Regular Mesh Algorithms

Many scientific applications involve the solution of partial differential
equations (PDEs)
Many algorithms for approximating the solution of PDEs rely on
forming a set of difference equations

— Finite difference, finite elements, finite volume
The exact form of the difference equations depends on the particular

method
— From the point of view of parallel programming for these algorithms, the
operations are the same

Conway’s Game of Life

= |n this tutorial, we use Conway’s Game of Life as a simple example to
illustrate the program issues common to many codes that use regular
meshes, such as PDE solvers

— Allows us to concentrate on the MPI issues

= Game of Life is a cellular automaton
— Described in 1970 Scientific American

— Many interesting behaviors; see:
e http://www.ibiblio.org/lifepatterns/october1970.html

12

Rules for Life

= Matrix values A(i,j) initialized to 1 (live) or O (dead)

= |n each iteration, A(i,j) is set to
— 1 (live) if either
e the sum of the values of its 8 neighbors is 3, or
e the value was already 1 and the sum of its 8 neighborsis 2 or 3

— 0 (dead) otherwise

13

Implementing Life

= For the non-parallel version, we:

— Allocate a 2D matrix to hold state
e Actually two matrices, and we will swap them between steps

— Initialize the matrix
e Force boundaries to be “dead”
e Randomly generate states inside

— At each time step:
e Calculate each new cell state based on previous cell states (including neighbors)
e Store new states in second matrix
e Swap new and old matrices

14

Steps in Designing the Parallel Version

Start with the “global” array as the main object
— Natural for output — result we’re computing

= Describe decomposition in terms of global array
= Describe communication of data, still in terms of the global array

= Define the “local” arrays and the communication between them by
referring to the global array

15

Step 1: Description of Decomposition

= By rows (1D or row-block)
— Each process gets a group of adjacent rows
= Later we'll show a 2D decomposition

Rows

-

Columns

16

Step 2: Communication

“Stencil” requires read access to data from neighbor cells

St

e
X

D18

We allocate extra space on each process to store neighbor cells

Use send/recv or RMA to update prior to computation

P

—

17

Step 3: Define the Local Arrays

= Correspondence between the local and global array

= “Global” array is an abstraction; there is no one global array allocated
anywhere

= Instead, we compute parts of it (the local arrays) on each process

= Provide ways to output the global array by combining the values on
each process (parallel I/0!)

18

Boundary Regions

In order to calculate next state of cells in edge rows, need data from

adjacent rows

Need to communicate
these regions at each
step

— First cut: use Isend
and Irecv

— Revisit with RMA later

19

Life Point-to-Point Code Walkthrough

= Points to observe in the code:
— Handling of command-line arguments
— Allocation of local arrays

— Use of a routine to implement halo exchange
e Hides details of exchange

matrix mdata

vy vy

Allows us to use matrix[row][col] to address elements

See mlife.c pp. 1-8 for code example.

20

Note: Parsing Arguments

= MPI standard does not guarantee that command line arguments will be
passed to all processes.

— Process arguments on rank O

— Broadcast options to others
e Derived types allow one bcast to handle most args

— Two ways to deal with strings
e Big, fixed-size buffers
e Two-step approach: size first, data second (what we do in the code)

See mlife.c pp. 9-10 for code example.

21

Point-to-Point Exchange

= Duplicate communicator to ensure communications do not conflict

— This is good practice when developing MPI codes, but is not required in this
code

— If this code were made into a component for use in other codes, the
duplicate communicator would be required

= Non-blocking sends and receives allow implementation greater
flexibility in passing messages

See mlife-pt2pt.c pp. 1-3 for code example.

22

