */
 jb = 2; je = n-2; ib = 1; ie = m-2;
 for (j = jb; j <= je; j+=2) {
 for (i = ib; i <= ie; i+=2) {
 up = (u[i][j+1] + u[i+1][j] +
 u[i-1][j] + u[i][j-1])*0.25;
 u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
 *del += fabs(up-u[i][j]);
 }
 }

Jacobi and SOR Iterative Scheme
Utility Functions

/* process BLACK even points ... */
 jb = 1; je = n-2; ib = 2; ie = m-2;
 for (j = jb; j <= je; j+=2) {
 for (i = ib; i <= ie; i+=2) {
 up = (u[i][j+1] + u[i+1][j] +
 u[i-1][j] + u[i][j-1])*0.25;
 u[i][j] = (1.0 - omega)*u[i][j] + omega*up;
 *del += fabs(up-u[i][j]);
 }
 }
 return (0);
 } else {
 return (1);
 }
 }

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT replicate(INT m, INT n, REAL **a, REAL **b) {
/**
 * Replicates array a into array b *
 * m - (INPUT) size of interior points in 1st index *
 * n - (INPUT) size of interior points in 2st index *
 * a - (INPUT) solution at time N *
 * b - (OUTPUT) solution at time N + 1 *
 **/

 INT i, j;

 for (i = 0; i < m; i++) {
 for (j = 0; j < n; j++) {
 b[i][j] = a[i][j];
 }
 }
 return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

INT transpose(INT m, INT n, REAL **a, REAL **at) {
/**
 * Transpose a(0:m+1,0:n+1) into at(0:n+1,0:m+1) *
 * m - (INPUT) size of interior points in 1st index *
 * n - (INPUT) size of interior points in 2st index *
 * a - (INPUT) a = a(0:m+1,0:n+1) *
 * at - (OUTPUT) at = at(0:n+1,0:m+1) *
 **/

 INT i, j;

 for (i = 0; i < m; i++) {
 for (j = 0; j < n; j++) {
 at[j][i] = a[i][j];
 }
 }
 return (0);

}

Jacobi and SOR Iterative Scheme
Utility Functions

void neighbors(INT k, INT p, INT UNDEFINED, INT *below, INT *above) {
/**
 * determines two adjacent threads *
 * k - (INPUT) current thread *
 * p - (INPUT) number of processes (threads) *
 * UNDEFINED - (INPUT) code to assign to out-of-bound neighbor *
 * below - (OUTPUT) neighbor thread below k (usually k-1) *
 * above - (OUTPUT) neighbor thread above k (usually k+1) *
 **/

 if(k == 0) {
 below = UNDEFINED; / tells MPI not to perform send/recv */
 *above = k+1;
 } else if(k == p-1) {
 *below = k-1;
 above = UNDEFINED; / tells MPI not to perform send/recv */
 } else {
 *below = k-1;
 *above = k+1;
 }

}

Parallel Algorithm for the Jacobi
Scheme

•  First, to enable parallelism, the work must be divided
among the individual processes; this is known commonly
as domain decomposition.

•  Because the governing equation is two-dimensional,
typically the choice is to use a 1D or 2D decomposition.

•  This section will focus on a 1D decomposition, deferring
the discussion of a 2D decomposition for later.

•  Assuming that p processes will be used, the
computational domain is split into p horizontal strips,
each assigned to one process, along the north-south or y-
direction. This choice is made primarily to facilitate
simpler boundary condition (code) implementations.

Parallel Algorithm for the Jacobi
Scheme

•  For the obvious reason of better load-balancing, we will
divide the amount of work, in this case proportional to the
grid size, evenly among the processes (m x m / p). For
convenience, m' = m/p is defined as the number of cells
in the y-direction for each process. Next, Equation 3 is
restated for a process k as follows:
 Equation 6:

 where v denotes the local solution corresponding to the
process k with m'=m/p.

1,,0;,,1;,,1

;
4

,,,,
,1

,
1,1,,1,1

−=ʹ′==

+++
≅

−+−++

pkmjmi

uuuu
u

knknknkn
kn

ji
jijijiji

………

Parallel Algorithm for the Jacobi
Scheme

•  The figure below
depicts the grid of
a typical process
k, as well as part
of the adjoining
grids of k-1, k+1.

Figure 8.10. The grid of a typical process k as
well as part of adjoining grids of k-1, k+1

Parallel Algorithm for the Jacobi
Scheme

•  The red cells represent process k's grid cells for which
the solution u is sought through Equation 6.

•  The blue cells on the bottom row represent cells
belonging to the first row (j = 0) of cells of process k-1.

•  The blue cells on the top row represent the last row (j =
m') of cells of process k+1.

•  It is important to note that the u at the blue cells of k
belong to adjoining processes (k-1 and k+1) and hence
must be "imported" via MPI message passing routines.
Similarly, process k's first and last rows of cells must be
"exported" to adjoining processes for the same reason.

Parallel Algorithm for the Jacobi
Scheme

•  For i = 1 and i = m, Equation 6 again requires an extra cell beyond these
two locations. These cells contain the prescribed boundary conditions
(u(0,y) = u(1,y) = 0) and are colored green to distinguish them from the red
and blue cells.

•  Note that no message passing operations are needed for these green cells
as they are fixed boundary conditions and are known a priori.

•  From the standpoint of process k, the blue and green cells may be
considered as additional "boundary" cells around it. As a result, the range of
the strip becomes (0:m+1,0:m'+1).

•  Physical boundary conditions are imposed on its green cells, while u is
imported to its blue "boundary" cells from two adjoining processes. With the
boundary conditions in place, Equation 6 can be applied to all of its interior
points.

•  Concurrently, all other processes proceed following the same procedure. It
is interesting to note that the grid layout for a typical process k is completely
analogous to that of the original undivided grid. Whereas the original
problem has fixed boundary conditions, the problem for a process k is
subjected to variable boundary conditions.

Parallel Algorithm for the Jacobi
Scheme

•  These boundary conditions can be stated
mathematically as
 Equation 7:

() ()

() ()
()
() 10;,,1j ;0,1

10;,,1j ;0,0

1;1,0,i ;sin1,

1;1,0,i ;

10;1,0,i ;

10;1,0,i ;

10;1,0,i ;

0;1,0,i ;

0;1,0,i ;sin0,

,

,

,

1,,

1,,

1,,

1,,

1,,

,

,1

,0

1,

,0,

,0,

1,1,

,0,

1,1,

0,

−≤≤ʹ′===

−≤≤ʹ′===

−=+===

−=+==

−<<+==

−<<+==

−<<+==

=+==

=+===

+

+ʹ′

ʹ′

ʹ′

+ʹ′

ʹ′

+ʹ′

−

−

−

+

−

+

pkmyuv

pkmyuv

pkmexxuv

pkmvv

pkmvv

pkmvv

pkmvv

kmvv

kmxxuv

j
kn

j
kn

x
ii

kn

knkn

knkn

knkn

knkn

knkn

ii
kn

jm

j

mi

mii

mii

imi

mii

imi

i

…

…

…

…

…

…

…

…

…

π

π

Parallel Algorithm for the Jacobi
Scheme

•  Note that the interior points of u and v are related
by the relationship
 Equation 8:

•  Note that Cartesian topology is not employed in

this implementation but will be used later in the
parallel SOR example with the purpose of
showing alternative ways to solve this type of
problems.

10;,,1;,,1i ;,
,/, −<<ʹ′===×+ pkmjmvu knn
jipmkji ……

Parallel Jacobi Iterative Scheme

•  A parallel implementation of the Jacobi Scheme (based
on a serial implementation) as applied to the Laplace
equation is included below. Note that:
–  System size, m, is determined at run time.
–  Boundary conditions are handled by subroutine bc.
–  Subroutine neighbors provides the process number ABOVE and

BELOW the current process. These numbers are needed for
message passing (subroutine update_bc_2). If ABOVE or
BELOW is "-1", its at process 0 or p-1. No message passing will
be needed in that case.

–  Subroutine update_bc_2 updates the blue cells of current and
adjoining processes simultaneously by MPI routine that pairs
send and receive, MPI_Sendrecv, for subsequent iteration.

–  Subroutine update_bc_1 can be used in place of update_bc_2 as
an alternative message passing method

Parallel Jacobi Iterative Scheme

•  Subroutine printmesh may be used to print local solution for tiny
cases (like 4x4)

•  Pointer arrays c, n, e, w, and s point to the solution space, u. They
are used to avoid unnecessary memory usage as well as to improve
readability.

•  MPI_Allreduce is used to collect global error from all participating
processes to determine whether further interation is required. This is
somewhat costly to do in every iteration. Can improve performance
by calling this routine only once in a while. There is a small price to
pay; the solution may have converged between MPI_Allreduce calls.
See parallel SOR implementation on how to reduce MPI_Allreduce
calls.

•  This scheme is very slow to converge and is not used in practice.
However, it serves to demonstrate parallel concepts.

Parallel Jacobi Iterative Scheme

•  A parallel implementation of the Jacobi Scheme
(based on a serial implementation) as applied to
the Laplace equation is included below.

pjacobi.c

#include "solvers.h"
#include "mpi.h"

INT main(INT argc, CHAR *argv[]) {
/********** MAIN PROGRAM *********************************
 * Solve Laplace equation using Jacobi iteration method *
 * Kadin Tseng, Boston University, August, 2000 *
 ***/

 INT iter, m, mi, mp, k, p, below, above;
 REAL del, gdel;
 CHAR line[80];
 REAL **v, **vt, **vnew;

 MPI_Init(&argc, &argv); /* starts MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &k); /* get current process id */
 MPI_Comm_size(MPI_COMM_WORLD, &p); /* get # procs from env or */

pjacobi.c

 if(k == 0) {
 fprintf(OUTPUT,"Enter size of interior points, mi :\n");
 (void) fgets(line, sizeof(line), stdin);
 (void) sscanf(line, "%d", &mi);
 fprintf(OUTPUT,"mi = %d\n",mi);
 }
 MPI_Bcast(&mi, 1, MPI_INT, 0, MPI_COMM_WORLD);
 m = mi + 2; /* total is interior points plus 2 b.c. points */
 mp = mi/p+2;

 v = allocate_2D(m, mp); /* allocate mem for 2D array */
 vt = allocate_2D(mp, m);
 vnew = allocate_2D(mp, m);

 gdel = 1.0;
 iter = 0;

pjacobi.c

 bc(m, mp, v, k, p); /* initialize and define B.C. for v */
 transpose(m, mp, v, vt); /* solve for vt */
 /* driven by need of update_bc_2 */
 replicate(mp, m, vt, vnew); /* vnew = vt */
 neighbors(k, p, -1, &below, &above); /* domain borders */

 while (gdel > TOL) { /* iterate until error below threshold */
 iter++; /* increment iteration counter */

 if(iter > MAXSTEPS) {
 fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);
 fprintf(OUTPUT,")\n");
 return (0); /* nonconvergent solution */
 }

/* compute new solution according to the Jacobi scheme */
 update_jacobi(mp, m, vt, vnew, &del); /* compute new vt */
 if(iter%INCREMENT == 0) {
 MPI_Allreduce(&del, &gdel, 1, MPI_DOUBLE,
 MPI_MAX, MPI_COMM_WORLD); /* find global max error */
 if(k == 0) {
 fprintf(OUTPUT,"iter,del,gdel: %6d, %lf %lf\n",iter,del,gdel);
 }
 }
 update_bc_2(mp, m, vt, k, below, above); /* update b.c. */
 }

pjacobi.c

 if (k == 0) {
 fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
 fprintf(OUTPUT,"The maximum error = %f\n",gdel);
 }

/* write v to file for use in MATLAB plots */

 transpose(mp, m, vt, v);
 write_file(m, mp, v, k, p);

 MPI_Barrier(MPI_COMM_WORLD);

 free(v); free(vt); free(vnew); /* release allocated arrays */

 return (0);

}

Parallel Jacobi Iterative Scheme

•  In addition, there are two modules needed in connection with the above:
•  Some utilities – please refer to the slides before
•  MPI-related utilities
/* begin MODULE mpi_module */
#include "solvers.h"
#include "mpi.h"

INT update_bc_2(INT mp, INT m, REAL **vt, INT k, INT below, INT above) {

 MPI_Status status[6]; /* SGI doesn't define MPI_STATUS_SIZE */

 MPI_Sendrecv(vt[mp-2]+1, m-2, MPI_DOUBLE, above, 0,
 vt[0]+1, m-2, MPI_DOUBLE, below, 0,
 MPI_COMM_WORLD, status);

 MPI_Sendrecv(vt[1]+1, m-2, MPI_DOUBLE, below, 1,
 vt[mp-1]+1, m-2, MPI_DOUBLE, above, 1,
 MPI_COMM_WORLD, status);

 return (0);
}

/* end MODULE mpi_module */

Successive Over Relaxation
(SOR)

•  While the Jacobi iteration scheme is very simple and easily
parallelizable, its slow convergent rate renders it impractical for any
"real world" applications. One way to speed up the convergent rate
would be to "over predict" the new solution by linear extrapolation.
This leads to the Successive Over Relaxation (SOR) scheme
shown below:
1.  Make initial guess for ui,j at all interior points (i,j).
2.  Define a scalar wn (0 < wn < 2).
3.  Apply Equation 3 to all interior points (i,j) and call it u'i,j.
4.  un+1

i,j = wn u'i,j + (1 - wn) un
i,j.

5.  Stop if the prescribed convergence threshold is reached, otherwise
continue to the next step.

6.  un
i,j = un+1

i,j.
7.  Go to Step 2.

Successive Over Relaxation
(SOR)

•  Note that in the above setting
wn = 1 recovers the Jacobi
scheme while wn< 1
underrelaxes the solution.
Ideally, the choice of wn should
provide the optimal rate of
convergence and is not
restricted to a fixed constant.
As a matter of fact, an effective
choice of wn, known as the
Chebyshev acceleration, is
defined as

()
radius spectral theis

12
1 where

2qn
4/1

1

2 n
4/1

1

1n
2/1

1

0n 0

2

1
2

1
2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

>=
−

=
−

=
−

=

=

−

m

for
p

for
p

for
p

for

q

n

π
ρ

ω

ω

ω

Successive Over Relaxation
(SOR)

•  We can further speed up
the rate of convergence
by using u at time level n
+1 for any or all terms on
the right hand side of
Equation 6 as soon as
they become available.
This is the essence of the
Gauss-Seidel scheme. A
conceptually similar red-
black scheme will be used
here. This scheme is best
understood visually by
painting the interior cells
alternately in red and
black to yield a
checkerboard-like pattern
as shown in Figure 8.11.

Figure 8.11. Checkerboard-like pattern
depicting a parallel SOR red-black scheme.

Successive Over Relaxation
(SOR)

•  By using this red-black group identification strategy and applying the five-
point finite-difference stencil to a point (i,j) located at a red cell, it is
immediately apparent that the solution at the red cell depends only on its
four immediate black neighbors to the north, east, west, and south (by virtue
of Equation 6). On the contrary, a point (i,j) located at a black cell depends
only on its north, east, west, and south red neighbors.

•  In other words, the finite-difference stencil in Equation 6 effects an
uncoupling of the solution at interior cells such that the solution at the red
cells depends only on the solution at the black cells and vice versa.

•  In a typical iteration, if we first perform an update on all red (i,j) cells, then
when we perform the remaining update on black (i,j) cells, the red cells that
have just been updated could be used. Otherwise, everything that we
described about the Jacobi scheme applies equally well here; i.e., the
green cells represent the physical boundary conditions while the solutions
from the first and last rows of the grid of each process are deposited into
the blue cells of respective process grids to be used as the remaining
boundary conditions.

Serial SOR Iterative Scheme

•  A single-process implementation of the SOR
Scheme as applied to the Laplace equation is
given below. Note that
–  Program is written in C.
–  System size, m, is determined at run time.
–  Boundary conditions are handled by subroutine bc.
–  This scheme converges much more rapidly than the

Jacobi Scheme, especially when coupled with a
Checbyshev acceleration.

ssor.c

#include "solvers.h"
INT main() {
/***************MAIN PROGRAM *************************************
 * Solve Laplace equation using Successive Over Relaxation *
 * and Chebyshev Acceleration (see Numerical Recipe for detail) *
 * Kadin Tseng, Boston University, August, 2000 *
 ***/

 INT m, mi, mp, iter; CHAR line[10];
 REAL omega, rhoj, rhojsq, delr, delb, gdel;
 REAL **u;

 fprintf(OUTPUT,"Enter size of interior points, mi :");
 (void) fgets(line, sizeof(line), stdin);
 (void) sscanf(line, "%d", &mi);
 fprintf(OUTPUT,"mi = %d\n",mi);

 m = mi + 2;
 gdel = 1.0; iter = 0; mp = m/P;
 rhoj = 1.0 - PI*PI*0.5/m/m;
 rhojsq = rhoj*rhoj;

ssor.c

 u = allocate_2D(m, mp); /* allocate space for 2D array u */

 bc(m, mp, u, K, P); /* initialize and define B.C. for u */

 omega = 1.0;
 update_sor(m, mp, u, omega, &delr, 'r');
 omega = 1.0/(1.0 - 0.50*rhojsq);
 update_sor(m, mp, u, omega, &delb, 'b');

 while (gdel > TOL) { /* iterate until error below threshold */
 iter++; /* increment iteration counter */
 omega = 1.0/(1.0 - 0.25*rhojsq*omega);
 update_sor(m, mp, u, omega, &delr, 'r');
 omega = 1.0/(1.0 - 0.25*rhojsq*omega);
 update_sor(m, mp, u, omega, &delb, 'b');
 gdel = (delr + delb)*4.0;

ssor.c

 if(iter%INCREMENT == 0) {
 fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega);
 }
 if(iter > MAXSTEPS) {
 fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);
 fprintf(OUTPUT,")\n");
 return (0); /* nonconvergent solution */
 }
 }

 fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
 fprintf(OUTPUT,"The maximum error = %f\n",gdel);

/* write u to file for use in MATLAB plots */

 write_file(m, mp, u, K, P);

 return (0);
}

Parallel SOR Red-black Scheme

•  The parallel aspect of the
Jacobi scheme can be used
verbatim for the SOR
scheme. Figure 8.11, as
introduced in the previous
section on the single-thread
SOR scheme, may be used
to represent the layout for a
typical thread "k" of the
SOR scheme.

•  As before, the green boxes
denote boundary cells that
are prescribed while the
blue boxes represent
boundary cells whose
values are updated at each
iteration by way of message
passing.

Figure 8.11. Checkerboard-like pattern
depicting a parallel SOR red-black
scheme.

Parallel SOR Red-black Scheme

•  A multi-threaded implementation of the SOR
Scheme as applied to the Laplace equation is
given below. Note that
–  Program is written in C.
–  System size, m, is determined at run time.
–  Boundary conditions are handled by subroutine bc.
–  This scheme converges much more rapidly than the

Jacobi Scheme, especially when coupled with a
Checbyshev acceleration.

psor.c

#include "solvers.h"
#include "mpi.h"

INT main(INT argc, CHAR *argv[]) {
/***************MAIN PROGRAM *************************************
 * Solve Laplace equation using Successive Over Relaxation *
 * and Chebyshev Acceleration (see Numerical Recipe for detail) *
 * Kadin Tseng, Boston University, August, 2000 *
 ***/

 INT iter, m, mi, mp, p, k, below, above;
 REAL omega, rhoj, rhojsq, del, delr, delb, gdel;
 CHAR line[80], red, black;
 MPI_Comm grid_comm;
 INT me, iv, coord[1], dims, periods, ndim, reorder;
 REAL **v, **vt;

 MPI_Init(&argc, &argv); /* starts MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &k); /* get current process id */
 MPI_Comm_size(MPI_COMM_WORLD, &p); /* get # procs from env or */

psor.c

periods = 0; ndim = 1; reorder = 0; red = 'r'; black = 'b';

if(k == 0) {
 fprintf(OUTPUT,"Enter size of interior points, mi :\n");
 (void) fgets(line, sizeof(line), stdin);
 (void) sscanf(line, "%d", &mi);
 fprintf(OUTPUT,"mi = %d\n",mi);
 m = mi + 2; /* total is mi plus 2 b.c. points */
}
MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
mp = (m-2)/p+2;

v = allocate_2D(m, mp); /* allocate mem for 2D array */
vt = allocate_2D(mp, m);

gdel = 1.0;
iter = 0;
rhoj = 1.0 - PI*PI*0.5/m/m;
rhojsq = rhoj*rhoj;

psor.c

/* create cartesian topology for matrix */
dims = p;
MPI_Cart_create(MPI_COMM_WORLD, ndim, &dims,
 &periods, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &me);
MPI_Cart_coords(grid_comm, me, ndim, coord);
iv = coord[0];
bc(m, mp, v, iv, p); /* set up boundary conditions */
transpose(m, mp, v, vt); /* transpose v into vt */

replicate(mp, m, vt, v);
MPI_Cart_shift(grid_comm, 0, 1, &below, &above);

omega = 1.0;
update_sor(mp, m, vt, omega, &delr, red);
update_bc_2(mp, m, vt, iv, below, above);
omega = 1.0/(1.0 - 0.50*rhojsq);
update_sor(mp, m, vt, omega, &delb, black);
update_bc_2(mp, m, vt, iv, below, above);

psor.c

while (gdel > TOL) {
 iter++; /* increment iteration counter */
 omega = 1.0/(1.0 - 0.25*rhojsq*omega);

 update_sor(mp, m, vt, omega, &delr, red);
 update_bc_2(mp, m, vt, iv, below, above);

 omega = 1.0/(1.0 - 0.25*rhojsq*omega);
 update_sor(mp, m, vt, omega, &delb, black);
 update_bc_2(mp, m, vt, iv, below, above);

 if(iter%INCREMENT == 0) {
 del = (delr + delb)*4.0;

 MPI_Allreduce(&del, &gdel, 1, MPI_DOUBLE,
 MPI_MAX, MPI_COMM_WORLD); /* find global max error */
 if (k == 0) {

 fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega);
 }

 }
 if(iter > MAXSTEPS) {
 fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);

 fprintf(OUTPUT,")\n");
 return (1); /* nonconvergent solution */

 }
}

psor.c

 if (k == 0) {
 fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
 fprintf(OUTPUT,"The maximum error = %f\n",gdel);
 }

/* write v to file for use in MATLAB plots */

 transpose(mp, m, vt, v); /* transpose v into vt */
 write_file(m, mp, v, k, p);

 MPI_Barrier(MPI_COMM_WORLD);

 MPI_Finalize();

 return (0);

}

Scalability Plot of SOR

•  The plot in Figure
8.12 below shows
the scalability of the
MPI implementation
of the Laplace
equation using SOR
on an SGI Origin
2000 shared-
memory
multiprocessor.

Figure 8.12. Scalability plot using SOR on an
SGI Origin 2000.

END

